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The influence of sources terms on the boundary behavior of the large solutions
of quasilinear elliptic equations: the power like case
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Abstract. We study the explosive expansion near the boundary of the large solutions of the equation

−Δpu + um = f in Ω

where Ω is an open bounded set of R
N , N > 1, with adequately smooth boundary, m > p − 1 > 0, and f is a continuous

nonnegative function in Ω. Roughly speaking, we show that the number of explosive terms in the asymptotic boundary
expansion of the solution is finite, but it goes to infinity as m goes to p − 1. For illustrative choices of the sources, we
prove that the expansion consists of two possible geometrical and nongeometrical parts. For low explosive sources, the
nongeometrical part does not exist, and all coefficients depend on the diffusion and the geometry of the domain. For high
explosive sources, there are coefficients, relative to the nongeometrical part, independent on Ω and the diffusion. In this
case, the geometrical part cannot exist, and we say then that the source is very high explosive. We emphasize that low
or high explosive sources can cause different geometrical properties in the expansion for a given interior structure of the
differential operator. This paper is strongly motivated by the applications, in particular by the non-Newtonian fluid theory
where p �= 2 involves rheological properties of the medium.
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1. Introduction

This paper deals with the asymptotic behavior of solutions of the equation

− div(|∇u|p−2∇u) + um = f in Ω (1)

where Ω is a bounded domain in R
N , N > 1, f ∈ C(Ω), m > 0 and p > 1. As it is usual, we denote by

−Δp the leading part of the differential operator. More precisely, our interest is focussed on the solutions
with an explosive behavior at the boundary

u(x) → ∞ as x → ∂Ω, (2)

usually called large (explosive, boundary blow-up) solutions. A strong motivation of the paper is based
on the applications where the values p �= 2 have a capital role (see below).

As it is well known for the homogeneous case, f ≡ 0, the large solutions have been studied for several
authors provided the extended Keller–Osserman condition

m > p − 1 (3)
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(see, for instance, [11] or [21]). An extensive amount of references, mainly for the uniformly elliptic case
p = 2, is collected in monograph [22] (see also [5] and [6]). Our main comments, in this paper, deal
preferably with the general case governed by the nonlinear leading part corresponding to p �= 2, strongly
motivated by the applications. From the mathematical point of view, the main difference with the lin-
ear case is that the differential operator is not uniformly elliptic: degenerate for p > 2 and singular for
1 < p < 2. From the applications point of view, a main difficulty appears: We must know the precise
dependence on p in the boundary behavior of solutions that cannot be deduced from the case p = 2
by a simple way. A first study of problem (1)–(2) was made in [11] where existence, uniqueness and
blow-up rate of solutions for certain functions f ≥ 0 were proved, under assumption (3) (see also [18,21],
where the previous results were extended to more general nonlinearities in case f ≡ 0). We note that
these well-known results show that the first term of the expansion near the boundary of large solutions is
uniform and independent on the geometry of ∂Ω (see again [11] and [21] as well as [13] and the references
therein). To the best of our knowledge, we do not know any work on the study the influence of the
geometry of the domain on large solutions of (1) when f �≡ 0. Then, an interesting question is to know
how nonhomogeneous sources and the geometry of the domain can influence in the asymptotic expansion
near the boundary of solutions of (1)–(2).

We recall that for p = 2 and f ≡ 0, the dependence on the geometry is known from the pioneer
work [8] or from [1,3–7,17], for instance. In these works, one proves that the geometrical influence appears
from the second-order term of the explosive expansion. Our extensions are nontrivial due to the non-
linear nature of the operator with p �= 2. Moreover, as in [1], the influence of non-null sources pro-
vides a more deep knowledge of the nature of the explosiveness properties of the solutions. We note
that large solutions under non-null sources have been also studied in [20,23] or [24] with different pur-
poses.

As it is usual, the properties near the boundary employ the distance function dist(x, ∂Ω), here denoted
by d(x). As it is well known, if the boundary is bounded with ∂Ω ∈ Ck, k ≥ 1, it follows from [15] the
existence of a positive constant δ0, depending only on ∂Ω, such that d(·) ∈ Ck in the parallel strip near
the boundary

Ωδ0 = {x ∈ Ω : d(x) < δ0}. (4)

Moreover, from the results of [15], also can be deduced the important properties for x ∈ Ωδ0 as

|∇d(x)| ≡ 1 and Δd(x) = −(N − 1)H(x̄(x)) + o(1),

where x̄(x) is a point on ∂Ω such that |x − x̄(x)| = d(x) and H(x̄(x)) denote the mean curvature of ∂Ω
at x̄(x). The simplest geometry occurs on balls, as Ω = BR(0), for which

Δd(x) = −N − 1
|x| , |x| < R.

These geometrical properties of the domain can take part in the asymptotic expansion near the boundary.
Indeed, this influence occurs on secondary terms under more regularity assumptions on the boundary. It
is obtained by considering terms containing the mean curvature neglected in the leading coefficient of the
expansion.

We emphasize that the existence of large solutions of (1), for f ≡ 0, is based on the Keller–Osserman
condition. This inequality is also a necessary assumption in the nonhomogeneous case f �≡ 0. In order to
simplify, the main goal of this paper is to study the influence of sources with the property

f(x) ≈ f0

(
d(x)

)−ατ m as d(x) → 0, f ≥ 0,

where

ατ =
p + τ

m − p + 1
(τ is a nonnegative integer) (5)
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(we note that, by construction, f0 ≥ 0). As we comment below, we say that the source causes a low
explosion if τ = 0, and the source causes a high explosion if τ > 0 and f0 > 0. More precisely, in this
paper, we consider continuous and nonnegative sources satisfying

f(x) =
(
d(x)

)−ατ m
(

f0 +
Mτ∑

n=1

fn

(
d(x)

)n
)

, x ∈ Ωδ0 , (6)

where fn, 1 ≤ n ≤ Mτ , are known constants and

Mτ =

{
ατ − 1 if ατ is a positive integer number,

[ατ ] otherwise,
(7)

for which

−ατ + n < 0, 1 ≤ n < Mτ , and − 1 ≤ −ατ + Mτ < 0.

The key of our contributions is based on the construction of a suitable explosive profile given by a master
function as

V (x) = C0

(
d(x)

)−ατ

(
1 +

Mτ∑

n=1

Cn(x)(d(x))n

)
. (8)

Certainly, V (x) consists of a sum with Mτ + 1 summands containing all explosive terms. As it will be
proved later, when 2p + τ − 1 ≤ m the expansion is very simple, it consists of a unique explosive term
(see Lemma 1 in Sect. 2 below). Furthermore, one has

lim
m→p−1

Mτ = ∞.

