Convergence to stationary solutions in a model of self-gravitating systems

Ignacio GUERRA¹, Tadeusz NADZIEJA²

¹ Centrum voor Wiskunde en Informatica,
PO Box 94079, 1090 GB Amsterdam, The Netherlands
ignague@yahoo.com

²Instytut Matematyki, Uniwersytet Zielonogórski, ul. Szafrana 4a, 65–516 Zielona Góra, Poland T.Nadzieja@im.uz.zgora.pl

May 31, 2003

Abstract

We study convergence of solutions to stationary states in an astrophysical model of evolution of clouds of self-gravitating particles.

Key words and phrases: Chavanis–Sommeria–Robert model, mean field equations, drift-diffusion and energy-transport systems, asymptotics of solutions.

2000 Mathematics Subject Classification: 35Q, 35K60, 35B40, 82C21

1 Introduction

In this paper we study asymptotic properties of solutions of the system introduced in [8], [7] for describing the temporal evolution of the density

 $u(x,t) \ge 0$ and the uniform in space temperature $\vartheta(t) > 0$ of a cloud of self-gravitating particles confined to a bounded subdomain $\Omega \subset \mathbb{R}^d$, d = 2, 3.

This system consists of the continuity equation

$$u_t(x,t) = \operatorname{div}\{\vartheta(t)\nabla u(x,t) + u(x,t)\nabla\varphi(x,t)\} \text{ in } \Omega \times \mathbb{R}^+,$$
 (1)

coupled with the Poisson equation

$$\Delta \varphi(x,t) = u(x,t)$$
 in $\Omega \times \mathbb{R}^+$, (2)

which gives the relation between the gravitational potential $\varphi(x,t)$ and the the distribution of mass u(x,t).

The equations (1)-(2) are supplemented with the no-flux boundary condition

$$(\vartheta(t)\nabla u + u\nabla\varphi) \cdot \vec{\nu} = 0 \quad \text{on} \quad \partial\Omega \times \mathbb{R}^+, \tag{3}$$

and the initial data

$$u(x,0) = u_0(x) > 0 \quad \text{in} \quad \Omega. \tag{4}$$

Here $\vec{\nu}$ denotes the exterior normal vector to $\partial\Omega$.

Without loss of generality, we assume that the total mass of the particles is equal to one

$$\int_{\Omega} u(x,t) \, dx = \int_{\Omega} u_0(x) \, dx = 1. \tag{5}$$

The potential φ satisfies either the Dirichlet condition

$$\varphi(x,t) = 0 \quad \text{for} \quad x \in \partial\Omega$$
 (6)

or the physically acceptable "free" condition

$$\varphi = E_d \star u,\tag{7}$$

where E_d is the fundamental solution of the Laplacian in \mathbb{R}^d .

The total energy \mathcal{E} is the sum of the thermal energy $\int_{\Omega} \vartheta(t)u(x,t) dx$ and the potential energy $\frac{1}{2} \int_{\Omega} u(x,t) \varphi(x,t) dx$. For simplicity, we put all the

physical constants equal to one. In our case $\int_{\Omega} u(x,t) dx = 1$, hence the energy \mathcal{E} takes the form

$$\mathcal{E} = \vartheta(t) + \frac{1}{2} \int_{\Omega} u(x, t) \varphi(x, t) \, dx. \tag{8}$$

Its conservation permits to determine the uniform in Ω temperature $\vartheta(t)$.

For a given energy level \mathcal{E} (1)-(8) defines problem $\mathcal{P}_{\mathcal{E}}$ for the unknown quantities u, φ, ϑ . Below we consider $\mathcal{P}_{\mathcal{E}}$ in the ball and in this case there is no qualitative difference between the condition (6) and (7).

The problem of existence and uniqueness of solutions of the problem $\mathcal{P}_{\mathcal{E}}$ for d=2,3 was studied in [6] and [9]. For $u_0 \in L^2(\Omega)$ the local existence and uniqueness of solution was proved. The existence of the global in time solutions was obtained in [6] for d=2, and in [9] for the three dimensional radially symmetric case under some assumptions on the initial density and temperature. The solutions of the model under consideration may exhibit finite time blow-up for large initial data [6], [9]. The structure of the set of stationary solutions of the problem $\mathcal{P}_{\mathcal{E}}$ was investigated in [1] and [5].

