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Abstract. — We address the problem of the existence of finite energy solitary waves

for nonlinear Klein-Gordon or Schrödinger type equations

∆u− u + f(u) = 0,

in RN , u ∈ H1(RN ), where N ≥ 2. Under natural conditions on the nonlinearity

f , we prove the existence of infinitely many nonradial solutions in any dimension
N ≥ 2. Our result complements earlier works of Bartsch and Willem [1] (N = 4 or

N ≥ 6) and Lorca-Ubilla [13] (N = 5) where solutions invariant under the action of

O(2)×O(N−2) are constructed. In contrast, the solutions we construct are invariant
under the action of Dk × O(N − 2) where Dk ⊂ O(2) denotes the dihedral group of

rotations and reflexions leaving a regular planar polygon with k sides invariant, for
some integer k ≥ 7, but they are not invariant under the action of O(2)×O(N − 2).

1. Introduction and statement of the main results

Nonlinear semilinear elliptic equations of the form

(1.1) ∆u− u+ f(u) = 0,

in RN , u ∈ H1(RN ), arise in various models in physics, mathematical physics and
biology. In particular, the study of standing waves (or solitary waves) for the nonlinear
Klein-Gordon or Schrödinger equations reduces to (1.1). We refer to the papers
of Berestycki and Lions [3], [4], Bartsch and Willem [1] for further references and
motivations.

Obviously (1.1) is equivariant with respect to the action of the group of isome-
tries of RN , it is henceforth natural to ask whether all solutions of (1.1) are radially
symmetric. In that regard, the classical result of Gidas, Ni and Nirenberg [7] asserts
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that all positive solutions of (1.1) are indeed radially symmetric. Therefore, nonradial
solutions, if they exist, are necessarily sign-changing solutions. When the nonlinearity
f is odd, Berestycki and Lions [3], [4] and Struwe [16] have obtained the existence of
infinitely many radially symmetric sign-changing solutions under some (almost nec-
essary) growth condition on f (we also refer to the work of Bartsch and Willem [2],
Conti, Merizzi and Terracini [5] for different approaches and weaker assumptions on
the nonlinearity f).

The existence of nonradial sign-changing solutions was first proved by Bartsch and
Willem [1] in dimension N = 4 and N ≥ 6. The key idea is to look for solutions
invariant under the action of O(2)×O(N − 2) ⊂ O(N) to recover some compactness
property. Later on, this result was generalized by Lorca and Ubilla [13] to handle
the N = 5 dimensional case. The proofs of both results rely on variational methods
and the oddness of the nonlinearity f is needed. The question of the existence of
nonradial solutions remained open in dimensions N = 2, 3.

In this paper, we construct unbounded sequences of solutions of (1.1) in any di-
mensions N ≥ 2. The solutions we obtain are nonradial, have finite energy and
are invariant under the action of Dk × O(N − 2), for some given k ≥ 7, where
Dk ⊂ O(2) is the dihedral group of rotations and reflections leaving a regular polygon
with k sides invariant. Moreover, these solutions are not invariant under the action
of O(2)×O(N − 2) and hence they are different from the solutions constructed in [1]
and [13].

We set

u+ := max(u, 0) and u− := max(−u, 0).

We will assume that the nonlinearity f can be decomposed as

f(u) = f1(u+)− f2(u−),

where the functions fi : R → R are at least C1,µ for some µ ∈ (0, 1) and satisfy the
following conditions :

(H.1) For i = 1, 2, fi(0) = f
′

i (0) = 0.

(H.2) For i = 1, 2, the equation

(1.2) ∆wi − wi + fi(wi) = 0,

has a unique positive (radially symmetric) solution wi which tends to 0 expo-
nentially fast at infinity.

(H.3) For i = 1, 2, the solution wi is nondegenerate, in the sense that

(1.3) Ker
(

∆− 1 + f
′

i (wi)
)
∩ L∞(RN ) = Span {∂x1

wi, . . . , ∂xNwi} .

A typical example of a nonlinearity f satisfying all the above assumptions is given
by the function

f(u) = (up1+ − c1 u
q1
+ )− (up2− − c2 u

q2
− ),

where ci ≥ 0 and 1 < qi < pi <
N+2
N−2 (we agree that N+2

N−2 = +∞ when N = 2). In
this case, the existence of wi is standard and follows from well known arguments in
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the calculus of variation while the uniqueness follows from results of Kwong [10] and
Kwong and Zhang [11]. Concerning the nondegeneracy condition (which essentially
follows from the uniqueness of the solutions), we refer to Appendix C of [15].

For example, when p1 = p2 = p and c1 = c2 = 0, the nonlinearity is just given by

f(u) = |u|p1 u.
The energy functional associated to (1.1) is given by

(1.4) E(u) :=
1

2

∫
RN

(|∇u|2 + u2) dx−
∫
RN

F (u) dx,

where

F (u) :=

∫ u

0

f(s) ds.

We will denote by Ei the energy of the function wi. Namely

(1.5) Ei :=
1

2

∫
RN

(|∇wi|2 + w2
i ) dx−

∫
RN

F (wi) dx.

Given the above notations and definitions, we can now state the main result of this
paper.

Theorem 1.1. — Assume that the nonlinearity f satisfies the assumptions (H.1)-
(H.3) and that k ≥ 7 is a fixed integer. Then, there exist two sequences of in-
tegers, (mi)i≥0 and (ni)i≥0, tending to +∞, and (ui)i≥0, a sequence of nonradial
sign-changing solutions of (1.1), whose energy E(ui) is equal to

E(ui) = k ((mi + ni) E1 + ni E2) + o(1).

Moreover, the solutions ui are invariant under the action of Dk × O(N − 2) but are
not invariant under the action of O(2)×O(N − 2).

Observe that we do not assume that the function f is odd, and hence, oddness of
the nonlinearity is not a necessary condition for the existence of nonradial solutions
of (1.1). The assumption (H.3) on the nonlinearity f reflects the techniques we use :
Instead of variational methods, we are going to use singular perturbation techniques
to prove Theorem 1.1. This might look rather counterintuitive since, in most of
singularly perturbed problems, a small parameter is needed (generally is appears as
a coefficient in front of the Laplacian or in front of the the nonlinearity) in order to
ensure that an appropriate sequence of function constitute good enough approximate
solutions as the parameter tends to its limit value (generally equal to 0).

There is no such a small parameter in (1.1). Instead, we use the non compactness
of the space of finite energy solutions of (1.1) to build a discrete sequence of functions
which are as close as want from being solutions. The idea is to consider a regular
polygon with k sides and very large radius. Along each of the k rays joining the origin
to the vertices of the polygon, we arrange m copies of the entire positive solution w1

at distance ` � 1 from each other and, along each of the k sides of the polygon,
we arrange alternatively n copies of the entire positive solution w1 with n copies of
the entire negative solution −w2 at distance ¯̀ � 1 from each other. As ` and ¯̀

tend to infinity (and hence the radius of the regular polygon tends to infinity), the
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corresponding function is close (in a sense to be made precise) to be a solution of
(1.1). We will adjust the discrete parameters m,n and the continuous parameters `
and ¯̀ which determine the location of the points where the solutions w1 and −w2

are centered, so that some global equilibrium is achieved and this will imply that the
approximate solution can be perturbed into a genuine solution of (1.1). A similar idea
has already been used by Wei and Yan in [17] where infinitely many positive bound
states for a class of nonlinear Schrödinger equations are constructed. But, in our case,
the intuition for our construction certainly comes from a similar construction which
has been obtained by Kapouleas in the context of compact constant mean curvature
surfaces of Euclidean 3-space [9]. We shall briefly discuss this at the end of this
section.

