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Large viscosity solutions for some fully
nonlinear equations

S. Alarcón and A. Quaas

Abstract. We study existence, uniqueness and asymptotic behavior near
the boundary of solutions of the problem{

−F (D2u) + β(u) = f in Ω,

u = +∞ on ∂Ω,
(P)

where Ω is a bounded smooth domain in R
N , N > 1, F is a fully nonlinear

elliptic operator and β is a nondecreasing continuous function. Assum-
ing that β satisfies the Keller–Osserman condition, we obtain existence
results which apply to f ∈ L∞

loc(Ω) or f having only local integrability
properties where viscosity solutions are well defined, i.e. f ∈ LN

loc(Ω).
Besides, we find the asymptotic behavior near the boundary of solutions
of (P) for a wide class of functions f ∈ C(Ω). Based in this behavior, we
also prove uniqueness.
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1. Introduction

In this paper we study the following problem

−F (D2u) + β(u) = f in Ω, (1.1)
u = +∞ on ∂Ω, (1.2)

where Ω is a bounded smooth domain in R
N , N > 1, F is a fully nonlinear

elliptic operator and β is an nondecreasing continuous function. In general,
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solutions of (1.1) that verify (1.2) are known as large solutions due to the
explosive boundary condition u = +∞, that is interpreted as

u(x) → +∞ as δ(x) → 0,

where we have introduced the following notation, which we use from now on

δ(x) := dist(x, ∂Ω).

Since a comparison principle holds, the inequality

u ≥ v in Ω,

is satisfied for any other solution v of (1.1) with bounded boundary values.
Thus, sometimes large solutions also are called maximal solutions.

Our main goal here is to obtain different solvability situations for (1.1)–
(1.2), find the asymptotic behavior near the boundary for viscosity solutions
and establish uniqueness results. In this way, we seek to extend some results in
[13]. In particular, there was proved an existence result for the special choice
β(t) = |t|p−1t, p > 1.

When F is the Laplacian operator and f ≡ 0, a first study known about
problem (1.1)–(1.2) was due to Bieberbach [4], whereas existence of solutions
with β monotone and nonnegative in (0,∞), was established by Keller [18] and
Osserman [22] who found a necessary and sufficient condition on the growth
at infinity of β in order to guarantee that such solutions exist. This is the
well-known Keller–Osserman condition

(β0)
∫ ∞ ds√

B(s)
< +∞, where B(t) :=

∫ t

0

β(s) ds.

In order to see more related results, we refer the reader to the survey [23] and
references therein.

In this work we assume that F is a fully nonlinear uniformly elliptic
operator, that is

M−
λ,Λ(M −N) ≤ F (M) − F (N) ≤ M+

λ,Λ(M −N) for all N,M ∈ SN ,

with SN denoting the space of all real symmetricN×N matrices, and F (0) = 0.
Here, 0 < λ ≤ Λ and, M−

λ,Λ and M+
λ,Λ are the Pucci’s extremal operators

defined as in [6] by

M−
λ,Λ(M) = λ

∑
ei>0

ei + Λ
∑
ei<0

ei and M+
λ,Λ(M) = Λ

∑
ei>0

ei + λ
∑
ei<0

ei,

where ei = ei(M) are the eigenvalues of M. These operators are extremal in
the sense that

M−
λ,Λ(D2u) = inf

A∈Aλ,Λ
tr(AD2u) and M+

λ,Λ(D2u) = sup
A∈Aλ,Λ

tr(AD2u),

where Aλ,Λ = {A ∈ SN : λ|ξ|2 ≤ aijξiξj ≤ Λ|ξ|2, for all ξ ∈ R
N}.

Fully nonlinear elliptic operators appear, for example, in problems of opti-
mal control for stochastic differential equations, see [14]. On the other hand,
when F is the Laplacian operator, the problem (1.1)–(1.2) is related with
super-diffusions, see for example [12] and [19]. Hence, our problem is related
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with optimal control for some stochastic differential equation involving super-
Brownian motion. This is an interesting thing to explore from the probability
point of view and, as far as we know, the problem still remains open.

Before continuing, we give our notion of solutions that here we are inter-
ested.

Definition 1.1. Assume that f ∈ Lp
loc(Ω). We call u ∈ C(Ω) an Lp-viscosity

subsolution (supersolution) of (1.1) if for all ϕ ∈ W 2,p
loc (Ω) and a point x0 ∈ Ω

at which u− ϕ has a local maximum (minimum) one has

ess lim inf
x→x0

(−F (D2ϕ(x)) + β(u(x)) − f(x)) ≤ 0(
ess lim sup

x→x0

(−F (D2ϕ(x)) + β(u(x)
)− f(x)) ≥ 0

)
.

Moreover, u is an Lp-viscosity solution of (1.1) if it is both an Lp-viscosity
subsolution and an Lp-viscosity supersolution. In particular, if additionally u
satisfies (1.2), then we say that u is an Lp-viscosity large solution of (1.1).

Our first theorem is about existence of an L∞-viscosity solution of prob-
lem (1.1)–(1.2), and it is given for the case f ∈ L∞

loc(Ω). In order to put in
perspective our result, we consider the following conditions

(β1) β is a nondecreasing continuous function such that β(t) ≥ 0 for all t > 0.
(β2) β is odd.

Theorem 1.1. If f ∈ L∞
loc(Ω), f ≥ 0 a.e. and β satisfies (β0) and (β1), then

(1.1) possesses at least one L∞-viscosity large solution such that u ≥ 0 in Ω. If
f ∈ L∞

loc(Ω) is such that f ≥ g for some g ∈ L∞(Ω) and β satisfies (β0), (β1)
and (β2), then (1.1) possesses at least one L∞-viscosity large solution.

We recall that if f ∈ C(Ω), then, by regularity theory, the solution u of
(1.1)–(1.2) found in the previous theorem indeed is a C-viscosity solution of
(1.1) that verifies (1.2), which here we call C-viscosity large solution.