Our aim is to prove that for some initial distribution of mass u_0 and initial temperature ϑ_0 (or fixed energy \mathcal{E}), the solution converges to the unique stationary state.

2 Radially symmetric solutions

We consider radially symmetric solutions of the system (1)-(8) in the unit ball $\Omega = \{x \in \mathbb{R}^d : |x| \le 1\}, d = 2, 3$. Hence, we may assume

$$\varphi(x,t) = 0 \quad \text{for} \quad |x| = 1. \tag{9}$$

Following [2] we write the problem $\mathcal{P}_{\mathcal{E}}$ in terms of the integrated density

$$Q(r,t) := \int_{B_r(0)} u(x,t) dx$$
 for $r \in (0,1]$ and $t \in [0,T), T \le \infty$.

Let σ_d denote the area of the unit sphere in \mathbb{R}^d . Rescaling $t := \frac{d}{\sigma_d}t$ and $\vartheta := d\sigma_d\vartheta$, we obtain as in [9] (cf. also [2]), for Q(y,t) := Q(r,t), with $y = r^d$, the equation

$$Q_t = y^{2-\frac{2}{d}}\vartheta(t)Q_{yy} + QQ_y$$
 for $(y,t) \in D_T = \{(y,t) : y \in (0,1), t \in (0,T)\}.(10)$

Using the variable Q we transform the energy relation (8) into the form

$$\mathcal{E} = \vartheta(t) - \frac{1}{2} \int_0^1 Q^2(y, t) y^{\frac{2}{d} - 2} dy, \tag{11}$$

where $\mathcal{E} := d\sigma_d \mathcal{E}$.

The equation (10) is supplemented with the boundary conditions

$$Q(0,t) = 0, \quad Q(1,t) = 1, \quad \text{for} \quad t \in [0,T),$$
 (12)

and the initial data

$$Q(y,0) = Q_0(y) := \int_{B_r(0)} u_0(x) \, dx. \tag{13}$$

The equation (10), boundary conditions (12), initial data (13) and a given total energy (11) define the problem $Q_{\mathcal{E}}$.

Formally, the transformation $\mathcal{P}_{\mathcal{E}}$ to $\mathcal{Q}_{\mathcal{E}}$ allows us to consider densities u from L^1 , which was not possible in the framework of L^2 theory used in [6], [9]. In our case, we stress on the fact that the problem $\mathcal{Q}_{\mathcal{E}}$ plays only the auxiliary role, i.e. each solution Q we take into account, comes from a density u. Here, remember that $Q_y = \frac{\sigma_d}{d}u$.

We prove our main result

Theorem 2.1 Assume that the initial data Q_0 and the energy \mathcal{E} are chosen so that

- (a) the stationary solution Q^s , ϑ^s of the problem $\mathcal{Q}_{\mathcal{E}}$ is unique,
- (b) the problem $Q_{\mathcal{E}}$ has a global solution Q(y,t), $\vartheta(t)$ with the uniformly bounded derivative Q_y ,
 - (c) the temperature $\vartheta(t)$ satisfies $0 < c \le \vartheta(t) \le C < \infty$.

Then Q(y,t) tends to Q^s uniformly on [0,1] and $\vartheta(t)$ converges to ϑ^s as $t \to \infty$.

Proof. The idea of the proof comes from [11], where a simpler case of electrically repulsing particles has been considered.

We introduce the entropy functional W for the problem $\mathcal{Q}_{\mathcal{E}}$

$$W(t) := \int_0^1 Q_y \log Q_y \, dy - \log \vartheta. \tag{14}$$

Note that W(t) is well defined and bounded from below for the solutions satisfying the conditions (b) and (c).

Observing that

$$W'(t) = \int_0^1 (Q_t)_y (\log Q_y + 1) \, dy - \frac{\vartheta_t}{\vartheta}$$

and integrating by parts we get

$$W'(t) = -\int_0^1 Q_t \frac{Q_{yy}}{Q_y} dy - \frac{\vartheta_t}{\vartheta} = -\int_0^1 Q_t \left(\frac{Q_{yy}}{Q_y} dy + \frac{1}{\vartheta} Q y^{\frac{2}{d} - 2} \right) dy =$$

$$-\int_0^1 \frac{Q_t^2}{Q_y \vartheta} y^{\frac{2}{d} - 2} dy \le 0.$$
(15)

Hence W is the Lyapunov functional for the problem $\mathcal{Q}_{\mathcal{E}}$.

