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Abstract. In this paper, we consider the nonlinear elliptic problem

−�u + |u|p−1u + |∇u|q = f

in R
N , where p > 1 and q > 0. We show that if f ∈ Lr

loc(RN ) for suitable r ≥ 1,
then there exists a distributional solution of the equation, independently of the
behavior of f at infinity. We also analyze the uniqueness of this solution in some
cases.

1 Introduction

In [6], the following somewhat surprising result was obtained: if p > 1 and
f ∈ L1

loc(R
N ), then there exists a unique distributional solution of

(1.1) −�u + |u|p−1u = f in R
N .

The surprising fact is that neither the existence nor the uniqueness of solutions of
(1.1) depends on the behavior of f at infinity, but strongly relies on the fact that
p > 1.

The question of existence and uniqueness of solutions without prescribing a
growth on f at infinity has subsequently been considered for equations more gen-
eral than (1.1). Such equations are obtained when the Laplacian is replaced with a
divergence operator of p-Laplacian type (see [4] or [12]) or with a fully nonlinear
operator (cf. [7]). The extension to parabolic equations has also been studied in
[5] and [13].
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Our intention in the present paper is to analyze whether the existence and
uniqueness features in (1.1) still hold when we introduce a term that depends on
the gradient into the equation. More precisely, we are interested in the problem

(1.2) −�u + |u|p−1u + |∇u|q = f in R
N ,

where p > 1, q > 0, and f ∈ L1
loc(R

N ). It can be deduced from our proofs below
that more general problems, for instance the m-Laplacian version of (1.2), can be
considered,. However, optimal conditions on the parameters m, p, q, and r when
f ∈ Lr

loc(R
N ) are far from clear. For simplicity, we restrict our attention to (1.2).

By a solution u of (1.2) we mean u ∈ Lp
loc(R

N ), |∇u|q ∈ L1
loc(R

N ), and u satisfies
(1.2) in the distributional sense, i.e.,

−
∫

u�φ +
∫

(|u|p−1u + |∇u|q)φ =
∫

fφ

for every φ ∈ C∞
0 (RN ). It is known that since �u ∈ L1

loc(R
N ), u ∈ W 1,s

loc (RN )
for every s, 1 ≤ s < N/(N − 1). As usual, a slight increase of regularity in f is
reflected in a gain of regularity for u.

We begin with the case 0 < q < 2p/(p + 1), where the regularity f ∈ L1
loc(R

N )
is enough to obtain a solution. In this case, the gradient term does not “interfere
too much” with the structure of (1.1).

Theorem 1. Let p > 1 and 0 < q < 2p/(p + 1). Then for every f ∈ L1
loc(R

N ),
there exists a distributional solution u to the problem

−�u + |u|p−1u + |∇u|q = f in R
N .

This solution satisfies u ∈ Lp
loc(R

N ) ∩ W 1,s
loc (RN ) for every s in the interval

(1,max{2p/(p + 1),N/(N − 1)}). Moreover, if f ≥ 0, then u ≥ 0.

When q ≥ 2p/(p + 1), the L1
loc regularity for f seems insufficient to ensure

existence. Also, let us remark that the sign of f is an important issue here (mainly
when q > 2). This is due to the fact that the equation (1.2) is not invariant under
the changes of u to −u and f to − f , as happens with (1.1). Thus, in the main
results of present paper, Theorems 1–4, we restrict ourselves to the case f ≥ 0,
delaying the study of negative f to future work. The differences in the problem
between a positive and negative f can be seen even when the problem is posed in
a bounded domain in R

N . Our next result is valid for all q > 1.

Theorem 2. Let p, q > 1 and f ∈ Lr
loc(R

N ) for some r > N with f ≥ 0. Then
there exists a strong solution u ∈ C1(RN ) ∩ W 2,r

loc (RN ) of the equation

−�u + |u|p−1u + |∇u|q = f in R
N .
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Moreover, the solution is positive.

We next analyze how the condition f ∈ Lr
loc(R

N ) with r > N can be weakened.
For this purpose, we consider a radially symmetric, nonnegative function f and
try to construct radially symmetric, nonnegative solutions. It turns out that in this
framework, r > 1 suffices, provided that 1 < q < N/(N − 1). We mention in
passing that the next theorem is valid for all p > 1, but it only gives better results
than Theorem 1 when p < N/(N − 2), q ≥ 2p/(p + 1).

Theorem 3. Let 1 < p < N/(N − 2) and 2p/(p + 1) ≤ q < N/(N − 1). For
every radially symmetric, nonnegative function f ∈ Lr

loc(R
N ), r > 1, there exists a

radially symmetric, nonnegative distributional solution u of the equation

−�u + up + |∇u|q = f in R
N .

The proof of existence of solutions in all of our theorems is achieved by first
considering the problem in a smooth bounded domain of RN , complemented with
a Dirichlet boundary condition. The essential step is then to obtain good estimates
for the solutions and their gradients.

Finally, we analyze the question of uniqueness of the constructed solutions.
We are able to prove uniqueness only if the regularity of f is improved slightly.

Theorem 4. Assume f ∈ Lr
loc(R

N ) for some r > N and that f is nonnega-

tive. Then if 0 < q < p, problem (1.2) admits a unique solution u ∈ W 1,∞
loc (RN ).

Moreover, u ∈ C1(RN ) ∩ W 2,r
loc (RN ) and u is nonnegative.

It is worthy of mention that the condition q < p is optimal in the uniqueness
assertion since if q ≥ p, infinitely many smooth solutions can be constructed when
f = 0; see Remark 4.

For the proof of Theorem 4, we follow a device used in [6] with a significant
variation: we use the minimal solution UR of the boundary blow-up problem

−�U + c Up − d |∇U |q = 0 in BR,

U = ∞ on ∂BR,

where c, d > 0; this was shown to exist in [1]. A property worth noticing is that
UR → 0 uniformly in compacts of RN as R → ∞.