Preferably, we deal with the condition p − 1 < m < 2p + τ − 1. In both cases, we prove in Sect. 2.

Theorem 1. Let us consider f ∈ C(Ω), f ≥ 0 on Ωδ0 , verifying (6) with

f0 > 0 when τ > 0. (9)

We also assume (3) and ∂Ω ∈ C2(Mτ+1). Then, for coefficients C0, C1, . . . , CMτ
given in (39) below, the

profile function V (x) defined in (8) satisfies the boundary behavior

− ΔpV (x) +
(
V (x)

)m − f(x) =
(
d(x)

)−ατ m
O
(
d(x)1+Mτ

)
. (10)

On the other hand, as it will be proved in Sect. 3, suitable reasonings on the magnitudes of approxi-
mations of V (x) and a Comparison Principle lead to our main result

Theorem 2. Under the assumptions of Theorem 1 with f ≥ 0 in Ω, the explosive boundary expansion of
the large solution of (1) has the property

u(x) = V (x) + o

(
(
d(x)

)−ατ+Mτ

)
.

Certainly, sharp computations are required in the proof of Theorem 1. In Remark 6, we have summa-
rized the obtainment of the coefficients. In short, we comment some illustrative properties of the profile
V (x) transferred from the coefficients, as it will be detailed in Sect. 2. First of all, the main term of the
expansion

C0

(
d(x)

)−ατ (τ ≥ 0)

is always governed by a positive coefficient whose dependence on the geometry is based on the norm
of the gradient of the distance function. Since |∇d(x)| ≡ 1 near the boundary ∂Ω, this dependence is
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universal; thus, it is independent of the specific geometry of Ω [see (28) or Remark 4]. Furthermore,
whenever 2p − 1 + τ ≤ m, the explosive profile function is exactly

V (x) = C0

(
d(x)

)−ατ
,

while inequality p − 1 < m < 2p − 1 + τ determines two possible summands in the expansion deduced
from the decomposition

V (x) = C0

(
d(x)

)−ατ

(
1 +

min{τ,Mτ }∑

n=1

Cn(d(x))n +
Mτ∑

n=min{τ,Mτ }+1

Cn(x)(d(x))n

)
.

1. Low explosion (τ = 0) The profile function V (x) is

V (x) = C0

(
d(x)

)−α0

(
1 +

M0∑

n=1

Cn(x)(d(x))n

︸ ︷︷ ︸
the geometrical part

)
,

where Cn ∈ C2(M0−n)(Ωδ0/2), 1 ≤ n ≤ M0, are the functions obtained through (38) depending on
the geometry.
2. High explosion (τ > 0) Here, the profile function always contains a part, independent on the
geometry, with a high blow up. Possibly, it also may contain a part where the blow up is more weak.
In some sense, the dependence on the geometry provides low explosion due to the influence of the
nonlinear diffusion of the differential operator. This influence is neglected whenever the explosion
is high. More precisely:
(i) For 0 < τ ≤ Mτ , the representation becomes

V (x) = C0

(
d(x)

)−ατ

(
1 +

the nongeometrical part
︷ ︸︸ ︷

τ∑

n=1

Cn(d(x))n +
Mτ∑

n=τ+1

Cn(x)(d(x))n

︸ ︷︷ ︸
the geometrical part

)
.

Here, Cn, 1 ≤ n ≤ τ , are constants independent on the geometry given by (31) and (34).
Now, (37) enables to obtain the coefficients Cn ∈ C2(Mτ −n)(Ωδ0/2), τ + 1 ≤ n ≤ Mτ , that are
functions depending on the geometry.

(ii) If 0 < Mτ < τ , all coefficients in the expansion are independent on the geometry. Therefore,
one has

V (x) = C0

(
d(x)

)−ατ

(
1 +

the nongeometrical part
︷ ︸︸ ︷
Mτ∑

n=1

Cn(d(x))n

)
.

Here, the last coefficient CMτ
is given by (33). We say that this case corresponds to a very high

explosion.
It is clear that in the simple case Ω = BR(0), the geometrical part is uniform on ∂Ω and consequently

the expansion is uniform on ∂Ω. In general, we may illustrate the results by noting that for two boundary
points x0, y0 ∈ ∂Ω if

∣
∣Cn

(
x0 − s−→n x0

) − Cn

(
y0 − s−→n y0

)∣∣ → 0 as s → 0

is satisfied for τ + 1 ≤ n ≤ Mτ , then we deduce
∣
∣u

(
x0 − s−→n x0

) − u
(
y0 − s−→n y0

)∣∣ → 0 as s → 0;
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otherwise,
∣
∣u

(
x0 − s−→n x0

) − u
(
y0 − s−→n y0

)∣∣ → ∞ as s → 0

(here −→n x0 and −→n y0 denote the relative unit outward vector).
We emphasize that the geometrical properties derived from a given interior structure

−Δpu + um in Ω

can change strongly under low or high explosive sources. For instance, under low explosive sources, the
second coefficient of the explosive expansion of the large solutions is the first one dependent on the geom-
etry; however, by changing to a high explosive sources, the first presence of the geometry is displaced to
lower terms. Even, if we change to a very high explosive source, the influence of the geometry disappears
in the explosive expansion. A technical reason is given in Remark 7 [see also the last comments in the
Example 2(ii) at the end of Sect. 3].

The couple of papers [17] and [18] is a good example of results for the Laplacian operator extended
to p-Laplacian operator. A first motivation to extend our results of p = 2 to arbitrary p > 1 is based on
the applications. As it well known (see [12]), among other applications including image processing and
mean curvature flow, the p-Laplacian operator appears for instance in the variant of the Navier–Stokes
equation that describes the motion of non-Newtonian fluids where the velocity gradient depends on the
stress tensor as it occurs for instance in glaciology, rheology, nonlinear elasticity and flow through a
porous medium. In particular, in studying the laws of motion of fluid media, the shear stress is given
by τ = μ∇u. This approximation is only available to some fluids not including dispersive media. For
non-Newtonian fluids, considered in Rheology, the power rheological law is τ = μ|∇u|p−2∇u, where μ
and p involve rheological properties of the medium. Here, p has a very important role: p > 2 says that
the medium is a dilatant fluid and p < 2 that the medium is pseudoplastic (see [19]). In particular, the
knowledge of the case p �= 2 is very important in the transition p → 2 of the behavior from non-Newtonian
fluids to Newtonian fluids, mainly for some kind of free boundary phenomena arising when p �= 2 (see
[10] for details).
A second motivation deals with the convergence p → ∞. Very important results were obtained in [14] and
[16]. Essentially, in [14], one proves that if p−1m(p) → Q ∈]1,∞[, as p → ∞, the large solutions of (1), with
f ≡ 0, converge uniformly on compacts subsets to a large viscosity solution of max{−Δ∞u,−|∇u|+uQ} =
0. If Q = 1, the solutions go to ∞, and when Q = ∞, the solutions converge to 1. In [2], we complete this
convergence whenever non-null source terms govern the equation and moreover give a precise approxi-
mation to the large solutions of −Δ∞u + β(u) = f not included in [14]. The boundary behavior of the
large solution of this fully nonlinear equations was obtained in [9]. We also use a suitable modification of
the p-Laplacian operator in order to go to ∞-Laplacian operator.

