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Abstract We consider the elliptic problem �u + u p = 0, u > 0 in an exterior domain,
� = R

N \D under zero Dirichlet and vanishing conditions, where D is smooth and bounded
in R

N , N ≥ 3, and p is supercritical, namely p > N+2
N−2 . We prove that this problem has

infinitely many solutions with slow decay O(|x |− 2
p−1 ) at infinity. In addition, a solution with

fast decay O(|x |2−N ) exists if p is close enough from above to the critical exponent.

Mathematics Subject Classification (2000) 35J60 · 35B20 · 35B33 · 35J20

1 Introduction and statement of the main results

A basic model of nonlinear elliptic boundary problem is the Lane–Emden–Fowler equation,

�u + u p = 0, u > 0 in �, (1.1)

u = 0 on ∂�, (1.2)
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454 J. Dávila et al.

where � is a domain with smooth boundary in R
N and p > 1. Introduced in the mid

nineteenth century by Lane, an astrophysicist, the role of this and related equations has been
broad outside and inside mathematics. While simple looking, the structure of the solution set
of this problem may be surprisingly complex. Much has been learned over the last decades,
particularly thanks to the development of techniques from the calculus of variations, see
[18], but many basic issues remain far from understood. Among those, solvability above
criticality is a paradigm of the difficulties arising in solving nonlinear elliptic PDEs. An
intriguing characteristic of this problem is the role played by the critical exponent p = N+2

N−2

in the solvability question. When� is bounded and 1 < p < N+2
N−2 , compactness of Sobolev’s

embedding yields a solution as a minimizer of the variational problem

inf
u∈H1

0 (�)\{0}

∫
�

|∇u|2
(∫
�

|u|p+1
) 2

p+1

. (1.3)

When p ≥ N+2
N−2 , compactness is lost, and this minimization procedure fails, as existence

does in general: Pohozaev [17] discovered in 1965 that no solution exists if the domain is
strictly star-shaped. In 1975, Kazdan and Warner [12] observed that in strong contrast, if �
is an annulus, � = {a < |x | < b}, compactness holds for any p > 1 within the class of
radial functions, and a solution can again be found variationally, regardless the value of p.
Solvability for critical and supercritical values of p is thus strongly dependent on special
characteristics of the domain under consideration. The critical case p = N+2

N−2 can still be
handled by variational arguments, since the loss of compactness of Sobolev’s embedding is
well-understood. In the classical paper [2], Brezis and Nirenberg proved that for p = N+2

N−2
that compactness of minimizing sequences in problem (1.3), and hence solvability, is restored
by the addition of suitable linear terms in the equation. Coron [4] and Bahri and Coron [1]
established the deep relation between topology and solvability of (1.1)–(1.2) when p = N+2

N−2 :
solvability holds whenever� has a non-trivial topology. Nontrivial topology does not suffice
for solvability for large supercritical exponents, as shown by an example in [15].

Except for results in domains involving symmetries or exponents close to critical, see for
instance [7,8,10,14,16], solvability of (1.1)–(1.2) in the supercritical case has been a widely
open matter, particularly since variational machinery no longer applies, at least in its naturally
adapted way for subcritical or critical problems.

In this paper we shall concentrate in Problem (1.1)–(1.2) for exponents p above critical
in a special class of domains with nontrivial topology, exterior domains, continuing a study
initiated in [5]. Let D be a bounded open set with smooth boundary, such that� = R

N \D̄ is
connected. We consider the problem of finding classical solutions of the problem

�u + u p = 0 , u > 0 in R
N \D̄, (1.4)

u = 0 on ∂D , lim|x |→+∞ u(x) = 0 (1.5)

where p > N+2
N−2 . The supercritical case is meaningful in this problem since Pohozaev’s

identity does not pose obstructions for its solvability. To fix ideas, let us consider the simple
case D = B(0, 1) and look for radially symmetric solutions to the problem u = u(r), r = |x |.
The equation

�u + u p = 0 (1.6)

then corresponds to the ODE

u′′ + N − 1

r
u′ + u p = 0 . (1.7)
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Fast and slow decay solutions 455

This equation can be analyzed through phase plane analysis after a transformation introduced

by Fowler [9] in 1931: v(s) = r
2

p−1 u(r), r = es , which transforms Eq. (1.7) into the
autonomous ODE

v′′ + αv′ − βv + v p = 0 (1.8)

where

α = N − 2 − 4

p − 1
, β = 2

p − 1

(

N − 2 − 2

p − 1

)

. (1.9)

Since α and β are positive for p > N+2
N−2 , the Hamiltonian energy

E(v) = 1

2
v̇2 + 1

p + 1
v p+1 − β

2
v2

strictly decreases along trajectories. Using this it is easy to see the existence of a heteroclinic

orbit which connects the equilibria (0, 0) and (β
1

p−1 , 0) in the phase plane (v, v′). These
equilibria correspond respectively to a saddle point and an attractor. A solution v(s) of (1.8)

corresponding to this orbit satisfies v(−∞) = 0, v(+∞) = β
1

p−1 andw(r) = r− 2
p−1 v(log r)

solves (1.7) and is bounded at r = 0. Then all radial solutions of (1.6) defined in all R
N have

the form

wλ(x) := λ
2

p−1w(λ|x |), λ > 0. (1.10)

We denote in what follows by w(x) the unique positive radial solution

�w + w p = 0 in R
N , w(0) = 1. (1.11)

Coming back to the analysis for (1.8), we see in phase plane (v, v′) the presence of a con-
tinuum of orbits that begin on the axis v = 0 as close to the equilibrium (0, 0) as we please,

which eventually end in the attractor (β
1

p−1 , 0). If v(s) is a solution associated to one of these
orbits, then a suitable translation makes it defined in [0,∞) with v(0) = 0. Its associated
u(r) then satisfies u(1) = 0 and represents a positive solution of problem (1.4)–(1.5) with
D = B(0, 1). The closer the starting point of the orbit is taken from (0, 0), the smaller the
associated v(s) gets on compact subsets of (0,∞), at the same time getting close to the
heteroclinic, more precisely the solution u(|x |) is close to some wλ for small λ > 0. The
solutions u built this way are small in their entire domain and all have the uniform slow decay

u(x) = β
1

p−1 |x |− 2
p−1 (1 + o(1)) as |x | → ∞,

with β given by (1.9). This analysis establishes the existence of a one-parameter, asymptoti-
cally vanishing continuum of radial solutions of problem (1.4)–(1.5) with D = B(0, 1) with
slow decay.

We establish in Theorem 1 below that the above mentioned phenomenon is very robust. In
fact, we have, for arbitrary domain D the existence of this continuum of slow decay solutions,
in particular proving that the supercritical exterior problem (1.4)–(1.5) is always solvable.

Theorem 1 For any p > N+2
N−2 there is a continuum of solutions uλ, λ > 0, to Problem

(1.4)–(1.5), such that

uλ(x) = β
1

p−1 |x |− 2
p−1 (1 + o(1)) as |x | → ∞ (1.12)

and uλ(x) → 0 as λ → 0, uniformly in R
N \D.
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456 J. Dávila et al.

This result has been proven in [5] when N ≥ 4 and p > N+1
N−3 . The above explained

analysis of the radial case, makes it natural to seek for a solution uλ in the form of a small
perturbation of wλ. This naturally leads to construct an inverse of the linearized operator
� + pw p−1

λ in R
N \D under Dirichlet boundary conditions. Since wλ is small on bounded

sets for small λ, such an inverse can be found as a small perturbation of an inverse of this
operator in entire R

N . By scaling, it suffices to carry out that analysis for λ = 1. This
inverse indeed exists for p > N+1

N−3 and this is the basis of the proof in [5]. However, if
N+2
N−2 < p ≤ N+1

N−3 the linearized operator is not surjective, having a range orthogonal to the
generators of translations.

We will prove that a further adjustment of the location of the origin, taking as a first

approximation λ
2

p−1w(λx + ξ) and then choosing ξ , indeed produces, after adding a lower
order correction, a family of solutions as predicted in Theorem 1. In summary, the structure
difference between the cases p > N+1

N−3 and N+2
N−2 < p ≤ N+1

N−3 is that in the former case,
the solutions found constitute (N + 1)−parameters family parametrized by a small scaling
parameter and a point in R

N , while in the latter it is an one-parameter family only dependent
on the small scaling value λ.

