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Abstract
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physical model of evolution of clouds of self-gravitating particles.
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1 Introduction

In this paper we study asymptotic properties of solutions of the system
introduced in [8], [7] for describing the temporal evolution of the density
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u(x, t) ≥ 0 and the uniform in space temperature ϑ(t) > 0 of a cloud of self-
gravitating particles confined to a bounded subdomain Ω ⊂ IRd, d = 2, 3.

This system consists of the continuity equation

ut(x, t) = div{ϑ(t)∇u(x, t) + u(x, t)∇ϕ(x, t)} in Ω× IR+, (1)

coupled with the Poisson equation

∆ϕ(x, t) = u(x, t) in Ω× IR+, (2)

which gives the relation between the gravitational potential ϕ(x, t) and the
the distribution of mass u(x, t).

The equations (1)-(2) are supplemented with the no-flux boundary con-
dition

(ϑ(t)∇u + u∇ϕ) · ~ν = 0 on ∂Ω× IR+, (3)

and the initial data

u(x, 0) = u0(x) ≥ 0 in Ω. (4)

Here ~ν denotes the exterior normal vector to ∂Ω.
Without loss of generality, we assume that the total mass of the particles

is equal to one ∫
Ω

u(x, t) dx =
∫
Ω

u0(x) dx = 1. (5)

The potential ϕ satisfies either the Dirichlet condition

ϕ(x, t) = 0 for x ∈ ∂Ω (6)

or the physically acceptable ”free” condition

ϕ = Ed ? u, (7)

where Ed is the fundamental solution of the Laplacian in IRd.
The total energy E is the sum of the thermal energy

∫
Ω ϑ(t)u(x, t) dx

and the potential energy 1
2

∫
Ω u(x, t)ϕ(x, t) dx. For simplicity, we put all the
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physical constants equal to one. In our case
∫
Ω u(x, t) dx = 1, hence the

energy E takes the form

E = ϑ(t) +
1

2

∫
Ω

u(x, t)ϕ(x, t) dx. (8)

Its conservation permits to determine the uniform in Ω temperature ϑ(t).
For a given energy level E (1)-(8) defines problem PE for the unknown

quantities u, ϕ, ϑ. Below we consider PE in the ball and in this case there is
no qualitative difference between the condition (6) and (7).

The problem of existence and uniqueness of solutions of the problem PE
for d = 2, 3 was studied in [6] and [9]. For u0 ∈ L2(Ω) the local existence
and uniqueness of solution was proved. The existence of the global in time
solutions was obtained in [6] for d = 2, and in [9] for the three dimensional
radially symmetric case under some assumptions on the initial density and
temperature. The solutions of the model under consideration may exhibit
finite time blow-up for large initial data [6], [9]. The structure of the set of
stationary solutions of the problem PE was investigated in [1] and [5].

Our aim is to prove that for some initial distribution of mass u0 and
initial temperature ϑ0 (or fixed energy E), the solution converges to the
unique stationary state.

2 Radially symmetric solutions

We consider radially symmetric solutions of the system (1)-(8) in the unit
ball Ω = {x ∈ IRd : |x| ≤ 1}, d = 2, 3. Hence, we may assume

ϕ(x, t) = 0 for |x| = 1. (9)

Following [2] we write the problem PE in terms of the integrated density

Q(r, t) :=
∫

Br(0)
u(x, t) dx for r ∈ (0, 1] and t ∈ [0, T ), T ≤ ∞.

Let σd denote the area of the unit sphere in IRd. Rescaling t := d
σd

t and

ϑ := dσdϑ, we obtain as in [9] (cf. also [2]), for Q(y, t) := Q(r, t), with
y = rd, the equation

Qt = y2− 2
d ϑ(t)Qyy + QQy for (y, t) ∈ DT = {(y, t) : y ∈ (0, 1), t ∈ (0, T )}.(10)
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Using the variable Q we transform the energy relation (8) into the form

E = ϑ(t)− 1

2

∫ 1

0
Q2(y, t)y

2
d
−2dy, (11)

where E := dσdE .
The equation (10) is supplemented with the boundary conditions

Q(0, t) = 0, Q(1, t) = 1, for t ∈ [0, T ), (12)

and the initial data

Q(y, 0) = Q0(y) :=
∫

Br(0)
u0(x) dx. (13)

The equation (10), boundary conditions (12), initial data (13) and a given
total energy (11) define the problem QE .