W is bounded from below. Thus, there exists a sequence $t_m \to \infty$ such that $W'(t_m) \to 0$ as $m \to \infty$. We prove that for such a sequence t_m , $Q(y, t_m)$ tends to the stationary solution. Let us introduce the quantity

$$A(y, t_m) := \int_0^y Q_t(v, t_m) dv = \int_0^y \left(v^{2 - \frac{2}{d}} \vartheta(t) Q_{yy}(v, t) + Q(v, t) Q_y(v, t) \right) dv.$$
(16)

Integrating by parts we have

$$A(y, t_m) = y^{2 - \frac{2}{d}} \vartheta(t_m) Q_y(y, t_m) - \left(2 - \frac{2}{d}\right) y^{1 - \frac{2}{d}} \vartheta(t_m) Q(y, t_m) + \left(2 - \frac{2}{d}\right) \left(1 - \frac{2}{d}\right) \int_0^y v^{-\frac{2}{d}} \vartheta(t_m) Q(v, t_m) \, dv + \frac{1}{2} Q^2(y, t_m).$$

It follows from our assumptions imposed on Q_y and ϑ that

$$\int_0^1 \frac{Q_t^2}{Q_y \vartheta} y^{\frac{2}{d} - 2} \, dy \ge C \int_0^y |Q_t| \, dy$$

for some C > 0. Hence

$$W'(t_m) \le -C|A(y, t_m)|. \tag{17}$$

Thus $A(y, t_m)$ tends to 0 as $m \to \infty$. The family $Q(\cdot, t_m)$ is compact in C^0 topology and $\vartheta(t_m)$ is bounded, so we may assume that $Q(\cdot, t_m) \to \bar{Q}(\cdot)$

uniformly on [0,1] and $\vartheta(t_m)$ converges to $\bar{\vartheta}$. Again, from $A(y,t_m) \to 0$, we conclude that $Q_y(\cdot,t_m)$ converges almost uniformly on (0,1] to \bar{Q}_y , and \bar{Q} satisfies

$$y^{2-\frac{2}{d}}\bar{\vartheta}\bar{Q}_{y} - \left(2 - \frac{2}{d}\right)y^{1-\frac{2}{d}}\bar{\vartheta}\bar{Q} + \left(2 - \frac{2}{d}\right)\left(1 - \frac{2}{d}\right)\int_{0}^{y}v^{-\frac{2}{d}}\bar{\vartheta}\bar{Q}(v)\,dv + \frac{1}{2}\bar{Q}^{2}(y) = 0.$$

Differentiating the above formula with respect to y we see that $y^{2-\frac{2}{d}}\bar{\vartheta}\bar{Q}_{yy} + \bar{Q}\bar{Q}_y = 0$, so \bar{Q} , $\bar{\vartheta}$ is the unique stationary solution Q^s , ϑ^s of the problem $Q_{\mathcal{E}}$.

Now we assume that $\{s_m\}$ is an arbitrary sequence which goes to ∞ . W(t) is bounded, hence there exists a sequence $\{t_m\}$ such that $|t_m - s_m| \to 0$, $W'(t_m) \to 0$ and $|W(t_m) - W(s_m)| \to 0$ as $m \to \infty$. We may assume that the whole sequence $Q(\cdot, s_m)$ tends to Q_1 , and as we proved above $Q(\cdot, t_m)$ goes to Q^s . We have to show that $Q_1 = Q^s$. From (15) we get

$$|W(t_m) - W(s_m)| = \int_0^1 \int_{s_m}^{t_m} \frac{Q_t^2}{Q_u \vartheta} y^{\frac{2}{d} - 2} dt dy \to 0 \text{ as } m \to \infty.$$
 (18)

We derive from (18) that $\int_0^1 \int_{s_m}^{t_m} |Q_t| dt dy \to 0$, hence

$$\int_0^1 |Q(y, s_m) - Q(y, t_m)| \, dy \le \int_0^1 \int_{t_m}^{s_m} |Q_t| \, dt \, dy \to 0.$$

Thus, $Q_1 = Q^s$. From the energy equation (11) we conclude that $\vartheta \to \vartheta^s$ as $t \to \infty$.