The analysis in [5] has a strong resemblance with that in [13] in the construction of singular
solutions with prescribed singularities for N

N−2 < p < N+2
N−2 in bounded domains. At the

radial level, supercritical and subcritical in this range are completely dual: In Eq. (1.8) β
remains positive but α becomes negative. The effect of this is basically to make the phase
portraits equivalent, just with arrows inverted in the orbits, with obvious dual consequences.
For instance, the inner-subcritical problem in a ball has a classical solution, which in the
phase diagram is represented by the unstable manifold of (0, 0). Correspondingly, in the
supercritical case, the orbit representing the stable manifold of (0, 0) corresponds to the
unique solution w∗ to the exterior problem with fast decay, namely w∗ satisfies

�w∗ + w
p∗ = 0 , w∗ > 0 in R

N \B̄1(0) , (1.13)

w∗ = 0 on ∂B1(0) , lim sup
|x |→+∞

|x |2−Nw∗(x) < +∞ . (1.14)

Since the general inner-subcritical problem always has a solution, obtained by the minimiza-
tion problem (1.3), it is natural to ask whether existence of a fast decay solution remains
true for the domain R

N \D̄. This may be in general a difficult question which we are able to
answer for supercritical powers sufficiently close to critical.

Theorem 2 There exists a number p0 >
N+2
N−2 such that for any N+2

N−2 < p < p0, problem

(1.4)–(1.5) has a fast decay solution u, u(x) = O(|x |2−N ) as |x | → +∞.

The idea in the proof of Theorem 2 is to consider as an initial approximation the function

λ
N−2

2 w∗∗(λx + ξ) where

w∗∗(r) =
(

1

1 + cN r2

) N−2
2

(1.15)

is the unique positive radial solution of the problem

�w∗∗ + w
N+2
N−2∗∗ = 0 in R

N , w∗∗(0) = 1.

These scalings will constitute good approximations for small λ if p is sufficiently close to
N+2
N−2 . We prove then that adjusting both ξ and λ, produces a solution as desired after addition
of a lower order term.
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Fast and slow decay solutions 457

2 The set up for Theorem 1

In what follows of this paper we will assume N+2
N−2 < p ≤ N+1

N−3 since the case p > N+1
N−3 has

already been covered in [5].
By the change of variables

ũ(x) := λ
− 2

p−1 u

(
x − ξ

λ

)

and the maximum principle, problem (1.4)–(1.5) becomes equivalent to

�ũ + |ũ|p = 0 , ũ 	≡ 0 in R
N \D̄λ,ξ , (2.1)

ũ = 0 on ∂Dλ,ξ , lim|x |→+∞ ũ(x) = 0 (2.2)

where λ > 0 is small and Dλ,ξ is the shrinking domain

Dλ,ξ = {λx + ξ/x ∈ D}.
We want to consider the function w(x) in (1.11) as an approximation of a solution of this
problem. We need of course a correction so that the boundary condition is satisfied. Thus we
let ϕλ(x) be the unique solution of the problem

�ϕλ = 0 in R
N \Dλ,ξ , ϕλ(x) = w(x) on ∂Dλ,ξ , lim|x |→+∞ϕλ(x) = 0 (2.3)

and consider w − ϕλ as a first approximation to a solution of problem (2.1)–(2.2). It is easy
to see that

ϕλ(x) = (w(ξ)+ O(λ))ϕ0

( x − ξ

λ

)
∀x ∈ R

N \Dλ,ξ (2.4)

where ϕ0 is the unique solution of

�ϕ0 = 0 in R
N \D, ϕ0(x) = 1 on ∂D, lim|x |→+∞ϕ0(x) = 0. (2.5)

We also note that

lim|x |→+∞ |x |N−2ϕ0(x) = f0 := 1

(N − 2)|SN−1|
∫

RN \D
|∇ϕ0|2, (2.6)

which in particular implies

|ϕλ(x)| ≤ CλN−2|x − ξ |2−N for all x ∈ R
N \Dλ,ξ .

The number
∫

RN \D |∇ϕ0|2 is by definition the Newtonian capacity of D. The latter estimate
tells us in particular that the correction is small compared with w as soon as we get away
from ξ . Thus we look for a solution to problem (2.1)–(2.2) of the form

ũ = w − ϕλ + φ,

which yields the following equation for φ
⎧
⎪⎨

⎪⎩

�φ + pw p−1φ = N (φ)+ Eλ in R
N \D̄λ,ξ ,

φ = 0 on ∂Dλ,ξ , lim|x |→+∞φ(x) = 0 ,
(2.7)
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where

Eλ = pw p−1ϕλ, N (φ) = −|w + φ − ϕλ|p + w p + pw p−1φ − pw p−1ϕλ. (2.8)

Thus a solution of problem (2.7) for which φ is small compared with w − ϕλ yields one of
(1.4)–(1.5) as predicted by Theorem 1.

Problem (2.7) may not be solvable in the required range for p unless ξ is chosen in a
very special way. Regardless of the value of ξ , we consider instead the following projected
problem,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�φ + pw p−1φ = N (φ)+ Eλ +
N∑

i=1

ci Zi in R
N \D̄λ,ξ ,

φ = 0 on ∂Dλ,ξ , lim|x |→+∞φ(x) = 0,

(2.9)

where the ci ’s are constants, which are part of the unknown, and

Zi (x) = ∂w

∂xi
(x) , i = 1, . . . , N .

Through an application of the Banach fixed point theorem in a suitable L∞ weighted space,
we shall prove in Sect. 5 that (2.9) is indeed solvable, within a class of φ’s which are small
compared with w, in the form φ = φ(λ, ξ), ci = ci (λ, ξ) where the dependence on the
parameters is continuous. We then obtain a solution of problem (2.7) if

ci (λ, ξ) = 0 for all i = 1, . . . , N .

We will show in Sect. 6 that for each sufficiently small λ there is indeed a point ξ such that
this system of equations is satisfied.

The use of contraction mapping principle in Sect. 5 for solving problem (2.9) is based on
the construction of a bounded (right) inverse for the linear problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�φ + pw p−1φ = h +
N∑

i=1

ci Zi in R
N \D̄λ,ξ

lim|x |→+∞φ(x) = 0, φ = 0 on ∂Dλ,ξ ,

(2.10)

for norms on functions φ and h defined on R
N \D̄λ,ξ given as follows. We consider, for a

given number σ with

0 < σ < N − 2,

the norms

‖φ‖∗,ξ = sup
|x−ξ |≤1

|x − ξ |σ |φ(x)| + sup
|x−ξ |≥1

|x − ξ | 2
p−1 |φ(x)| (2.11)

‖h‖∗∗,ξ = sup
|x−ξ |≤1

|x − ξ |2+σ |h(x)| + sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1 |h(x)| . (2.12)

We have the validity of the following result.
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Proposition 2.1 Assume N+2
N−2 < p < N+1

N−3 . Let us consider a number � > 0. Then there
exist constants C and λ0 such that for any |ξ | ≤ � and any 0 < λ < λ0 the following holds:
For any h with ‖h‖∗∗,ξ < ∞, there exists a solution of problem (2.10)

(φ, c1, . . . , cN ) = Tλ(h)

which defines a linear operator of h, such that

‖φ‖∗,ξ + max
1≤i≤N

|ci | ≤ C‖h‖∗∗,ξ .

This is proven in Sect. 4, on the basis of the analysis of the same problem in the entire
space, carried out in Sect. 3.

If p = N+1
N−3 the proof Theorem 1 is based on a result similar to Proposition 2.1 but for

slightly different norms, see Remark 6.1.
A very similar scheme is followed for the proof of Theorem 2, having as its basic cell the

function w∗∗ in (1.15) rather than w in (1.11). In this case, the relevant projected problem
must also involve the generator of dilations, and both the point ξ and the number λ must be
determined as functions of the small parameter given by the difference p − N+2

N−2 . This is
done in Sect. 7.

3 The operator � + pw p−1 in R
N

We will keep the notation of the previous section. In particular we assume N ≥ 3,

N + 2

N − 2
< p <

N + 1

N − 3
, 0 < σ < N − 2

and consider the norms in (2.11), (2.12) now for functions defined in entire R
N . We consider

the version of problem (2.7) in entire space,
⎧
⎪⎨

⎪⎩

�φ + pw p−1φ = h +
N∑

i=1
ci Zi in R

N

lim|x |→+∞φ(x) = 0.
(3.1)

The main result in this section is

Proposition 3.1 Let us consider a number � > 0. Then there exists a C > 0 such that for
any |ξ | ≤ � the following holds: For any h with ‖h‖∗∗,ξ < ∞, there exists a solution of
problem (3.1)

(φ, c1, . . . , cN ) = T (h)

which defines a linear operator of h, such that

‖φ‖∗,ξ + max
1≤i≤N

|ci | ≤ C‖h‖∗∗,ξ . (3.2)

We observe that the numbers ci above are explicit functions of h. Indeed, since p < N+1
N−3 ,

we see that if φ solves (3.1) with the bound (3.2) then two integrations by parts against
Zi = wxi yield

ci = −
∫

RN h Zi∫
RN |Zi |2 . (3.3)

Observe that these quantities are well defined since ‖h‖∗∗,ξ < +∞ and p < N+1
N−3 .
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To prove the above result we consider first the situation ξ = 0. We denote the correspond-
ing norms simply by ‖ ‖∗ and ‖ ‖∗∗. Although the proposition in this case is proven in [5,6]
we summarize the main points of the argument.