Formally, the transformation PE to QE allows us to consider densities u
from L1, which was not possible in the framework of L2 theory used in [6],
[9]. In our case, we stress on the fact that the problem QE plays only the
auxiliary role, i.e. each solution Q we take into account, comes from a density
u. Here, remember that Qy = σd

d
u.

We prove our main result

Theorem 2.1 Assume that the initial data Q0 and the energy E are chosen
so that

(a) the stationary solution Qs, ϑs of the problem QE is unique,
(b) the problem QE has a global solution Q(y, t), ϑ(t) with the uniformly

bounded derivative Qy,
(c) the temperature ϑ(t) satisfies 0 < c ≤ ϑ(t) ≤ C < ∞.
Then Q(y, t) tends to Qs uniformly on [0, 1] and ϑ(t) converges to ϑs as

t →∞.

Proof. The idea of the proof comes from [11], where a simpler case of elec-
trically repulsing particles has been considered.

We introduce the entropy functional W for the problem QE

W (t) :=
∫ 1

0
Qy log Qy dy − log ϑ. (14)
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Note that W (t) is well defined and bounded from below for the solutions
satisfying the conditions (b) and (c).

Observing that

W ′(t) =
∫ 1

0
(Qt)y(log Qy + 1) dy − ϑt

ϑ

and integrating by parts we get

W ′(t) = −
∫ 1

0
Qt

Qyy

Qy

dy − ϑt

ϑ
= −

∫ 1

0
Qt

(
Qyy

Qy

dy +
1

ϑ
Qy

2
d
−2

)
dy =

−
∫ 1

0

Q2
t

Qyϑ
y

2
d
−2 dy ≤ 0. (15)

Hence W is the Lyapunov functional for the problem QE .
W is bounded from below. Thus, there exists a sequence tm → ∞ such

that W ′(tm) → 0 as m →∞. We prove that for such a sequence tm, Q(y, tm)
tends to the stationary solution. Let us introduce the quantity

A(y, tm) :=
∫ y

0
Qt(v, tm)dv =

∫ y

0

(
v2− 2

d ϑ(t)Qyy(v, t) + Q(v, t)Qy(v, t)
)

dv.

(16)
Integrating by parts we have

A(y, tm) = y2− 2
d ϑ(tm)Qy(y, tm)−

(
2− 2

d

)
y1− 2

d ϑ(tm)Q(y, tm)

+
(
2− 2

d

)(
1− 2

d

) ∫ y

0
v−

2
d ϑ(tm)Q(v, tm) dv +

1

2
Q2(y, tm).

It follows from our assumptions imposed on Qy and ϑ that

∫ 1

0

Q2
t

Qyϑ
y

2
d
−2 dy ≥ C

∫ y

0
|Qt| dy

for some C > 0. Hence

W ′(tm) ≤ −C|A(y, tm)|. (17)

Thus A(y, tm) tends to 0 as m → ∞. The family Q(·, tm) is compact in
C0 topology and ϑ(tm) is bounded, so we may assume that Q(·, tm) → Q̄(·)
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uniformly on [0, 1] and ϑ(tm) converges to ϑ̄. Again, from A(y, tm) → 0, we
conclude that Qy(·, tm) converges almost uniformly on (0, 1] to Q̄y, and Q̄
satisfies

y2− 2
d ϑ̄Q̄y−

(
2− 2

d

)
y1− 2

d ϑ̄Q̄+
(
2− 2

d

)(
1− 2

d

) ∫ y

0
v−

2
d ϑ̄Q̄(v) dv+

1

2
Q̄2(y) = 0.

Differentiating the above formula with respect to y we see that y2− 2
d ϑ̄Q̄yy +

Q̄Q̄y = 0, so Q̄, ϑ̄ is the unique stationary solution Qs, ϑs of the problem
QE .

Now we assume that {sm} is an arbitrary sequence which goes to ∞.
W (t) is bounded, hence there exists a sequence {tm} such that |tm−sm| → 0,
W ′(tm) → 0 and |W (tm) −W (sm)| → 0 as m → ∞. We may assume that
the whole sequence Q(·, sm) tends to Q1, and as we proved above Q(·, tm)
goes to Qs. We have to show that Q1 = Qs. From (15) we get

|W (tm)−W (sm)| =
∫ 1

0

∫ tm

sm

Q2
t

Qyϑ
y

2
d
−2 dt dy → 0 as m →∞. (18)

We derive from (18) that
∫ 1
0

∫ tm
sm
|Qt| dt dy → 0, hence∫ 1

0
|Q(y, sm)−Q(y, tm)| dy ≤

∫ 1

0

∫ sm

tm
|Qt| dt dy → 0.