Now our aim is to show that for some values of the energy \mathcal{E} and the initial data Q_0 the assumptions of Theorem 2.1 are satisfied.

Lemma 2.2 For sufficiently large energy \mathcal{E} there exists the unique stationary solution Q^s , ϑ^s of the problem $\mathcal{Q}_{\mathcal{E}}$.

Proof. We introduce the new function $\bar{Q} := Q^s/\vartheta^s$ which satisfies the equation

$$y^{2-\frac{2}{d}}\bar{Q}_{yy} + \bar{Q}\bar{Q}_y = 0 \quad \text{for} \quad y \in (0,1),$$
 (19)

and the boundary conditions

$$\bar{Q}(0) = 0, \ \bar{Q}(1) = 1/\vartheta^s.$$
 (20)

For d=2 the problem (19)–(20) is integrable, and the unique solution is

$$\bar{Q}(y) = \frac{2Cy}{1+Cy}$$
, where $C = \frac{1}{2\vartheta^s - 1}$ and $\vartheta^s > 1/2$.

To obtain the uniqueness of a stationary solution of the problem $\mathcal{Q}_{\mathcal{E}}$ observe that the energy of \bar{Q}

$$\mathcal{E}(\vartheta^s) = \kappa \vartheta^s - \frac{1}{2} \int_0^{1/(2\vartheta^s - 1)} \left(\frac{2v}{1+v}\right)^2 \frac{1}{v} dv$$

is an increasing function of ϑ^s and $\lim_{\vartheta^s \to \infty} \mathcal{E}(\vartheta^s) = \infty$, $\lim_{\vartheta^s \to 1/2} \mathcal{E}(\vartheta^s) = -\infty$.

The three dimensional case is more complicated. For the proof we introduce the new variables [2]

$$v = 9y^{\frac{2}{3}}\bar{Q}_y, \qquad w = 3y^{-\frac{1}{3}}Q, \qquad y = e^{3\tau}.$$

A simple computation shows that v, w satisfy the system of equations

$$v' = (2 - w)v, \quad w' = v - w,$$
 (21)

where 'denotes $\frac{d}{d\tau}$. The boundary data (20) take the form $w(-\infty) = 0$, $w(0) = \frac{1}{\theta^s}$. There is a unique trajectory (v, w) with $w \ge 0$ of (21) which satisfies these boundary conditions cf. an analogous reasoning in [2].

Picture1

To finish the proof note that for sufficiently large ϑ^s the energy of the unique solution

$$\mathcal{E}(\vartheta^s) = \vartheta^s - \int_{-\infty}^0 w^2(\tau) e^{\tau} d\tau.$$

is an increasing function of ϑ^s .

Lemma 2.3 For sufficiently large \mathcal{E} and bounded Q'_0 the temperature satisfies

$$0 < c \le \vartheta(t) \le C < \infty \quad \text{for} \quad t > 0. \tag{22}$$

Proof. The estimation from below for ϑ was proved in [9, Proposition 5.4] for the radially symmetric case and in [6, Lemma 2.1] for general domains. The estimation from above valid for any initial data is specific for the system in

two dimensional bounded domains [6, Lemma 2.2]. In the three dimensional situation [9, Theorem 5. 5] states that for bounded Q'_0 and sufficiently large energy \mathcal{E} the inequalities (22) are satisfied.

In the next result we provide a class of initial data for the problem $\mathcal{Q}_{\mathcal{E}}$ which gives a uniform bound in time for Q_y .

Lemma 2.4 If $Q_0' < Q_0/y$ for $y \in (0,1]$, then the solution Q, ϑ of the problem $Q_{\mathcal{E}}$ satisfies

$$Q_y \leq Q/y$$
 in D_T .