By virtue of formula (3.3), it suffices to construct the solution φ to problem (3.1) for h
with

∫

RN

h Zi = 0 for all i = 1, . . . , N , (3.4)

so that all numbers ci are automatically zero.
Let �k , k ≥ 0 be the eigenfunctions of the Laplace-Beltrami operator −�SN−1 on the

sphere SN−1 with eigenvalues λk repeated according to their multiplicity, normalized so
that they constitute an orthonormal system in L2(SN−1). We let �0 be a positive constant,
associated to the eigenvalue 0 and�i , 1 ≤ i ≤ N is an appropriate multiple of xi|x | which has
eigenvalue λi = N − 1, 1 ≤ i ≤ N . We write h as

h(x) =
∞∑

k=0

hk(r)�k(θ), r > 0, θ ∈ SN−1 (3.5)

and look for a solution φ to (3.1) in the form

φ(x) =
∞∑

k=0

φk(r)�k(θ) .

Then

φ′′
k + N − 1

r
φ′

k +
(

pw p−1 − λk

r2

)

φk = hk, for all r > 0, for all k ≥ 0. (3.6)

Equation (3.6) can be solved for each k separately:

• If k = 0 and p > N+2
N−2 then Eq. (3.6) has a solution φ0 which depends linearly on h0 and

satisfies

‖φ0‖∗ ≤ C‖h0‖∗∗. (3.7)

• If N ≥ 3 and N+2
N−2 < p < N+1

N−3 (p > N+2
N−2 if N = 3), ‖h‖∗∗ < +∞ and

∞∫

0

h1(r)w
′(r)r N−1 dr = 0 (3.8)

then (3.6) has a solution φ1 depending linearly on h1 and satisfying

‖φ1‖∗ ≤ C‖h1‖∗∗. (3.9)

• Let k ≥ 2 and p > N+2
N−2 . If ‖hk‖∗∗ < ∞ Eq. (3.6) has a unique solution φk with

‖φk‖∗ < ∞ and there exists Ck > 0 such that

‖φk‖∗ ≤ Ck‖hk‖∗∗. (3.10)

For the case k = 0 this solution is defined using the variation of parameters formula

φ0(r) := z1,0(r)

r∫

1

z2,0h0s N−1 ds − z2,0(r)

r∫

0

z1,0h0s N−1 ds,
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where z1,0, z2,0 are two special linearly independent solutions to (3.6) with k = 0 and
h0 = 0. More precisely, we take z1,0 = rw′ + 2

p−1w and z2,0 a linearly independent solution.

Linearization shows that z j,0(r) = O(r− N−2
2 ) as r → +∞, j = 1, 2, while z2,0(r) ∼ r2−N

near r = 0. Using this definition of φ0, we easily get estimate (3.7).
When k = 1, we have that the positive function z1 := −w′(r) solves (3.6) with k = 1

and h1 = 0. Using this, we then define φ1(r) as

φ1(r) = −z1(r)

r∫

1

z1(s)
−2s1−N ds

s∫

0

z1(τ )h1(τ )τ
N−1 dτ . (3.11)

Using this formula and the fact that
∫ ∞

0 z1(τ )h1(τ )τ
N−1 dτ = 0, estimate (3.9) is readily

found to hold true.
The case k ≥ 2 is simpler because the operator satisfies the maximum principle since the

function z1 above is a positive supersolution for the operator corresponding to any such k.
The previous construction and (3.7), (3.9)and (3.10) imply that given an integer m > 0,

if ‖h‖∗∗ < ∞ satisfies (3.4) and hk ≡ 0 ∀k ≥ m then there exists a solution φ to (3.1) that
depends linearly with respect to h and moreover

‖φ‖∗ ≤ Cm‖h‖∗∗

where Cm may depend only on m. Then it is possible to show that Cm can be chosen
independently of m using a blow up argument that has been used before in [3,5,6,13].

The above steps then yield:

Lemma 3.1 There exists a number C > 0 such that the for any h with ‖h‖∗∗ < ∞, there
exists a solution of problem (3.1)

(φ, c1, . . . , cN ) = T (h)

which defines a linear operator of h, such that

‖φ‖∗ + max
1≤i≤N

|ci | ≤ C‖h‖∗∗. (3.12)

The numbers ci are given by formula (3.3).

Proof of Proposition 3.1 Let η be a smooth cut-off function such that

η(x) = 0 for all |x − ξ | ≤ δ, η(x) = 1 for all |x − ξ | ≥ 2δ,

where δ > 0 is small. Then solve

−�φ2 + pw p−1(1 − η)φ2 = (1 − η)h in R
N , lim|x |→+∞φ2(x) = 0.

Remark that for δ > 0 sufficiently small but fixed the operator −� − pw p−1(1 − η) is
coercive and hence there exists a solution to this problem. Moreover we have

|φ2(x)| ≤ C‖h‖∗∗,ξ |x − ξ |−σ for all |x − ξ | ≤ 1, (3.13)

|φ2(x)| ≤ C‖h‖∗∗,ξ (1 + |x |)2−N for all |x − ξ | ≥ 1. (3.14)
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By Lemma 3.1 the equation

�φ1 + pw p−1φ1 = −pw p−1ηφ2 + ηh +
N∑

i=1

ci Zi in R
N , lim|x |→+∞φ1(x) = 0,

(3.15)

has a solution provided the right hand side has finite ‖ ‖∗∗ norm. But since ηφ2 = 0 for
|x − ξ | ≤ δ we see, using (3.13) and (3.14), that

‖w p−1ηφ2‖∗∗ ≤ C‖h‖∗∗,ξ .

Thus by Lemma 3.1

‖φ1‖∗ +
N∑

i=1

|ci | ≤ C‖h‖∗∗,ξ . (3.16)

This estimate implies that

|φ1(x)| ≤ C‖h‖∗∗,ξ for all |x | = δ. (3.17)

Since the right hand side of (3.15) is bounded, from (3.17) and (3.15), using standard estimates
for elliptic equations, we deduce that

‖φ1‖L∞(Bδ) ≤ C‖h‖∗∗,ξ . (3.18)

Define φ = φ1 +φ2, which is a solution to (3.1). Then from (3.13), (3.14), (3.16) and (3.18)
we see that (3.12) holds. This finishes the proof. ��

4 The proof of Proposition 2.1

We will use the result of the previous section in order to prove Proposition 2.1.
We shall fix � > 0 large and work with |ξ | ≤ �. Again the estimates will depend on ξ

only through �. As mentioned above, we assume that 0 ∈ D. Let 0 < R0 < R1 be fixed
such that 3R0 < R1 and D ⊂ BR0 . Let ρ ∈ C∞(RN ), 0 ≤ ρ ≤ 1 be such that

ρ(x) = 0 for |x | ≤ 1, ρ(x) = 1 for |x | ≥ 2

and set

ηλ(x) = ρ
( x − ξ

λR0

)
, ζλ(x) = ρ

( x − ξ

λR1

)
.

We look for a solution to (2.10) of the form

φ = ηλϕ + ψ.

We need then to solve the system of equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�ϕ + pw p−1ϕ = −pw p−1ζλψ + ζλh +
N∑

i=1

ciζλZi in R
N

lim|x |→+∞ϕ(x) = 0

(4.1)
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�ψ + p(1 − ζλ)w
p−1ψ = −2∇ηλ∇ϕ − ϕ�ηλ + (1 − ζλ)h

+
N∑

i=1

ci (1 − ζλ)Zi in R
N \D̄λ,ξ

ψ = 0 on ∂Dλ,ξ , lim|x |→+∞ψ(x) = 0.

(4.2)

where ϕ, ψ are the unknowns. We assume ‖h‖∗∗,ξ < ∞. Let

Eλ = B2λR0(ξ) \ BλR0(ξ)

and consider the Banach space

X = {(ϕ, c1, . . . , cN ) / ϕ : R
N → R is Lipschitz continuous in Eλ with ‖ϕ‖∗,ξ < ∞

and ci ∈ R, 1 ≤ i ≤ N }

with the norm

‖(ϕ, c1, . . . , cN )‖X = ‖ϕ‖∗,ξ + λ1+σ ‖∇ϕ‖L∞(Eλ) +
N∑

i=1

|ci |.