Next theorem deals with the case f ∈ LN
loc(Ω), where we impose an extra

assumption on β:

(β3) β ∈ C1(0,∞) is such that
β(t)
tq

is increasing for all t sufficiently large,

for some q > 1.

Theorem 1.2. If f ∈ LN
loc(Ω), f ≥ 0 a.e. and β satisfies (β0), (β1) and (β3),

then (1.1) possesses at least one LN -viscosity large solution such that u ≥ 0
in Ω. If f ∈ LN

loc(Ω) is such that f ≥ g for some g ∈ LN (Ω), and β satisfies
(β0), (β1), (β2) and (β3), then the Eq. (1.1) possesses at least one LN -viscosity
large solution.

Notice that this theorem is new even when F is the Laplacian, more-
over the upper bound used in the proof can not be obtained by the standard
construction of explosive barrier function. For the proof we use an Alexandroff–
Bakelman–Pucci estimate and a cut-off function. Continuing with the known
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results, when F is the Laplacian, the p-Laplacian or some other more gen-
eral second elliptic operator with divergence form, the asymptotic behavior of
first order near the boundary and uniqueness of solutions of (1.1)–(1.2), with
f ≡ 0, already has been extensively studied in the literature for a wide class
of functions β, see for example [1,2,15,21]. In [17] large solutions were studied
for equations involving the infinity Laplacian operator and f ≡ 0. When f �≡ 0
the above theorem is obtained also for singular or degenerate fully nonlinear
operators in the case β(t) = |t|p−1t, see [10]. Therefore, a natural question is if
the above theorem can be extended to more general fully nonlinear operator,
possibly nondegenerate. A pioneer work in this direction is [11], see also [21].

Returning to the blow-up rate, in [1] the asymptotic behavior was found
assuming that β is a nonnegative function on [0,∞[ that verifies (β0), (β1) and

(β4) lim inf
t→∞

ψ(ρt)
ψ(t)

> 1, for all ρ ∈]0, 1[,

where

ψ(t) :=
∫ ∞

t

ds√
2B(s)

, for all t sufficiently large, (1.3)

and β is a locally Lipschitz-continuous function for all t ≥ 0, which is nonde-
creasing for all t sufficiently large (see also [3], where (β4) is assumed, with
β ∈ C1(0,∞), β(t) > 0 and β′(t) > 0 for all t sufficiently large). Note that
(β3) implies (β4), thus (β4) is a more weak assumption that (β3). On the other
hand, uniqueness can be obtained by using the asymptotic behavior near the
boundary and under the following additional assumption on β

(β5)
β(t)
t

is increasing for all t > 0.

However, far as we know, the asymptotic behavior near the boundary and
uniqueness of large solutions for fully nonlinear operators have not yet been
studied. In this way, next result represents a first effort in order to find results
about the asymptotic behavior near the boundary and uniqueness of solutions
for (1.1)–(1.2). In particular, for η ∈ [0, 1[ and f ∈ C(Ω) such that

lim
δ(x)→0

f(x)
β(φ(

√
(1 − η)F (A)−1 δ(x)))

= η, (1.4)

where A := diag[0, 0, . . . , 1] and

φ(δ) := ψ−1(δ), for all δ > 0 sufficiently small,

we are able of finding the blow-up rate for large viscosity solutions of (1.1) for
a wide class of nonlinearities β such as shows the next theorem.

Theorem 1.3. Let Ω be a bounded open subset of R
N , N > 1, with ∂Ω of class

C2, let η ∈ [0, 1[, let β be a function that satisfies (β0), (β1) and (β4), and let
f ∈ C(Ω), f ≥ 0, such that (1.4) holds. Then every nonnegative C-viscosity
large solution u of (1.1) verifies

lim
δ(x)→0

u(x)
φ(
√

(1 − η)F (A)−1 δ(x))
= 1.
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Moreover, if in addition (β5) holds, then (1.1) admits a unique nonnegative
C-viscosity large solution.

In the proof we use some ideas introduced in [11,20], where was consid-
ered the particular choice β(t) = tp, p > 1. It is based in the construction of
suitable sub- and supersolutions.

In order to illustrate our theorem above, we show the following examples
in case η = 0:

(1) If β(t) = tp, p > 1, and limδ(x)→0 f(x)(δ(x))−α ≤ C, for some constant
C ≥ 0, where 0 < α < 2p(p− 1)−1, then every C-viscosity large solution
of (1.1) satisfies

lim
δ(x)→0

(
u(x)

(
2(p+ 1)

F (A)(p− 1)2

) 1
p−1

(δ(x))
2

p−1

)
= 1. (1.5)

(2) If β(t) = et, and limδ(x)→0 f(x)(δ(x))−α ≤ C, for some constant C ≥ 0,
where 0 < α < 2, then every C-viscosity large solution of (1.1) satisfies

lim
δ(x)→0

(
u(x)

(
log

2F (A)
(1 − η)(δ(x))2

)−1
)

= 1. (1.6)

Note that these examples are consistent with the known results to prob-
lem (1.1)–(1.2) with F being the Laplacian, in whose case F (A) ≡ 1. Moreover,
if in example (1) [or example (2)] we consider F = M+

λ,Λ or F = M−
λ,Λ, then

rate obtained here coincides with that in (1.5) [or (1.6)], when one replaces
F (A) respectively by Λ or λ. Also, in the proof one can observe that if f ∈ C(Ω),
then it is possible to remove the restriction f ≥ 0 for finding the blow-up rate,
but not for uniqueness. See Sect. 3 for more details related with our examples.
There also we show an extension of our result related on blow-up rate and
uniqueness including a case where f not verify (1.4).

2. Existence of large solutions

From now on we assume that Ω is a bounded open domain in R
N , N ≥ 2, with

boundary of class C2. Also, for simplicity notational, from now on we will put
M− := M−

λ,Λ and M+ := M+
λ,Λ.