The paper is organized as follows. In Sect. 2, we construct formal boundary explosive expansions
by using several awful straightforward computations. It requires classical explicit expressions as the old
formula of Federico Villarreal (1850–1923) on the power of polynomials. These formulas are summarized
in a short “Appendix” (see [1, Appendices A and B] for details). In Sect. 3, the formal expansions are
applied in order to obtain the whole boundary explosive expansion of the large solution of (1). We include
in that section the Examples 1 and 2 in order to illustrate the main contributions of this paper.

2. The main properties of the boundary profile function

As it was pointed out in the introduction, we devote this section to construct a profile boundary function
of type

V (x) = C0

(
d(x)

)−ατ

(
1 +

Mτ∑

n=1

Cn(x)
(
d(x)

)n
)

, x ∈ Ωδ0/2, (11)
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where ατ , Mτ and Ωδ0 are given in (5), (7) and (4), respectively. The coefficients C0 and Cn(x) will be
chosen later [see (27) below].

First, we relate Mτ with the values of m, p and τ as follows:

Lemma 1. Consider the intervals I0 = [2p + τ − 1,∞[ and

Ik
.=
[
(k + 1)(p − 1) + p + τ

k + 1
,
k(p − 1) + p + τ

k

[
,

where k is a positive integer. Then, the disjoint covering

]p − 1,∞[ =
∞⋃

k=0

Ik, (12)

holds. In particular, for the choice k = Mτ defined in (7), one has

m ∈ IMτ
. (13)

Proof. The covering (12) is obtained by a simple and direct checking. On the other hand, by definition
of Mτ , one has the inequality ατ − 1 ≤ Mτ < ατ that is equivalent to (13). �

Now, we construct the framework on which we will prove the important boundary property

−ΔpV (x) +
(
V (x)

)m − f(x) =
(
d(x)

)−ατ m
O
(
d(x)1+Mτ

)

[see (10) in Theorem 1]. Two previous lemmas (Lemmas 2 and 3) are proved in order to explain the
nature of the expansion of the quasilinear expression

− ΔpV (x) +
(
V (x)

)m
. (14)

Lemma 2. Let us assume Cn ∈ C(Ωδ0/2). Then, there exist adequate functions Dn ∈ C(Ωδ0/2) for which
the mth power of the profile function admits the expansion

(
V (x)

)m = Cm
0

(
d(x)

)−ατ m
(

1 +
Mτ∑

n=1

Dn(x)
(
d(x)

)n
)

+ O
((

d(x)
)1+Mτ −ατ m

)
, x ∈ Ωδ0/2. (15)

Proof. Following classical results, collected in the final “Appendix”, one proves that the mth power of
the profile admits a representation as

(
V (x)

)m = Cm
0

(
d(x)

)−ατ m
(

1 +
Mτ∑

n=1

Dn(x)
(
d(x)

)n +
∞∑

n=Mτ+1

Dn(x)
(
d(x)

)n
)

, (16)

where

Dn(x) =
(

m

1

)
Cn(x) +

n∑

i=2

(
m

i

)
Bn−i,i(x), n ≥ 1, (17)

with

Bn−i,i(x)=
n−i∑

j=1

(
i

j

)
(
C1(x)

)i−j ∑

�1·γ�1+···+�j ·γ�j
=n−i+j

γ�1+···+γ�j
=j

2≤�1<···<�j≤n−i−j+2

{γ�k
}j

k=1⊂{0,1,...,j}

j!
γ�1 !· . . . ·γ�j

!
(
C�1(x)

)γ�1 · . . . ·(C�j
(x)

)γ�j (18)

for i = 2, 3, . . . , n [see (48) below]. In Remark 1, we give explicitly the first coefficients Dn(x). From
the definition of Dn(x) given in (17), we can deduce that the coefficient Cn(x) only appears in the first
term, while in the remaining terms appear powers and products involving some or all previous coefficients
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C1(x), C2(x), . . . , Cn−1(x). Therefore, DMτ
is the coefficient of (16) where CMτ

appears for the first time
[see (17)]. It explains the truncation in (16). Then, we conclude (15) by noting that

Ψm(x; r) =
∞∑

n=Mτ+1

Dn(x)rn, (x; r) ∈ Ωδ0/2×]0, δ0/2[

verifies Ψm ∈ C(Ωδ0/2 × [0, δ0/2]
)

with Ψm(x; r) = O
(
r1+Mτ

)
. �

Remark 1. Provided Mτ ≥ 4, the first coefficients Dn(x) are given by

D1(x) =
(

m

1

)
C1(x),

D2(x) =
(

m

2

)
(
C1(x)

)2 +
(

m

1

)
C2(x),

D3(x) =
(

m

3

)
(
C1(x)

)3 +
(

m

2

)
2C1(x)C2(x) +

(
m

1

)
C3(x),

D4(x) =
(

m

4

)
(
C1(x)

)4 +
(

m

3

)
3
(
C1(x)

)2
C2(x) +

(
m

2

)(
2C1(x)C3(x) +

(
C2(x)

)2
)

+
(

m

1

)
C4(x).

�

The construction of the leading part of (14) is also very laborious. In particular, we have

Lemma 3. Let us assume Cn ∈ C2(Ωδ0/2). Then, there exist a constant A0 and some functions An ∈
C(Ωδ0/2), for which the following expansion

ΔpV (x)=Cp−1
0

(
d(x)

)−ατ m
(
A0

(
d(x)

)τ +
max{Mτ −τ,0}∑

n=1

An(x)
(
d(x)

)n+τ
)

+O
((

d(x)
)1+max{Mτ ,τ}−ατ m

)
(19)

holds in Ωδ0/2.