The rest of the paper is organized as follows. In Section 2, we consider prob-
lem (1.2) in smooth bounded domains of RN with a Dirichlet boundary condition,
while Section 3 is dedicated to obtaining local estimates for these approximate
solutions and their gradients. Finally, the proofs of Theorems 1, 2, 3, and 4 are
presented in Section 4.
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After acceptance of this paper, the authors learned of references [14] and [17],
which are closely related to the results contained here.

2 A problem in bounded domains

As mentioned in the Introduction, the construction of solutions to (1.2) relies on
the solvability of a related Dirichlet problem in a smooth bounded domain � of
R

N . The purpose of this brief section is to analyze such a problem. Thus, we
consider

−�u + |u|p−1u + |∇u|q = f in �,

u = 0 on ∂�,
(2.1)

where p > 1 and q > 0. In the present context, we may always take f to be
sufficiently smooth; hence we assume f ∈ C∞(�). The result we need is the
following.

Theorem 5. Let � ⊂ R
N be a smooth bounded domain and f ∈ C∞(�),

p > 1, q > 0. When q > 2, assume, additionally, that f ≥ 0. Then problem (2.1)
admits a unique classical solution u ∈ C2(�) ∩ C1(�). Moreover, if f ≥ 0, then
u > 0 in �.

Proof. It is clear that the unique solution ū to the problem

−�u + |u|p−1u = | f |∞ in �,

u = 0 on ∂�

is a supersolution of (2.1) which, according to the strong maximum principle,
satisfies ū > 0 in �. Next, assume 0 < q ≤ 2. We claim that the problem

−�u + |u|p−1u + |∇u|q = −| f |∞ in �,

u = 0 on ∂�
(2.2)

has a unique (negative) solution. Indeed, setting θ = | f |p∞ and v = u + θ, we see
that (2.2) is equivalent to

�v − |∇v |q = h(v) in �,

v = θ on ∂�,
(2.3)

where h(v) = θ p + |v − θ|p−1(v − θ) is increasing and satisfies h(0) = 0. From [1,
Proposition 5] and the strong maximum principle, we deduce that problem (2.3)
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has a unique solution v which satisfies v < θ in �. Letting u = v − θ, we obtain
the unique solution of (2.2), which is a subsolution of (2.1).

Since 0 < q ≤ 2, we obtain by standard results (see, for example, [2] or [18])
the existence of a weak solution u ∈ C 1(�) of (2.1) which satisfies u < u < u in
�. By classical regularity, we also have u ∈ C 2(�), although this regularity can
be improved, depending on the values of p and q.

When q > 2 and f ≥ 0, we may still take ū as a supersolution and u = 0 as a
subsolution, and we obtain the existence of a solution u verifying 0 < u < u in �
thanks to [15, Theorem III.1]. �

3 Interior estimates for solutions and their gradients

In order to construct solutions to (1.2), we need local bounds for solutions and their
gradients. When q < 2p/(p + 1), these bounds can be obtained merely under the
assumption that f ∈ L1

loc(RN ), but the case q ≥ 2p/(p+1) is not so straightforward
and calls for a different strategy.

We begin by considering the bounds for weak solutions when f ∈ L1
loc(R

N )
and 0 < q < 2p/(p + 1). Recall that u ∈ H 1(B2R) is a weak solution of

−�u + |u|p−1u + |∇u|q = f in B2R

if ∫
∇u∇φ + (|u|p−1u + |∇u|q)φ =

∫
fφ

for every φ ∈ C∞
0 (B2R). The proof of the next result is inspired by [4].

Theorem 6. Let p > 1 and 0 < q < 2p/(p + 1). Then for every R > 0, there

exists a constant C = C(R) > 0 such that for every weak solution u ∈ H 1(B2R) of

(3.1) −�u + |u|p−1u + |∇u|q = f in B2R

with f ∈ L1
loc(R

N ),

(3.2)
∫

BR

|u|p ≤ C
(∫

B2R

| f | + 1
)
.

Also, for every s ∈ (
0, 2p/(p + 1)

)
, there exists C = C(s,R) such that

(3.3)
∫

BR

|∇u|s ≤ C
(∫

B2R

| f | + 1
)
.
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Proof. For m > 0, we introduce the function

φm(σ) = m
∫ σ

0

dt
(1 + |t|)m+1

, σ ∈ R,

which is odd and satisfies
∣∣φm(σ)

∣∣ ≤ 1. Choose θ ∈ C∞
0 (B2R) satisfying 0 ≤ θ ≤ 1

and θ ≡ 1 in BR. Next, take φm(u)θα as a test function in the weak formulation of
(3.1) (where α > 0 is to be chosen later on) to obtain

m
∫ |∇u|2

(1 + |u|)m+1
θα +

∫
|u|p−1uφm(u)θα

≤
∫

| f |θα + C
∫
θα−1|∇u| +

∫
θα|∇u|q,

thanks to the definition of φm . We adopt the usual convention that the letter C

denotes different constants, not depending on u or f . Observe now that, on the
one hand, from Young’s inequality, we have

θα−1|∇u| ≤ ε
|∇u|2θα

(1 + |u|)m+1
+ C(ε) θα−2(1 + |u|)m+1

for every ε > 0, where C(ε) depends only on ε. On the other hand, we can take q 0

such that max{1, q} < q0 < 2p/p + 1), and since |∇u|q ≤ 1 + |∇u|q0 , we obtain,
again by Young’s inequality,

|∇u|q ≤ 1 + ε
|∇u|2

(1 + |u|)m+1 + C(ε)(1 + |u|)(m+1)q0/(2−q0).

Hence, if we fix ε > 0 sufficiently small, on the one hand, we arrive at
∫ |∇u|2

(1 + |u|)m+1 θ
α +

∫
|u|p−1uφm(u)θα

≤ C
∫

B2R

| f | + C
∫

(1 + |u|)m+1θα−2 + C
∫

(1 + |u|)(m+1)q0/(2−q0)θα + C

≤ C
∫

B2R

| f | + C
∫

(1 + |u|)(m+1)q0(2−q0)θα−2 + C,

since q0/(2 − q0) > 1. On the other hand, it is easily seen that |u|p−1uφm(u) ≥
C|u|p − 1 for u ∈ R. Hence
∫ |∇u|2

(1 + |u|)m+1
θα +

∫
|u|pθα ≤ C

∫
B2R

| f | + C
∫

(1 + |u|)(m+1)q0/(2−q0)θα−2 + C.