It turns out that the sequences of integers (mi)i≥0 and (ni)i≥0, which appear in
the statement of Theorem 1.1, are not arbitrary and in fact they are related by some
nonlinear equation. To explain this, we need to introduce what we call the interaction
function Ψi→j which is defined for all s ∈ R by

(1.6) Ψi→j(s) := −
∫
RN

wi(x− s e) div (fj(wj(x)) e) dx,

where e ∈ RN is any unit vector and i, j ∈ {1, 2}. It is easy to check that this
definition is independent of the choice of e and hence, that it only depends on s > 0.
Indeed, if R ∈ O(n), using the fact that w1 and w2 are radially symmetric, we can
write∫

RN
wi(x− s e) div (fj(wj(x)) e) dx =

∫
RN

wi(R (x− s e)) div (fj(wj(Rx)) e) dx,

and, performing a change of variables, we conclude that∫
RN

wi(x− s e) div (fj(wj(x)) e) dx =

∫
RN

wi(x− sR e) div (fj(wj(x))R e) dx,

for all R ∈ O(n).
With this notation at hand, the sequences of integers mi and ni, which appear in

the statement of Theorem 1.1, are related by(
2 sin

π

k

)
mi `i = 2ni ¯̀

i − ¯̀′
i,

where the real numbers `i, ¯̀
i, ¯̀′

i > 0 have to be large enough and chosen to satisfy
(1.7)

Ψ1→1(`i) =
(

2 sin
π

k

)
Ψ2→1(¯̀

i), and Ψ1→1(`i) =
(

2 sin
π

k

)
Ψ1→1(¯̀′

i).

We shall further comment on the solvability of this system of equations at the end of
this section.

Finally, let us mention that Malchiodi [14] has recently constructed positive (infi-
nite energy) solutions of (1.1) by perturbing a configuration of infinitely many copies
of the positive solution w1 arranged along three rays meeting at a common point.
The solutions he has constructed are bounded but they have infinite energy. Our key
observation is that solutions with finite energy can be obtained using similar ideas
provided one considers sign-changing solutions and this is precisely the contribution
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of our paper. Let us also mention that positive solutions of (1.1) with unbounded
energy have also been constructed by del Pino, Kowalczyk, Pacard and Wei in [6]
again using ideas which steam from similar construction in the theory of non compact
constant mean curvature surfaces of Euclidean 3-space.

The proof of the main result is rather technical and, in order to help allay the
complexity of the notations and present the main ideas as clearly as possible, we will
prove Theorem 1.1 in the case where the nonlinearity is given by

f(u) = |u|p−1 u.

Mutatis mutandis, the proof goes through for any nonlinearity satisfying (H.1)-(H.3).
Therefore, from now on, we will be interested in solutions of

(1.8) ∆u− u+ |u|p−1 u = 0,

in RN , which tend to 0 as |x| tends to∞. We will assume that the exponent p satisfies
1 < p < N+2

N−2 when N ≥ 3 and 1 < p when N = 2. Observe that equation (1.8) is the
Euler-Lagrange equation of the functional defined by

(1.9) E (u) :=
1

2

∫
RN

(
|∇u|2 + u2

)
dx− 1

p+ 1

∫
RN
|u|p+1 dx,

and let us recall that there exists a unique radially symmetric (in fact radially de-
creasing) positive solution of

∆w − w + wp = 0,

in RN , which tends to 0 as |x| tends to ∞. Moreover, all positive solutions of (1.8),
which tend to 0 at∞, are translates of w. The function w together with its translations
will constitute the building blocks of our construction.

As far as the asymptotic behavior of w at infinity is concerned, it is known that
there exists a constant cN,p > 0, only depending on N and p, such that

(1.10) lim
r→∞

er r
N−1

2 w = cN,p > 0, and lim
r→∞

w′

w
= −1,

where we have set r := |x|. Of importance to us will be the interaction function Ψ
defined by

(1.11) Ψ(s) := −
∫
RN

w(· − s e) div(wp e) dx,

where e ∈ RN is any unit vector. It is known (see Lemma 5.1) that

Ψ(s) = CN,p e
−s s−

N−1
2 (1 +O(s−1)) as s→∞,

where the constant CN,p > 0 only depends on N and p. Similar estimates hold for
the derivatives of Ψ and in particular, we have

(1.12) −(log Ψ)′(s) = 1 +
N − 1

2 s
+O(s−2) as s→∞.

Finally, the solution w is nondegenerate in the sense defined in (1.3) (we refer the
reader to [15] for a proof of this fact).
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Recall that being nondegenerate is equivalent to the fact that the L∞-kernel of the
operator

(1.13) L0 := ∆− 1 + pwp−1,

which is nothing but the linearized operator about w, is spanned by the functions

(1.14) ∂x1
w, . . . , ∂xNw,

which naturally belong to this space. This nondegeneracy property will be crucial in
our construction.

As already mentioned, the solutions we construct are invariant under a large group
of symmetries. More precisely, they will enjoy the following invariance :

(1.15) u(x) = u(Rx), for all R ∈ {I2} ×O(N − 2),

also

(1.16) u(Rk x) = u(x) and u(Γx) = u(x),

where Rk ∈ O(2) × {IN−2} is the rotation of angle 2π
k in the (x1, x2)-plane and

Γ ∈ O(2)× {IN−2} is the symmetry with respect to the hyperplane x2 = 0. Here In
denotes the identity in Rn.

The solutions of (1.8) we construct are small perturbations of the sum of copies of
±w, centered at carefully chosen points in R2 × {0} ⊂ RN . Let us now give a precise
description of these points. We fix an integer k ≥ 7, which will define the dihedral
group we are working with, and we assume that we are given m,n two positive integers
and `, ¯̀ two positive real numbers related by

(1.17)
(

2 sin
π

k

)
m` = (2n− 1) ¯̀.

The canonical basis of RN will be denoted by

e1 := (1, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0) . . . eN := (0, . . . , 0, 1).

We consider the inner polygon which is the regular polygon in R2×{0} ⊂ RN whose
vertices are given by the orbit of the point

(1.18) ẙ1 :=
¯̀

2 sin π
k

e1 ∈ RN ,

under the action of the group generated by Rk. By construction, the edges of this
polygon have length ¯̀.

We now define the outer polygon which is a regular polygon whose vertices are the
orbit of the point

(1.19) ẙm+1 := ẙ1 +m` e1,

under the group generated by Rk. Observe that, the distance from ẙm+1 to the origin

is given by m` +
¯̀

2 sin π
k

and, thanks to (1.17), the edges of the outer polygon have

length 2n ¯̀.
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By construction, the distance between the points ẙ1 and ẙm+1 is equal to m` and
we will denote by ẙj , for j = 2, . . . ,m the points evenly distributed on the segment
between these two points. Namely

(1.20) ẙj := ẙ1 + (j − 1) ` e1 for j = 1, . . . ,m.

As already mentioned, the edges of the outer polygon have length 2n ¯̀ and hence,
the distance between the points ẙm+1 and Rk ẙm+1 is equal to 2n ¯̀. Again we dis-
tribute evenly points z̊h, h = 1, . . . , 2n− 1, along this segment. More precisely, if we
define

(1.21) t := − sin
π

k
e1 + cos

π

k
e2 ∈ RN ,

then the points z̊h are given by

(1.22) z̊h := ẙm+1 + h ¯̀t for h = 1, . . . , 2n− 1.

Observe that, by construction

Rk ẙm+1 = ẙm+1 + 2n ¯̀t.