The first step in this section consists of solving the problem{
−F (D2u) + β(u) = f in Ω,
u = n on ∂Ω,

(2.1)

where f ∈ C(Ω) and n ∈ N. Here u denotes a continuous viscosity solution of
the problem (2.1).

We start with a key result in our reasoning, which is a comparison result.

Lemma 2.1. (Comparison Lemma) Assume that β is a nondecreasing contin-
uous function and that f ∈ C(Ω). If u, v ∈ C(Ω) are respectively a C-viscosity
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subsolution and a C-viscosity supersolution of (1.1), and

lim sup
δ(x)→0

u(x)
v(x)

< 1, (2.2)

then

u ≤ v in Ω. (2.3)

Proof. We argue by contradiction. If (2.3) is not true, from (2.2) and by con-
tinuity of u and v in Ω, we can suppose that there exists an open set Θ ⊂⊂ Ω
such that

u > v in Θ and u = v on ∂Θ.

with (u− v) ∈ C(Θ). Hence

β(u) ≥ β(v) in Θ.

On the other hand, since u is a C-viscosity subsolution of (1.1) and v is a
C-viscosity supersolution of (1.1), we have that

F (D2u) − F (D2v) ≥ 0 in Θ

in the C-viscosity sense. Since F is uniformly elliptic, by applying Proposition
2.1 in [9], we get

M+(D2(u− v)) ≥ 0 in Θ

in the C-viscosity sense and u − v = 0 on ∂Θ. Then, bearing in mind that
(u − v) ∈ C(Θ), by the Alexandroff–Bakelman–Pucci maximum principle we
obtain

u ≤ v in Θ,

which is a contradiction. Therefore (2.3) holds. �

Remark 2.1. Notice that the Comparison Lemma above can also be validate
if we assume u = v = n on ∂Ω, with n ∈ N, by means of a slight modification
of the arguments used in the proof.

Lemma 2.2. Assume that f ∈ C(Ω̄) and β satisfies (β0), (β1) and (β2). Then
for every n ∈ N there is a C-viscosity solution u ∈ C1,α(Ω) of the problem (2.1).

Proof. Recall B(t) =
∫ t

0
β(s) ds and note that

0 ≤ 1
2

2t√
B(2t)

≤
∫ 2t

t

ds√
B(s)

,

and since (β0) and (β1) hold, one has

lim
t→+∞

∫ 2t

t

ds√
B(s)

= 0.

It follows that

lim
t→+∞

t√
B(t)

= 0
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and therefore

lim
t→∞

B(t)
t2

= ∞. (2.4)

On the other hand, since (β1) holds, by the fundamental calculus theorem
one has B(t) ≤ tβ(t) for all t > 0. Hence,

B(t)
t2

≤ β(t)
t

In this way, taking t → ∞ on the above inequality, from (2.4) one has

lim
t→+∞

β(t)
t

= +∞. (2.5)

In case f ≡ 0, we note that v ≡ 0 is a subsolution of (2.1) whereas that
v ≡ M is a supersolution for M sufficiently large by (2.5).

In case f �≡ 0, since β is odd and satisfies (2.5), there exists a constant
M ≥ max{n, ‖f‖L∞(Ω)} such that

−β(M) ≤ f(x) ≤ β(M), a.e. x ∈ Ω.

In this way, v ≡ −M and v ≡ M are respectively a subsolution and a superso-
lution of the equation in (2.1). Now, let be γ a positive constant such that the
function r(t) = γt− β(t) becomes increasing in the interval [−M,M ]. Putting
v0 = v and by applying iteratively the Theorem 1.1 of [8], we get for every
k ∈ N a function vk ∈ C(Ω) being a C-viscosity solution of the problem{

−F (D2vk) + γvk = f + γvk−1 − β(vk−1) in Ω,
vk = n on ∂Ω.

It follows from Remark 2.1 and the monotonicity of r that the family {vk} ⊂
C(Ω) verifies

−M = v ≤ vk ≤ vk+1 ≤ v = M, ∀k ∈ N.

Since a C-viscosity solution is an LN -viscosity solution, from Proposition 4.2 in
[8] it follows that the set {vk} is a precompact subset of C(Ω), and then there
exist a subsequence {vkj

} which converges uniformly in Ω. By monotonicity,
this implies that the full sequence {vk} converges uniformly to a continuous
function u in Ω, defined by u(x) := sup{vk(x) : k ∈ N} for every x in Ω.
Hence, by Proposition 2.9 of [6] we conclude that u is a C-viscosity solution
of the problem (2.1). Finally, from the regularity results in [5] we deduce that
u ∈ C1,α(Ω). �

The following results will be useful to establish a priori estimates of vis-
cosity solutions of the Eq. (1.1). For this purpose, we start with a version of
Kato type inequality, which need only if the function f is negative in some
point of the domain.

Lemma 2.3. Assume that u, f ∈ C(Ω) and β satisfies (β2). If u is a viscosity
solution of (1.1), then |u| satisfies

−M+(D2|u|) + β(|u|) ≤ |f | in Ω, (2.6)
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in the C-viscosity sense.

Proof. We first notice that u+ = max{u, 0} is a subsolution of (1.1) with f+

as right hand side, by standard viscosity solution argument, see Proposition
2.8 in [6]. In this way, since F ≤ M+, we obtain

−M+(D2u+) + β(u+) ≤ f+.