A further application of Young’s inequality gives
∫

(1 + |u|)(m+1)q0/(2−q0)θα−2 ≤ ε

∫
(1 + |u|)pθα + C(ε)

∫
θα−2p/(p−μ),
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where μ = (m + 1)q0/(2 − q0). We note that we can achieve μ < p if we choose
m small enough. Taking α ≥ 2p/(p −μ) and recalling that θ ≡ 1 in BR, we obtain

(3.4)
∫

BR

|∇u|2
(1 + |u|)m+1

+
∫

BR

|u|p ≤ C
(∫

B2R

| f | + 1
)
.

Finally, observe that (3.4) holds for all m > 0, since it holds for small m and the
left-hand side is decreasing in m.

Now (3.2) follows immediately from (3.4). With regard to (3.3), we can use
Hölder’s inequality for s ∈ (0, 2p/(p + 1)) to obtain

∫
BR

|∇u|s =
∫

BR

|∇u|s
(1 + |u|)ν (1 + |u|)ν

≤
(∫

BR

|∇u|2
(1 + |u|) 2ν

s

)s/2(∫
BR

(1 + |u|)2ν/(2−s)
)(2−s)/2(3.5)

for every ν > 0. Note that we can choose ν so that 2ν/s > 1, 2ν/(2 − s) ≤ p,
since this is equivalent to s/2 < ν ≤ p(2 − s)/2. This choice is possible since
s < 2p/(p + 1). Thus (3.3) follows at once from (3.5) and (3.4). �

Remark 1. When f ∈ Lr
loc(R

N ), r > 1, we can obtain better estimates for
weak nonnegative, bounded solutions (these last two assumptions are made only
for the sake of simplicity in the present proof; they do not seem necessary). Indeed,
if u is such a solution, we have

(3.6)
∫

BR

upr ≤ C
(∫

B2R

| f |r + 1
)
.

To see this, take as a test function in (3.1) (u + ε)mθα, where θ is as in the previous
proof, m = p(r − 1), ε > 0 is small, and α > 0 is to be chosen. This leads to

m
∫
θα(u + ε)m−1|∇u|2 +

∫
θαup(u + ε)m

≤
∫

| f |θα(u + ε)m + α
∫
θα−1(u + ε)m|∇u||∇θ|.

From Young’s inequality applied to the last integral, we obtain

α

∫
θα−1(u + ε)m|∇u||∇θ| ≤ m

2

∫
θα(u + ε)m−1|∇u|2 + C

∫
θα−2(u + ε)m+1,

where C is a positive constant. Hence
∫
θαup(u + ε)m ≤

∫
| f |θα(u + ε)m + C

∫
θα−2(u + ε)m+1.
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We can first let ε tend to 0 and then apply Young’s inequality to obtain

| f |um ≤ 1
2

upr + C| f |r ,

so that

(3.7)
1
2

∫
θαupr ≤ C

∫
| f |rθα + C

∫
θα−2um+1.

Next, observe that applying Young’s inequality once again to the last integrand,
we obtain θα−2um+1 ≤ θαupr/4 + Cθα−2p′r , where from now on p′ = p/(p − 1), so
that 1/p + 1/p′ = 1. Choosing now α > 2p′r in (3.7), we get

∫
θαupr ≤ C

(∫
| f |rθα + 1

)
.

We obtain (3.6), since 0 ≤ θ ≤ 1 and θ = 1 in BR.

In the complementary case q ≥ 2p/(p + 1), we impose an extra regularity
condition on f . Namely, we assume that f ∈ Lr

loc(RN ) for some r > N . Although
the estimates for the solutions can be obtained by arguing as in [6], it is not so
clear how to get appropriate bounds for the gradients needed to pass to the limit.
Hence our approach is completely different from that in the previous case: it uses
a mixture of methods from [11] and [16] and is valid for all q > 1.

Theorem 7. Let p, q > 1, f ∈ C1(RN ) and r > N . If u ∈ C3(B4R) is a

nonnegative classical solution of

−�u + up + |∇u|q = f in B4R,

then there exists a positive constant C, depending on R and | f |Lr (B4R), such that

(3.8) sup
BR/2

(u + |∇u|) ≤ C.

Proof. We first claim that there exists a positive constant C, not depending on
f or on u, such that

(3.9)
∫

B2R

up ≤ C
(∫

B4R

| f | + 1
)
.

To prove (3.9) we can argue exactly as in [6]. Notice that −�u + up ≤ f in R
N .

Now take a cut-off function ξ ∈ C∞(B4R) satisfying 0 ≤ ξ ≤ 1 and ξ ≡ 1 in B2R.
Testing the equation with ξα, where α > 0 is to be chosen later, and using Hölder’s
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inequality, we have∫
upξα ≤

∫
B4R

| f | +
∫

u�ξα ≤
∫

B4R

| f | + C
∫

uξα−2

≤
∫

B4R

| f | + C
(∫

up ξ (α−2)p
)1/p

,

where C is a positive constant (depending only on α and ξ ). Setting α = 2p/(p−1),
we obtain ∫

upξα ≤
∫

B2R

| f | + C
(∫

upξα
)1/p

,

so that (3.9) follows by recalling that ξ ≡ 1 in B2R. Now observe that −�u ≤ f in
B2R, so that we may apply Theorem 8.17 in [9] to arrive at u ∈ L∞(BR), with the
bound supBR

u ≤ C, where C depends on R, | f |Lr (B4R), and p.
Our next task is to obtain estimates for the gradient of u. Let w = |∇u|2, and

observe that w is smooth. It is not hard to see that

−�w + q|∇u|q−2∇u∇w = −2|D2u|2 + 2∇u∇ f − 2pup−1w

in R
N . Next take a smooth cut-off function ϕ such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in BR,