Proof. Denote by b the auxiliary quantity b(y,t) := Q(y,t)/y. It is easy to show that

$$b_t = \vartheta y^{2 - \frac{2}{d}} b_{yy} + (2\vartheta y^{1 - \frac{2}{d}} + yb) b_y + b^2.$$
 (23)

Following the ideas of [10], we define $w := yQ_y - Q$, which satisfies

$$w_t = y^{1-\frac{2}{d}} \vartheta w_{yy} + \left(b_y - \frac{2}{d} \vartheta\right) w_y + (yb_y + b)w.$$

To apply the maximum principle [12, Lemma 2.1] we should check that $w(0,t) \leq 0$, $w(y,0) \leq 0$, $w(1,t) \leq 0$ and $yb_y + b$ is a bounded function on $\overline{D_T}$. The first two inequalities follow from the assumptions imposed on Q_0 and Q (recall that Q is the integrated density). To prove $w(1,t) \leq 0$, note that b(y,t) > 1 for y < 1. In fact, b(1,t) = 1 and $(b(y,0))' = (Q_0(y)/y)' < 0$. Hence, $b(\cdot,t)$ is a decreasing function for $t \in (0,\delta)$, $0 < \delta < T$. Thus, 1 < b(0,t). It is easy to check that the constant function equal to 1 is a subsolution of (23) on $[0,1] \times [0,\delta)$. The strong maximum principle implies that $b(y,\delta) > 1$ for y < 1. Thus 1 is a subsolution on D_T .

Applying the Hopf maximum principle we find that $b_y(1,t) = Q_y - Q = w(1,t) < 0$. Since the initial data $(Q_0)' = u_0 \sigma_d/d$ is bounded, then by the theorem on the regularity of solutions of parabolic systems (cf. [3, Theorem 2]) we get the local bound on $yb_y + b = Q_y = u\sigma_d/d$.

Now we prove the existence of initial data which guarantee the existence of global solutions with bounded Q_y and the temperature ϑ . We begin with the

three dimensional case. It was shown in [9, Th. 5.5] that if $(Q_0)'$ is bounded, the initial temperature ϑ_0 is sufficiently large and there exists B > 0 such that

$$Q_0(y) \le \frac{y(1+B)}{y^{1/3} + B},$$

then there exists a global solution Q, ϑ which satisfies

$$Q(y,t) \le \frac{y(1+B)}{y^{2/3}+B}, \qquad 0 < c < \vartheta < C.$$
 (24)

Obviously, we can assume also that $(Q_0)' \leq Q_0/y$, and if the initial temperature is sufficiently large, we can guarantee that the energy \mathcal{E} is as large as we wish.

For example $Q_0(y)=y$, i.e. $u_0(x)=3\pi/4$, and $\vartheta\gg 1$ satisfy the assumptions of Theorem 2.1.

In the proof of the existence of Q satisfying (24) the following auxiliary lemmas were used.

Lemma 2.5 [9, Proposition 5.3] Suppose Q^i , i = 1, 2, is a solution of the problem

$$Q_t^i = y^{1-2/d} \vartheta^i(t) Q_{yy} + Q Q_y \quad Q^i(y,0) = Q_0^i, \quad Q_i(0,t) = 0, \quad Q_i(1,t) = 1$$
(25)

with a fixed continuous $\vartheta^i(t) > \delta > 0$. If $\vartheta^1(t) \leq \vartheta^2(t)$, $Q_0^1 \geq Q_0^2$, and either Q_y^1 or Q_y^2 is bounded, then $Q^1 \geq Q^2$.

Lemma 2.6 [9, Proposition 5.4] Let Q, ϑ be a solution of $Q_{\mathcal{E}}$ with the initial data Q_0 , ϑ_0 . Then

$$\vartheta(t) \ge \vartheta_0 \exp\left(-\int_0^1 Q_0' \log Q_0'\right).$$

These lemmas together with Lemma 2.4 guarantee the existence of initial data satisfying the assumptions of Theorem 2.1 in two dimensional case.

Remark. In fact, [9, Proposition 5.3 and 5.4] was proved for d = 3, but it is easy to check that the arguments used in the proofs work for all d > 1.