Also observe that since β is odd, then

−F (D2(−u)) + β(−u) = f(−x).
Hence, since F ≤ M+ and M−(D2u) = −M+(−D2u) and M− ≤ M+, we
get

−M+(D2(−u)) + β(−u) = f(−x),
that leads to that u− = max{−u, 0} is a subsolution of (1.1) with f− as right
hand side. Therefore we conclude that |u| = max{u+, u−} satisfies (2.6). �

By the above lemma we only need to prove a priori estimates of subsolu-
tions of the equation

−M+(D2u) + β(u) = f. (2.7)

Proposition 2.1. (A priori estimate for f ∈ L∞
loc(Ω)) Let f ∈ L∞

loc(Ω), f ≥ 0. If
β satisfies (β0) and (β1), and u ∈ C(Ω) is a nonnegative C-viscosity subsolution
of (2.7) in Ω, then there exists R0 such that for all 0 < R′ < R0 such that
BR′(z) ⊂ Ω and for all 0 < R < R′, the following estimate holds

sup
BR(z)

u ≤ C(1 + ‖f‖L∞(BR′ (z))),

where C = C(β,R,R′, N, λ,Λ) does not depend on f.

Proof. Since B(t) ≤ tβ(t) for all t > 0, it is clear that

0 ≤ B(t)
(β(t))2

≤ t

β(t)
for all t sufficiently large.

In this way, taking t → ∞ on the above inequality, from (2.5) we obtain

lim
t→+∞

√
B(t)
β(t)

= 0. (2.8)

Now, let φ̂ be the unique solution of the problem{ |φ̂′(δ)|2 = 1
2B(φ̂(δ)), δ > 0,

φ̂(δ) → +∞ as δ → 0+.

Note that φ̂′(δ) = −(1/
√

2)
√

B(φ̂(δ)) < 0 for all δ > 0, and φ̂′′(δ) = (1/4)

β(φ̂(δ)) > 0 for all δ > 0. Therefore, using the change of variable t = φ̂(δ) in
(2.8) and the fact that φ̂(δ) → +∞ as δ → 0+, we obtain

lim
δ→0+

φ̂′(δ)

φ̂′′(δ)
= −2

√
2 lim

δ→0+

√
B(φ̂(δ))

β(φ̂(δ))
= 0. (2.9)
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Now, for ρ > 0 to be fixed later, we define

Φ(x) = φ̂((ρR′)−1((R′)2 − |x− z|2)), x ∈ BR′(z).

Then, putting r = |x− z| we obtain

∇Φ(x) = −2(ρR′)−1φ̂′((ρR′)−1((R′)2 − r2))(x− z)

and

D2Φ(x) = −2(ρR′)−1φ̂′((ρR′)−1((R′)2 − r2))I

+4(ρR′)−2φ̂′′((ρR′)−1((R′)2 − r2))X,

for all x ∈ BR′(z), where I and X are matrices of order N × N, being I the
identity matrix and X = ((xi − zi)(xj − zj))N

i,j=1. Hence, for every vector ξ
such that (ξ − z) · (x− z) = 0 one has

D2Φ(x)(ξ − z) = −2(ρR′)−1φ̂′((ρR′)−1((R′)2 − r2))(ξ − z),

and on the other hand, also one has

D2Φ(x)(x− z) = (−2(ρR′)−1φ̂′((ρR′)−1((R′)2 − r2))

+4(ρR′)−2r2φ̂′′((ρR′)−1((R′)2 − r2)))(x− z)

for all x ∈ BR′(z). Therefore for D2Φ, the Hessian matrix of Φ, the eigenvalues
associates are

−2(ρR′)−1φ̂′((ρR′)−1((R′)2 − r2)),

which has multiplicity N − 1 and that is strictly positive for all R′ > 0 suffi-
ciently small according to (2.9), and

−2(ρR′)−1φ̂′((ρR′)−1((R′)2 − r2)) + 4(ρR′)−2r2φ̂′′((ρR′)−1((R′)2 − r2)),

which is simple and strictly positive for any R′. It follows that

−M+(D2Φ(x)) +
1
2
β(Φ(x))

= 2Λ(ρR′)−1φ̂′′((ρR′)−1((R′)2 − r2))

×
(
N
φ̂′((ρR′)−1((R′)2 − r2))

φ̂′′((ρR′)−1((R′)2 − r2))
− 2r2(ρR′)−1 +

1
4Λ

)
,

for all x ∈ BR′(z). Now, note that ρ ≥ 1 implies that

(ρR′)−1((R′)2 − r2) =
(R′)2 − r2

ρR′ ≤ 1
ρ

(R′)2

R′ ≤ R′

ρ
≤ R′ for all 0 < r < R′.

On the other hand, from (2.9), there exists R0 > 0 sufficiently small such that
if 0 < R′ < R0, then

0 < − φ̂′((ρR′)−1((R′)2 − r2))

φ̂′′((ρR′)−1((R′)2 − r2))
<

1
8NΛ

,

and if we fix ρ = max{1, 8Λ} ≥ 1, and R0 < 1 sufficiently small, we obtain,

0 < 2r2(ρR′)−1 =
2r2

ρR′ <
2(R′)2

ρR′ =
2R′

ρ
<

1
ρ

≤ 1
8Λ

.
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Therefore

−M+(D2Φ) +
1
2
β(Φ) > 0 in BR′(z).

Observe that (2.5) implies that

β(2‖f‖L∞(BR′ (z)) + C1) ≥ 2‖f‖L∞(BR′ (z)) + C1, for some C1 ≥ 0 sufficiently large.

In this way, we can choose and fix some inverse image of 2‖f‖L∞(BR′ (z)) +C1

that verifies

β−1(2‖f‖L∞(BR′ (z)) + C1) ≤ 2‖f‖L∞(BR′ (z)) + C1,

and consider the function

Ψ(x) = Φ(x) + β−1(2‖f‖L∞(BR′ (z)) + C1), x ∈ BR′(z).

