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Departamento de Matemática y Ciencia de la Computación,

Universidad de Santiago de Chile, Chile

(Communicated by Manuel del Pino)

Abstract. This paper deals with blowup properties of solutions to multicom-

ponent parabolic-elliptic Keller–Segel model of chemotaxis in higher dimen-

sions.

1. Introduction. We consider two Cauchy problems for parabolic-elliptic systems

∂tu1 = ∇ · (κ1∇u1 − χ1u1∇v), (1)

∂tu2 = ∇ · (κ2∇u2 − χ2u2∇v), (2)

−∆v = u1 + u2, (3)

u1(x, 0) = u10(x), u2(x, 0) = u20(x), (4)

and

∂tu1 = ∇ · (κ1∇u1 − χ1u1∇v), (5)

∂tu2 = ∇ · (κ2∇u2 + χ2u2∇v), (6)

−∆v = u1 − u2, (7)

u1(x, 0) = u10(x), u2(x, 0) = u20(x), (8)

describing two components chemotactic systems in the whole space Rd, d ≥ 2.
The first will be called CPI, and the second CPII. Here the positive coefficients
κ1, κ2 and χ1, χ2 are related to the diffusion coefficients of the species and the
sensitivity of the species to the chemoattractant. These generalizations of the clas-
sical parabolic-elliptic Keller–Segel model for one species u and the density v of
the chemoattractant as well as models for interacting particles (via either electric
or gravitational potential) have been proposed in much more general setting by
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Wolansky in [22]. When considered in R2, they have interesting relations to Moser–
Trudinger like inequalities for systems, see [21]. Here, however, we do not use those
variational formulations.

The system 1–3 (CPI) models either the interaction of two species that both
secrete a chemoattractant producing their movement, or the gravitational attraction
of a cloud of massive particles of two kinds (e.g. of two different masses of individual
particles).

The system 5–7 (CPII) models two species that one of them produces a chemoat-
tractant for this species, the other decomposes the chemical which acts as a chemore-
pellent for the latter.

One relevant difference between systems CPI and CPII when d = 2 is that
the first one presents simultaneous blowup in the radial case, see [13], meanwhile
system CPII can present non-simultaneous blowup, see [14]. The simultaneous vs
non-simultaneous problem has been proposed for multi-species KS systems in [13]
as a way to study the role of chemotaxis in cellular self-organization. Up to the
best of our knowledge, in dimension d ≥ 3 no results for blowup for multi-species
KS systems has been developed. It is our aim to give in this paper a first step in
this sense by developing blowup criteria in higher dimensional spaces.

Moreover, equations 5–6 in the system CPII resemble drift-diffusion system con-
sidered in plasma physics, electrochemistry and semiconductor theory, cf. [6], [18].
However, in this statistical mechanics interpretation the forces between particles
of each kind of densities u1, u2 here in 5–6 are attractive, and particles of differ-
ent type repulse each other. Note that for the charged particles generating the
Coulombic potential described by the equation ∆v = u1 − u2 (note the change of
sign compared to 7), the forces are repulsive. This leads to a completely different
behavior of solutions with large initial data and the temporal asymptotics, see e.g.
[5] for a result on asymptotically diffusive character of evolution for the electric
model in Rd, d > 2. For the systems motivated by chemotaxis, blowup of solutions
with large initial data is expected, and for the two components systems CPII in two
space dimensions Kurokiba and Ogawa in [17] showed blowup under a condition of
large discrepancy of masses: 8π(M1 +M2) < (M1−M2)2, see also 23 below. Their
proof of blowup for two-dimensional CPII system does not require any assumption
on the existence of moments of solutions, and thus this is a first argument of that
type even for the classical one component Keller–Segel system, compare with [1],
[8]. However, that proof is actually known for two-dimensional case only. Then
[13], [14] studied thorougly blowup of radially symmetric solutions to both systems
CPI, CPII. Further refinements of the assumptions on the initial conditions leading
to a dichotomic behavior: global in time existence versus finite time blowup (of at
least one of the components) are in [10], [11].