ϕ ≡ 0 in R
N \B2R, and |�ϕ| ≤ Cϕθ , |∇ϕ|2 ≤ Cϕ1+θ for some positive constant C

and certain θ ∈ (0, 1) to be chosen later. We have

−�(ϕw) + qw(q−2)/2∇u∇(ϕw) + 2
∇ϕ
ϕ

∇(ϕw) + 2|D2u|2ϕ

= qw(q−2)/2∇u∇ϕw−�ϕw + 2∇u∇ fϕ− 2pup−1w + 2
|∇ϕ|2
ϕ

w

in R
N . Taking now m > 0 and using (ϕw)m as a test function, we obtain

m
∫

|∇(ϕw)|2(ϕw)m−1 + q
∫
w

q−2
2 ∇u∇(ϕw)(ϕw)m

+ 2
∫ ∇ϕ

ϕ
∇(ϕw)(ϕw)m + 2

∫
|D2u|2ϕ(ϕw)m

= q
∫
w

q−2
2 ∇u∇ϕ(ϕw)mw−

∫
�ϕw(ϕw)m

+ 2
∫

∇u∇ fϕ(ϕw)m − 2p
∫

up−1w(ϕw)m + 2
∫ |∇ϕ|2

ϕ
w(ϕw)m.

We next observe that thanks to Cauchy-Schwarz inequality,

|D2u|2 ≥ 1
N

(�u)2 ≥ 1
N

(|∇u|q + up − f )2

≥ 1
2N

(|∇u|q + up)2 − 2
N

| f |2 ≥ 1
2N

|∇u|2q − 2
N

| f |2.
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It follows that

m
∫

|∇(ϕw)|2(ϕw)m−1 + q
∫
w

q−2
2 ∇u∇(ϕw)(ϕw)m

+ 2
∫ ∇ϕ

ϕ
∇(ϕw)(ϕw)m +

1
2N

∫
wqϕ(ϕw)m +

∫
|D2u|2ϕ(ϕw)m

≤ q
∫
w

q−2
2 |∇ϕ|w(ϕw)m +

∫
|�ϕ|w(ϕw)m +

4
N

∫
| f |2(ϕw)m

+ 2
∫ |∇ϕ|2

ϕ
w(ϕw)m + 2

∫
∇u∇ fϕ(ϕw)m + C,

where here and in the rest of the proof, C represents a constant independent of u,
f , and m and can take different values at different places. Now by the choice we
have made for ϕ,

q
∫
w(q−1)/2|∇ϕ|w(ϕw)m ≤ C

∫
ϕm+(θ+1)/2wm+(q+1)/2 ≤ C

∫
ϕm+θwm+(q+1)/2

∫
|�ϕ|w(ϕw)m ≤ C

∫
ϕm+θwm+1

2
∫ |∇ϕ|2

ϕ
w(ϕw)m≤ C

∫
ϕm+θwm+1.

Hence

m
∫

|∇(ϕw)|2(ϕw)m−1 + q
∫
w(q−2)/2∇u∇(ϕw)(ϕw)m

+ 2
∫ ∇ϕ

ϕ
∇(ϕw)(ϕw)m +

1
2N

∫
ϕm+1wm+q +

∫
|D2u|2ϕ(ϕw)m

≤ C
∫
ϕm+θwm+(q+1)/2 + C

∫
ϕm+θwm+1

+
4
N

∫
| f |2(ϕw)m + 2

∫
∇u∇ fϕ(ϕw)m + C

≤ C
∫
ϕm+θwm+ q+1

2 +
4
N

∫
| f |2(ϕw)m + 2

∫
∇u∇ fϕ(ϕw)m + C.

(3.10)

The next step is to estimate the integrals in the right-hand side of (3.10) with the
aid of Young’s inequality in the form ab ≤ εa2 + b2/(4ε) for a, b > 0 and arbitrary
ε > 0. With regard to the integrals that do not contain f , we have

−q
∫
w(q−2)/2∇u∇(ϕw)(ϕw)m ≤ q

∫
w(q−1)/2|∇(ϕw)|(ϕw)m

≤ ε

∫
|∇(ϕw)|2(ϕw)m−1 +

q
4ε

∫
wq−1(ϕw)m+1

= ε
∫

|∇(ϕw)|2(ϕw)m−1 +
q
4ε

∫
ϕm+1wm+q
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and

−2
∫ ∇ϕ

ϕ
∇(ϕw)(ϕw)m ≤ 2

∫ |∇ϕ|
ϕ

|∇(ϕw)|(ϕw)m

≤ C
∫
ϕ(θ−1)/2|∇(ϕw)|(ϕw)m

≤ ε

∫
|∇(ϕw)|2(ϕw)m−1 +

C
ε

∫
ϕθ−1(ϕw)m+1

≤ ε

∫
|∇(ϕw)|2(ϕw)m−1 +

C
ε

∫
ϕm+θwm+1.

Next, we consider the integral involving f in the right-hand side of (3.10). Inte-
grating by parts and using the Cauchy-Schwarz inequality, we obtain

2
∫

∇u∇ fϕ(ϕw)m = −2
∫

f div
(∇uϕ(ϕw)m)

= −2
∫

f�uϕ(ϕw)m−2
∫

f ∇u∇ϕ(ϕw)m −2
∫

f ∇uϕ∇(ϕw)m

≤ 2
∫

| f ||�u|ϕ(ϕw)m + 2
∫

| f ||∇u||∇ϕ|(ϕw)m

+ 2m
∫

| f ||∇u|ϕ(ϕw)m−1|∇(ϕw)|

≤
∫

|D2u|2ϕ(ϕw)m + C
∫

| f |2ϕ(ϕw)m +
∫

| f |2(ϕw)m

+
∫

|∇u|2|∇ϕ|2(ϕw)m +
m
2

∫
|∇(ϕw)|2(ϕw)m−1

+ Cm
∫

| f |2ϕ|∇u|2(ϕw)m−1

≤
∫

|D2u|2ϕ(ϕw)m +Cm
∫

| f |2(ϕw)m +
m
2

∫
|∇(ϕw)|2(ϕw)m−1

+ C
∫
ϕm+1+θwm+1.