Since

β(Φ(x) + β−1(2‖f‖L∞(BR′ (z)) + C1)) ≥ β(β−1(2‖f‖L∞(BR′ (z)) + C1))

and

β(Φ(x)) ≤ β(Φ(x) + β−1(2‖f‖L∞(BR′ (z)) + C1)),

for all x ∈ BR′(z), we obtain

β(Φ(x) + β−1(2‖f‖L∞(BR′ (z)) + C1)) − β(Φ(x))

≥ β(β−1(2‖f‖L∞(BR′ (z))+C1))−β(Φ(x) + β−1(2‖f‖L∞(BR′ (z)) + C1)),

for all x ∈ BR′(z). Hence

β(Φ(x) + β−1(2‖f‖L∞(BR′ (z)) + C1)) ≥ 1
2
(β(Φ(x)) + 2‖f‖L∞(BR′ (z)) + C1),

for all x ∈ BR′(z). In this way, from properties of Φ, we have

−M+(D2Ψ(x)) + β(Ψ(x)) − f(x) ≥ −M+(D2Φ(x)) +
1
2
β(Φ(x))

+‖f‖L∞(BR′ (z)) +
C1

2
− f(x)

≥ ‖f‖L∞(BR′ (z)) +
C1

2
− f(x)

≥ 0, for all x ∈ BR′(z).

Thus Ψ ∈ C2(BR′(z)) is a strong positive supersolution of (2.7) in BR′(z), such
that

lim
|x−z|→R′

Ψ(x) = ∞.

On the other hand, u ∈ C(Ω) is a nonnegative C-viscosity subsolution of (2.7)
in Ω, therefore bounded in BR′(z). From Lemma 2.1, it follows that u < Ψ in
BR′(z).

Finally, since

Φ(x) = φ̂((ρR′)−1((R′)2 − |x− z|2)) < C2 = C2(β,R,R′, N, λ,Λ),
for all x ∈ BR′(z),

and β−1(2‖f‖L∞(BR′ (z)) + C1) ≤ 2‖f‖L∞(BR′ (z)) + C1, the result follows. �
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Proposition 2.2. (A priori estimate for f ∈ LN
loc(Ω)) Let f ∈ LN

loc(Ω), f ≥ 0.
Assume that β satisfies (β0), (β1), (β2) and (β3). If u ∈ C(Ω) is a nonneg-
ative C-viscosity subsolution of (2.7), then there exists R0 such that for all
0 < R′ < R0 such that BR′(z) ⊂ Ω and for all 0 < R < R′, the following
estimate holds

sup
BR(z)

u ≤ C(1 + ‖f‖LN (BR′ (z))),

where C = C(β,R,R′, N, λ,Λ) does not depend on f.

Proof. Let v = 1
φ(ξ)u, with ξ = (R′)2 − |x − z|2, and let φ = ψ−1, with ψ−1

defined as (1.3), the solution of the problem{
φ′′(δ) = β(φ(δ)), δ > 0,
φ(δ) → +∞ as δ → 0+.

We want to find the equation that v satisfies. Suppose that v − ϕ has a local
maximum, v(x̂) −ϕ(x̂),Dv(x̂) = Dϕ(x̂) and ϕ ∈ C2(Ω). Then u−φ(ξ)ϕ has a
local maximum at x̂. Therefore φ(ξ)ϕ is a test function for u and

− 1
φ(ξ)

M+(D2(φ(ξ)ϕ)) +
1

φ(ξ)
β(φ(ξ)ϕ) ≤ f

φ(ξ)

or equivalently

− 1
φ(ξ)

M+(ϕφ′′(ξ)(Dξ ⊗Dξ) + φ′(ξ)ϕD2ξ + φ′(ξ)(Dξ ⊗Dϕ)

+φ′(ξ)(Dϕ⊗Dξ) + φ(ξ)D2ϕ)

+
1

φ(ξ)
β(φ(ξ)ϕ) ≤ f

φ(ξ)
.

Now we replace ϕ by v and Dϕ by Dv for obtaining

−M+(D2v) − v
φ′′(ξ)
φ(ξ)

M+(Dξ ⊗Dξ) + v
φ′(ξ)
φ(ξ)

M−(D2ξ)

+
φ′(ξ)
φ(ξ)

M−(Dξ ⊗Dv +Dv ⊗Dξ)

+
1

φ(ξ)
β(φ(ξ)v) ≤ f

φ(ξ)

in BR′(z) in the C-viscosity sense.
In what follows we write Ω+ = {x ∈ Ω : v(x) > 0}. Consider the contact

set for the function v, which is defined as

Γ+
v = {x ∈ BR′(z) : ∃p ∈ R

N with v(y) ≤ v(x) + 〈p, y − x〉, ∀y ∈ BR′(z)},
where R′ > 0 is sufficiently small. We observe that Γ+

v ⊂ Ω+ ∩ BR′(z) and
that if v is the concave envelope of v in BR′(z) then for x ∈ BR′(z) we have
v(x) = v(x) if and only if x ∈ Γ+

v . The function v, being concave, satisfies

v(y) ≤ v(x) + 〈Dv(x), y − x〉, ∀x ∈ Γ+
v ,∀y ∈ BR′(z).
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Choosing adequately y ∈ ∂BR′(z) we obtain

|Dv(x)| ≤ v(x)
R′ − |x− z| ≤ 2R′

ξ
v(x), ∀x ∈ Γ+

v .

On the other hand, by means straightforward calculations, since β satisfies
(β0), (β1) and (β3) we obtain

φ′(ξ)
ξφ′′(ξ)

< K̃ for some K̃ = K̃(β) > 0,

independently of all R′ sufficiently small. In consequence, since φ′′(ξ) =
β(φ(ξ)), we have that∣∣∣∣−vφ′′(ξ)

φ(ξ)
M+(Dξ ⊗Dξ) + v

φ′(ξ)
φ(ξ)

M−(D2ξ)

+
φ′(ξ)
φ(ξ)

M−(Dξ ⊗Dv +Dv ⊗Dξ)
∣∣∣∣ < Kv

β(φ(ξ))
φ(ξ)

,

for some constant K = K(β,N, λ,Λ) > 0. In this way, v satisfies

−M+(D2v) + v
β(φ(ξ))
φ(ξ)

(
β(vφ(ξ))
vβ(φ(ξ))

−K

)
≤ f

φ(ξ)
, ∀x ∈ Γ+

v .