Thus, Q1 = Qs. From the energy equation (11) we conclude that ϑ → ϑs as
t →∞. 2

Now our aim is to show that for some values of the energy E and the
initial data Q0 the assumptions of Theorem 2.1 are satisfied.

Lemma 2.2 For sufficiently large energy E there exists the unique stationary
solution Qs, ϑs of the problem QE .

Proof. We introduce the new function Q̄ := Qs/ϑs which satisfies the equa-
tion

y2− 2
d Q̄yy + Q̄Q̄y = 0 for y ∈ (0, 1), (19)

and the boundary conditions

Q̄(0) = 0, Q̄(1) = 1/ϑs. (20)
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For d = 2 the problem (19)–(20) is integrable, and the unique solution is

Q̄(y) =
2Cy

1 + Cy
, where C =

1

2ϑs − 1
and ϑs > 1/2.

To obtain the uniqueness of a stationary solution of the problem QE observe
that the energy of Q̄

E(ϑs) = κϑs − 1

2

∫ 1/(2ϑs−1)

0

(
2v

1 + v

)2 1

v
dv

is an increasing function of ϑs and limϑs→∞ E(ϑs) = ∞, limϑs→1/2 E(ϑs) =
−∞ .

The three dimensional case is more complicated. For the proof we intro-
duce the new variables [2]

v = 9y
2
3 Q̄y, w = 3y−

1
3 Q, y = e3τ .

A simple computation shows that v, w satisfy the system of equations

v′ = (2− w)v, w′ = v − w, (21)

where ’ denotes d
dτ

. The boundary data (20) take the form w(−∞) = 0,
w(0) = 1

θs . There is a unique trajectory (v, w) with w ≥ 0 of (21) which
satisfies these boundary conditions cf. an analogous reasoning in [2].

Picture1
To finish the proof note that for sufficiently large ϑs the energy of the

unique solution

E(ϑs) = ϑs −
∫ 0

−∞
w2(τ)eτ dτ.

is an increasing function of ϑs. 2

Lemma 2.3 For sufficiently large E and bounded Q′
0 the temperature satis-

fies
0 < c ≤ ϑ(t) ≤ C < ∞ for t > 0. (22)

Proof. The estimation from below for ϑ was proved in [9, Proposition 5.4 ] for
the radially symmetric case and in [6, Lemma 2.1] for general domains. The
estimation from above valid for any initial data is specific for the system in
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two dimensional bounded domains [6, Lemma 2.2]. In the three dimensional
situation [9, Theorem 5. 5] states that for bounded Q′

0 and sufficiently large
energy E the inequalities (22) are satisfied.

2

In the next result we provide a class of initial data for the problem QE
which gives a uniform bound in time for Qy.

Lemma 2.4 If Q′
0 < Q0/y for y ∈ (0, 1], then the solution Q, ϑ of the

problem QE satisfies
Qy ≤ Q/y in DT .

Proof. Denote by b the auxiliary quantity b(y, t) := Q(y, t)/y. It is easy to
show that

bt = ϑy2− 2
d byy + (2ϑy1− 2

d + yb)by + b2. (23)

Following the ideas of [10], we define w := yQy −Q, which satisfies

wt = y1− 2
d ϑwyy +

(
by −

2

d
ϑ
)

wy + (yby + b)w.

To apply the maximum principle [12, Lemma 2.1] we should check that
w(0, t) ≤ 0, w(y, 0) ≤ 0, w(1, t) ≤ 0 and yby + b is a bounded function
on DT . The first two inequalities follow from the assumptions imposed on
Q0 and Q (recall that Q is the integrated density). To prove w(1, t) ≤ 0, note
that b(y, t) > 1 for y < 1. In fact, b(1, t) = 1 and (b(y, 0))′ = (Q0(y)/y)′ < 0.
Hence, b(·, t) is a decreasing function for t ∈ (0, δ), 0 < δ < T . Thus,
1 < b(0, t). It is easy to check that the constant function equal to 1 is a sub-
solution of (23) on [0, 1]× [0, δ). The strong maximum principle implies that
b(y, δ) > 1 for y < 1. Thus 1 is a subsolution on DT .