Our goal here is to consider the blowup problem for higher dimensional CPI and
CPII which leads to interesting new phenomena compared to a single component
classical Keller–Segel model as well as two-dimensional CPI, CPII.

After a brief presentation of the existence of solutions questions, we prove some
new sufficient criteria for blowup in the systems CPI, CPII. Compared to existing
results in [10], [13]–[14], the novelty of the approach and results is that we do not
need radial symmetry assumption on the solutions. Our criteria involve as control
parameters total mass and a measure of discrepancy of masses (as was in two di-
mensional case) as well as (pertinent to the higher dimensional case) concentrations
of the initial distributions measured by suitable moments. Here, we do not pursue
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the generality of reasoning in [7] on the various possible moments presenting just a
simple argument leading to the blowup of highly concentrated initial data for which
second moments do exist. In the latter reference we used weaker assumptions on
the integrability of u’s since moments of lower order γ ∈ (1, 2] have been considered.

Similarly, we may consider multicomponent species systems with several sensitiv-
ity agents but for the clarity of computations we do not look for such a generality,
the essential differences being apparent when instead of one component two com-
ponents case is studied. Our calculations, formally done for d ≥ 3, are also valid in
the case d = 2, sometimes with simplifications.

Finally, putting one of the components identically equal to 0 in any of systems
CPI, CPII, e.g. u2 ≡ 0, results for the one component Keller–Segel model are easily
recovered.

All the integrals with no integration limits are meant
∫
Rd — the integrals over

the whole space Rd. The norm in Lp(Rd) space is denoted by ‖ . ‖p. Inessential
constants are denoted by C, even if they may vary from line to line.

2. Existence of solutions to CPI, CPII — local and global in time. Single
component models of both types: repulsive (electric) and attractive (chemotactic,
gravitational) have been studied in many papers. The construction of local in
time solutions (irrespective of the type of interaction) can be achieved in different
functional frameworks, e.g., Lp(Rd) spaces with d

2 < p < d ([2], [3], [9], [12]), weak

Lpw(Rd) or Marcinkiewicz spaces with p = d
2 ([15], [19]), and more “exotic” spaces

like (adapted from Calculus of Variations theories) Morrey spaces Mp(Rd), p = d
2

([2], [3]), and pseudomeasures spaces PMa(Rd), a = d− 2 ([4], [20]). Existence of
global in time solutions depends heavily on the type of interactions and the size of
initial data.

A convenient notion of a solution is that of mild solutions, i.e. those satisfying
the integral equation (the Duhamel formula)

u1(t) = eκ1t∆u10 − χ1

∫ t

0

∇ · (eκ1(t−s)∆u1(s)∇v(s))ds, (9)

u2(t) = eκ2t∆u20 − εχ2

∫ t

0

∇ · (eκ2(t−s)∆u2(s)∇v(s))ds, (10)

v(t) = (−∆)−1(u1(t) + εu2(t)), (11)

where the symbol et∆ denotes the heat semigroup in Rd with the convolution kernel

(4πt)−
d
2 exp

(
− |x|

2

4t

)
. By (−∆)−1 we mean the Riesz potential operator with the

convolution kernel
1

(d− 2)σd
|x|2−d, d > 2. (12)

Finally, the sign ε = +1 corresponds to CPI, while ε = −1 — to CPII.
The general scheme of results on the existence of solutions to CPI and CPII

in the space XT = Cw([0, T ];V × V ) of (weakly) continuous in time vector valued

functions with ui(t) ∈ V , V is one of the spaces Lp(Rd) with d
2 < p < d, L

d
2
w , M d

2 ,

PMd−2 mentioned above (weak continuity, instead of the norm continuity, marked
by the subscript w is relevant in the case of nonseparable spaces V ), is the following

Theorem 2.1.
– if (u10, u20) ∈ V × V , then there exists T > 0, and a local in time solution
u = (u1, u2) ∈ XT ;
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– if the initial data are sufficiently small: ‖(u10, u20)‖V×V ≡ ‖u10‖V + ‖u20‖V < δ
for a suitably small δ > 0, then the local in time solution u ∈ XT can be continued
indefinitely in time: T =∞.