Proof. First of all, we obtain

∇V (x) = C0

(
d(x)

)−(ατ+1)
(−→

A 0(x) +
Mτ∑

n=1

−→
A n(x)

(
d(x)

)n +
−→
A Mτ+1(x)

(
d(x)

)Mτ+1
)

with

−→
A n(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ατ∇d(x), n = 0,

(−ατ + 1)C1(x)∇d(x), n = 1,

(−ατ + n)Cn(x)∇d(x) + ∇Cn−1(x), 2 ≤ n ≤ Mτ ,

∇CMτ
(x), n = Mτ + 1.

(20)

Now, following again the reasonings of the “Appendix”, see (51), one has

|∇V (x)|2 = C2
0

(
d(x)

)−2(ατ+1)
(

α2
τ +

2(Mτ+1)∑

n=1

En(x)
(
d(x)

)n
)

, (21)
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for certain functions En(x). As in (15), we focus the attention on the coefficients En(x), 1 ≤ n ≤ Mτ ,
given by

En(x) =
n∑

j=0

〈−→A j(x),
−→
A n−j(x)〉, 1 ≤ n ≤ Mτ (22)

(see Remark 3 where the first coefficients En(x) are detailed explicitly). Next, from (21), we may write

|∇V (x)|p−2 =
(|∇V (x)|2)

p−2
2 = Cp−2

0

(
d(x)

)−(ατ+1)(p−2)Φ
( 2(Mτ+1)∑

n=1

En(x)
(
d(x)

)n−1
)

where

Φ(s) =
(
α2

τ + s d(x)
) p−2

2 = αp−2
τ

∞∑

n=0

(p−2
2

n

)
α−2n

τ sn
(
d(x)

)n
.

As in (16), we apply the extended Villareal formula (see once again the “Appendix” below) in order to
obtain

|∇V (x)|p−2 = Cp−2
0

(
d(x)

)−(ατ+1)(p−2)
αp−2

τ

(
1 +

Mτ∑

n=1

Fn(x)
(
d(x)

)n +
∞∑

n=Mτ+1

Fn(x)
(
d(x)

)n
)

(23)

for x ∈ Ωδ0 , governed by

Fn(x) =
(p−2

2

1

)
α−2

τ En(x) +
n∑

i=2

(p−2
2

i

)
α−2i

τ Gn−i,i(x), n ≥ 1, (24)

where

Gn−i,i(x)=
n−i∑

j=1

(
i

j

)
(
E1(x)

)i−j ∑

�1·γ�1+...+�j ·γ�j
=n−i+j

γ�1+...+γ�j
=j

2≤�1<...<�j≤n−i−j+2

{γ�k
}j

k=1⊂{0,1,...,j}

j!
γ�1 ! · . . . · γ�j

!
(
E�1(x)

)γ�1 · . . . · (E�j
(x)

)γ�j

for i = 2, 3, . . . , n
(
see Remark 3 where we give explicitly the first coefficients Fn(x)

)
. Here, FMτ

is the
term where CMτ

appears for the first time [see (22) and (24)].
As in the proof of Lemma 2, the coefficient En(x) only appears in the first term of (24), while in

the remaining terms appear powers and products involving the previous coefficients
{
E1(x), E2(x), . . . ,

En−1(x)
}
. The above calculations lead to

|∇V (x)|p−2∇V (x) = Cp−1
0

(
d(x)

)−(ατ+1)(p−1)
(

− αp−1
τ ∇d(x) +

∞∑

n=1

−→
Hn(x)

(
d(x)

)n
)

where

−→
Hn(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αp−2
τ (p − 1)(−ατ + 1)C1(x)∇d(x), n = 1,

αp−2
τ

∑n
j=0 Fn−j(x)

−→
A j(x), 2 ≤ n ≤ Mτ ,

αp−2
τ

∑Mτ+1
j=0 Fn−j(x)

−→
A j(x), n ≥ Mτ + 1,

with
−→
A n(x) as in (20) and Fn−j(x) as in (24). Hence,

ΔpV (x) = Cp−1
0

(
d(x)

)−(ατ+1)(p−1)−1
(

A0 +
∞∑

n=1

An(x)
(
d(x)

)n
)
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where

An(x) =

⎧
⎪⎪⎨

⎪⎪⎩

αp−1
τ (ατ + 1)(p − 1), n = 0,

αp−2
τ

(
(ατ − 1)(p − 1)

(
ατ (p − 1) + p − 2

)
C1(x) − ατΔd(x)

)
, n = 1,

( − (ατ + 1)(p − 1) + n
)〈−→Hn(x),∇d(x)〉 + div

−→
Hn−1(x), n ≥ 2.

(25)

Since

ατ =
p + τ

m − p + 1
⇔ (ατ + 1)(p − 1) + 1 + τ = ατm,

we may conclude (19) by noting that

ΨA(x; r) =
∞∑

n=max{Mτ −τ,0}+1

An(x)rn+τ , (x; r) ∈ Ωδ0/2×]0, δ0/2[.

verifies ΨA ∈ C(Ωδ0/2 × [0, δ0/2]), with ΨA(x; r) = O(r1+max{Mτ ,τ}). We note that the assumed regularity
Cn ∈ C2(Ωδ0/2) will be proved in the next section. �

Remark 2. Since |∇d(x)| ≡ 1 near the boundary (see [15]), the coefficient A0 in (25) is independent on
the geometry. On the other hand, we note that all functions An(x), 1 ≤ n ≤ Mτ + 1, depend on the
geometry of Ω through the distance function d(x). More precisely, A1(x) depends on the mean curvature.
On the other hand, as expected, coefficients An(x) coincide with those found in [1] for the case p = 2. �

Remark 3. We illustrate the first three terms of (21), provided Mτ ≥ 3,

E1(x) = 2ατ (ατ − 1)C1(x),

E2(x) = 2ατ

(
(ατ − 2)C2(x) − 〈∇C1(x),∇d(x)〉) + (ατ − 1)2

(
C1(x)

)2
,

E3(x) = 2
(
ατ (ατ − 3)C3(x) − 〈∇C2(x),∇d(x)〉)

+2(ατ − 1)C1(x)
(
(ατ − 2)C2(x) − 〈∇C1(x),∇d(x)〉)

and the first two coefficients Fn(x) of (23), provided Mτ ≥ 2,

F1(x) = (p − 2)
(

ατ − 1
ατ

)
C1(x),

F2(x) = (p − 2)
(

(p − 3)
2

(
ατ − 1

ατ

)2 (
C1(x)

)2− 1
ατ

〈∇C1(x),∇d(x)〉 +
(

ατ − 2
ατ

)
C2(x)

)
.