Given (ϕ, c1, . . . , cN ) ∈ X we first note that (4.2) has a solution for suitably small λ because
‖p(1 − ζλ)w

p−1‖L N/2(RN \Dλ,ξ )
→ 0 as λ → 0. Let ψ(ϕ, c1, . . . , cN ) denote this solution,

which is clearly linear in ϕ. Then ζλψ is well defined in R
N and |ψ | ≤ C

|x |N−2 for large |x |,
which implies that the right hand side of (4.1) has a finite‖‖∗∗,ξ norm. Then by Proposition 3.1
Eq. (4.1) has a solution (ϕ̄, c̄1, . . . , c̄N ) such that ‖ϕ̄‖∗,ξ < +∞. Set F(ϕ, c1, . . . , cN ) =
(ϕ̄, c̄1, . . . , c̄N ).

Proposition 2.1 will be proved by showing that F has a fixed point in X .
For (ϕ, c1, . . . , cN ) ∈ X we will first establish a pointwise estimate for the solution

ψ(ϕ, c1, . . . , cN ) of (4.2), namely

|ψ(x)| ≤ CλN−2−σ (‖h‖∗∗,ξ + ‖(ϕ, c1, . . . , cN )‖X )|x − ξ |2−N

for all x ∈ R
N \Dλ,ξ . (4.3)

Indeed, let ψ̃(z) = ψ(ξ + λz), z ∈ R
N \D. Then

⎧
⎨

⎩

�ψ̃ + pλ2(1 − ρ(z/R1))w
p−1(ξ + δz)ψ̃ = g in R

N \D
lim|z|→+∞ ψ̃(x) = 0

(4.4)

where

g = −2
λ

R0
∇ρ(z/R0)∇ϕ(ξ + δz)− 1

R2
0

�ρ(z/R0)ϕ(ξ + δz)

+λ2(1 − ρ(z/R1)h(ξ + δz)+ λ2
N∑

i=1

ci (1 − ρ(z/R1)Zi (ξ + δz).
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Then the support of g is contained in the ball B2R1 and we can estimate for all z ∈ R
N \D,

|z| ≤ 2R1:

2
λ

R0
|∇ρ(z/R0)∇ϕ(ξ + δz)| ≤ Cλ−σ ‖(ϕ, c1, . . . , cN )|X (4.5)

|�ρ(z/R0) ϕ(ξ + λz)| ≤ Cλ−σ ‖(ϕ, c1, . . . , cN )‖X |z|−σ (4.6)

λ2|(1 − ρ(z/R1)h(ξ + λz)| ≤ λ−σ ‖h‖∗∗,ξ |z|−2−σ (4.7)

λ2
N∑

i=1

|ci (1 − ρ(z/R1)Zi (ξ + λz)| ≤ Cλ2‖(ϕ, c1, . . . , cN )‖X . (4.8)

Since 0 ∈ D we see from (4.5)–(4.8) that

|g(z)| ≤ Cλ−σ (‖ϕ‖X + ‖h‖∗∗,ξ )χB2R1
.

This estimate and Eq. (4.4) then yield

|ψ̃(z)| ≤ C(‖h‖∗∗,ξ + ‖ϕ‖X )λ
−σ |z|−N+2 for all z ∈ R

N \D

which implies (4.3).
Let (ϕ, c1, . . . , cN ) ∈ X , ψ = ψ(ϕ, c1, . . . , cN ) be the solution to (4.2) and

(ϕ̄, c̄1, . . . , c̄N ) = F(ϕ, c1, . . . , cN ). By Proposition 3.1 we have

‖ϕ̄‖∗,ξ +
N∑

i=1

|c̄i | ≤ C(‖pw p−1ζλψ‖∗∗,ξ + ‖ζλh‖∗∗,ξ ). (4.9)

Using (4.3) we estimate ‖w p−1ζλψ‖∗∗,ξ . We have

sup
|x−ξ |≤1

|x − ξ |2+σw p−1ζλ|ψ | ≤ CλN−2−σ (‖h‖∗∗,ξ + ‖(ϕ, c1, . . . , cN )‖X )

× sup
λR1≤|x−ξ |≤1

|x − ξ |4−N+σ

≤ Cλγ (‖h‖∗∗,ξ + ‖(ϕ, c1, . . . , cN )‖X ) (4.10)

where

γ = min(2, N − 2 − σ) > 0.

On the other hand

sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1 ζλ|ψ | ≤ CλN−2−σ (‖h‖∗∗,ξ + ‖(ϕ, c1, . . . , cN )‖X )

× sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1 −N

≤ CλN−2−σ (‖h‖∗∗,ξ + ‖(ϕ, c1, . . . , cN )‖X ). (4.11)

We see from (4.10) and (4.11) that

‖w p−1ζλψ‖∗∗,ξ ≤ Cλγ (‖h‖∗∗,ξ + ‖(ϕ, c1, . . . , cN )‖X ). (4.12)

Since ‖ζλh‖∗∗,ξ ≤ ‖h‖∗∗,ξ from (4.9) and (4.12) we deduce

‖ϕ̄‖∗,ξ ≤ C(λγ ‖(ϕ, c1, . . . , cN )‖X + ‖h‖∗∗,ξ ).
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But from elliptic estimates we can prove

sup
Eλ

|∇ϕ̄| ≤ Cλ−1−σ ‖ϕ̄‖∗,ξ

and hence

‖F(ϕ, c1, . . . , cN )‖X ≤ C(λγ ‖(ϕ, c1, . . . , cN )‖X + ‖h‖∗∗,ξ ).

Since F is affine, this estimate shows that F has a unique fixed point (ϕ, c1, . . . , cN ) in X
for λ > 0 suitably small, and that this fixed point satisfies

‖(ϕ, c1, . . . , cN )‖X ≤ C‖h‖∗∗,ξ .

��
Finally we make a remark on how to recognize when ci = 0 in Eq. (2.10).

Lemma 4.1 Assume N+2
N−2 < p < N+1

N−3 . There is ε0 > 0 small such that if λ < ε0 and φ is a
solution to (2.10) such that ‖φ‖∗,ξ < +∞, ‖h‖∗∗,ξ < +∞, then ci = 0 for all 1 ≤ i ≤ N
if and only if

∫

∂Dλ,ξ

∂φ

∂n

∂w

∂xi
+

∫

RN \Dλ,ξ

h
∂w

∂xi
= 0 for all 1 ≤ i ≤ N .

Proof Since ∂w
∂x j

satisfies the linear homogeneous equation in R
N , multiplying (2.10) by ∂w

∂x j

and integrating by parts in BR(0)\Dλ,ξ , where R is large, yields

∫

∂(BR(0)\Dλ,ξ )

(
∂φ

∂n

∂w

∂x j
− φ

∂

∂n

∂w

∂x j

)

=
∫

BR(0)\Dλ,ξ

(

h +
N∑

i=1

ci Zi

)
∂w

∂x j
. (4.13)

Since ‖φ‖∗∗,ξ < +∞ we have

|φ(x)| ≤ C |x |− 2
p−1 for all |x | ≥ R′

and elliptic estimates show that

|∇φ(x)| ≤ C |x |− 2
p−1 −1 for all |x | ≥ R′

where R′ > 0 is a large fixed number. Thus
∣
∣
∣
∣
∂φ

∂n

∂w

∂x j
− φ

∂

∂n

∂w

∂x j

∣
∣
∣
∣ ≤ C |x |− 4

p−1 −2 for all |x | ≥ R′

and hence, since p < N+1
N−3

lim
R→+∞

∫

∂BR(0)

(
∂φ

∂n

∂w

∂x j
− φ

∂

∂n

∂w

∂x j

)

= 0.

Letting R → +∞ in (4.13) yields

N∑

i=1

ci

∫

RN \Dλ,ξ

Zi
∂w

∂x j
= −

∫

RN \Dλ,ξ

h
∂w

∂x j
−

∫

∂Dλ,ξ

∂φ

∂n

∂w

∂x j
.

For λ > 0 sufficiently small the matrix with entries
∫

RN \Dλ,ξ
Zi

∂w
∂x j

is close to
∫

RN Zi
∂w
∂x j

which is invertible. This implies the desired conclusion. ��
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5 The nonlinear projected problem (2.9)

Lemma 5.1 Let N+2
N−2 < p < N+1

N−3 and � > 0. Then there are positive numbers λ0, C such
that for |ξ | < � and 0 < λ < λ0 there exist φλ(ξ), c1(λ, ξ), . . . , cN (λ, ξ) solution to
problem (2.9) such that

‖φλ(ξ)‖∗,ξ + max
1≤i≤N

|ci (λ, ξ)| ≤ Cλν for all 0 < λ < λ0 , |ξ | < �, (5.1)

where

ν = min(2 + σ, N − 2).