Let M > 1 a constant to be fixed later. For x ∈ Γ+
v such that v > M , from

assumption (β3) we get

β(vφ(ξ))
vq(φ(ξ))q

≥ β(φ(ξ))
(φ(ξ))q

,

for some q > 1. Hence, it follows that

β(vφ(ξ))
vβ(φ(ξ))

≥ vq−1 > Mq−1.

Now we choose M > (max{1,K})1/(q−1), and define w = max{v − M, 0} in
BR′(z). Observe that Γ+

w ⊂ Γ+
v and Γ+

w ⊂ {x ∈ BR′(z) : w > 0}. Hence, we
obtain

−M+(D2w) ≤ f

φ(ξ)
a.e. in Γ+

w ,

and from the Alexandroff–Bakelman–Pucci inequality it follows that

sup
BR′ (z)

w ≤ C̃

∥∥∥∥ f

φ(ξ)

∥∥∥∥
LN (BR′ (z))

,

for some constant C̃ = C̃(β,R′, N, λ,Λ) > 0. Then,

C1 sup
BR(z)

u ≤ sup
BR′ (z)

v ≤ sup
BR′ (z)

w +M ≤ C2(1 + ‖f‖LN (BR′ (z))),

where C1 and C2 are constants depending only on β,R,R′, N, λ and Λ, but
independents on f. �
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Proof of Theorem 1.1 and Theorem 1.2. In case f ∈ L∞
loc(Ω), since there exists

g ∈ L∞(Ω) such that f ≥ g, we can find an increasing sequence of continuous
functions {fn}n ⊂ L∞(Ω) ∩ C(Ω) such that

lim
n→∞ ‖fn − f‖L∞(Ω′) = 0 ∀Ω′ ⊂⊂ Ω.

In case f ∈ LN
loc(Ω) we have a similar situation. Since there exists g ∈ LN (Ω)

such that f ≥ g, we can find an increasing sequence of continuous functions
{fn}n ⊂ LN (Ω) ∩ C(Ω) such that

lim
n→∞

∫
Ω′

|fn − f |N = 0 ∀Ω′ ⊂⊂ Ω.

Then in booth cases from Lemma 2.2 we can find un ∈ C1,α(Ω) being a C-vis-
cosity solution to problem (2.1) with fn as a right hand side. By Lemma 2.1
we obtain that un ≤ un+1 in Ω.

According to Lemma 2.3, Proposition 2.1 or Proposition 2.2, for every
Ω′ ⊂⊂ Ω we have

sup
Ω′

|un| ≤ C,

where C is a constant that does not depend on n. In case f ≥ 0, note that
one can obtain directly the conclusion without using the Lemma 2.3, because
in this case un ≥ 0. Using now the Proposition 4.2 in [8] and a diagonal argu-
ment, it follows that there exists a subsequence, which here we keep calling
un, that converges uniformly in compact set to u. Moreover, u ≥ un in Ω, for
all n, thus lim infx→∂Ω u ≥ n, for all n ∈ N. Finally, using the Proposition 3.8
in [7] we can conclude that u is an L∞-viscosity (respectively, LN -viscosity)
large solution of (1.1). �

3. Uniqueness and asymptotic behavior near the boundary
of large solutions

Let Ω be an open bounded domain of R
N , N > 1, with ∂Ω of C2 class, and

let us assume that β ∈ C(0,∞) is a nonnegative nondecreasing continuous
function such that it verifies the Keller–Osserman condition. We remark that
in all this section we assume that f ∈ C(Ω), therefore our results are related
with C-viscosity large solutions of (1.1).

We start mention a well known result related with the distance function,
which will be of utility in our approach.

Lemma 3.1. Let Ω be a bounded domain of R
N , N > 1, with ∂Ω nonempty.

Then δ(·) is a Lipschitz continuous function in R
N . If in addition we assume

that ∂Ω is of class Ck, k ≥ 2, then there exists a constant μΩ > 0 such that

δ(·) ∈ Ck(ΓμΩ),

where ΓμΩ = {x ∈ Ω : 0 < δ(x) < μΩ}. Moreover, if x ∈ ΓμΩ and x̄ = x̄(x)
is the only one point on ∂Ω such that δ(x) = |x − x̄| , then, in terms of a
principal coordinate system at x̄, we have that
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(Dδ(x) ⊗Dδ(x)) = diag[0, . . . , 0, 1]

and

D2δ(x) = diag
[ −κ1

1 − κ1δ(x)
, . . . ,

−κN−1

1 − κN−1δ(x)
, 0
]
,

where κi are the principal curvatures of ∂Ω at x̄.

The proof of the previous lemma may be found in [16].
If (β4) is assumed, one another result of utility for our proof is the fol-

lowing

Lemma 3.2. Assume that ψ is strictly monotone decreasing and satisfies (β4).
Then for every γ > 1 there exist positive numbers ηγ , δγ , such that

φ((1 − η)δ) ≤ γφ(δ), for all η ∈ [0, ηγ ], for all δ ∈ [0, δγ ].

This lemma is the Lemma C in [3]. One proof can be found in [15]
In the proof of every one of the two propositions below, we follow the

lineaments used in [20,11], whose works were considered cases involving the
function β(t) = tp, p > 1. In particular, we consider the situation for f associ-
ated to the Theorem 1.3. This is, f is a continuous function in Ω that verifies
(1.4).

We start obtaining upper estimates near the boundary of local solutions
of (1.1) which can be derived from the following proposition.