Obviously, equality (23) is irrelevant when p = 2 because Fn(x), 1 ≤ n ≤ Mτ , are null functions. �

Now, we can get to the proof of our main result in this section.

Proof of Theorem 1. From equalities (6), (15) and (19), we can write

−ΔpV (x) +
(
V (x)

)m − f(x)

=
(
d(x)

)−ατ m
[

− Cp−1
0

(
A0

(
d(x)

)τ +
max{Mτ −τ,0}∑

n=1

An(x)
(
d(x)

)n+τ
)

+
(
Cm

0 − f0

)
+

Mτ∑

n=1

(
Cm

0 Dn(x) − fn

)(
d(x)

)n + Υ
(
x; d(x)

)
]
, x ∈ Ωδ0/2, (26)
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for the remainder

Υ(x; d(x)) = −Cp−1
0 ΨA(x; d(x)) + Cm

0 Ψm(x; d(x))

that verifies

Υ(x; d(x)) = O
(
(d(x))1+Mτ

)

for all x ∈ Ωδ0 . Our goal is clear now: If we make suitable choices of the coefficients C0 and Cn(x) such
that

Cp−1
0

⎛

⎝A0

(
d(x)

)τ +
max{Mτ −τ,0}∑

n=1

An(x)
(
d(x)

)n+τ

⎞

⎠=Cm
0 − f0 +

Mτ∑

n=1

(
Cm

0 Dn(x) − fn

)(
d(x)

)n
, (27)

the equality (26) leads to

−ΔpV (x) +
(
V (x)

)m − f(x) =
(
d(x)

)−ατ m (
Υ
(
x; d(x)

))
,

whence (10) follows.
In order to do it, the value of C0 is obtained by canceling the constant term in expression (27), that

is,

Cm
0 − f0 = 0 if τ > 0 and Cm

0 − Cp−1
0 αp−1

0 (α0 + 1)(p − 1) − f0 = 0 if τ = 0 (28)

[see (25)]. Therefore, C0 is independent on the geometry and it is the unique coefficient when Mτ = 0,
that is, m ≥ 2p − 1 + τ . We note that when τ = 0, we only require f0 ≥ 0. After obtaining this value C0,
the rest of coefficients Cn(x) are determined iteratively from the relation (27) making a balance between
the power of d(x) by canceling the respective coefficients. �

Remark 4. By some conveniences, we may introduce the one–one function φ : [0, 1[→ R+ ∪ {0}

φ(t) =
(

(m + 1)(p − 1)pp−1

(m + 1 − p)p(1 − t)

) m
m+1−p

t.

for which (28) becomes

C0 =

⎧
⎪⎪⎨

⎪⎪⎩

f
1
m
0 if τ > 0,

(
(m + 1)(p − 1)pp−1

(m + 1 − p)p(1 − φ−1(f0))

) 1
m+1−p

if τ = 0.
(29)

�

As it was pointed out in Introduction, if 2p − 1 + τ ≤ p, the expansion only consists of a unique term
governed by C0 obtained from (29). When p − 1 < m < 2p − 1 + τ , the rest of the coefficients Cn are
obtained in order to (27) hold. They depend on the type of explosion, high or low, based on the two
possible parts of the explosive expansion

V (x) = C0

(
d(x)

)−ατ

(

1 +

the nongeometrical part
︷ ︸︸ ︷
min{τ,Mτ }∑

n=1

Cn(d(x))n +
Mτ∑

n=min{τ,Mτ }+1

Cn(x)(d(x))n

︸ ︷︷ ︸
the geometrical part

)

.

Thus, the expansion has a possible first part with high explosion and a possible second part whose explo-
siveness is low due to the influence on the nonlinear diffusion neglected in the previous one. In some
sense, the influence of the diffusion is transferred to the influence of the geometry of the domain.
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A. The possible nongeometrical part. It only appears when τ > 0, and consequently, we will require
condition (9). Then, we choose C1, . . . , Cmin{τ,Mτ }−1 from the equalities

− Cp−1
0 · 0 + Cm

0 Dn(x) = fn, 1 ≤ n ≤ min{τ,Mτ} − 1. (30)

Certainly, choice n = 0 is also available denoting D0(x) ≡ 1, and it implies

C0 = f
1
m
0

[see (28)]. Hence, in the comments of this part, we may assume Mτ > 0 or min{τ,Mτ} ≥ 1. The
representation (17) and the equality (27) lead to

Cn =
1

mf0

(
fn − f0

n∑

i=2

(
m

i

)
Bn−i,i

)
, 1 ≤ n ≤ min{τ,Mτ} − 1. (31)

From the properties of Dn, the coefficients Cn, 1 ≤ n ≤ min{τ,Mτ} −1, are constants independent
on Ω.

We note that the formulas of Remark 1 lead to

C1 =
1

mf0
f1 and C2 =

1
mf0

(
f2 − m − 1

2
1

mf0
f2
1

)
, (32)

provided min{τ,Mτ} ≥ 3.
The last coefficient of this part, Cmin{τ,Mτ }, is also independent on the geometry, but it admits two
possibilities:
(i) If 0 < Mτ < τ , the expression (30) also provides the last coefficient of the whole explosive

expansion given by

−Cp−1
0 · 0 + Cm

0 DMτ
(x) = fMτ

,

whence

CMτ
=

1
mf0

(
fMτ

− f0

Mτ∑

i=2

(
m

i

)
BMτ −i,i

)
. (33)

We recall that by construction coefficient, CMτ
is the last coefficient of explosive function (11).

(ii) If 0 < τ ≤ Mτ from (27), it follows

−Cp−1
0 A0 + Cm

0 Dτ = fτ ,

whence

Cτ =
1

mf0

(
fτ +

(p + τ)p−1(m + τ + 1)(p − 1)
(m − p + 1)p

f
p−1
m

0 − f0

τ∑

i=2

(
m

i

)
Bτ−i,i

)
. (34)

Obviously, Cτ is the last coefficient of the whole explosive expansion of the profile function
(11) only when Mτ = τ . In general, condition Mτ = τ implies

{
(m − p)τ ≥ 2p − m − 1 if ατ is an integer number,

(m − p)τ > 2p − m − 1 otherwise.
(35)

B. The possible geometrical part. This part only is possible when τ < Mτ , τ ≥ 0, because otherwise
it is the nongeometrical part. Consequently, min{τ,Mτ} = τ .
The study is completed by choosing the coefficients Cτ+1(x), . . . , CMτ