Proof

Claim For any fixed 0 < σ ≤ N − 2 we have

‖Eλ‖∗∗,ξ ≤ Cλmin(σ+2,N−2). (5.2)

We assume 0 ∈ D and let δ > 0 be such that Bδ(0) ⊂ D. Then

sup
|x−ξ |≤1, x 	∈Dλ,ξ

|x − ξ |2+σ ϕλ(x)w p−1(x)

≤ C‖w p−1‖L∞λN−2 sup
δλ≤|x−ξ |≤1

|x − ξ |2+σ−(N−2)

≤ Cλmin(σ+2,N−2). (5.3)

Also

sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1 ϕλ(x)w

p−1(x) ≤ CλN−2 sup
|x−ξ |≥1

|x − ξ | 2
p−1 −(N−2)

≤ CλN−2 (5.4)

and collecting (5.3) and (5.4) yields (5.2).

Claim Next, we estimate ‖N (φ)‖∗∗,ξ . We shall show that for any fixed 0 < σ ≤ min(2, 2
p−1 )

and for ‖φ‖∗,ξ ≤ 1 we have

‖N (φ)‖∗∗,ξ ≤ C
(

‖φ‖2∗,ξ + ‖φ‖p
∗,ξ + λmin(σ+2,N−2)

)
. (5.5)

Case p ≥ 2. Assuming 0 < σ ≤ 2
p−1 and using

|N (φ)| ≤ Cw p−2(|φ|2 + |ϕλ|2)+ C(|φ|p + |ϕλ|p) (5.6)

we have

sup
|x−ξ |≤1

|x − ξ |2+σ |φ|2 ≤ C‖φ‖2∗,ξ sup
δλ≤|x−ξ |≤1

|x − ξ |2−σ ≤ C‖φ‖2∗,ξ (5.7)

sup
|x−ξ |≤1

|x − ξ |2+σ |φ|p ≤ C‖φ‖p
∗,ξ sup

δλ≤|x−ξ |≤1
|x − ξ |2−σ(p−1) ≤ C‖φ‖p

∗,ξ

≤ C‖φ‖2∗,ξ , (5.8)

since we work with ‖φ‖∗,ξ ≤ 1. Similarly to the calculation in (5.3)

sup
|x−ξ |≤1

|x − ξ |2+σ |ϕλ|2 ≤ Cλmin(σ+2,N−2) (5.9)

sup
|x−ξ |≤1

|x − ξ |2+σ |ϕλ|p ≤ Cλmin(σ+2,N−2). (5.10)
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The inequalities (5.6)–(5.10) yield, for p ≥ 2, 0 < σ ≤ 2
p−1 and ‖φ‖∗,ξ ≤ 1,

sup
|x−ξ |≤1

|x − ξ |2+σ |N (φ)| ≤ C
(
‖φ‖2∗,ξ + λmin(σ+2,N−2)

)
. (5.11)

Now we consider |x − ξ | ≥ 1. By the definition of ‖ ‖∗,ξ and the assumption ‖φ‖∗,ξ ≤ 1 we
have that

|φ(x)| ≤ w(x) for all |x − ξ | ≥ 1.

Also, for λ > 0 small

ϕλ(x) ≤ CλN−2|x − ξ |2−N ≤ Cw(x) for all x ∈ R
N \Dλ,ξ . (5.12)

Thus instead of (5.6) we can estimate N (φ) by

|N (φ)| ≤ Cw p−2(φ2 + ϕ2
λ).

Using this inequality and the estimate w(x) ≤ C(1 + |x |)− 2
p−1 we obtain

sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1w p−2|φ|2 ≤ C‖φ‖2∗,ξ (5.13)

and

sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1w p−2|ϕλ|2 ≤ Cλ2(N−2). (5.14)

Thus, (5.13), (5.14) yield

sup
|x−ξ |≥1

|x − ξ |2+σ |N (φ)| ≤ C
(
‖φ‖2∗,ξ + λmin(σ+2,N−2)

)
,

and this estimate together with (5.11) prove (5.5) in the case p ≥ 2.

Case 1 < p < 2. For 0 < σ ≤ 2 a similar calculation using

|N (φ)| ≤ C(|φ|p + |ϕλ|p)

implies

sup
|x−ξ |≤1

|x − ξ |2+σ |N (φ)| ≤ C
(
‖φ‖p

∗,ξ + λmin(σ+2,N−2)
)
. (5.15)

To estimate |x − ξ |2+σ |N (φ)| for |x − ξ | ≥ 1 we write

− N (φ) = |w + φ − ϕλ|p − w p − pw p−1(φ − ϕλ) = N1 + N2 + pw p−1ϕλ (5.16)

where

N1 = |w + φ − ϕλ|p − |w + φ|p, N2 = |w + φ|p − w p − pw p−1φ. (5.17)

We note that since we assume ‖φ‖∗,ξ ≤ 1 we have |φ(x)| ≤ Cw(x) for |x − ξ | ≥ 1 which,
together with (5.12) means that we can estimate

|N1| = ∣
∣ |w + φ − ϕλ|p − |w + φ|p

∣
∣ ≤ Cw p−1ϕλ.
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Then

sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1 |N1| = sup

|x−ξ |≥1
|x − ξ |2+ 2

p−1
∣
∣ |w + φ − ϕλ|p − |w + φ|p

∣
∣

≤ C sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1w p−1ϕλ ≤ Cλmin(σ+2,N−2) (5.18)

as (5.4) shows. Next we can estimate N2 as follows

sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1 |N2| = sup

|x−ξ |≥1
|x − ξ |2+ 2

p−1 | |w + φ|p − w p − pw p−1φ|

≤ C sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1 |φ|p (5.19)

≤ C‖φ‖p
∗,ξ . (5.20)

Thus, by (5.17)–(5.20) and (5.4) for the last term in (5.16) we deduce

sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1 |N (φ)| ≤ C(‖φ‖p

∗,ξ + λmin(σ+2,N−2)).

This inequality and (5.15) prove (5.5) in the case 1 < p < 2.

Fixed point argument. We fix 0 < σ ≤ min(2, 2
p−1 ) and define for small ρ > 0

F = {φ : R
N \Dλ,ξ → R | ‖φ‖∗,ξ ≤ ρ}

and the operator φ̄ = A(φ) where φ̄, c1, . . . , cN is the solution of Proposition 2.1 to
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�φ̄ + pw p−1φ̄ = N (φ)+ Eλ +
N∑

i=1

ci Zi in R
N \Dλ,ξ

φ̄ = 0 on ∂Dλ,ξ , lim|x |→+∞ |φ̄(x)| = 0,

where N , Eλ are given by (2.8).
We prove that A has a fixed point in F . From Proposition 2.1 we have the estimate,

‖A(φ)‖∗,ξ ≤ C(‖N (φ)‖∗∗,ξ + ‖Eλ‖∗∗,ξ )

and by (5.2) and (5.5)

‖A(φ)‖∗,ξ ≤ C( ‖φ‖2∗,ξ + ‖φ‖p
∗,ξ + λmin(2+σ,N−2)) ≤ C(ρ2 + ρ p + λmin(2+σ,N−2)) ≤ ρ

if ρ > 0 is fixed suitably small and then one considers λ → 0. This proves A(F) ⊂ F .
Now we show that A is a contraction mapping in F . Let us take φ1, φ2 in F . Then

‖A(φ1)− A(φ2)‖∗,ξ ≤ C ‖N (φ1)− N (φ2)‖∗∗,ξ . (5.21)

Write

N (φ1)− N (φ2) = Dφ̄N (φ̄)(φ1 − φ2)

where φ̄ lies in the segment joining φ1 and φ2. Then, for |x − ξ | ≤ 1,

|x − ξ |2+σ | N (φ1) − N (φ2) | ≤ |x − ξ |2| Dφ̄N (φ̄) | ‖φ1 − φ2‖∗,ξ ,
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while, for |x − ξ | ≥ 1,

|x − ξ |2+ 2
p−1 | N (φ1)− N (φ2) | ≤ |x − ξ |2 |Dφ̄N (φ̄) | ‖φ1 − φ2‖∗,ξ .

Then we have

‖ N (φ1)− N (φ2) ‖∗∗,ξ ≤ C sup
x∈RN \Dλ,ξ

(|x |2|Dφ̄N (φ̄)|) ‖φ1 − φ2 ‖∗,ξ . (5.22)

Directly from the definition of N , we compute

Dφ̄N (φ) = −p
[
(w + φ̄ − ϕλ)

p−1 − w p−1] .