The proofs of these results for two (and more) component systems require no
new specific ideas beyond those in the works quoted above.

An alternative scheme of the proof of the existence of solutions to CPI can
be proposed in the framework of weak solutions. The result is analogous to

the announcement of Theorem 2.1 with V = L
d
2 (Rd): existence of weak solu-

tions, global in time for sufficiently small initial data 4 with the regularity ui ∈
L∞((0,∞);L∞(Rd) ∩ L1(Rd)). The main steps are:

i) global in time existence of solutions for the regularized CPI system

∂tu
n
1 = ∇ · (κ1∇un1 − χ1u

n
1∇vn),

∂tu
n
2 = ∇ · (κ2∇un2 − χ2u

n
1∇vn),

−∆vn = (un1 + un2 ) ∗ %n, (13)

where %n(x) = nd%(nx) with a function 0 ≤ % ∈ C∞0 ,
∫
%(x)dx = 1, n = 1, 2, . . . ,

and the initial data are in L1(Rd);

ii) existence of a local in time solution for CPI with the initial data in L1(Rd) ∩
L∞(Rd) which can be continued indefinitely to the global in time solutions whenever

the data are suitably small in L
d
2 (Rd).

To prove i) one may apply the Schauder fixed point theorem since vn are smooth
and bounded and, in particular, ∇vn ∈ L∞((0, T ) × Rd) for any fixed T > 0. The
construction in ii) consists in an application of the Moser–Alikakos iteration method
to show an apriori estimate of Lp norm of un = (un1 , u

n
2 ) independent of n under,

of course, assumptions on the initial data. This scheme applies also to CPII (cf.
an alternative approach in [17]) since it is independent of the sign of χ1, χ2 and
of the sign of γ1, γ2 in the Poisson equation −∆v = γ1u1 + γ2u2 generalizing 3
and 7. One can also compare constructions in [6] in the case of a single component
parabolic-elliptic system in bounded domains.

The crucial estimates are those for the Lp norms of approximated solutions with
p ∈ [max{1, d2−1}, d2 ] and p ∈ (d2 ,∞), uniformly in time. The essential ingredient of
the reasoning is an application of the Gagliardo–Nirenberg–Sobolev inequality for a

bound on ‖un‖p by ‖∇(un)p/2‖2 and ‖un‖ d
2
. Then ‖∇vn(t)‖∞ ≤ C

(
‖un‖ d

2
, ‖un‖1

)
is obtained with the quantity C independent of time. An application of the com-
pactness criterion of Aubin–Simon concludes the passage to the limit with the ap-
proximations un, vn as n→∞.

The framework of mild solutions is different from that of weak solutions and,
in a sense, more flexible since admits as initial data distributions with ‘geometric’
singularities. We mean by that, e.g., that Morrey spaces have their norms defined
rather by geometric quantities while Lebesgue spaces norms involve only measure
properties of the density. In particular, questions of regularity of mild solutions can
be solved in a way of comparison of the regularizing effects of the heat semigroup
and nonlinear effects of transport. For weak solutions, this necessitates the use of
recurrent improvement of regularity schemes like DeGiorgi–Moser–Alikakos.

Finally, let us mention that the framework of L
d
2
w(Rd), M d

2 (Rd), PMd−2(Rd)
spaces allows the consideration of the initial data which are functions homogeneous
of degree −2: ui0(λx) = λ−2ui0(x) for each λ > 0. The global in time solutions
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which emanate from such (suitably small) data are self-similar, i.e. invariant under
the scaling

λ2ui(λx, λ
2t) = ui(x, t) for each λ > 0,

and thus they are of the form

ui(x, t) =
1

t
Ui

(
x√
t

)
for some functions Ui,

see [4], [16]. This gives an explanation why the exponent d
2 is critical for the systems

CPI, CPII in respect to the global existence of solutions.
We assume in the sequel that the initial data u10, u20 for CPI and CPII in 4, 8

are nonnegative integrable functions, and we denote by M1, M2 — masses of those
distributions

M1 =

∫
Rd
u10(x)dx, M2 =

∫
Rd
u20(x)dx. (14)

Let us note that solutions of the systems CPI and CPII enjoy the properties of
the conservation of positivity and of mass, the proofs (using, e.g., the Stampacchia
truncation method) being essentially the same as for one component systems.