(x), τ ≥ 0, from equalities

− Cp−1
0 An−τ (x) + Cm

0 Dn(x) = fn, τ + 1 ≤ n ≤ Mτ , (36)

with Mτ > 0, thus p − 1 < m < 2p + τ − 1.
By means of An(x), τ + 1 ≤ n ≤ Mτ , these coefficients depend on the geometry of Ω. In particular,
Cτ+1(x) depends only on the mean curvature (see Remark 5 below).
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Certainly, when τ > 0, from the properties of An(x) and Dn(x), one has the explicit formula

Cn(x) =
1

mf0

(
fn + Cp−1

0 An−τ (x) − f0

n∑

i=2

(
m

i

)
Bn−i,i(x)

)
, τ + 1 ≤ n ≤ Mτ . (37)

Whenever τ = 0, condition (36) becomes

− Cp−1
0 An(x) + Cm

0 Dn(x) = fn, 1 ≤ n ≤ M0. (38)

From definition of Dn(x) [see (17)] and An(x) [see (25)], the relative coefficients Cn(x) chosen in
(38) also admit an explicit and hard expression as

AnCn(x) = F(
m, p, f0, . . . , fn, C0, C1(x), . . . , Cn−1(x)

)
, 1 ≤ n ≤ M0,

where
An

.= λmCm
0 − αp−2

0 (p − 1)(−α0 + n)
( − (α0 + 1)(p − 1) + n

)
Cp−1

0

= Cp−1
0 αp−2

0 (p − 1)
[
(α0 + 1)

(
p + (p − 1)n

) − n(−α0 + n)
]
+ mf0

is a positive constant due to −α0 + n ≤ −α0 + M0 < 0.
The above construction shows that the coefficients Cn are constants or belong to C2(Ωδ0/2)∩L∞(Ωδ0/2),

due to the regularity of the distance function.

Remark 5. As it has been pointed out several times, the obtainment of Cn(x) requires very tedious
computations. For example, for 0 ≤ τ < Mτ , one obtains

Cτ+1(x) =
1

mf0

(
fτ+1 − f0

τ+1∑

i=2

(
m

i

)
Bτ+1−i,i(x)

+f
p−1
m

0 αp−2
τ

[
(ατ − 1)(p − 1)

(
ατ (p − 1) + p − 2)C1(x) − ατΔd(x)

]
)

.

In particular, when τ = f0 = 0, one has

C0 =
(

(m + 1)(p − 1)pp−1

(m − p + 1)p

) 1
m−p+1

and C1(x) = η(m, p)
(
γ(m, p)f1 − Δd(x)

)
,

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

η(m, p) =
α0

(p − 1)
[
α0(m + p + 1) + p − 2

] =
p

2(p − 1)
[
p(m + 1) − (m − p + 1)

] ,

γ(m, p) =
1

Cp−1
0 αp−1

0

=
(

(m − p + 1)m+1

(m + 1)(p − 1)pm

) p−1
m−p+1

.

Obviously, for p = 2, the coefficients C0 and C1(x) coincide with those values already obtained for the
Laplacian operator (see [1] or [8]). �

Remark 6. We summarize the global obtainment of the coefficients as follows. First of all, the constant C0,
obtained from (28), is the unique coefficient in the expansion whenever 2p + τ − 1 ≤ m, that is, Mτ = 0.
Otherwise, when p − 1 < m < 2p + τ − 1, all coefficients are given by the table

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

if 0 < τ ≤ Mτ one has

(29)
︷︸︸︷
C0

(31)
︷ ︸︸ ︷
C1, . . . , Cτ−1

(37)
︷︸︸︷
Cτ

(37)
︷ ︸︸ ︷
Cτ+1, . . . , CMτ

,

if 0 < Mτ < τ one has

(29)
︷︸︸︷
C0

(31)
︷ ︸︸ ︷
C1, . . . , CMτ −1

(33)
︷︸︸︷
CMτ

,

if 0 = τ < M0 one has

(29)
︷︸︸︷
C0

(38)
︷ ︸︸ ︷
C1, . . . , CM0−1

(38)
︷︸︸︷
CM0 .

(39)

�
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Remark 7. The presence of the geometry in the expansion is derived exclusively from the functions An(x)
[see (25) and (36)]. Then, fixed p and m, for different values of τ , the Eq. (36) can become (30). Hence,
fixed an interior structure of the differential operator, p and m, the geometrical properties can appear in
different localizations of the explosive expansion. These geometrical properties may even disappear. See
the Example 2(ii), at the end of Sect. 3, to an illustration of the above comments. �

3. The boundary asymptotic expansion of the large solution

In this section, we consider the perturbed boundary profile function

V∓δ(x) = C0

(
d(x) ∓ δ

)−ατ

(
1 +

Mτ∑

n=1

Cn(x)
(
d(x) ∓ δ

)n
)

defined for x ∈ Ω such that d(x) ∓ δ > 0 with δ > 0 small enough.

Proposition 1. Under assumptions of Theorem 1, the following behavior

−ΔpV∓δ(x) +
(
V∓δ(x)

)m − f(x) =
(
d(x)

)−ατ m
O

((
d(x)

)1+Mτ
)

holds.

Proof. The choice of the coefficients Cn(x) in Theorem 1 leads to

Cp−1
0

(
A0

(
d(x) ∓ δ

)τ +
max{Mτ −τ,0}∑

n=1

An(x)
(
d(x) ∓ δ

)n+τ
)

= Cm
0 −f0 +

Mτ∑

n=1

(
Cm

0 Dn(x) − fn

)(
d(x) ∓ δ

)n

[see (27)]. Consequently, since

−ΔpV∓δ(x) +
(
V∓δ(x)

)m − f(x)

=
(
d(x) ∓ δ

)−ατ m
[

− Cp−1
0

(
A0

(
d(x) ∓ δ

)τ+
max{Mτ −τ,0}∑

n=1

An(x)
(
d(x) ∓ δ

)n+τ
)

+
(
Cm

0 − f0

)
+

Mτ∑

n=1

(
Cm

0 Dn(x) − fn

)(
d(x) ∓ δ

)n + Υ
(
x; d(x) ∓ δ

)
+ Ξ(x;∓δ)

]

[see (26)], then

− ΔpV∓δ(x) +
(
V∓δ(x)

)m − f(x) =
(
d(x) ∓ δ

)−ατ m(
Υ
(
x; d(x) ∓ δ

)
+ Ξ(x;∓δ)

)
, x ∈ Ωδ0/2, (40)

for the remainders
⎧
⎪⎨

⎪⎩

Υ(x; d(x) ∓ δ) = −Cp−1
0 ΨA(x; d(x) ∓ δ) + Cm

0 Ψm(x; d(x) ∓ δ),

Ξ(x;∓δ) =
(

f0 +
∑Mτ

n=1 fn

(
d(x) ∓ δ

)n
)