Remark 1.1. — In the general case, namely when the nonlinearity is not odd and
hence w1 6= w2, some changes are needed in the definitions of the inner and outer
polygons. In the construction of the inner polygon, ¯̀ used in (1.18) has to be replaced
by ¯̀′ which is defined in terms of ` by the second equation in (1.7) and ¯̀ which is
used to define the outer polygon is defined by the first equation. Finally, (1.17) which
relates `, ¯̀ and ¯̀′, has to be replaced by(

2 sin
π

k

)
m` = 2n ¯̀− ¯̀′.

The solutions we construct will be perturbations of the function Ů which is the
sum of positive copies of w centered at the points ẙj , for j = 1, . . . ,m + 1, together
with their images by the rotations Rik = Rk ◦ . . . ◦ Rk (composition of Rk, i times),
for i = 1, . . . , k − 1, and copies of (−1)h w (hence with alternating sign) centered at
the points z̊h, for h = 1, . . . , 2n − 1, together with their images by the rotations Rik,
for i = 1, . . . , k − 1. To be more specific, we define

(1.23) Ů :=

k−1∑
i=0

m+1∑
j=1

w(· −Rik ẙj) +

2n−1∑
h=1

(−1)hw(· −Rik z̊h)

 .

So far, the approximate solution Ů depends on two discrete parameters (the integers
m and n) and two continuous parameters (the positive reals ` and ¯̀) which are related

by (1.17). It should be clear from the construction that the function Ů we have
constructed is invariant under the action of Dk ×O(N − 2). Moreover, (1.17) is just
a translation of the fact that the length of the rays and the length of the edges of the
outer regular polygon are related. The construction of the approximate solution Ů
also depends on the parameter k which defines the dihedral group under the action
of which our solution will be invariant. The constraint k ≥ 7 has a purely geometric
origin, roughly speaking, we need π

2 −
π
k , which is the angle at ẙm+1 between the edge
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of the outer regular polygon and the ray joining this vertex to the origin, to be larger
than π

3 . Hence
π

2
− π

k
>
π

3
.

In turn, this last condition steams from the maximal number of non overlapping disks
of radius 1 which are tangent to a given disc of radius 1 in the plane. As we will see

¯̀= `+O(1).

Now, let us analyze more carefully the situation at the point ẙm+1. When k ≤ 6, the
angle π

2 −
π
k <

π
3 and hence the copies of w centered at the points ẙm and z̊1 interact

too much to consider that Ů is a good approximate solution to our problem, this is
just a consequence of the fact that the distance between ẙm and z̊1 can be estimated
by

2 ` sin
(π

4
− π

2k

)
< `+O(1),

when ` tends to infinity. Therefore, when assuming that k ≥ 7, we ask that the closest
neighbors of the point ẙm are ẙm, z̊1 and R−1

k z̊2n−1. Similarly, we ask that the closest
neighbors of the point z̊1 are ẙm+1 and z̊2. A similar analysis can be carried over at
the point ẙ1 and one can check that, when assuming that k ≥ 7, we ask that the
closest neighbors of the point ẙ1 are ẙ2, Ry ẙ1 and R−1

k ẙ1.
We now assume that the integer k ≥ 7 is fixed, that m,n are two positive integers

and `, ¯̀ are two positive real numbers satisfying (1.17). We now further assume that
` and ¯̀ are related by

(1.24) Ψ(`) =
(

2 sin
π

k

)
Ψ(¯̀),

where Ψ is the function defined in (1.11). The origin of this second constraint on
the choice of the parameters is not obvious at all. It can either be understood as a
balancing condition which is a consequence of a conservation law for solutions of (1.8)
(corresponding to the well known balancing formula in the framework of constant
mean curvature surfaces) or it can be understood as a condition which will ensure
that the approximate solution we consider is, in a sense to be made precise, very close
to a genuine solution of (1.8) (we refer to §5 where this second equation will arise and
to the Appendix, where some formal justification of this constraint will be given).

Then, Theorem 1.1 is a direct consequence of the following result :

Theorem 1.2. — Assume that the integer k ≥ 7 and the real number A > 0 are
fixed. There exists a positive constant `0 > 0 such that, for all ` ≥ `0, if ¯̀ is the
solution of

(1.25) Ψ(`) =
(

2 sin
π

k

)
Ψ(¯̀),

if n,m are positive integers satisfying

(1.26)
(

2 sin
π

k

)
m` = (2n− 1) ¯̀,

and if

m ≤ `A,
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then (1.8) has a sign changing solution u which satisfies the symmetry conditions
given in (1.15) and (1.16). Moreover

(1.27) u = Ů + o(1),

where o(1)→ 0 uniformly in RN as `→∞, and the energy of u is finite and can be
expanded as

(1.28) E (u) = k (m+ 2n) E (w) + o(1),

where o(1)→ 0 as `→∞.

Remark 1.2. — The condition m ≤ `A is purely technical and is a drawback of our
proof. In fact, going carefully through the last arguments of the proof, it is clear that
this condition can already be weakened to handle the cases where

m ≤ eA`,
for some fixed A > 0, chosen small enough. What is more, we are convinced that
this condition can be completely removed by choosing different weighted norms on the
spaces of functions we are considering (see [8] and [9]). Since this would enlarge
considerably the size of the paper, we have chosen not to follow this route.

Observe that, once ` is fixed large enough, the constant ¯̀ is given uniquely by
(1.25). Therefore, the existence of solutions of (1.8) depends on our ability to solve
(1.26) for some integers m,n. Indeed, it follows from (1.25) that ¯̀ is implicitly given
as a function of ` (provided this later is large enough) and that it can be expanded,
in powers of `, as

(1.29) ¯̀= `+ ln
(

2 sin
π

k

)
+O(`−1),

as ` tends to∞. Inserting this information back into (1.26), we find using Lemma 5.1,
that (1.26) reduces to

(1.30)
2n− 1

m
= 2 sin

π

k

(
1− ln

(
2 sin

π

k

)
`−1 +O(`−2)

)
.

We are now in a position to give examples of such solutions. Certainly, for any
integer m ≥ 1, one can choose n ∈ N such that

(1.31) 1 ≤ 2n− 1−
(

2 sin
π

k

)
m < 3.

Then, provided m is chosen large enough, there will exist a unique ` > `0 satisfying
(1.26) and (1.31), together with (1.30), implies that there exist positive constants
C1 < C2 such that

(1.32) C1m ≤ ` ≤ C2m.

Theorem 1.2 then ensures the existence of solutions of (1.8) for each such a choice of
the integer m.

To complete the description of our construction, let us briefly comment on the
relation between this result and the corresponding construction for constant mean
curvature surfaces in Euclidean 3-space. As already mentioned, the construction
in the present paper follows very closely a similar construction of compact constant
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mean curvature surfaces given in [9]. In this framework one tries to construct compact
constant mean curvature surfaces in Euclidean 3-space by connecting together spheres
of radius 1 which are tangent. In the initial configuration, the center of the spheres
can be arranged along the edges of a very large regular polygon and also along the rays
joining the center to the vertices of the polygon. It is proven in [9] that a perturbation
argument can be applied and, as a result, a compact constant mean curvature surface
is obtained (provided the size of the polygon is large enough). This surface can be
constructed in such a way that the pieces which are close to the rays joining the origin
to the vertices are embedded and close to embedded constant mean curvature surfaces
which are known as undulöıds, while the pieces which are close to the edges of the
regular polygon are immersed constant mean surfaces which are close to nodöıds (in
our framework, this corresponds to the fact that we arrange solutions with the same
sign along the rays joining the origin to the vertices of the polygon and solutions with
alternative sign along the edges of the polygon). A similar construction has also been
obtained by Jleli and Pacard in [8].

Remark 1.3. — For the sake of simplicity, we have chosen to present the proof of
the existence of solutions which are invariant under the action of a rather large group
of symmetry. However, a more general construction (i.e. leading to solutions of (1.8)
having less symmetry) can be obtained as is the case for constant mean curvature
surfaces [9], we shall address this problem in a forthcoming paper.