3. Blowup for CPI. Define the second moments

mi(t) =

∫
Rd
ui(x, t)|x− xi|2dx, i = 1, 2, (15)

where xi ∈ Rd is a (in general, variable) vector, in applications we will choose a
fixed xi =

∫
Rd xui0(x)dx — the common center of mass of suitable initial data ui0,

i = 1, 2.

Theorem 3.1. Let d ≥ 3 and the initial data for the system CPI satisfy the in-
equality (

m1(0)
χ1

+ m2(0)
χ2

M1 +M2

) d
2−1

<
(2 max{χ1, χ2})1− d2

2dσd

(M1 +M2)2

κ1

χ1
M1 + κ2

χ2
M2

.

Then, the solution u of CPI blows up in a finite time, in the sense
limt↗T (‖u1(t)‖p + ‖u2(t)‖p) =∞ for some 0 < T <∞ and each p > 1.

Proof. Let us formally calculate the evolution of the moments, assuming that solu-
tions ui, i = 1, 2, are regular enough and decay at infinity sufficiently fast

dmi

dt
= −2

∫
(κi∇ui − χiui∇v) · (x− xi)dx+ 2

∫
ui(x− xi)ẋidx. (16)

From now on we assume that x1 = x2 = const. Using the equation 3 in the form
11 with the Newtonian potential 12, we get

dmi

dt
= 2dκiMi −

2χi
σd

∫ ∫
ui(x, t)(u1(y, t) + u2(y, t))

(x− y) · (x− xi)
|x− y|d

dxdy

= 2dκiMi −
χi
σd

∫ ∫ (
ui(x, t)(u1(y, t) + u2(y, t))(x− y) · (x− xi)

+ui(y, t)(u1(x, t) + u2(x, t))(y − x) · (y − xi)
) 1

|x− y|d
dxdy,
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the last equality being the consequence of the symmetrization x 7→ y, y 7→ x. After
summing up the multiples of both moments we obtain

d

dt

(
1

χ1
m1 +

1

χ2
m2

)
=2d

(
κ1

χ1
M1 +

κ2

χ2
M2

)
− 1

σd

∫ ∫
(u1(x, t)u1(y, t)+u2(x, t)u2(y, t)+u1(x, t)u2(y, t)

+ u1(y, t)u2(x, t)) (x− y) · (x− y)|x− y|−ddxdy

=2d

(
κ1

χ1
M1 +

κ2

χ2
M2

)
− 1

σd
J,

where the last term is

J =

∫ ∫
(u1(x, t) + u2(x, t))(u1(y, t) + u2(y, t))|x− y|2−ddxdy. (17)

Now we estimate J as was in [1, p. 232] or [7, (4.16)]

J ≥ 21− d2
(M1 +M2)

d
2 +1

(m1 +m2)
d
2−1

≥ (2χ)1− d2
(M1 +M2)

d
2 +1(

m1

χ1
+ m2

χ2

) d
2−1

, (18)

for χ = max{χ1, χ2}, postponing the proof of that inequality to Lemma 3.2 below.
Thus, for w = m1

χ1
+ m2

χ2
, w = w(t), we arrive at

d

dt
w ≤ 2d

(
κ1

χ1
M1 +

κ2

χ2
M2

)
− (2χ)1− d2

σd

(M1 +M2)
d
2 +1

w
d
2−1

.