If p ≥ 2 and 0 < σ ≤ 2
p−1 we can use |DφN (φ̄)| ≤ C(w p−2(|φ̄| + ϕλ)+ |φ̄|p−1 + ϕ

p−1
λ )

to estimate

sup
|x−ξ |≤1

|x − ξ |2 |DφN (φ̄)| ≤ C |x − ξ |2
(
w p−2(|φ̄(x)| + ϕλ)+ |φ̄(x)|p−1 + ϕ

p−1
λ

)

≤ C
(
‖φ1‖∗,ξ + ‖φ2‖∗,ξ + λmin(2,N−2)

)

≤ C
(
ρ + λmin(2,N−2)

)
. (5.23)

In the region |x − ξ | ≥ 1 we can use |DφN (φ̄)| ≤ Cw p−2(|φ̄| + ϕλ) and we obtain

sup
|x−ξ |≥1

|x − ξ |2 |DφN (φ̄)| ≤ C
(
ρ + λmin(2,N−2)

)
. (5.24)

Similarly, if 1 < p < 2 and 0 < σ ≤ 2
p−1 then for all x ∈ R

N \Dλ,ξ

|x |2| |Dφ̄N (φ̄)| ≤ C |x |2
(
|φ̄(x)|p−1 + ϕ

p−1
λ

)

≤ Cλ−2
(
‖φ1‖p−1

∗,0 + ‖φ2‖p−1
∗,0 + λ2

)
≤ C(ρ p−1 + λ2). (5.25)

Estimates (5.23)–(5.25) show that

sup
x∈RN \Dλ,ξ

(|x |2|DφN (φ̄)|) ≤ C
(
ρ + ρ p−1 + λmin(2,N−2)

)
. (5.26)

Gathering relations (5.21), (5.22) and (5.26) we conclude that A is a contraction mapping in
F provided ρ > 0 is fixed suitably small, and hence it has unique fixed point in this set.

Claim Let φλ ∈ F denote the fixed point of A found in the previous step. For any fixed
0 < σ < N − 2 we have

‖φλ‖∗,ξ,σ ≤ Cλmin(2+σ,N−2) (5.27)

where for convenience, we emphasize the dependence on σ in the notation of the norm ‖ ‖∗,ξ .

From the previous step we see that ‖φλ‖∗,ξ,σ ≤ Cλmin(2+σ,N−2) for σ > 0 small. Actually
we will fix 0 < σ < 2

p for the rest of the proof. In order to improve the estimate of the fixed
point φλ we need to estimate better N (φλ). First we observe that φλ is uniformly bounded.
Indeed, the function uλ = w − ϕλ + φλ solves

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�uλ + u p
λ =

N∑

i=1

ci (λ, ξ)Zi in R
N \D̄λ,ξ

lim|x |→+∞ uλ(x) = 0, uλ = 0 on ∂Dλ,ξ .

(5.28)
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For x with |x − ξ | = 1 uλ(x) remains bounded because |φλ(x)| ≤ C for |x − ξ | = 1. Then
a uniform upper bound for uλ follows from (5.28) and by observing that ‖u p

λ‖Lq (B1(ξ)\Dλ,ξ )

remains bounded as λ → 0 for q > N
2 . In fact

∫

B1(ξ)\Dλ,ξ

u pq
λ ≤ C

∫

B1

w pq + |φλ|pq ≤ C + C
∫

B1(ξ)\Dλ,ξ

|x |−σ pq dx ≤ C

for some q > N
2 if we choose σ < 2

p , as we have done . Hence

|uλ(x)| ≤ C for all |x − ξ | ≤ 1. (5.29)

It follows from (5.29) that

|φλ(x)| ≤ C for all x ∈ R
N \Dλ,ξ . (5.30)

We shall estimate ‖φλ‖∗,ξ,θ for a θ > σ . Since φλ is a fixed point of A, if 0 < θ < N − 2
we have, by (5.2)

‖φλ‖∗,ξ,θ = ‖A(φλ)‖∗,ξ,θ ≤ C(‖N (φλ)‖∗∗,ξ,θ + ‖Eλ‖∗∗,ξ,θ )
≤ C‖N (φλ)‖∗∗,ξ,θ + Cλmin(2+θ,N−2). (5.31)

Since φλ is uniformly bounded, when p ≥ 2

|N (φλ)| ≤ C
(|φλ|2 + ϕ2

λ

)
. (5.32)

Take 0 < θ < N − 2 such that 2 + θ ≥ 2σ. Then by (5.27) we have

sup
δλ≤|x−ξ |≤1

|x − ξ |2+θ |φλ(x)| ≤ C‖φλ‖2∗,ξ,σ sup
λ≤|x−ξ |≤1

|x − ξ |2+θ−2σ

≤ Cλ2 min(2+σ,N−2). (5.33)

On the other hand

sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1 |N (φλ(x))| ≤ C‖φλ‖2∗,ξ,σ ≤ Cλ2 min(2+σ,N−2). (5.34)

Thus, from (5.32)–(5.34), (5.9) and (5.14) we see that

‖N (φλ)‖∗∗,ξ,θ ≤ Cλ2 min(2+σ,N−2).

This and (5.31) imply

‖φλ‖∗,ξ,θ ≤ Cλmin(2+θ,2(2+σ),N−2).

provided 0 < θ < N − 2, θ ≥ 2σ − 2. Repeating this argument a finite number of times we
deduce the validity of (5.1) in the case p ≥ 2.

If p < 2 instead of (5.32), using

|N (φλ)| ≤ C |φλ|p

we obtain

‖N (φλ)‖∗∗,ξ,θ ≤ Cλmin(2+θ,p(2+σ),N−2)

and the same argument as before yields the conclusion. ��
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6 The proof of Theorem 1

We will present in what follows the detailed proof in under the assumption

N + 2

N − 2
< p <

N + 1

N − 3
.

For the case p = N+1
N−3 see Remark 6.1.

We have found a solution φλ(ξ), c1(λ, ξ), . . . , cN (λ, ξ) to (2.9). By Lemma 4.1 the
solution constructed satisfies for all 1 ≤ j ≤ N :

∫

RN \(Dλ,ξ )

(

Eλ + N (φλ)+
N∑

i=1

ci Zi

)
∂w

∂x j
+

∫

∂Dλ,ξ

∂φλ

∂n

∂w

∂x j
= 0

Thus, for all λ small, we need to find ξ = ξλ so that ci = 0, 1 ≤ i ≤ N , that is
∫

RN \(Dλ,ξ )

(Eλ + N (φλ))
∂w

∂x j
+

∫

∂Dλ,ξ

∂φλ

∂n

∂w

∂x j
= 0 ∀1 ≤ j ≤ N . (6.1)

Let us define

G j (ξ) :=
∫

RN \(Dλ,ξ )

(

Eλ + N (φλ)

)
∂w

∂x j
+

∫

∂Dλ,ξ

∂φλ

∂n

∂w

∂x j
. (6.2)

The functions G j are continuous, as it follows from local uniqueness, the fixed point char-
acterization of φλ and elliptic estimates. We claim that

G j (ξ) = f0λ
N−2

∫

RN

|x − ξ |−(N−2)w(x)p−1 ∂w

∂x j
(x)+ o(λN−2) (6.3)

uniformly for ξ on compact sets of R
N . This fact follows observing first that

∫

RN \(Dλ,ξ )

∣
∣
∣
∣N (φλ)

∂w

∂x j

∣
∣
∣
∣ = o(λN−2) as λ → 0 (6.4)

uniformly for ξ on compact sets of R
N . Indeed,

∫

RN \(Dλ,ξ )

∣
∣
∣
∣N (φλ)

∂w

∂x j

∣
∣
∣
∣ =

∫

B1(ξ)\(Dλ,ξ )

. . .+
∫

RN \B1(ξ)

. . . .

In the case p ≥ 2, by (5.1), we have for σ < N/2
∫

B1(ξ)\(Dλ,ξ )

∣
∣
∣
∣N (φλ)

∂w

∂x j

∣
∣
∣
∣ ≤ ‖φλ‖2∗,ξ

∫

B1(ξ)\(Dλ,ξ )

|x − ξ |−2σ ≤ Cλ2 min(2+σ,N−2)

and recalling that |N (φλ)| ≤ Cw p−2|φλ|2
∫

RN \B1(ξ)

∣
∣
∣
∣N (φλ)

∂w

∂x j

∣
∣
∣
∣ ≤ C‖φλ‖2∗,ξ

∫

RN \B1(ξ)

|x − ξ |− 4
p−1 −3 ≤ Cλ2 min(2+σ,N−2).

Choosing N−2
2 < σ < min(N − 2, N/2) we obtain (6.4) in the case p ≥ 2.

123



472 J. Dávila et al.

Similarly, if p < 2 we have for 0 < σ < N/p
∫

RN

∣
∣
∣
∣N (φλ)

∂w

∂w j

∣
∣
∣
∣ = O(λp min(2+σ,N−2)) as λ → 0,

and taking (N − 2)/p < σ < min(N − 2, N/p) we still obtain (6.4).
Next we need to estimate the boundary integral of (6.2). We claim that

∣
∣
∣
∣
∂φλ

∂n
(x)

∣
∣
∣
∣ = O

(
λmin(1,N−3−σ)) uniformly for x ∈ ∂Dλ,ξ . (6.5)

Let

φ̃λ(z) = φλ(ξ + λz) for all z ∈ R
N \D.