In the next section, we describe more carefully the solution predicted in the above
Theorem and we give an overview of the proof and of the plan of the paper.

Acknowledgments : The authors would like to thank the referee for valuable
comments which help improving some of the arguments of the paper.

2. Ansatz and sketch of the proof

We construct a finite dimensional family of approximate solutions of (1.8) which are

close to Ů and depend on 2n+m parameters which we now define. These approximate
solutions are in fact equal to Ů when all the parameters are set to 0. This time, instead
of centering the copies of ±w at the points ẙj , z̊h as well as at their images by the
rotations Rik, for i = 1, . . . , k − 1, we center the copies of ±w at points which are
small perturbations of the points ẙj , z̊h. To make this precise, we define

(2.1) yj := ẙj + αj e1, for j = 1, . . . ,m+ 1,

and

(2.2) zh := z̊h + βh t + ¯̀γh n, for h = 1, . . . , 2n− 1,

where ¯̀ has been defined in (1.24), t has been defined in (1.21) and

n := cos
π

k
e1 + sin

π

k
e2.

Observe that, since we assume that our construction is invariant under the dihedral
group of symmetry generated by Γ and Rk (see (1.16), the points zh and z2n−h are
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related by

z2n−h = Rk(Γ zh),

for all h = 1, . . . , n. In other words, if we rotate by the rotation Rk the point obtained
by reflecting zh with respect to the plane x2 = 0 we get z2n−h. Since Rk(Γ t) = −t
and Rk(Γ n) = n, this implies that we necessarily have

(2.3) βh = −β2n−h and γh = γ2n−h,

for h = 1, . . . , n and in particular βn = 0. We thus conclude that there are only
2n+m free parameters.

We will assume that the parameters which appear in the definition of both yj and
zh satisfy

(2.4)

|αj | ≤ 1, for j = 1, . . . ,m+ 1

|βh| ≤ 1, for h = 1, . . . , n− 1

` |γh| ≤ 1, for h = 1, . . . , n.

In these inequalities, the constant 1 is arbitrary and can be replaced by any positive
constant.

The set of points where the copies of w will be centered is now given by

(2.5) Π :=

k−1⋃
i=0

(
{Rik yj : j = 1, . . . ,m+ 1} ∪ {Rik zh : h = 1, . . . , 2n− 1}

)
,

and we now look for a solution of (1.8) of the form u = U + φ, where

(2.6) U(x) :=

k−1∑
i=0

m+1∑
j=1

w(x−Rik yj) +

2n−1∑
h=1

(−1)hw(x−Rik zh)

 .

Observe that, by construction, the function U satisfies the symmetry assumption
(1.15) and (1.16). We define

(2.7) L := ∆− 1 + p |U |p−1,

(2.8) E := |U |p−1 U −
k−1∑
i=0

m+1∑
j=1

wp(· −Rik yj) +

2n−1∑
h=1

(−1)hwp(· −Rik zh)

 ,

and

(2.9) Q(φ) := |U + φ|p−1(U + φ)− |U |p−1U − p |U |p−1 φ.

Observe that both E and Q depend implicitly on the parameters αj , βh and γh even
though this is not apparent in the notations. With these notations, the solvability of
(1.8) reduces to find parameters αj , βh and γh and a function φ which are solutions
of the nonlinear problem

(2.10) Lφ+ E +Q(φ) = 0,

in RN and which tends to 0 as |x| tends to ∞.
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Remark 2.1. — We will solve (2.10) in the class of functions φ satisfying (1.15)
and (1.16). Therefore, from now on, we always assume that all the functions we
consider satisfy (1.15) and (1.16) without further mentioning it.

In order to solve this highly nonlinear problem, we apply a Liapunov-Schmidt type
reduction argument : first, we solve a projected problem which allows one to reduce
the solvability of (2.10) to the solvability of some finite dimensional nonlinear system
(called the reduced problem), then, in a second step, we will explain how to solve the
reduced problem.

To proceed, we assume that the real numbers `, ¯̀ are chosen so that (1.24) holds
and that integers n and m satisfy (1.17). We consider a cut off function χ ∈ C∞(R)
such that

(2.11)

{
χ(s) ≡ 1 for s ≤ −1,

χ(s) ≡ 0 for s ≥ 0.

We fix a constant ζ > 0 (independent of ` and the choice of the parameters αj , βh and

γh satisfying the constraints (2.4)) so that the balls of radius `−ζ
2 , centered at different

points of Π are mutually disjoint, for all ` large enough. This is possible thanks to
(1.29) and our geometric assumption (namely k ≥ 7) which implies that the minimum
distance between two different points of Π is bounded from below by `− ζ0 for some
constant ζ0 > 0 independent of ` large enough (say ` ≥ `0). Observe that, when
k ≤ 6 the distance between ym and z1 can be evaluated by 2 sin(π4 −

π
2k ) `+O(1), as

` tends to ∞ and therefore a proper choice of ζ would not have been possible in this
case since 2 sin(π4 −

π
2k ) < 1. We define the compactly supported vector field

(2.12) Ξ(x) := χ (2 |x| − `+ ζ) ∇w(x).

Observe that, by construction (in fact given the choice of ζ), we have, for all y, z ∈ Π

(2.13)

∫
RN

(ei · Ξ(· − y)) (ej · Ξ(· − z)) dx = 0,

if i 6= j or if y 6= z.
It will be convenient to define the function

(2.14) M(c, d) :=

k−1∑
i=0

m+1∑
j=1

Rik cj · Ξ(· −Rik yj) +

2n−1∑
h=1

Rik dh · Ξ(· −Rik zh)

 ,

as well as the operator

(2.15) L(φ, c, d) := Lφ+M(c, d),

where φ is a function defined on RN , the (m+ 1)-tuple

c := (c1, . . . , cm+1) ∈ (R e1)m+1,

and the (2n− 1)-tuple

d := (d1, . . . , d2n−1) ∈ (R e1 ⊕ R e2)2n−1.
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Observe that, given the symmetries we impose to all the functions we deal with (see
Remark 2.1), the function M(c, d) has to be invariant under the action of both Rk
and Γ and this implies that, for h = 1, . . . , n, the vectors dh and d2n−h are related by

d2n−h = Rk(Γ dh),

and hence d2n−h can be expressed in terms of dh as

d2n−h = −(dh · t) t + (dh · n) n.

In the next section, we will define suitable function spaces in which the equation

(2.16) L (φ, c, d) = h,

in RN , admits a solution which tends to 0 as |x| tends to ∞ and which satisfies the
orthogonality condition

(2.17)

∫
RN

φ e1 · Ξ(· − yj) dx = 0,

for j = 1, . . . ,m+ 1, and

(2.18)

∫
RN

φ ei · Ξ(· − zh) dx = 0,

for h = 1, . . . , n and i = 1, 2. Again, given the symmetries we impose to all the
functions we deal with (see Remark 2.1), a function φ satisfies (2.17) and (2.18) if
and only if it satisfies

(2.19)

∫
RN

φ ei · Ξ(· − y) dx = 0,

for all i = 1, . . . , N and all y ∈ Π.
In order to study the operator L, the key idea is that the linear operator L is close

to be the sum of many copies of

L0 = ∆− 1 + pwp−1,

centered at the points of Π and we take advantage from the fact that the invertibility
of L0 is well understood.