This reads as the differential inequality

2

d

d

dt
w
d
2 ≤ 2d

(
κ1

χ1
M1 +

κ2

χ2
M2

)
w
d
2−1 − (2χ)1− d2

σd
(M1 +M2)

d
2 +1.

Since the right hand side of this inequality is an increasing function of w, the
condition in the hypotheses of Theorem 3.1 implies that the right hand side is
always negative and bounded away from 0. Thus, the combination w of the second
moments decreases and assumes negative values in a finite time: a contradiction
with the existence of a global in time nonnegative solution.

Of course, there exist initial data of prescribed masses M1 > 0 and M2 > 0 (even
arbitrarily small) satisfying the high concentration condition(

w(0)

M1 +M2

) d
2−1

<
(2χ)1− d2

2dσd

(M1 +M2)2

κ1

χ1
M1 + κ2

χ2
M2

. (19)

Indeed, it suffices to consider, e.g., smooth compactly supported data ui0 6= 0 and
rescale them taking ε−dui0

(
x−xi
ε

)
for a sufficiently small ε > 0.

Moreover, the relation 19 implies that ‖u10‖ d
2

+ ‖u20‖ d
2

is big enough, which is

easily seen from Remark 3.3 on the comparison of the norms and moments. The
same inequalities in Remark 3.3 show that the norms ‖u(t)‖p blow up when t↗ T .

Finally, note that for d = 2 the condition in the hypotheses of Theorem 3.1 means

that total mass of u10 and u20 is big enough: 8π < (M1+M2)2
κ1
χ1
M1+

κ2
χ2
M2

.
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Lemma 3.2. Let for a density 0 ≤ v ∈ L1(Rd, (1 + |x|2)dx) the moment and mass
be defined by m =

∫
v(x)|x|2dx and M =

∫
v(x)dx, resp. Then for the integral

J =

∫ ∫
v(x)v(y)|x− y|2−ddxdy

the inequality

M
d
2 +1 ≤ J (2m)

d
2−1

holds.

Proof. Using the Hölder inequality we have

M2 =

∫ ∫
v(x)v(y)dxdy

≤
(∫ ∫

v(x)v(y)|x− y|2dxdy
)1−2/d

×
(∫ ∫

v(x)v(y)|x− y|2−ddxdy
)2/d

=

(∫ ∫
v(x)v(y)

(
|x|2 + |y|2 − 2x · y

)
dxdy

)1−2/d

J2/d

≤

(
2Mm− 2

∣∣∣∣∫ xv(x)dx

∣∣∣∣2
)1−2/d

J2/d

which leads to the desired relation.

Remark 3.3. It is of interest to recall some results on the comparison of the second
moments with the norms ‖f‖p and ‖f ;Mp‖, cf. [7, Remark 2.6, 2.7].

Namely, we have

‖f‖p ≥ CM
(
M

m

)d(1−1/p)/2

,

and even

‖f ;Mp‖ ≥ CM
(
M

m

)d(1−1/p)/2

,

where the Morrey norm is defined as

‖f ;Mp‖ = sup
R>0,x0∈Rd

Rd(1/p−1)

∫
Br(x0)

|f(x)|dx,

and it is, of course, weaker than the Lp norm of f .

4. Blowup for CPII. Our main result for the higher dimensional Kurokiba–
Ogawa system is

Theorem 4.1. Let d ≥ 3 and the initial data for the system CPII satisfy the
inequality(

m1(0)
χ1

+ m2(0)
χ2

M1 +M2

) d
2−1

<
(2 max{χ1, χ2})

d
2−1(M1 +M2)

2dσd max
{
κ1

χ1
, κ2

χ2

} (
|M1 −M2|
M1 +M2

)d
.