−
(

d(x) ∓ δ

d(x)

)ατ m (
f0 +

∑Mτ

n=1 fn

(
d(x)

)n
)

,
(41)

that verify

lim
δ→0

Υ(x; d(x) ∓ δ) = O
(
(d(x))1+Mτ

)
and lim

δ→0
Ξ(x;∓δ) = 0

for all x ∈ Ωδ0 . �
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For future purposes, it will be very useful to rewrite (40) as

− ΔpV∓δ(x) +
(
V∓δ(x)

)m − f(x) =
(
d(x) ∓ δ

)−ατ m
(

Pτ (C0) + Υ
(
x; d(x) ∓ δ

)
+ Ξ(x;∓δ)

)
)

(42)

due to C0 is the positive root of polynomial

Pτ (μ) =

{
μm − αp−1

0 (α0 + 1)(p − 1)μp−1 − f0 if τ = 0,

μm − f0 if τ > 0,

[see (28)].
With all previous results, we get to the proof of our main result.

Proof of Theorem 2. In order to apply a comparison argument, we consider the modifications

W∓δ,±ε(x) = C0

(
d(x) ∓ δ

)−ατ

(
1 ± ε +

Mτ∑

n=1

Cn(x)
(
d(x) ∓ δ

)n
)

,

where ε > 0 will be sent to 0. So, we construct the perturbed polynomials

Pτ,±ε(μ) =

{(
(1 ± ε)μ

)m − αp−1
0 (α0 + 1)(p − 1)

(
(1 ± ε)μ

)p−1 − f0 if τ = 0,
(
(1 ± ε)μ

)m − f0 if τ > 0,

for which

Pτ,+ε(C0) > 0 and Pτ,−ε(C0) < 0.

The reasoning is based on to prove that the functions W−δ,+ε(x) and W+δ,−ε(x) are, respectively, super
and sub-solutions in a thin strip near the boundary. Arguing as in Theorem 1, we have

−ΔpW−δ,+ε(x) +
(
W−δ,+ε(x)

)m − f(x) =
(
d(x) − δ

)−ατ m
(
Pτ,+ε(C0) + Υ

(
x; d(x) − δ

)
+ Ξ(x;−δ)

)

[see (42)]. We recall that Pτ,+ε(C0) is a positive constant independent on x and δ, and consequently, (41)
proves the inequality

Pτ,+ε(C0) + Υ
(
x; d(x) − δ

)
+ Ξ(x;−δ) > 0

in a parallel strip δ < d(x) < δ1, provided 2δ1 < δ0 small enough. Therefore, the inequality

−ΔpW−δ,+ε(x) +
(
W−δ,+ε(x)

)m
> f(x), δ < d(x) < δ1,

holds. Then, Comparison Principle leads to

u(x) − W−δ,+ε(x) ≤ sup
d(y)=δ1

(
u(y) − W−δ,+ε(y)

)
, δ < d(x) < δ1

or

u(x)
W−δ,+ε(x)

− 1 ≤
sup

d(y)=δ1

(
u(y) − W−δ,+ε(y)

)

W−δ,+ε(x)
, δ < d(x) < δ1.

Now, in short, sending δ1 → 0 and then ε → 0, we deduce

lim sup
d(x)→0

u(x)
V (x)

≤ 1,

where V is our master function given by (8). (In fact, for a more precise way to obtain this inequality,
we send δ → 0, after d(x) → 0, next δ1 → 0, and finally ε → 0.)
Analogously, one obtains

−ΔpW+δ,−ε(x) +
(
W+δ,−ε(x)

)m − f(x) =
(
d(x) + δ

)−ατ m
(
Pτ,−ε(C0) + Υ

(
x; d(x) + δ

)
+ Ξ(x; +δ)

)
.
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Since

Pτ,−ε(C0) + Υ
(
x; d(x) + δ

)
+ Ξ(x; +δ) < 0

in a parallel strip 0 < d(x) < δ1, provided 2δ1 < δ0 small enough, inequality

−ΔpW+δ,−ε(x) +
(
W+δ,−ε(x)

)m
< f(x), 0 < d(x) < δ1,

holds. Now, by comparing, it follows

1 − u(x)
W+δ,−ε(x)

≤
sup

d(y)=δ1

(
W+δ,−ε(y) − u(y)

)

W+δ,−ε(x)
, 0 < d(x) < δ1.

As above, sending δ → 0 and then ε → 0, we conclude

lim sup
d(x)→0

u(x)
V (x)

≤ 1 ≤ lim inf
d(x)→0

u(x)
V (x)

. �

Remark 8. Certainly, Theorem 2 extends and generalizes Theorem 3.8 of [11]. When p = 2, Theorem 2
coincides with Theorem 2 of [1] and it extends the results obtained in [5,6] or [8] where only the second
explosive term was considered for f ≡ 0. �

Theorem 2 can be illustrated as follows:

Example 1. (Low explosive sources) This is an example without nondiffused part in the expansion of the
large solutions. For instance, let us suppose

3p − 2
2

≤ m < 2p − 1 (43)

(or equivalently 1 < α0 ≤ 2), for which M0 = 1 and

f(x) = f1

(
d(x)

)− pm
m−p+1+1

, f1 ≥ 0.

If ∂Ω ∈ C4, then we obtain

u(x) = C0

(
d(x)

)− p
m−p+1

(
1 + η(m, p)

[
γ(m, p)f1 − Δd(x)

]
d(x)

)
+ o

((
d(x)

)m−2p+1
m−p+1

)
, (44)

where C0, η(m, p) and γ(m, p) are given in Remark 5. This example extends the results of [5,6] or [8]
obtained for p = 2 and f ≡ 0. �

Example 2. (High explosive sources)
(i) In order to simplify, we begin by constructing an example without geometrical part in the expansion.

For instance, an inequality as τ ≥ Mτ = 1 requires
⎧
⎪⎨

⎪⎩

Mτ = 1 if and only if
3p + τ − 2

2
≤ m < 2p + τ − 1 (see Lemma 1)

τ ≥ Mτ if and only if
p(2 + τ) − 1

τ + 1
< m [see (35)].

Since
(2 + τ) − 1

τ + 1
≤ 3p + τ − 2

2
for τ ≥ 1,

both conditions hold when
3p + τ − 1

2
< m < 2p + τ − 1,

for which

f(x) =
(
d(x)

)−ατ m(
f0 + f1d(x)

)
, f0 > 0
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where

ατ =
p + τ

m − p + 1
verifies

1 < ατ <
2(p + τ)
p + τ + 1

.