Once the linear theory is understood, we will consider the following nonlinear pro-
jected problem : given the points yj and zh defined in (2.1), (2.2) and satisfying (2.4),
find a function φ, satisfying the symmetry assumptions (1.15), (1.16), the orthogonal-
ity conditions (2.17) and (2.18) and tending to 0 as |x| tends to ∞ and find vectors
cj , dh such that

(2.20) L (φ, c, d) + E +Q(φ) = 0,

in RN .
In the next sections, we show unique solvability of (2.20) by means of a fixed point

argument and we prove that the solution φ depends continuously (and in fact, with
more work one can prove that the solution φ depends smoothly on the points yj and
zh). To achieve this, we first study the solvability of a linear problem and then apply
some standard fixed point theorem for contraction mapping to solve the nonlinear
problem.
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3. Linear theory

The main result of this section is concerned with the solvability of (2.16), uniformly
in `, as ` tends to ∞, and also in the parameters αj , βh and γh satisfying the con-
straints (2.4). We henceforth assume that the real numbers `, ¯̀ are chosen so that
(1.24) holds and that integers n and m satisfy (1.17). In particular,

¯̀= `+O(1).

We prove that, provided ` is large enough, the linear operator L defined in the previous
section in (2.15) has nice mapping properties.

Given η < 0, we consider the weighted norm

(3.1) ‖h‖∗ := sup
x∈RN

∣∣∣∣∣∣∣
∑
y∈Π

eη |x−y|

−1

h(x)

∣∣∣∣∣∣∣ ,
where we recall that the set of points Π was defined in (2.5).

With this definition at hand, we prove the following a priori estimate :

Lemma 3.1. — Assume that η < 0 is fixed. There exist `0 > 0, δ0 > 0 and C > 0
(all depending on the choice of η) such that, for all ` > `0, the following inequality
holds

sup
i=1,...,m+1

|ci|+ sup
h=1,...,n

|dh| ≤ C
(
‖L(φ, c, d)‖∗ + e−δ0` ‖φ‖∗

)
.

Observe that the estimate does not depend on n and m, nor on ` provided this
latter is chosen large enough. further observe that

sup
h=1,...,n

|dh| = sup
h=1,...,2n−1

|dh|,

since d2n−h = dh, for h = 1, . . . , n.

Proof. — Let us give a detailed proof of the estimate of the coefficient c1. We start
with the definition of L given in (2.15) which we multiply by e1 · Ξ(· − y1). Using
some integration by parts together with (2.13), we obtain

c1 · e1

∫
RN

(e1 · Ξ(· − y1))2 dx =

∫
RN
L(φ, c, d) (e1 · Ξ(· − y1)) dx

−
∫
RN

φL (e1 · Ξ(· − y1)) dx.

Obviously,

lim
`→∞

∫
RN

(e1 · Ξ(· − y1))2 dx =
1

N

∫
RN
|∇w|2 dx,

therefore ∫
RN

(e1 · Ξ(· − y1))2 dx ≥ C0 > 0,
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for all ` large enough (say ` > `0). Thanks to (1.10), we know that |Ξ| is bounded
and hence we can estimate∣∣∣∣∫

RN
L(φ, c, d) (e1 · Ξ(· − y1)) dx

∣∣∣∣ ≤ C ‖L(φ, c, d)‖∗,

provided ` > `0. Finally, since

L0(e1 · ∇w) =
(
∆− 1 + pwp−1

)
(e1 · ∇w) = 0,

we can write

L (e1 · Ξ(· − y1)) = L (e1 · Ξ(· − y1))− L0(e1 · ∇w(· − y1))

and, using this, it is easy to check that there exists a constant C > 0 and δ0 > 0 such
that ∣∣∣∣∫

RN
φL (e1 · Ξ(· − y1)) dx

∣∣∣∣ ≤ C e−δ0` ‖φ‖∗,
where δ0 > 0 depends on η < 0. To obtain the last estimate, two different effects have
to be taken into account : the first one is the effect of the Laplace operator on the
cutoff function χ which is used to define Ξ and the second one is the difference between
the two potentials p |U |p−1 and pwp−1 which appear respectively in the definition of
L and L0. The proof of the estimate for c1 follows at once from the above estimates.
A similar proof holds for the estimates of any cj and any dh. We leave the details to
the reader.

Thanks to the previous estimate, we can prove the following :

Proposition 3.1. — Assume that η ∈ (−1, 0) is fixed. There exist `0 > 0 and C > 0
such that, for all ` > `0, the following inequality holds

(3.2) ‖φ‖∗ ≤ C ‖L(φ, c, d)‖∗,
provided φ satisfies (2.17) and (2.18).

Again, it is worth mentioning that the estimate does not depend on n and m, nor
on ` provided this latter is chosen large enough.

Proof. — To begin with, we make use of the result of the previous Lemma together
with the fact that |Ξ| is bounded by a constant times e−|x|. This later fact follows at
once from (1.10). Since we assume that η ∈ (−1, 0), we conclude that
(3.3)

‖M(c, d)‖∗ ≤ C

(
sup

i=1,...,m+1
|ci|+ sup

h=1,...,n
|dh|

)
≤ C

(
‖L(φ, c, d)‖∗ + e−δ0` ‖φ‖∗

)
,

for some constant C > 0, which does not depend on ` > `0.
It is easy to check that the function

W :=
∑
y∈Π

eη |·−y|,

satisfies

LW ≤ − (1− η2)

2
W,
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in RN \ ∪y∈ΠB(y, ρ) provided ρ is fixed large enough (independently of ` ≥ `0).
Indeed, for all y ∈ Π, we can write

Leη|x−y| = −
(

1− η2 − N − 1

|x− y|
η − p |U |p−1

)
eη|x−y| ≤ − (1− η2)

2
eη|x−y|,

provided dist(x,Π) is large enough, since |U |p−1 tends to 0 away from the points of
Π.

Making use of the fact that that η ∈ (−1, 0) together with the maximum principle,
we conclude that the function W can be used as a barrier to prove the pointwise
estimate

(3.4) |φ|(x) ≤ C
(
‖Lφ‖∗ + sup

y∈Π
‖φ‖L∞(∂B(y,ρ))

)
W (x),

for all x ∈ RN \ ∪y∈ΠB(y, ρ).
Granted this preliminary estimate, the proof of the result goes by contradiction.

Let us assume there exist a sequence of ` tending to ∞ and a sequence of solutions of
(2.16) for which the inequality is not true. The problem being linear, we can reduce
to the case where we have a sequence `(i) tending to ∞ and sequences φ(i), c(i), d(i)

such that

‖L(φ(i), c(i), d(i))‖∗ −→ 0, and ‖φ(i)‖∗ = 1.

But (3.3) implies that we also have ‖M(c(i), d(i))‖∗ −→ 0 and hence

‖Lφ(i)‖∗ −→ 0.

Then, (3.4) implies that there exists y(i) ∈ Π such that

(3.5) ‖φ(i)‖L∞(B(y(i),ρ)) ≥ C,

for some fixed constant C > 0. Using elliptic estimates together with Ascoli-Arzela’s
theorem, we can find a sequence y(i) and we can extract, from the sequence φ(i)(·−y(i))
a subsequence which converges (uniformly on compact sets) to φ∞ which is a solution
of (

∆− 1 + pwp−1
)
φ∞ = 0,

in RN and which is bounded by a constant times eη |x|, with η < 0. Moreover, recall
that φ(i) satisfies the orthogonality conditions (2.17) and (2.18) and also satisfies
some symmetry properties which are described in Remark 2.1 (and in particular, this
implies that φ(i) satisfies (2.19)). Using this and passing to the limit, one checks that
the limit function φ∞ also satisfies∫

RN
φ∞ ∂xjw dx = 0,

for j = 1, . . . , N . But the solution w being non degenerate, this implies that φ∞ ≡ 0,
which is certainly in contradiction with (3.5), which implies that φ∞ is not identically
equal to 0.

Having reached a contradiction, this completes the proof of the Proposition.