Note that by (5.1), for 0 < σ < N − 2

|φ̃λ(z)| ≤ ‖φλ‖∗,ξ λ−σ |z|−σ ≤ Cλmin(2,N−2−σ)|z|−σ for all |z| ≤ 1

λ
.

Moreover we have already observed that φλ is uniformly bounded (c.f. (5.30)) and this
implies, using (2.9) that |�φλ| ≤ C in R

N \Dλ,ξ . It follows that φ̃λ satisfies

|�φ̃λ| ≤ Cλ2 in R
N \D.

By elliptic estimates

sup
∂D

|∇φ̃λ| ≤ Cλmin(2,N−2−σ),

which proves (6.5). Using this inequality we derive
∫

∂Dλ,ξ

∂φλ

∂n

∂w

∂x j
= O

(
λmin(N ,2(N−2)−σ)) .

This fact together with (6.4) prove the claim made in (6.3).
Let us consider the vector field

G(ξ) = (G1(ξ), . . . ,G N (ξ)).

G is then continuous and, thanks to (6.3),

G(ξ) · ξ < 0 for all |ξ | = R

for any fixed small R > 0. Using this and degree theory we obtain the existence of ξ such
that ci = 0, 1 ≤ i ≤ N . This concludes the proof. ��
Remark 6.1 The proof of Theorem 1 in the case p = N+1

N−3 follows exactly the same lines
with the following modified norms:

‖φ‖∗,ξ = sup
|x−ξ |≤1

|x − ξ |σ |φ(x)| + sup
|x−ξ |≥1

|x − ξ | 2
p−1 +α|φ(x)|

‖h‖∗∗,ξ = sup
|x−ξ |≤1

|x − ξ |2+σ |h(x)| + sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1 +α|h(x)|

where α > 0 is a small fixed number. With this slightly stronger norms Proposition 2.1
remains valid. Indeed, the stronger decay of h assures that the orthogonality condition (3.4)
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makes sense and one can verify that the estimates derived in Sect. 3 and the proof in Sect. 4
carry on. Moreover even with the modified norms the error ‖Eλ‖∗∗,ξ converges to zero. For
this observe that following the calculation starting at (5.2):

sup
|x−ξ |≥1

|x − ξ |2+ 2
p−1 +α

ϕλ(x)w
p−1(x) ≤ CλN−2 sup

|x−ξ |≥1
|x − ξ | 2

p−1 −(N−2)+α

≤ CλN−2

provided 0 < α < N − 2 − 2
p−1 .

7 The proof of Theorem 2

In this section we construct fast decay solutions to problem (1.1)–(1.2) when the exponent
p is close to the Sobolev critical exponent N+2

N−2 . In this case, we denote

p = q + ε, q = N + 2

N − 2

where ε > 0 is small.
The proof of Theorem 2 is similar to that of Theorem 1, except that we need to adjust also

the parameter λ.
The basic cell to construct a fast decay solution is the function w∗∗ given by (1.15). For

simplicity, but with slight abuse of notation, we will denote in what follows this function
simply by w.

The main difference with the case treated in the previous sections, when p was a fixed
exponent strictly above N+2

N−2 , arises in the linearized problem. More precisely, in order to
construct a proper inverse at mode 0 when the exponent is exactly the critical Sobolev
exponent, an extra orthogonality condition is needed. The right hand side is now required to
be orthogonal also to the generator of dilation, the function

z0(r) = rw′(r)+ N − 2

2
w.

We will denote now Zi = ηwxi , i = 1, . . . , N , for η ∈ C∞
0 (R

N ), 0 ≤ η ≤ 1

η(x) = 1 for |x | ≤ R0, η(x) = 0 for |x | ≥ R0 + 1,

with R0 > 0 fixed large enough. We define

Z0 = ηz0.

For given ξ ∈ R and λ small, we first study existence and estimates for solutions
(φ, c0, c1, . . . , cN ) to the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�φ + qwq−1φ = N (φ)+ E + c0 Z0 +
N∑

i=1

ci Zi in R
N \D̄λ,ξ

φ = 0 on ∂Dλ,ξ , lim|x |→+∞φ(x) = 0.

(7.1)

Here

N (φ) = −|w − ϕλ + φ|q+ε + wq+ε + (q + ε)wq+ε−1(φ − ϕλ)

− [
(q + ε)wq+ε−1 − qwq−1

]
φ − [

qwq−1 − (q + ε)wq+ε−1
]
ϕλ (7.2)
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and

E = −wq+ε + wq + qwq−1ϕλ. (7.3)

Appropriate norms in this case are

‖φ‖∗,ξ = sup
|x−ξ |≤1

|x − ξ |σ |φ(x)| + sup
|x−ξ |≥1

|x − ξ |N−2|φ(x)|,

‖h‖∗∗,ξ = sup
|x−ξ |≤1

|x − ξ |2+σ |h(x)| + sup
|x−ξ |≥1

|x − ξ |N+1|h(x)|.

We will need to estimate the ‖ · ‖∗∗,ξ -norm of N (φ) and E .

Claim If 0 < σ ≤ min(2, 2
p−1 ) there exists a positive constant C such that, if ν = min(N −

2, σ + 2),

‖N (φ)‖∗∗,ξ ≤ C
(
‖φ‖2∗,ξ + ‖φ‖q

∗,ξ + λν + ε‖φ‖∗,ξ + ελν
)

(7.4)

and

‖E‖∗∗,ξ ≤ C
(
λν + ε

)
. (7.5)

Taking into account (5.5), in order to get (7.4) we are left to estimate the terms which appear
in the second line of formula (7.2).

We write first
[
(q + ε)wq+ε−1 − qwq−1]φ = A + B,

with

A = εwq−1+εφ and B = qwq−1(wε − 1)φ.

Then

sup
|x−ξ |≤1

|x − ξ |2+σ A ≤ Cε‖φ‖∗,ξ ,

and

sup
|x−ξ |≥1

|x − ξ |N+1 A ≤ Cε‖φ‖∗,ξ sup
|x−ξ |≥1

|x − ξ |N+1−4−(N−2) ≤ Cε‖φ‖∗,ξ .

Observe now that

sup
|x−ξ |≤1

|x − ξ |2+σ B ≤ Cε‖φ‖∗,ξ ,

and

sup
|x−ξ |≥1

|x − ξ |N+1 B ≤ Cε‖φ‖∗,ξ sup
|x−ξ |≥1

|x − ξ |N+1−(N−2)wq−1| logw| ≤ Cε‖φ‖∗,ξ .

These facts give the third term in the right hand side of (7.4).
The last term in (7.2) can be decomposed

[
qwq−1 − (q + ε)wq+ε−1]ϕλ = A + B

with

A = −εwq−1ϕλ and B = (q + ε)wq−1(1 − wε)ϕλ.
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So we have

sup
|x−ξ |≤1

|x − ξ |2+σ A ≤ Cε‖wq−1‖∞λN−2 sup
λδ≤|x−ξ |≤1

|x − ξ |2+σ−(N−2) ≤ Cελν

and

sup
|x−ξ |≥1

|x − ξ |N+1 A ≤ CελN−2 sup
|x−ξ |≥1

|x − ξ |N+1−4−(N−2) ≤ CελN−2.

In a very analogous way, we obtain

‖B‖∗∗,ξ ≤ Cελν,

from which (7.4) follows.
We next show (7.5). We have

sup
|x−ξ |≤1

|x − ξ |2+σ |wq+ε − wq | ≤ Cε

and

sup
|x−ξ |≥1

|x − ξ |N+1|wq+ε − wq | ≤ Cε sup
|x−ξ |≥1

|x − ξ |N+1wq | logw| ≤ Cε.

Estimate (7.5) thus follows from an appropriate modification of the argument that leads to
(5.2).

We are now ready to solve problem (7.1).

Lemma 7.1 Let � > 0. Then there is ε0 > such that for 0 < ε < ε0, |ξ | < � and λ < ε0

there exist φ, c0, . . . , cN solution to
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�φ + qwq−1φ = N (φ)+ E + c0 Z0 +
N∑

i=1

ci Zi in R
N \D̄λ,ξ

φ = 0 on ∂Dλ,ξ , lim|x |→+∞φ(x) = 0.