Theorem 2 proves that the expansion of all explosive terms of the large solution is

u(x) = f
1
m
0

(
d(x)

)−ατ

(
1 +

1
mf0

(
f1 +

(p + τ)p−1(m + τ + 1)(p − 1)
(m − p + 1)p

f
p−1
m

0

)
d(x)

)
+ o

((
d(x)

)−ατ+1
)
,

provided ∂Ω ∈ C4 [see (5), (32), (34) and (35)]. Clearly, both coefficients are independent on the
geometry of Ω. Here, τ is an arbitrary positive integer number.

(ii) Finally, we construct an example where the expansion has one coefficient dependent on Ω plus two
coefficients uniform and independent on Ω; therefore, τ = 1 and M1 + 1 = 3. So, Lemma 1 enables
us to consider

4p − 2
3

≤ m <
3p − 1

2
(45)

(or equivalently 2 < α1 ≤ 3), and for simplicity, we suppose

f(x) = f0

(
d(x)

)− (p+1)m
m−p+1

(
1 + f1d(x) + f2

(
d(x)

)2
)
, f0 > 0.

Then, the expansion of all explosive terms of the large solution is

u(x) = C0

(
d(x)

)− p+1
m−p+1

(
1 + C1d(x) + C2(x)

(
d(x)

)2
)

+ o
((

d(x)
) 2m−3p+1

m−p+1
)
, (46)

for coefficients

C0 = f
1
m
0 (independent on the nonlinear diffusion)

C1 =
1

mf0

(
f1 + αp−1

1 (α1 + 1)(p − 1)f
p−1
m

0

)
(dependent on the nonlinear diffusion)

and

C2(x)=
1

mf0

(
f2−f0

m(m − 1)
2

C2
1 +f

p−1
m

0 αp−2
1

(
(α1 − 1)(p−1)(α1(p − 1)+p − 2)C1−α1Δd(x)

))
,

where α1 =
p + 1

m − p + 1
provided ∂Ω ∈ C6 (see Remarks 1 and 5).

One last comment derived from conditions (43) and (45). Since the inclusion
[
4p − 2

3
,
3p − 1

2

[
⊆

[
3p − 2

2
, 2p − 1

[
,

holds whenever p ≥ 2, we note that for every

m ∈
[
4p − 2

3
,
3p − 1

2

[
, p ≥ 2,

and ∂Ω ∈ C4, the first geometrical property appears in the second coefficient of the expansion for
the low explosion source

f(x) = f1

(
d(x)

)− pm
m−p+1+1

, f1 ≥ 0

[see (44)]. However, if ∂Ω ∈ C6, and we change to the high explosion source

f(x) = f0

(
d(x)

)− (p+1)m
m−p+1

(
1 + f1d(x) + f2

(
d(x)

)2
)
, f0 > 0,



Vol. 64 (2013) The influence of sources terms 675

that first geometrical property appears now in the third coefficient [see (46)]. The importance of the
kind of sources was commented in Remark 7. �

Appendix: Expanding the mth power of the asymptotic profile

In Appendix A of [1], the old formula of Federico Villarreal (1850–1923) on the power of polynomials
was extended by means of an explicit expression. It was applied in order to obtain representations of the
power of polynomials. Here, we sketch the results of Appendix B of [1] related to the formal expansion

V (x) = C0

(
d(x)

)−ατ

(
1 +

Mτ∑

n=1

Cn(x)
(
d(x)

)n
)

for which

(
V (x)

)m = Cm
0

(
d(x)

)−ατ mΦ
( Mτ∑

n=1

Cn(x)
(
d(x)

)n−1
)

,

where

Φ(s) =
(
1 + s d(x)

)m
.

Applying Taylor expansion of Φ(s), one obtains

(
V (x)

)m = Cm
0

(
d(x)

)−ατ m ∑

n≥0

(
m

n

)( Mτ∑

k=1

Ck(x)
(
d(x)

)k−1
)n(

d(x)
)n

.

On the other hand, we may write
( Mτ∑

k=1

Ck(x)
(
d(x)

)k−1
)n

=
( Mτ −1∑

k=0

Ck+1(x)
(
d(x)

)k
)n

=
(Mτ −1)n∑

i=0

Bi,n(x)
(
d(x)

)i (47)

where

Bi,n(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
C1(x)

)n
, i = 0,

1
iC1(x)

∑i−1
�=0

(
(i − �)(n + 1) − i

)
Ci−�+1(x)B�,n(x), 1 ≤ i ≤ Mτ − 1,

1
iC1(x)

∑i−1
�=i−Mτ+1

(
(i − �)(n + 1) − i

)
Ci−�+1(x)B�,n(x), Mτ ≤ i ≤ (Mτ − 1)n

(for details see [1, Appendix A]).
In general, by means of a transfinite induction argument, we may adjust explicit Villarreal formula

(see now [1, Theorem 4]) in order to obtain the explicit expression of Bi,n(x) for i ∈ {1, 2, . . . , n} [see
also (18)]. Then, one has

(
V (x)

)m = Cm
0

(
d(x)

)−ατ m ∑

n≥0

(
m

n

) (Mτ −1)n∑

i=0

Bi,n(x)
(
d(x)

)i+n

= Cm
0

(
d(x)

)−ατ m
(

1 +
∞∑

n=1

Dn(x)
(
d(x)

)n
)

(48)

where

Dn(x) =
n∑

i=1

(
m

i

)
Bn−i,i(x), for all n. (49)
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Choosing n = 1 in (47), we deduce

Bi,1(x) = Ci+1(x), 0 ≤ i ≤ Mτ−1,

so that, (49) becomes

Dn(x) =
(

m

1

)
Cn(x) +

n∑

i=2

(
m

i

)
Bn−i,i(x), 1 ≤ n ≤ Mτ , (50)

whence, in (50), each Cn(x), 1 ≤ n ≤ Mτ , does not appear in Bn−i,i(x), i �= 1. Certainly, all coefficients
Cn(x), 1 ≤ n ≤ Mτ , are involved in the other Dn(x), n ≥ Mτ + 1.
Clearly, the Taylor expansion is finite when m is an integer number. In this case, representation (48)
becomes

(
V (x)

)m = Cm
0

(
d(x)

)−ατ m
(

1 +
m(Mτ −1)∑

n=1

Dn(x)
(
d(x)

)n
)

(51)

where coefficients Dn(x) are given in (49).
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