We are now in a position to prove the main result of this section :
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Proposition 3.2. — Assume that η ∈ (−1, 0) is fixed. There exist `0 > 0 and C > 0
such that, for all ` > `0, and for all h ∈ L∞(RN ) satisfying ‖h‖∗ <∞, there exists a
unique triple (φ, c, d) solution of

L (φ, c, d) = h,

in RN , such that φ satisfies (2.17) and (2.18). Moreover

(3.6) sup
i=1,...,m+1

|ci|+ sup
h=1,...,n

|dh|+ ‖φ‖∗ ≤ C ‖h‖∗.

As in the previous results, it is important to notice that the estimate does not
depend on the integers n and m, nor on ` provided this latter is chosen large enough.

Proof. — We consider the Hilbert space

H =

{
φ ∈ H1(RN ) :

∫
RN

φ e · Ξ(· − y) dx = 0, ∀y ∈ Π, ∀e ∈ RN , |e| = 1

}
,

and, as usual, we also assume that the functions enjoy the symmetries described in
Remark 2.1.

Assume that we are given h ∈ L2(RN ). Standard arguments (i.e. Lax-Milgram’s
Theorem) imply that

φ ∈ H 7−→ 1

2

∫
RN

(|∇φ|2 + φ2) dx+

∫
RN

φh dx,

has a unique minimizer φ ∈ H (here we implicitly use the fact that η < 0 so that
the last term is a continuous linear functional defined in H). Then, φ is the unique a
weak solution of

∆φ− φ− h ∈ Span

{
k−1∑
i=0

Rike1 · Ξ(· −Rikyj) : j = 1, . . . ,m+ 1

}
⊕

Span

{
k−1∑
i=0

Rikej · Ξ(· −Rikzh) : j = 1, 2 , h = 1, . . . , n

}
,

which belongs to H. In other words, if we define the operator

L0(φ, c, d) := ∆φ− φ+M(c, d),

we have uniquely solved

L0(φ, c, d) = h,

for φ ∈ H, cj ∈ R e1 and dh ∈ Re1 ⊕ Re2. Thanks to the above arguments

L−1
0 : L2(RN ) 7−→ H× (R e1)m+1 × (R e1 ⊕ R e2)2n−1,

is well defined.
The solvability of

L(φ, c, d) = h,

in H× (R e1)m+1× (R e1⊕R e2)2n−1 can then by rephrased in the invertibility of the
operator I +K, where by definition

(3.7) K(φ, c, d) := L−1
0 (p |U |p−1 φ).
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Using the fact that U decays exponentially at∞, it is easy to check that the operator
K is compact, hence the invertibility of (3.7) follows from the application of Fredholm
theory. Injectivity follows from the results of Proposition 3.1 and Lemma 3.1. Fred-
holm alternative implies that I +K is therefore an isomorphism provided ` is chosen
large enough.

So far, we have obtained a function φ solution of Lφ+M(c, d) = h which belongs
to H1(RN ) but elliptic regularity implies that φ ∈ L∞(RN ). This completes the proof
of the existence of the solution. The uniqueness and the corresponding estimate follow
at once from the result of Proposition 3.1 and Lemma 3.1.

4. The non linear projected problem

We keep the notations and assumptions of the previous sections. In this section,
we prove that we can apply some fixed point theorem for contraction mapping to
solve the nonlinear problem

(4.1) L(φ, c, d) + E +Q(φ) = 0,

in RN , provided the parameter ` is chosen large enough. This is the content of the
following :

Proposition 4.1. — Assume that η ∈ (−1, 0) is fixed. Then, there exist `0 > 0
and C > 0 such that, for all ` ≥ `0, there exists a solution (φ, c, d) to problem (4.1)
such that φ satisfies (2.17) and (2.18). This solution depends continuously on the
parameters of the construction (namely αj, βh and γh) and satisfies

(4.2) sup
i=1,...,m+1

|ci|+ sup
h=1,...,n

|dh|+ ‖φ‖∗ ≤ C e−δ1 `,

where δ1 = min(1, p+η2 ).

Before we proceed with the proof of this result, let us briefly comment on the
value of the constant δ1. Observe that, given p > 1 it is always possible to choose
η ∈ (−1, 0) such that

p+ η > 1,

and hence, δ1 >
1
2 for this choice. We shall assume from now on that η is chosen so

that δ1 >
1
2 .

Proof. — The proof relies on a classical fixed point argument for contraction mapping
together with the estimates we now derive. All constants (Cj or C) below do not
depend on ` provided ` is chosen large enough). First of all, it is easy to check that
there exists C0 > 0 such that

‖E‖∗ ≤ C0

(
e−` + e−

p+η
2 `
)
.

For example, let us assume that we want to estimate E near y1. In the ball of radius
`
2 , centered at y1, one can use the fact that

U = w(· − y1) +O(`
1−N

2 e|·−y1|−`)
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to expand E as

|E| =
∣∣∣(w(· − y1) +O(`

1−N
2 e|·−y1|−`)

)p
− wp(· − y1) +O(`p

1−N
2 ep(|·−y1|−`))

∣∣∣
≤ C e(2−p)|·−y1|−`

≤ C
(
e−` + e−

p+η
2 `
)
eη |·−y1|

≤ C
(
e−` + e−

p+η
2 `
) ∑
y∈Π

eη |·−y|.

Away from the balls of radius `
2 centered at the points of Π, we take advantage from

the fact that U decays exponentially to prove that

|E| ≤ C
∑
y∈Π

e−p |·−y| ≤ C e−
p+η
2 `

∑
y∈Π

eη |·−y|.

The estimate for E then follows at once.
We chose δ1 = min(1, p+η2 ) and we set

C1 :=
4C0

‖L−1‖
.

where L−1 is the inverse of L which has been obtained in Proposition 3.2. Taylor’s
expansion implies that there exist δ2 > 0 and C2 > 0 such that

‖Q(φ1)−Q(φ2)‖∗ ≤ C2 e
−δ2 ` ‖φ1 − φ2‖∗,

for all φ1, φ2 satisfiying ‖φj‖∗ ≤ C1 e
−δ1 `. Some care is needed to derive the last

estimate. Essentially, the estimate follows from the observation that either one tries
to get the estimate at a point where |φ1| + |φ2| ≤ |U |/2, in which case one can use
the inequality

|Q(φ2)−Q(φ1)| ≤ C |U |p−2 (|φ1|+ |φ2|) |φ2 − φ1|,
or one tries to get the estimate at a point where |φ1| + |φ1| ≥ |U |/2, in which case
one can use the inequality

|Q(φ2)−Q(φ1)| ≤ C (|φ1|p−1 + |φ2|p−1)|φ2 − φ1|.
We leave the details to the reader.

The result of Proposition 3.2 allows one to rewrite (4.1) as a fixed point problem

(φ, c, d) = −L−1 (E +Q(φ)) .

Provided ` is chosen large enough, the above estimates readily yield the existence of a
unique fixed point in the ball of radius C1 e

−δ1 ` in the space L∞∗ (RN )× (R e1)m+1 ×
(R e1 ⊕ R e2)2n−1, where

L∞∗ (RN ) := {φ ∈ L∞(RN ) : ‖φ‖∗ <∞},
which is endowed with the norm ‖ · ‖∗ and (R e1)m+1 and (R e1 ⊕ R e2)2n−1 are
endowed with the natural norms, namely

‖c‖ := sup
j=1,...,m+1

|cj |,
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and

‖d‖ := sup
h=1,...,n

|dh| = sup
h=1,...,2n−1

|dh|.