(7.6)

We have in addition

‖φ‖∗,ξ + max
0≤i≤N

|ci | → 0 as λ+ ε → 0,

and

‖φ‖∗,ξ ≤ C(λν + ε), for all 0 < λ < λ0 (7.7)

where

0 < σ < N − 2, ν = min(2 + σ, N − 2). (7.8)

Proof A first step is to solve the linear problem in R
N . We have

Fact 1 Let |ξ | ≤ �, q = N+2
N−2 and 0 < σ < N −2. There is a linear map (φ, c1, . . . , cN ) =

T (h) defined whenever ‖h‖∗∗,ξ < ∞ such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�φ + qwq−1φ = h + c0 Z0 +
N∑

i=1

ci Zi in R
N

lim|x |→+∞φ(x) = 0

(7.9)
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and

‖φ‖∗,ξ +
N∑

i=1

|ci | ≤ C‖h‖∗∗,ξ (7.10)

Moreover, ci = 0 for all 0 ≤ i ≤ N if and only if h satisfies
∫

RN

hz0 = 0,
∫

RN

h
∂w

∂xi
= 0 ∀1 ≤ i ≤ N . (7.11)

The proof of this fact follows exactly the steps to prove Proposition 3.1, except for the
fact that the inverse in mode 0 exists under the extra orthogonality condition with respect to
Z0. Write φ and h in Fourier series as in Sect. 3, so that (7.9) yields

φ′′
k + N − 1

r
φ′

k +
(

pwq−1 − λk

r2

)

φk = hk, for all r > 0, for all k ≥ 0. (7.12)

If k = 0, ‖h‖∗∗ < +∞ and

∞∫

0

h0(r)z0(r)r
N−1 dr = 0 (7.13)

then Eq. (7.12) has a solution φ0 which depends linearly on h0 and satisfies

‖φ0‖∗ ≤ C‖h0‖∗∗, (7.14)

where in this case

‖φ0‖∗ = sup
|x |≤1

|x |σ |φ(x)| + sup
|x |≥1

|x |N−2|φ(x)|

and

‖h0‖∗∗ = sup
|x |≤1

|x |2+σ |h(x)| + sup
|x |≥1

|x |N+1|h(x)|.

Indeed, since |z0(r)| ≤ Cr−(N−2), we have that
∫ ∞

0 h0(r)z0(r)r N−1 < ∞, so that

φ0(r) = − z0(r)

r∫

1

z−2
0 (s)s1−N

∞∫

s

z0(τ )h0(τ )τ
N−1dτds

solves (7.12) for k = 0 and satisfies (7.14).
Furthermore, observe that the construction of the inverse for mode 1 with the orthogonality

condition with respect to Zi , for i = 1, . . . , N , is still valid and that the corresponding
estimate (3.9) holds true in the new norms. Indeed, taking into account that z1(r)h1(r)r N−1

is integrable in (0,∞), where z1 = −w′, and that the orthogonality condition holds true, we
have that

φ1(r) = −w′(r)
r∫

1

(w′)−2(s)s1−N

∞∫

s

w′(τ )h1(τ )τ
N−1dτds

solves (7.12) for k = 1 and satisfies, in the new norms (see (7.14))

‖φ1‖∗ ≤ C‖h1‖∗∗. (7.15)
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Fact 2 Assume q = N+2
N−2 , 0 < σ < N − 2 and let |ξ | ≤ �. Suppose ‖h‖∗∗,ξ < ∞.

Then for λ > 0 sufficiently small the problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�φ + qwq−1φ = h + c0 Z0 +
N∑

i=1

ci Zi in R
N \D̄λ,ξ

lim|x |→+∞φ(x) = 0, φ = 0 on ∂Dλ,ξ

(7.16)

has a solution (φ, c0, c1, . . . , cN ) = T (h) that depends linearly on h and there is C such
that

‖φ‖∗,ξ + max
1≤i≤N

|ci | ≤ C‖h‖∗∗,ξ .

The constant C is independent of λ.

To prove this fact, we argue as in the proof of Proposition 2.1.

Fact 3 Solving (7.1) reduces now to a fixed point problem. Namely, we need to find a fixed
point for the map A(φ) = T (N (φ)+ E). Define

F =
{
φ : R

N \Dλ,ξ → R : ‖φ‖∗,ξ ≤ M(λν + ε)
}

for some M > 0 large and ν = min(N − 2, σ + 2). Since

‖A(φ)‖∗,ξ ≤ C
(‖N (φ)‖∗∗,ξ + ‖E‖∗∗,ξ

)

and taking into account (7.4)–(7.5), we easily get that A(F) ⊆ F if 0 < σ ≤ min(2+σ, N −
2). To show that A is a contraction, we argue as in the proof of Proposition (5.1), taking into
account that, in our case,

Dφ̄N (φ̄) = (q + ε)
[
(w − ϕλ + φ̄)q+ε−1 − wq+ε−1] + [

(q + ε)wq+ε−1 − qwq−1] φ̄.

and that

sup
x∈RN \Dλ,ξ

|x |2|Dφ̄N (φ̄)|

is infinitesimal as λ+ ε → 0. In order to prove estimate (7.7) in the range 0 < σ < N − 2
we proceed as in the proof of Lemma 5.1. ��
Proof of Theorem 2 Let φ, c0, c1, . . . cN be solution to problem (7.1). To prove the result
contained in Theorem 2 it suffices to show that the parameter λ and the point ξ can be
adjusted so that the constants c0, . . . , cN are all contemporarily equal to zero. Under the
assumption that the point ξ is bounded, fact that a posteriori will be true, it is just sufficient
to show that

∫

RN \(Dλ,ξ )

(E + N (φ))
∂w

∂x j
+

∫

∂Dλ,ξ

∂φ

∂n

∂w

∂x j
= 0 ∀1 ≤ j ≤ N

and
∫

RN \(Dλ,ξ )

(E + N (φ)) z0 +
∫

∂Dλ,ξ

∂φ

∂n
z0 = 0.
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Define, for 1 ≤ j ≤ N ,

G j (ξ, λ) :=
∫

RN \(Dλ,ξ )

(E + N (φ))
∂w

∂x j
+

∫

∂Dλ,ξ

∂φ

∂n

∂w

∂x j
(7.17)

and

G0(ξ, λ) :=
∫

RN \(Dλ,ξ )

(E + N (φ)) z0 +
∫

∂Dλ,ξ

∂φ

∂n
z0. (7.18)

Arguing as in (6.3) and taking into account that, by symmetry,
∫

RN

w
N+2
N−2 logw

∂w

∂x j
= 0 ∀ j = 1, . . . , N ,

we obtain

G j(ξ, λ)=w(ξ) f0
N + 2

N − 2
λN−2

∫

RN

|x−ξ |−(N−2)w(x)
4

N−2
∂w

∂x j
(x)+o(λN−2+ε)

(7.19)

Observe that, again using symmetry, for ξ = 0 the above integral is zero. Since the above
integral depends smoothly on ξ , given δ > 0 small, for all λ and ε small we can find
ξ ∈ B(0, δ), depending on λ and ε, so that all c j = 0, for j = 1, . . . , N .

We are now left to show that also c0 = 0. In order to get this fact, we need to adjust the
parameter λ. Let us thus go to (7.18). Using the estimates obtained on φ, we first observe that

G0(ξ, λ) =
∫

RN \(Dλ,ξ )

Ez0 + o
(
λN−2 + ε

)
.

A direct computation now yields that
∫

RN \(Dλ,ξ )

Ez0 = − aε + A(ξ)λN−2 + o
(
λN−2 + ε

)
(7.20)

where

a =
∫

RN

w
N+2
N−2 (logw)z0

and

A(ξ) = w(ξ)
N + 2

N − 2
f0

∫

RN

|x − ξ |−(N−2)w
4

N−2 z0.

First we observe that the constant a is positive. Indeed, if we define

g(s) = 1

(p + 1)2

∫

RN

w
q+1
s − 1

p + 1

∫

RN

w
q+1
s logws,

where ws(x) = ( s
1+cN s2|x |2 )

N−2
2 , then a change of variables in the integrals gives that

g(s) = aN − bN log s
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for some constants aN and bN > 0, depending on N . Observing that a = −g′(1), the
conclusion thus follows.

We need now to prove that A(ξ) > 0, for ξ the point previously found. To do so, it is
enough showing that

I =
∫

RN

|x |−(N−2) 1

(1 + |x |2)2
1 − |x |2

(1 + |x |2) N
2

dx > 0,

since ξ is close to 0. Now, writing ωN for the volume of the N − 1 dimensional unit sphere,
we have

I = ωN

⎛

⎝
∞∫

0

1

(1 + r2)
N
2 +2

rdr −
∞∫

0

1

(1 + r2)
N
2 +2

r3dr

⎞

⎠

= ωN
N − 2

N (N + 2)
> 0

since N > 2.
From (7.20) we can find λ of order ε

1
N−2 so that c0 = 0. This concludes the proof of the

Theorem. ��
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