Hence, plugging everything into (3.10) yields
(

m
2

− 2ε
)∫

|∇(ϕw)|2(ϕw)m−1 +
(

1
2N

− C
ε

)∫
ϕm+1wm+q

≤ C
∫
ϕm+θwm+1 + C

∫
ϕm+θwm+ q+1

2 + Cm
∫

| f |2(ϕw)m + C.

Choosing and fixing large enough ε and then large m, we obtain

(3.11)
m
3

∫
|∇(ϕw)|2(ϕw)m−1 +

1
4N

∫
ϕm+1wm+q

≤ C
∫
ϕm+θwm+(q+1)/2 + C

∫
| f |2(ϕw)m + C.
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Now we observe that it is possible to choose θ ∈ (0, 1), independent of m, such
that

m + θ
m + (q + 1)/2

>
m + 1
m + q

.

With this choice of θ, we obtain

ϕm+θwm+(q+1)/2 ≤ 1
4N

ϕm+1wm+q + C,

and hence from (3.11),

(3.12)
m
3

∫
|∇(ϕw)|2(ϕw)m−1 ≤ C

∫
| f |2(ϕw)m + C.

On the other hand, Sobolev’s inequality gives

m
3

∫
|∇(ϕw)|2(ϕw)m−1 =

4m
3(m + 1)2

∫
|∇(ϕw)(m+1)/2|2

≥ C
(∫

(ϕw)(m+1)N/N−2
)(N−2)/N

,

where the constant C depends also on m. Applying Hölder’s inequality to the
integral in (3.12) containing f yields

(3.13)
∫

| f |2(ϕw)m ≤
(∫

(ϕw)(m+1)N/(N−2)
)1/β(∫

B2R

| f |2β′
)1/β′

,

where β =
(
(m + 1)/m

)(
N/(N − 2)

)
. Since β ′ → N/2 < r/2 as m → ∞, we may

choose m so large that 2β ′ < r, so that the last integral in (3.13) is controlled by
| f |Lr (B2R). Hence, from (3.12), we obtain

(∫
(ϕw)(m+1)N/(N−2)

)(N−2)/N

≤ C
(∫

(ϕw)(m+1)N/N−2
)1/β

+ C,

which immediately yields
∫

(ϕw)(m+1)N/(N−2) ≤ C. Taking into account that ϕ ≡ 1
in BR and the definition w = |∇u|2, we obtain

∫
BR

|∇u|2(m+1)N/(N−2) ≤ C. Since
m can be taken to be arbitrarily large, we obtain local bounds for |∇u| in Ls for
every s > 1. Finally, since u ∈ C3(B4R) is a nonnegative classical solution of
−�u + up + |∇u|q = f in B4R, �u = h in BR, where h ∈ Lr

loc(BR/2) for some r > N .
Inequality (3.8) then follows thanks to [9, Remark, p. 70].

Remark 2. Estimates for |∇u| in Lq can be obtained as in [6], when q > 1.
We take a cut-off function ξ ∈ C∞(B2R) with 0 ≤ ξ ≤ 1, ξ ≡ 1 in BR. For α > 0
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to be chosen, we test the equation with ξ α. Since u is nonnegative,∫
|∇u|qξα ≤

∫
B2R

| f | − α

∫
ξα−1∇u∇ξ

≤
∫

B2R

| f | + C
∫
ξα−1|∇u|

≤
∫

B2R

| f | + C
(∫

ξ (α−1)q|∇u|q
)1/q

,

by Hölder’s inequality. Taking α = (α− 1)q, i.e., α = q/(q − 1), we obtain
∫

|∇u|qξα ≤
∫

B2R

| f | + C
(∫

ξα|∇u|q
)1/q

,

where C depends on R; in particular, this gives bounds for |∇u|q in L1(BR). How-
ever, these estimates are not sharp enough to pass to the limit in the proof of
Theorem 2.

Finally, we consider a particular case in which appropriate estimates for the
gradient of the solutions can be obtained with only a slight improvement to the
regularity of f . We restrict ourselves to the radially symmetric situation.

Theorem 8. Assume p > 1 and 1 < q < N/(N − 1). Let f ∈ Lr
loc(RN ) for

some r > 1 be radially symmetric. For every R > 0, there exists δ > 0 and a
positive constant C = C(δ,R, | f |Lr (B2R)) such that

(3.14)
∫

BR

|∇u|q+δ ≤ C.

for every radially symmetric smooth nonnegative solution of

−�u + up + |∇u|q = f in B2R.

Proof. Since u is radially symmetric and nonnegative,

−u′′ − N − 1
s

u′ + |u′|q ≤ | f |,
where s = |x| and throughout this proof, ′ stands for the derivative with respect to
s. Multiply this by |u′|ε, where ε > 0 is small and to be chosen. Observe that the
resulting inequality can be written as

(3.15) − 1
1 + ε

s−Ñ+1(sÑ−1|u′|εu′)′ + |u′|q+ε ≤ | f ||u′|ε,

where Ñ = 1 + (N − 1)(1 + ε) > N . We now proceed as in Remark 2. Select a
radially symmetric cut-off function ξ ∈ C∞(B2R) such that 0 ≤ ξ ≤ 1 and ξ = 1
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in BR. Multiplying (3.15) by ξα, where α > 0 is to be chosen, and using Hölder’s
inequality, we find that

α

1 + ε

∫ 2R

0
sÑ−1|u′|εu′ξα−1ξ ′ +

∫ 2R

0
sÑ−1|u′|q+εξα

≤
∫ 2R

0
sÑ−1| f ||u′|εξα ≤

∫ 2R

0
sÑ−1| f ||u′|ε

≤
(∫ 2R

0
sÑ−1| f |θ ′

)1/θ ′(∫ 2R

0
sÑ−1|u′|εθ

)1/θ

,

where θ > 1. Taking θ = q/ε and using the estimates obtained in Remark 2, we
obtain

(3.16)
∫ 2R

0
sÑ−1|u′|q+εξα ≤ C| f |Lq/(q−ε)(B2R) + C

∫ 2R

0
sÑ−1|u′|ε+1ξα−1.