Lemma 2.7 Let d = 2. There exists an initial data Q_0 and ϑ_0 such that the solution Q(y,t) of $Q_{\mathcal{E}}$ is global in time and satisfies

$$Q(y,t) \le \frac{Ay}{y^2 + B}$$
 for some positive constants A, B . (26)

Proof. Consider the auxiliary problem

$$q_t = y\tilde{\vartheta}q_{yy} + qq_y, \quad q(0,t) = 0, \quad q(1,t) = 1, \quad q(y,0) = q_0(y)$$
 (27)

with a given constant $\tilde{\vartheta} > \frac{1}{8\pi}$. Putting $\tau = t\tilde{\vartheta}$, $q = \tilde{\vartheta}\bar{q}$, we transform (27) into the problem

$$\bar{q}_{\tau} = y\bar{q}_{yy} + \bar{q}\bar{q}_{y} \quad \bar{q}(0,\tau) = 0, \quad \bar{q}(1,\tau) = 1/\tilde{\vartheta}, \quad \bar{q}(y,0) = q_{0}(y)/\tilde{\vartheta} =: \bar{q}_{0}(y).$$
(28)

It follows from [4] Th. 1 (ii) that if $\bar{q}_0'(y) \leq AB/(y+B)^2$ for some $A < 8\pi$, B > 0, $B(8-A/\pi) \geq 16$, and $\bar{q}_0(y) \geq y^k/\tilde{\vartheta}$ for some $k \geq 1$, then the problem (28) has a solution \bar{q} such that \bar{q}_y is uniformly bounded and $\bar{q}(y,\tau) \leq Cy/(y^2+B)$ (cf. the proof of Th. 1 [4]). Hence

$$q(y,t) \le \frac{Ay}{y^2 + B},$$

where $A = \tilde{\vartheta}C$.

Now we choose the initial data Q_0 , ϑ_0 such that $\vartheta(t) \geq 1/(8\pi)$ (cf. Lemma 2.6). It follows from the comparison principle (Lemma 2.5) that the solution Q(y,t) of (10)–(13) satisfies the estimates

$$Q(y,t) \le q(y,t) \le \frac{Ay}{y^2 + B}.$$

Using Lemma 2.7 and Lemma 2.4 we are able to construct the initial data which guarantee the existence of global solutions converging to the stationary state, for example for $d = 2 Q_0(y) = y$ and $\vartheta_0 > 1/(8\pi)$ will do.

Acknowledgements. The preparation of this paper was partially supported by the KBN grant 2/PO3A/011/19 and by the EU network HYKE under the contract HPRN-CT-2002-00282.

We thank Piotr Biler and Andrzej Raczyński for interesting discussions during preparation of this paper.

References

[1] BILER, P., DOLBEAULT, J., ESTEBAN, M.J., MARKOWICH, P.A., NADZIEJA T., Steady states for Streater's energy-transport models of

- self-gravitating particles, in: *IMA Series* **135**, 37–56, Springer Verlag, 2003.
- [2] BILER, P., HILHORST D., NADZIEJA T., Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, Colloq. Math. 67 (1994), 297–308.
- [3] BILER, P., NADZIEJA T., Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, *Colloq. Math.* **66** (1994), 319–334.
- [4] BILER, P., NADZIEJA T., Growth and accretion of mass in an astrophysical model II, *Appl. Math. (Warsaw)* **23** (1995), 351-361.
- [5] BILER, P., NADZIEJA T., Structure of steady states for Streater's energy-transport models of gravitating particles, *Topological Methods in Nonlinear Analysis* **19** (2002), 283–301.
- [6] BILER, P., NADZIEJA T., Global and exploding solutions in a model of self-gravitating systems, 1–28, *Rep. Math. Phys.*, in print.
- [7] Chavanis, P-H., Rosier, C., Sire, C., Thermodynamics of self-gravitating systems, *Phys. Rev. E* **66** (2002), 0360105.
- [8] Chavanis, P-H., Sommeria, J., Robert, R., Statistical mechanics of two-dimensional vortices and collisionless stellar systems, *Astrophys. J.* **471** (1996), 385–399.
- [9] VAN DUIJN, C. J., GUERRA, I.A., PELETIER, M.A., Global existence conditions for a non-local problem arising in statistical mechanics, 1–21 submitted to *Adv. Diff. Equations*.
- [10] FRIEDMAN, A., McLeod, B., Blow-up of positive solutions of semi-linear heat equations, *Indiana Univ. Math. J.* **34** (1985), 425–447.
- [11] Nadzieja T., Raczyński A., A singular radially symmetric problem in electrolytes theory, *Appl. Math. (Warsaw)* **25** (1998), 101–112.
- [12] PAO, C. V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.