Proposition 3.1. Let Ω be a bounded open subset of R
N , N > 1, with ∂Ω of

class C2, let η ∈ [0, 1[, let β be a function that satisfies (β0), (β1) and (β4), and
let f ∈ C(Ω) such that

lim sup
δ(x)→0

f(x)
β(φ(

√
(1 − η)F (A)−1δ(x)))

≤ η (3.1)

holds. Then for every nonnegative C-viscosity subsolution u of (1.1) one has

lim sup
δ(x)→0

u(x)
φ(
√

(1 − η)F (A)−1δ(x))
≤ 1. (3.2)

Proof. Let μ ∈]0, μ1[, with 0 < μ1 < μΩ to be fixed later, 0 < τ < 1 − η and
K1 > 0 also to be chosen later. Let us consider in Ωμ,μ1 = {x ∈ Ω : μ < δ(x) <
μ1} the function

Ψ−
τ (x) = φ(

√
τF (A)−1(δ(x) − μ)) +K1.

Hence,

F (D2Ψ−
τ (x))

≤ F (τF (A)−1φ′′(
√
τF (A)−1(δ(x) − μ))∇δ(x) ⊗ ∇δ(x))

+M+(
√
τF (A)−1φ′(

√
τF (A)−1(δ(x) − μ))D2δ(x))

= τφ′′(
√
τF (A)−1(δ(x) − μ))

+
√
τF (A)−1φ′(

√
τF (A)−1(δ(x) − μ))M−(D2δ(x))
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in Ωμ,μ1 . From Lemma 3.1, the fact that

lim
δ(x)→μ+

φ′(
√
τF (A)−1(δ(x) − μ))

φ′′(
√
τF (A)−1(δ(x) − μ))

= lim
δ(x)→μ+

φ′(
√
τF (A)−1(δ(x)−μ))
β(Ψ−

τ (x) −K1)
=0,

and that (3.1) holds, by means of straightforward calculations we get

−F (D2Ψ−
τ (x)) + β(Ψ−

τ (x)) − f(x)

≥ β(φ(
√

τF (A)−1(δ(x) − μ)))

×
⎛
⎝(1−η−τ)−ε−

√
τF (A)−1φ′

(√
τF (A)−1(δ(x)−μ)

)
M− (D2δ(x))

φ′′
(√

τF (A)−1(δ(x)−μ)
)

⎞
⎠

in Ωμ,μ1 with μ1 sufficiently small. Hence, bearing in mind that τ < 1 − η, we
can choose ε < 1 − η − τ and μ1 sufficiently small in order to conclude that

−F (D2Ψ−
τ (x)) + β(Ψ−

τ (x)) ≥ f(x) ∀x ∈ Ωμ,μ1 .

Choosing now K1 = K1(μ1) = max{u(y) : δ(y) ≥ μ1}, and comparing in
Ωμ,μ1 , we get

u(x) ≤ Ψ−
τ (x), ∀x ∈ Ωμ,μ1 .

In this way, we obtain

u(x)
φ(
√

(1 − η)F (A)−1(δ(x)−μ))
≤ φ(

√
τF (A)−1(δ(x)−μ)) +K1

φ(
√

(1 − η)F (A)−1(δ(x) − μ))
in Ωμ,μ1 .

Therefore, making μ ↘ 0 and later τ ↗ (1 − η), we conclude that (3.2)
holds. �

Next result deals to obtain lower estimates near the boundary of local
solutions of (1.1)–(1.2) with f ∈ C(Ω).

Proposition 3.2. Let Ω be a bounded open subset of R
N , N > 1, with ∂Ω of

class C2, let η ∈ [0, 1[, let β be a function that satisfies (β0), (β1) and (β4), and
let f ∈ C(Ω), f ≥ 0, such that

lim inf
δ(x)→0

f(x)
β(φ(

√
(1 − η)F (A)−1δ(x)))

≥ η

holds. Then, for every nonnegative C-viscosity large solution u of (1.1) one has

lim inf
δ(x)→0

u(x)
φ(
√

(1 − η)F (A)−1δ(x))
≥ 1. (3.3)

Proof. Let μ ∈]0, μ2[, with 0 < μ2 < μΩ/2 a constant to be fixed later and we
define in Ω0,μ2 = {x ∈ Ω : 0 < δ(x) < μ2} the function

Ψ+
τ (x) = φ(

√
τF (A)−1(δ(x) + μ)) − φ(

√
τF (A)−1(μ1 + μ)).

Similarly to the proof of Proposition 3.1, for μ2 sufficiently small and τ > 1−η
one can obtain

u(x) ≥ Ψ+
τ (x), ∀x ∈ Ωμ,μ1 .
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where Ω0,μ2 = {x ∈ Ω : 0 < δ(x) < μ2 < min{1/2, μΩ/2}}. Then, after divid-
ing the above inequality by φ(

√
(1 − η)F (A)−1(δ(x)+μ)), making μ ↘ 0 and

later τ ↘ (1 − η), we conclude that (3.3) holds. �

Now we have all ingredients in order to prove the Theorem 1.3.

Proof of the Theorem 1.3. Since f ∈ C(Ω), f ≥ 0, such that (1.4) holds, from
(3.2) and (3.3), one has that every nonnegative C-viscosity large solution w of
(1.1) verifies

lim
δ(x)→0

w(x)
φ(
√

(1 − η)F (A)−1δ(x))
= 1.

For uniqueness, note that if u and v are two C-viscosity large solutions of (1.1),
then

lim
δ(x)→0

u(x)
v(x)

= 1.

In particular this implies that for ε > 0 given one has

lim
δ(x)→0

u(x)
(1 + ε)v(x)

=
1

1 + ε
< 1.

Besides, since from (β5) and the fact that v ∈ C(Ω) is nonnegative, we have
that β((1 + ε)v) ≥ (1 + ε)β(v), and since f ≥ 0 we get

−F (D2(1 + ε)v)+β((1 + ε)v) ≥ −(1+ε)F (D2v)+(1 + ε)β(v)=(1+ε)f ≥ f in Ω.