We have also used ∫ 2R

0
sÑ−1| f |q/(q−ε) ≤ C

∫ 2R

0
sN−1| f |q/(q−ε),

which holds since Ñ > N . Next, choose ε ≤ q(r − 1)/r and again use Hölder’s
inequality in (3.16) to obtain

∫ 2R

0
sÑ−1|u′|q+εξα ≤ C + C

(∫ 2R

0
sÑ−1|u′|q+εξ (α−1)(q+ε)(1+ε)

)(1+ε)(q+ε)

,

where C depends additionally on | f |Lr (B2R). Choosing α = (q + ε)/(q − 1) and
recalling that ξ ≡ 1 in BR, we obtain

(3.17)
∫ R

0
sÑ−1|u′|q+ε ≤ C.

Our intention is to derive (3.14) from (3.17). We first observe that if δ > 0, we
have, by Hölder’s inequality,

∫ R

0
sN−1|u′|q+δ =

∫ R

0
s−νsN−1+ν|u′|q+δ

≤
(∫ 2R

0
s−νγ/(γ−1)

)(γ−1)/γ(∫ R

0
s(N−1+ν)γ|u′|(q+δ )γ

)1/γ

,

where ν > 0 and γ > 1 are to be chosen presently. Observe that if ν and γ are
taken to satisfy

νγ/(γ− 1) < 1

(N − 1 + ν)γ ≥ (N − 1)(1 + ε)

(q + δ )γ ≤ q + ε,

(3.18)
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then (3.14) follows, by (3.17). Hence, choose γ such that equality holds in the
second line of (3.18), i.e., γ = (N − 1)(1 + ε)/(N − 1 + ν). In order that γ > 1,
we need to restrict ν to ν < ε(N − 1). The first line in (3.18) is then equivalent to
ν < ε(N −1)/

(
1+(N −1)(1+ε)

)
(which implies, in particular, that ν < ε(N −1)).

Thus, choose ν = τε, where

(3.19) τ <
N − 1

1 + (N − 1)(1 + ε)
.

Finally, the third line in (3.18) can be satisfied with small δ if q < ε/(γ− 1), i.e.,
if

(3.20) q <
N − 1 + τε
N − 1 − τ

.

Since 1 < q < N/(N − 1), we can choose small ε and τ so that both (3.19) and
(3.20) hold. Hence (3.18) holds, and this establishes (3.14), provided that δ is
small enough. �

4 Proof of the main theorems

This section is devoted to the proofs of Theorems 1, 2, 3 and 4. We consider first
the proofs of existence of solutions. The proofs are based on the corresponding
theorems proved in the previous section.

Proof of Theorem 1. We follow the same procedure as in [3] or [4]. Choose
a sequence { fn}∞n=1 ⊂ C∞(RN ) such that fn → f in L1

loc(R
N ). For each nonnega-

tive integer n, consider the problem

−�u + |u|p−1u + |∇u|q = fn in Bn

u = 0 on ∂Bn.
(4.1)

According to Theorem 5, there exists a unique solution un ∈ C2(Bn) ∩ C1(B̄n) of
(4.1).

Choose s such that q < s < 2p/(p + 1). Theorem 6 implies that for every
R ∈ (0, n/2), there exists a constant C > 0, depending on R, such that

(4.2)
∫

BR

|un|p + |∇un|s ≤ C
(∫

B2R

| fn| + 1
)

≤ C.

Since 2p/(p + 1)) < p, we obtain bounds in W 1,s(BR) so that (after passing to a
subsequence and by means of a diagonal procedure) we obtain

un → u weakly in W 1,s
loc (RN ).
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In particular, we may assume

un → u in Ls
loc(R

N ),

un → u a.e. in R
N .

Our intention is to prove that u is a solution of (1.2). To this end, we first verify
that u ∈ W 1,1

loc (RN ) and ∇un → ∇u in L1
loc(R

N )N .

Let hn = fn − |un|p−1un − |∇un|q. The sequence {hn} is bounded in L1
loc(R

N )
by (4.2), and −�un = hn. Take ε > 0 and ξ ∈ C∞(B2R) with 0 ≤ ξ ≤ 1 and ξ ≡ 1
in BR. Define

ψ(s) =

⎧⎨
⎩

inf{s, ε}, s ≥ 0,

−ψ(−s), s ≤ 0.

Taking ξψ(un − um) as a test function in the weak formulation of −�(un − um) =
hn − hm, we obtain

∫
BR∩An,m,ε

|∇(un − um)|2 ≤ ε

∫
B2R

(|hn| + |hm|) + Cε
∫

B2R

(|∇un| + |∇um|) ≤ Cε,

where An,m,ε = {x ∈ R
N : |un(x) − um(x)| ≤ ε}. Moreover,

∫
BR

|∇(un − um)| =
∫

BR∩An,m,ε

|∇(un − um)| +
∫

BR∩Ac
n,m,ε

|∇(un − um)|

≤ |BR|1/2
(∫

BR∩An,m,ε

|∇(un − um)|2
)1/2

+ |BR ∩ Ac
n,m,ε|1/q′

(∫
|∇(un − um)|q

)1/q

≤ Cε1/2 + C|BR ∩ Ac
n,m,ε|1/q′

,

where Ac
n,m,ε = R

N \ An,m,ε. Since un → u in measure, |BR ∩ Ac
n,m,ε| → 0; hence

∇un is a Cauchy sequence in L1
loc(R

N )N , and ∇un → w in L1
loc(RN )N . Of course,

this gives u ∈ W 1,1
loc (RN ) with w = ∇u.

Next, recall that |∇un| is bounded in Ls
loc(R

N ) for every s ∈ (
0, 2p/(p + 1)

)
;

thus, by Vitali’s theorem, ∇un → ∇u in Ls
loc(R

N )N for s ∈ (
0, 2p/(p + 1)

)
, and,

in particular, for s = q.