Then, the solution u of CPII blows up in a finite time, in the sense that
limt↗T (‖u1(t)‖p + ‖u2(t)‖p) =∞ for some 0 < T <∞ and each p > 1.
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Proof. The calculations of the evolution of moments are similar, and lead to

d

dt

(
1

χ1
m1 +

1

χ2
m2

)
= 2d

(
κ1

χ1
M1 +

κ2

χ2
M2

)
− 1

σd

∫ ∫ (
(u1(x, t)u1(y, t) + u2(x, t)u2(y, t)) |x− y|2

+u1(x, t)u2(y, t)(x− y) · (−x+ x1 + y − x2)

+u1(y, t)u2(x, t)(x− y) · (−x1 + y − x+ x2)) |x− y|−ddxdy

≤ 2d

(
κ1

χ1
M1 +

κ2

χ2
M2

)
(20)

− 1

σd

∫ ∫
(u1(x, t)− u2(x, t))(u1(y, t)− u2(y, t))|x− y|2−ddxdy

for x1 = x2. To estimate the bilinear integral in the last line of 20 from below, let us
represent u1 − u2 as the difference of two positive functions with disjoint (interiors
of) supports: v = (u1 − u2)+, z = (u1 − u2)−. Evidently, we have u1 − u2 = v − z
and {v > 0} ∩ {z > 0} = ∅. Now,∫ ∫

(u1(x, t)− u2(x, t))(u1(y, t)− u2(y, t))|x− y|2−ddxdy

≥
∫ ∫

v(x, t)v(y, t)|x− y|2−ddxdy +

∫ ∫
z(x, t)z(y, t)|x− y|2−ddxdy

≥ 21− d2

(
(M1 −M2)2

) d
2

(aA+ bB)
d
2−1

≥ 21− d2

(
(M1 −M2)2

) d
2

(m1M1 +m2M2)
d
2−1

, (21)

where a =
∫
v(x, t)|x|2dx, A =

∫
v(x, t)dx, b =

∫
z(x, t)|x|2dx, B =

∫
z(x, t)dx, by

Lemma 3.2. Indeed, the function s 7→ sq is convex for q = d
2 ≥ 1 and all s ≥ 0 so

that (
aA

aA+ bB

A

a
+

bB

aA+ bB

B

b

) d
2

≤ aA

aA+ bB

(
A

a

) d
2

+
bB

aA+ bB

(
B

b

) d
2

holds. Moreover, we used A2 + B2 ≥ (M1 − M2)2. Next, we have with χ =
max{χ1, χ2}

d

dt

(
1

χ1
m1 +

1

χ2
m2

)
≤ 2d

(
κ1

χ1
M1 +

κ2

χ2
M2

)
− 21− d2

σd

|M1 −M2|d

(m1M1 +m2M2)
d
2−1

≤ 2dmax

{
κ1

χ1
,
κ2

χ2

}
(M1 +M2) (22)

− 1

σd(2χ)
d
2−1

|M1 −M2|d(
(M1 +M2)

(
m1

χ1
+ m2

χ2

)) d
2−1

.

Clearly, the large discrepancy of masses condition (and at the same time a high
concentration condition)(

m1(0)
χ1

+ m2(0)
χ2

M1 +M2
)

) d
2−1

<
(2χ)

d
2−1(M1 +M2)

2dσd max
{
κ1

χ1
, κ2

χ2

} ( |M1 −M2|
M1 +M2

)d
(23)
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is sufficient for a finite time blowup by the same type of arguments as in the proof
of Theorem 3.1. The above condition can be rewritten as(

m1(0) +m2(0)

M1 +M2

) d
2−1

< C(M1 +M2)

(
M1 −M2

M1 +M2

)d
(24)

which is reminiscent of [7, (2.4)]

m(0)

M
< CM

2
d−2 ,

(with another constant C), a sufficient condition for blowup for the classical (one
component) Keller–Segel model.

It is interesting to note that sufficient conditions for blowup in d ≥ 3 dimensions
involve masses and concentrations, while only total masses are important when
d = 2, see [17].

In particular, even if M1 ≈M2 but M1 6= M2, one can have blowup, cf. [14, Th.
5] in the two-dimensional case.

It will be interesting to know whether the blowup of u1 and u2 is instantaneous
or not, as was studied in the two-dimensional radially symmetric case where both
possibilities may occur, see [14].
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