This completes the proof of the existence of a solution of (4.1).
Observe that elliptic estimates imply that the solution we have obtained also sat-

isfies

(4.3) ‖φ‖∗ + ‖∇φ‖∗ + ‖∇2φ‖∗ ≤ C3 e
−δ1`,

for some constant C3 > 0.
It remains to check that the solution we have obtained depends continuously on

the parameters of our construction, namely the parameters αj , δh and γh. Usually,
verifying this property is stadard but here, some care is due since the dependence of
the nonlinear operator on the parameters is quite intricate and not explicit. Indeed,
the parameters appear in the definition of L and also in the definition of the function
space H and hence they implicitly appear in the construction of L−1.

Now, assume that we have two solutions corresponding to two sets of parameters.
Say

Lφ+M(c, d) + E +Q(φ) = 0,

corresponding to the points yj and zh and

L̇ φ̇+ Ṁ(ċ, ḋ) + Ė + Q̇(φ̇) = 0,

corresponding to the points ẏj and żh (we will adorn all functions and operators with

a ˙ when they correspond to the points ẏj and żh). Observe that, by construction, φ̇

is L2-orthogonal to ej · Ξ̇ while φ is L2-orthogonal to ej ·Ξ. First, we choose γ and δ
so that

˙̄φ := φ̇−M(γ, δ) ,

satisfies the same orthogonality condition as the function φ (namely, such that it is a

function L2-orthogonal to Ξ). Then, we rewrite the equation satisfied by φ̇ as

L ˙̄φ+M(ċ, ḋ) + (L̇− L) φ̇+ L(M(γ, δ)) + (Ṁ(ċ, ḋ)−M(ċ, ḋ)) + Ė + Q̇(φ̇) = 0.

Taking the difference with the first equation, we get

L (φ− ˙̄φ, c− ċ, d− ḋ) = (L̇− L) φ̇+ L(M(γ, δ)) + (Ṁ(ċ, ḋ)−M(ċ, ḋ))

+ (Ė − E) + (Q̇(φ̇)−Q(φ̇)) + (Q(φ̇)−Q(φ)).

Using the arguments we have already used to prove the existence of a solution together
with (4.3), it is easy to check that there exists δ3 > 0 such that

‖φ− ˙̄φ‖∗ + ‖c− ċ‖+ ‖d− ḋ‖ ≤ C e−δ3 ` (supj |ẏj − yj |+ suph |żh − zh|)

+ C e−δ3 ` (‖γ‖+ ‖δ‖) + C e−δ3` ‖ ˙̄φ− φ‖∗.

Moreover, we also have the estimate

‖γ‖+ ‖δ‖ ≤ C ‖φ‖∗ (sup
j
|ẏj − yj |+ sup

h
|żh − zh|),
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and hence, we conclude that

‖φ− ˙̄φ‖∗ + ‖c− ċ‖+ ‖d− ḋ‖ ≤ C e−δ3 ` (sup
j
|ẏj − yj |+ sup

h
|żh − zh|),

provided ` is chosen large enough. This shows that the solution depends continuously
on the parameters defining the points where the copies of ±w are centered. Indeed,
this even proves that the solution is Lipschitz with respect to these parameters.

Let us summarize what we have obtained so far. Given points yj and zh defined in
(2.1) and (2.2) and satisfying constraint (2.4), the previous Proposition 4.1 guarantees
the existence of a solution (φ, c, d) of (4.1). Moreover, we have some estimate on the
function φ in the L∞-weighted norm ‖ · ‖∗ and classical elliptic regularity theory
implies that these estimates extend to higher derivatives of φ. The function u = U+φ
will then be the solution of (1.8) we are looking for if we can show that there exists
a configuration for the points yj and zh for which the parameters cj and dh are all
equal to zero.

In the next section, we find a precise expansion of the parameters cj and dh in
terms of the free parameters in the construction (namely the parameters αj , βh and
γh which have been used to define the points yj and zh). This expansion is obtained
by projecting, in L2(RN ), the equation (4.1) into the space spanned by ej · Ξ(· − y),
for y ∈ Π and j = 1, . . . , N , as was already done in the proof of Lemma 3.1. We
also explain how to solve the projected problem and this will complete the proof of
Theorem 1.2. Observe that, given the symmetries of the solutions we are looking for,
there are obvious relations between d2n−h and dh, for h = 1, . . . , n. In particular,
dn is colinear to n and, for h = 1, . . . , n − 1, d2n−h can be expressed in terms of dh.
Hence the number of equation we have to solve is equal to 2n+m which is also equal
to the number of free parameters α1, . . . , αm+1, β1, . . . , βn−1 and γ1, . . . , γn, we have
in our construction.

5. Projections of the error and the proof of the Theorem

Again, we keep the notations and assumptions of the previous sections. We further
assume that m (and n) are bounded by a constant times `A for some A > 0.

For all n̄ ≥ 2, we define the following n̄× n̄ matrix

(5.1) T :=



2 −1 0 . . . 0

−1 2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 2 −1
0 . . . 0 −1 2


∈Mn̄×n̄.

In applications, the integer n̄ will be equal to m+ 1, n or n− 1.
It is easy to check that the inverse of T is the matrix whose entries are given by

(T−1) ij = min(i, j)− ij

n̄+ 1
.
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We define the vectors S↓ and S↑ by

(5.2) T S↑ := (1, 0, . . . , 0)t ∈ Rn̄, T S↓ := (0, . . . , 0, 1)t ∈ Rn̄,

where the superscript t is the transpose so that these are identified with column
matrices. We have explicitly

S↑ :=
1

n̄+ 1
(n̄, n̄− 1, . . . , 2, 1)t and S↓ :=

1

n̄+ 1
(1, 2, . . . , n̄− 1, n̄)t.

It will be convenient to adopt the following notations

α := (α1, . . . , αm+1)t,

β := (β1, . . . , βn−1)t

γ := (γ1, . . . , γn)t,

where αj , βh and γh are the parameters involved in the construction of the points yj
and zh which were given in (2.1) and (2.2). As usual, we assume that these parameters
satisfy (2.4).

As in the introduction (see (1.6)), we define the interaction function

(5.3) Ψ(s) := −
∫
RN

w(· − s e) div(wp e) dx

where e ∈ RN is a unit vector. The proof of our result is based on the following key
Lemma :

Lemma 5.1. — There exists a constant CN,p > 0 only depending on N and p such
that, the following expansion holds

Ψ(s) := CN,p e
−s s−

N−1
2 (1 +O(s−1)),

as s > 0 tends to infinity.

The proof of the above result is by now standard, we refer to [14] and [12] for
details.

Finally, we define the numbers

κ := −(log Ψ)′(`), and κ̄ := −(log Ψ)′(¯̀),

as well as

λ1 := 1− 2
κ̄

κ
sin

π

k
and λ2 := 1 +

κ̄

κ
sin

π

k
− ¯̀−1 1

κ
cot

π

k
cos

π

k
.

Observe that all these numbers depend on `, ¯̀,m and n but they converge to limits
as ` tends to infinity. In fact, according to (1.12), we have

lim
`−→∞

κ = lim
`−→∞

κ̄ = 1

and

lim
`−→∞

λ1 = 1− 2 sin
π

k
, and lim

`−→∞
λ1 = 1 + sin

π

k
.