Hence,

−F (D2u) + β(u) ≤ −F (D2(1 + ε)v) + β((1 + ε)v) in Ω.

It follows from Lemma 2.1 that u ≤ (1 + ε)v in Ω. Now, passing to the limit
as ε → 0 we obtain u ≤ v in Ω. Interchanging roles between u and v, we also
obtain that u ≥ v in Ω. Therefore,

u = v in Ω.

�

Our next two results show uniqueness and behavior asymptotic near the
boundary of solutions of the problem (1.1)–(1.2) when f(u) = up or f(u) = eu,
extending the examples given in the Introduction. Before, note that for every
C ≥ 0 there exists a unique η = η(C) ∈ [0, 1[ such that

C =
η

1 − η
.

Corollary 3.1. Assume p > 1 and 0 < α ≤ 2p/(p− 1). Let Ω be a bounded
open subset of R

N , N > 1, with ∂Ω of class C2, and let f ∈ C(Ω), f ≥ 0, such
that

lim sup
δ(x)→0

f(x)(δ(x))α ≤ C,
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holds, for some C ≥ 0. Then the Eq. (1.1), with f(t) = tp has a unique non-
negative C-viscosity large solution u ∈ C(Ω). Moreover,

lim
δ(x)→0

(
u(x)

(
2(p+ 1)

F (A)(p− 1)2

) 1
p−1

(δ(x))
2

p−1

)
= 1,

where η = η(C).

Corollary 3.2. Assume 0 < α ≤ 2. Let Ω be a bounded open subset of R
N , N >

1, with ∂Ω of class C2 and let f ∈ C(Ω), f ≥ 0, such that

lim sup
δ(x)→0

f(x)(δ(x))α ≤ C

holds, for some C ≥ 0. Then the Eq. (1.1), with f(t) = et has a unique non-
negative C-viscosity large solution u ∈ C(Ω). Moreover,

lim
δ(x)→0

(
u(x)

(
log

2F (A)
(1 − η)(δ(x))2

)−1
)

= 1,

where η = η(C).

Finally, for the particular choice β(t) = tp, p > 1, we finish this sec-
tion showing an example in which the condition (1.4) does not hold. In this
situation, it is convenient to introduce the following function

v̂(δ) = τδ−α, δ > 0,

where α > 0 and τ > 0 are given.

Theorem 3.1. Assume p > 1 and α > 2
p−1 . Let Ω be a bounded open subset of

R
N , N > 1, with ∂Ω of class C2 and f ∈ C(Ω), f ≥ 0, such that

lim
δ(x)→0

f(x)(δ(x))αp = Cp, (3.4)

holds, for some constant C > 0. Then the Eq. (1.1) with β(t) = tp has a unique
nonnegative C-viscosity large solution u ∈ C(Ω). Moreover,

lim
δ(x)→0

u(x)(δ(x))α = C. (3.5)

Proof. Let μ ∈]0, μ1[, with 0 < μ1 < μΩ to be fixed later, τ > C and K1 > 0
also to be chosen later. Let us consider Ωμ,μ1 = {x ∈ Ω : μ < δ(x) < μ1} the
function

Ψ−
τ (x) = v̂(δ(x) − μ) +K1.

Hence, from Lemma 3.1, straightforward calculations lead to

−F (D2Ψ−
τ (x)) + (Ψ−

τ (x))p ≥ (δ(x) − μ)−αp
(
τp − α(α+ 1)F (A)τ(δ(x) − μ)θ1

+ αF (A)τ(δ(x) − μ)θ1+1‖D2δ‖∞
)

in Ωμ,μ1 , for some θ1 > 0 such that αp = α+ 2 + θ1. On the other hand, from
(3.4), for every ε > 0 one has

0 ≤ f(x)(δ(x))αp ≤ Cp + ε if 0 < δ(x) < μ1,
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for some μ∗
1 ∈]0, μΩ[, which implies that

−f(x) ≥ −(Cp + ε)(δ(x) − μ)αp if 0 < δ(x) < μ∗
1.

Then, for μ < δ(x) < μ1 < μΩ and choosing C < τ < 2C, it follows that

−F (D2Ψ−
τ (x)) + (Ψ−

τ (x))p − f(x)

≥ (δ(x) − μ)−αp(τp − Cp − ε− α(α+ 1)F (A)(2C)μθ1
1 ).

Hence, bearing in mind that τ > C, we can choose ε < τp−Cp and 0 < μ1 < μΩ

sufficiently small in order to conclude that

−F (D2Ψ−
τ (x)) + (Ψ−

τ (x))p ≥ f(x) if μ < δ(x) < μ1.

Considering now K = K(μ1) = max{u(y) : δ(y) ≥ μ1}, and comparing in the
region in Ωμ,μ1 , we get

u(x) ≤ Ψ−
τ (x), ∀x ∈ Ωμ,μ1 .

In this way, it follows that

u(x)(δ(x) − μ)α ≤ τ +K(μ1)(δ(x) − μ)α if μ < δ(x) < μ1.

Therefore, making μ ↘ 0 and later τ ↘ C, we obtain

lim sup
δ(x)→0

u(x)(δ(x))α ≤ C. (3.6)

Arguing similarly for τ < C, we obtain that

u(x) ≥ Ψ+
τ (x) = v̂(δ(x) + μ) − v̂(μ2 + μ), ∀x ∈ Ωμ,μ1 .

where Ωμ,μ2 = {x ∈ Ω : μ < δ(x) < μ2 < min{1/2, μΩ}}, with μ2 sufficiently
small. Then, after multiplying the above inequality by (δ(x) − μ)α, making
μ ↘ 0 and later τ ↗ C, we conclude that

lim inf
δ(x)→0

u(x)(δ(x))α ≥ C. (3.7)

Combining (3.6) and (3.7) we really obtain (3.5). �
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