Finally, set gn = fn − |∇un|q, and g = f − |∇u|q, so that gn → g in L1
loc(R

N ).
Since −�(un − um) + |un|p−1un − |um|p−1um = gn − gm for arbitrary n,m ∈ N, we
may employ Kato’s inequality (cf. [6, Appendix]) to arrive at

−�|un − um| +
∣∣|un|p−1un − |um|p−1um

∣∣ ≤ |gn − gm| in R
N .
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Multiplying this inequality by ξ , we obtain
∫

BR

∣∣|un|p−1un − |um|p−1um

∣∣ ≤
∫

B2R

|gn − gm| + C
∫

B2R

|un − um| → 0.

In particular, |un|p−1un → |u|p−1u in L1
loc(R

N ), so that we may pass to the limit
in the equation satisfied by un and conclude that u is a solution of (1.2). As a
consequence, u ∈ W 1,s

loc (RN ) for all s ∈ (
1, 2p/(p + 1)

)
and u ∈ Lp

loc(R
N ). Finally,

since �u ∈ L1
loc(R

N ), we also have u ∈ W 1,s
loc (RN ) for all s ∈ (0,N/(N − 1)). �

Remark 3. If f ≥ 0 and f ∈ Lr
loc(RN ) for some r > N , a solution u can be

constructed that also satisfies u ∈ C1(RN ) ∩ W 2,r
loc (RN ), provided that 0 < q ≤ 1.

Indeed, for a sequence { f n} which converges to f in Lr
loc(RN ), and unique solution

un of (4.1) (which is nonnegative), we have, by (3.6),
∫

BR

upr
n ≤ C

(∫
B2R

| fn|r + 1
)

≤ C.

Hence, passing to the limit, we find that up ∈ Lr
loc(R

N ). Thus −�u + |∇u|q = h in
R

N for some h ∈ Lr
loc(RN ). We claim that this yields u ∈ C1(RN ) ∩ W 2,r

loc (RN ).
To verify the claim, observe that u ∈ W 1,s

loc (RN ) for all 1 ≤ s < N/(N − 1),
since �u ∈ L1

loc(R
N ). Then |∇u|q ∈ Ls/q

loc (RN ), and so �u ∈ Lθ1
loc(R

N ), where θ1 =
min{r, s/q}. We may assume that θ1 = s/q; otherwise u ∈ W 2,r

loc (RN ) and we are
done, since W 2,r

loc (RN ) ⊂ C1(RN ) when r > N . The Sobolev Embedding Theorem
implies that if θ1 < N , then |∇u|q ∈ LNθ1/(q(N−θ1))

loc (RN ). Hence �u ∈ Lθ2
loc(R

N ),
where θ2 = min{r,Nθ1/(q(N − θ1))}. It is easily checked that θ2 > θ1. Continuing
this way, we obtain an increasing sequence θk defined by

θk = min
{

r,
Nθk−1

q(N − θk−1)

}
,

provided that θk−1 < N , with the property that u ∈ W 2,θk
loc (RN ). It can be proved

that there must exist k such that θk > N . It follows that u ∈ C1(RN ), by the
Sobolev Embedding Theorem, and then that u ∈ W 2,r

loc (RN ), by classical regularity.

Proof of Theorem 2. Take fn ∈ C∞(RN ) such that fn ≥ 0 for every n
and fn → f in Lr

loc(RN ). Consider again problem (4.1), which admits a unique
solution un ∈ C2(Bn) ∩ C1(B̄n), by Theorem 5. Since q > 1, also un ∈ C3(Bn), by
standard regularity.

The solution un is strictly positive; so we may use Theorem 7 to obtain

(4.3) sup
BR

(un + |∇un|) ≤ C,
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where C depends on R and on | f |Lr (B4R). Arguing exactly as in the proof of Theo-
rem 1, we obtain (passing to a subsequence) that un → u in W 1,s

loc (RN ) for every
s > 1, where u is a solution of (1.2), which is nonnegative. Passing to the limit
in (4.3), we also have u ∈ W 1,∞

loc (RN ). It then follows that �u ∈ Lr
loc(R

N ), and so
u ∈ W 2,r

loc (RN ). The Sobolev Embedding Theorem then implies that u ∈ C 1(RN ).
Finally, the strong maximum principle gives u > 0 in R

N . �

Proof of Theorem 3. The proof is a minor variation of the existence proof
in Theorem 1. We only have to choose radially symmetric functions f n in (4.1)
which forces the unique solution un of (4.1) to be radially symmetric. Hence Theo-
rem 8 applies and, in particular, the application of Vitali’s theorem as in Theorem
1 implies that |∇un|q → |∇u|q in L1

loc(RN ). Hence u is a nonnegative solution of
(1.2). �

Let us conclude by considering uniqueness. An important part in the proof of
uniqueness for problem (1.2) is played by the minimal (classical) solution UR of
the boundary blow-up problem

−�U + c Up − d |∇U |q = 0 in BR,

U = ∞ on ∂BR,
(4.4)

where c, d > 0. The solution was shown to exist in [1, Corollary 13]. (It is unique
when 0 < q ≤ 1). An important property of this solution is the following.

Lemma 9. UR → 0 uniformly on compact sets of RN as R → ∞.

Proof. It is clear that for each R > 0, the solution UR of (4.4) is radially
symmetric and satisfies

−(rN−1U ′
R)′ + rN−1(cUp

R − d |U ′
R|q) = 0 in 0 < r < R.

U ′
R(0) = 0,

where ′ = d/dr and UR(0) = U0,R for some U0,R, with 0 < U0,R2 ≤ U0,R1 if
R2 ≤ R1. It follows, by comparison arguments, that UR is decreasing in R in the
sense that given z ∈ BR \ {0}, UR2 (z) < UR1 (z) whenever 0 < R ≤ R1 < R2. It
can also be proved that U ′

R is decreasing in R in an analogous sense (observe that
U ′

R ≥ 0). This gives bounds on both UR and U ′
R, and by standard arguments one

gets UR → U as R → ∞, uniformly on compacts, where U is a (radial) solution
of

−�U + cUp − d |∇U |q = 0 in R
N .
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Take x0 ∈ R
N , R > 0, and consider the function VR(x) = UR(x − x0). It is clear

that VR solves the problem

−�V + cV p − d |∇V |q = 0 in BR(x0)

V = ∞ on ∂BR(x0).