Applying the Hopf maximum principle we find that by(1, t) = Qy −Q =
w(1, t) < 0. Since the initial data (Q0)

′ = u0σd/d is bounded, then by the
theorem on the regularity of solutions of parabolic systems (cf. [3, Theorem
2]) we get the local bound on yby + b = Qy = uσd/d.

2

Now we prove the existence of initial data which guarantee the existence of
global solutions with bounded Qy and the temperature ϑ. We begin with the
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three dimensional case. It was shown in [9, Th. 5.5] that if (Q0)
′ is bounded,

the initial temperature ϑ0 is sufficiently large and there exists B > 0 such
that

Q0(y) ≤ y(1 + B)

y1/3 + B
,

then there exists a global solution Q, ϑ which satisfies

Q(y, t) ≤ y(1 + B)

y2/3 + B
, 0 < c < ϑ < C. (24)

Obviously, we can assume also that (Q0)
′ ≤ Q0/y, and if the initial temper-

ature is sufficiently large, we can guarantee that the energy E is as large as
we wish.

For example Q0(y) = y, i.e. u0(x) = 3π/4, and ϑ � 1 satisfy the
assumptions of Theorem 2.1.

In the proof of the existence of Q satisfying (24) the following auxiliary
lemmas were used.

Lemma 2.5 [9, Proposition 5.3] Suppose Qi, i = 1, 2, is a solution of the
problem

Qi
t = y1−2/dϑi(t)Qyy + QQy Qi(y, 0) = Qi

0, Qi(0, t) = 0, Qi(1, t) = 1
(25)

with a fixed continuous ϑi(t) > δ > 0. If ϑ1(t) ≤ ϑ2(t), Q1
0 ≥ Q2

0, and either
Q1

y or Q2
y is bounded, then Q1 ≥ Q2.

Lemma 2.6 [9, Proposition 5.4] Let Q, ϑ be a solution of QE with the initial
data Q0, ϑ0. Then

ϑ(t) ≥ ϑ0 exp
(
−
∫ 1

0
Q′

0 log Q′
0

)
.

These lemmas together with Lemma 2.4 guarantee the existence of initial
data satisfying the assumptions of Theorem 2.1 in two dimensional case.

Remark. In fact, [9, Proposition 5.3 and 5.4] was proved for d = 3, but
it is easy to check that the arguments used in the proofs work for all d > 1.

Lemma 2.7 Let d = 2. There exists an initial data Q0 and ϑ0 such that the
solution Q(y, t) of QE is global in time and satisfies

Q(y, t) ≤ Ay

y2 + B
for some positive constants A, B. (26)
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Proof. Consider the auxiliary problem

qt = yϑ̃qyy + qqy, q(0, t) = 0, q(1, t) = 1, q(y, 0) = q0(y) (27)

with a given constant ϑ̃ > 1
8π

. Putting τ = tϑ̃, q = ϑ̃q̄, we transform (27)
into the problem

q̄τ = yq̄yy + q̄q̄y q̄(0, τ) = 0, q̄(1, τ) = 1/ϑ̃, q̄(y, 0) = q0(y)/ϑ̃ =: q̄0(y).
(28)

It follows from [4] Th. 1 (ii) that if q̄′0(y) ≤ AB/(y + B)2 for some A <
8π, B > 0, B(8 − A/π) ≥ 16, and q̄0(y) ≥ yk/ϑ̃ for some k ≥ 1, then
the problem (28) has a solution q̄ such that q̄y is uniformly bounded and
q̄(y, τ) ≤ Cy/(y2 + B) (cf. the proof of Th. 1 [4]). Hence

q(y, t) ≤ Ay

y2 + B
,

where A = ϑ̃C.
Now we choose the initial data Q0, ϑ0 such that ϑ(t) ≥ 1/(8π) (cf. Lemma

2.6). It follows from the comparison principle (Lemma 2.5) that the solution
Q(y, t) of (10)–(13) satisfies the estimates

Q(y, t) ≤ q(y, t) ≤ Ay

y2 + B
.

2

Using Lemma 2.7 and Lemma 2.4 we are able to construct the initial data
which guarantee the existence of global solutions converging to the stationary
state, for example for d = 2 Q0(y) = y and ϑ0 > 1/(8π) will do.
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