Thus, by comparison, we have U ≤ VR in BR(x0) since U < ∞ on ∂BR(x0).
Letting R tend to ∞, we obtain U(x) ≤ U(x − x0) in R

N . Since x0 is arbitrary, U
is constant; hence U ≡ 0. �

Now we conclude with the proof of Theorem 4. Here, the cases 0 < q ≤ 1 and
1 < q < p are quite different.

Proof of Theorem 4. Assume first that 0 < q ≤ 1. Observe that by Remark
3, we have a nonnegative solution u ∈ C 1(RN ) of (1.2). Let v ∈ W 1,∞

loc (RN ) be
another solution. The same argument as in the proof of Theorem 2 implies that
v ∈ C1(RN ).

Thus, −�(u − v) + |u|p−1u − |v |p−1v + |∇u|q − |∇v |q = 0 in R
N . Observe that

(4.5)
∣∣|∇u|q − |∇v |q∣∣ ≤ ∣∣∇(u − v)

∣∣q,
while

(4.6)
∣∣|u|p−1u − |v |p−1v

∣∣ ≥ c|u − v |p−1(u − v)

for some positive constant c. Setting z = u−v , we have −�z+c|z|p−1z−|∇z|q ≤ 0
in R

N .

Now, z < UR near ∂BR, where UR denotes the (unique) solution of (4.4) with
d = 1. Using the comparison principle (cf., for example, [8, Lemma 2.1]) we
obtain z ≤ UR in BR. Next let R tend to ∞ and use Lemma 9 to conclude that
z ≤ 0 in R

N , i.e., u ≤ v in R
N . The symmetric argument then gives u = v , and this

shows uniqueness in the case 0 < q ≤ 1.

Now consider the case 1 < q < p. Note that (4.5) is no longer valid. However,
for fixed small δ > 0, there exists a positive constant C(δ ) such that

∣∣(1 + δ )a − b
∣∣q ≥ (1 + δ )aq − C(δ )bq, a, b > 0.

Let UR be the minimal solution of (4.4) with d = C(δ ) and let c be as in (4.6).

Let u ∈ C1(RN ) be the solution of (1.2) constructed in Theorem 2. We claim
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that ū = (1 + δ )u + UR is a supersolution of (1.2). Indeed,

−�ū + ūp + |∇ū|q = −(1 + δ )�u −�UR +
(
(1 + δ )u + UR

)p

+
∣∣(1 + δ )∇u + ∇UR

∣∣q
= −(1 + δ )up − (1 + δ )|∇u|q − cUp

R + c(δ )|∇UR|q + f

+
(
(1 + δ )u + UR

)p +
∣∣(1 + δ )∇u + ∇UR

∣∣q.
But
∣∣(1 + δ )∇u + ∇UR

∣∣q ≥ ∣∣(1 + δ )|∇u| − |∇UR|∣∣q ≥ (1 + δ )|∇u|q − C(δ )|∇UR|q

and (
(1 + δ )u + UR

)p ≥ (1 + δ )pup + cUp
R ≥ (1 + δ )up + cUp

R,

so −�ū + ūp + |∇ū|q ≥ f .
Next, observe that for every solution v ∈ W 1,∞

loc (RN ),�v ∈ Lr
loc(R

N ); hence v ∈
W 2,r

loc (RN ) and, by the Sobolev Embedding Theorem, v ∈ C 1(RN ). In particular,
v < ū near ∂BR, and it follows by comparison as before that

v ≤ (1 + δ )u + UR in BR

for every R > 0. Letting first R → ∞, using Lemma 9, and then making δ → 0,
we obtain v ≤ u.

In a similar way, it can be proved that (1 − δ )u − UR is a subsolution to (1.2),
and a comparison as before yields (1 − δ )u − UR ≤ v in BR. Letting first R → ∞
and then δ → 0, we obtain u = v . �

Remark 4. If q ≥ p, uniqueness of W 1,∞
loc (RN ) solutions does not hold. This

can be seen by taking f = 0, where aside from the trivial solution, there are
infinitely many negative radial (smooth) solutions. Indeed, set v = −u and look
for radial positive solutions of −�v+v p−|∇v |q = 0 in R

N which solve the Cauchy
problem

(rN−1v ′)′ + rN−1(vp − |v ′|q) = 0,

v(0) = v0, v ′(0) = 0

for some v0 > 0. Solutions of this problem are defined in an interval [0,T ),
and from [1, Proposition 3], we know that v ′ > 0, v ′′ ≥ 0; so, necessarily,
limr→T − v(r) = +∞. However, if T < ∞, then v is a solution of

�v = vp − |∇v |q in BT ,

v = ∞ on ∂BT ,
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which contradicts [1, Corollary 13], since p ≤ q. Hence T = ∞, and this shows
that u = −v is a solution of −�u + |u|p−1u + |∇u|q = 0 in R

N .
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[10] O. A. Ladyženskaja and N. N. Ural’ceva, Linear and Quasilinear Elliptic Equations, Academic
Press, New York-London, 1968.

[11] J. M. Lasry and P. L. Lions, Nonlinear elliptic equations with singular boundary conditions and
stochastic control with state constraints. I. The model problem, Math. Ann. 283 (1989), 583–630.

[12] F. Leoni, Nonlinear elliptic equations in R
N with “absorbing” zero order terms, Adv. Differential

Equations 5 (2000), 681–722.

[13] F. Leoni and B. Pellacci, Local estimates and global existence for strongly nonlinear parabolic
equations with locally integrable data, J. Evol. Equ. 6 (2006), 113–144.

[14] T. Leonori, Large solutions for a class of nonlinear elliptic equations with gradient terms, Adv.
Nonlin. Stud. 7 (2007), 237–269.
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FACULTAD DE FÍSICA
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