The main result of this section is the proof of the following :
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Proposition 5.1. — Let φ be the solution of (4.1) which has been obtained in Propo-
sition 4.1. The coefficients cj and dh are all equal to 0 if and only if the column vectors
α ∈ Rm+1, β ∈ Rn−1 and γ ∈ Rn are solutions of the following nonlinear system

(5.4)

α = λ1 α1 S
↑ +

(
κ̄

κ
β1 +

1

κ
cot

π

k
γ1 + λ2 αm+1

)
S↓ + e−δ2`Bα +Dα,

β = − sin
π

k
αm+1 S

↑ + e−δ2`Bβ +Dβ ,

¯̀γ = cos
π

k
αm+1 S

↑ + ¯̀γn S
↓ + e−δ2`Bγ +Dγ ,

where δ2 > 0, B• := B•(`,m, n;α, β, γ) and D• := D•(`,m, n;α, β, γ) denote smooth
vector valued functions, whose Taylor expansion in α, β and γ has coefficients which
are uniformly bounded as ` → ∞, provided α, β and γ satisfy (2.4). Moreover, The
Taylor expansions of D• with respect to α, β, γ do not involve any constant nor any
linear term.

The proof of this Proposition relies on the following technical Lemmas. First, using
elementary geometry, we find that :

Lemma 5.2. — The following expansions hold

1

Ψ(`)

∫
RN

Ξ(· − y1)E dx =
(
κ (α2 − α1)− 2 sin

π

k
κ̄ α1

)
e1 + e−δ3`B +D,

and, for j = 2, . . . ,m,

1

Ψ(`)

∫
RN

Ξ(· − yj)E dx = κ (αj−1 − 2αj + αj+1) e1 + e−δ3`B +D,

1

Ψ(`)

∫
RN

Ξ(· − ym+1)E dx =
(
κ (αm − αm+1) + κ̄

(
β1 + sin

π

k
αm+1

)
+ cot

π

k

(
γ1 − ¯̀−1 cos

π

k
αm+1

))
e1 + e−δ3`B +D.

We also have

1

Ψ(¯̀)

∫
RN

Ξ(· − z1)E dx = κ̄
(

2β1 − β2 + sin
π

k
αm+1

)
t

+

(
γ2 − 2 γ1 +

1
¯̀ cos

π

k
αm+1

)
n + e−δ3`B +D,

and

(−1)h

Ψ(¯̀)

∫
RN

Ξ(· − zh)E dx = κ̄ (βh−1 − 2βh + βh+1) t

− (γh−1 − 2γh + γh+1) n + e−δ3`B +D,

for all h = 2, . . . , n− 1, and finally

(−1)n

Ψ(¯̀)

∫
RN

Ξ(· − zn)E dx = 2 (γn − γn−1) n + e−δ3`B +D,
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where δ3 > 0, B = B(`,m, n;α, β, γ) and D = D(`,m, n;α, β, γ) denote smooth vector
valued functions (which vary from line to line), whose Taylor expansion in α, β and
γ has coefficients which are uniformly bounded as `→∞, provided α, β and γ satisfy
(2.4). Moreover, the Taylor expansions of D with respect to α, β, γ do not involve any
constant nor any linear term.

Proof. — Before giving the proofs of the different estimates, we start with some
generalities. Given y ∈ Π, we want to estimate∫

RN
Ξ(· − y)E dx.

Observe that, given the structure of U and the fact that the function w decays expo-
nentially, we can write, using Taylor’s expansion,
(5.5)∫

RN
Ξ(· − y)E dx =

∑
z∈Πy

εz

∫
RN

w(· − z) pwp−1(· − y) Ξ(· − y) dx+ e−δ4`B

=
∑
z∈Πy

εz

∫
RN

w(· − z) pwp−1(· − y)∇w(· − y) dx+ e−δ4`B

= −
∑
z∈Πy

εz Ψ(|z − y|) z − y
|z − y|

+ e−δ4`B,

where B varies from line to line and where Πy is the set of closest neighbors of y in
Π, namely the set of points in Π whose distance from y is equal to ` + O(1). Here
εz = ±1 according to the sign which is used in front of w(· − z) in the definition of U
and δ4 > 1.

Observe that, in our case, if z ∈ Πy, then one can write

z − y = ˜̀e + a

where ˜̀∼ `, e ∈ RN satisfies |e| = 1 and where a ∈ RN is bounded independently of

`. Therefore, we also need an expansion of Ψ(|˜̀e + a|) (˜̀e+a)

|˜̀e+a| as ˜̀ tends to infinity.

Given e ∈ RN with |e| = 1 and a ∈ RN , we can decompose

a = a|| + a⊥,

where a|| is collinear to e and a⊥ is orthogonal to e. We claim that the following
expansion holds

Ψ(|˜̀e + a|) (˜̀e + a)

|˜̀e + a|
= Ψ(˜̀)

(
e− κ̃ a|| + ˜̀−1 a⊥ +O(|a|2)

)
(5.6)

as ˜̀−→∞, where
κ̃ := −(log Ψ)′(˜̀).

This expansion follows at once from the expansion of Ψ. Indeed, we have

|˜̀e + a| = ˜̀
(

1 + ˜̀−1 (e · a) +O(˜̀−2 |a|2)
)
,

and hence
Ψ(|˜̀e + a|) = Ψ(˜̀) + Ψ′(˜̀) e · a + Ψ(˜̀)O(|a|2).
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Similarly, we can expand

(˜̀e + a)

|˜̀e + a|
= ˜̀

(
e− ˜̀−1 (e · a) e + ˜̀−1 a+ O(˜̀−2 |a|2)

)
.

The claim then follows at once.
This expansion, together with (5.5), gives the expansion of∫

RN
Ξ(· − y)E dx,

in terms of the closest neighbors of y. Therefore, to complete the proof of the Lemma,
it is enough to identify, in each case, the closest neighbors of the point y ∈ Π we are
considering.

We recall that Γ denotes the symmetry with respect to the x2 = 0 hyperplane
and Rk is the rotation of angle 2π

k in the (x1, x2)-plane. We now collect a few useful
identities. First, recall that we have defined

(5.7) t := − sin
π

k
e1 + cos

π

k
e2 and n := cos

π

k
e1 + sin

π

k
e2.

It is easy to check that

(5.8) Rk e1 − e1 = 2 sin
π

k
t.

We define

(5.9) t∗ := Γ t and n∗ := Γ n.

Observe that

(5.10) t + t∗ = −2 sin
π

k
e1 and n∗ + n = 2 cos

π

k
e1.

Proof of the first estimate. In Π, the closest neighbors of the point y1 are y2,
Rk y1 and R−1

k y1. It follows from the definition of the points in Π as well as the
definition of ¯̀ given in (1.24) that

y2 − y1 = ` e1 + (α2 − α1) e1, Rk y1 − y1 = ¯̀t + 2 sin
π

k
α1 t,

and

R−1
k y1 − y1 = ¯̀t∗ + 2 sin

π

k
α1 t

∗.

Using the expansion (5.6), we get∫
RN

Ξ(· − y1)E dx = −
(
Ψ(`) e1 + Ψ(¯̀) (t + t∗)

)
+ Ψ(`)κ (α2 − α1) e1

+ Ψ(¯̀) 2 sin π
k κ̄ α1 (t + t∗) + e−δ5`B + Ψ(`)D,

where δ5 > 1. The first estimate in Lemma 5.2 follows from the fact that ` and ¯̀ are
related by (1.24) together with (5.10).
Proof of the second estimate. In Π, the closest neighbors of the point yj are yj−1

and yj+1. Observe that, thanks to the fact that k ≥ 7, the distance between ym and
z1 can be estimated by 2 sin θ ` + O(1) where θ = π

4 −
π
2k > π

6 and hence is much
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larger than `+O(1). Therefore, the closest neighbors of ym are again ym−1 and ym+1.
Since

yj+1 − yj = ` e1 + (αj+1 − αj) e1, and yj−1 − yj = −` e1 + (αj−1 − αj) e1,

we can make use of (5.6) and conclude that∫
RN

Ξ(· − yj)E dx = Ψ(`)κ (αj−1 − 2αj + αj+1) e1 + e−δ5`B + Ψ(`)D,

where δ5 > 1, and this completes the proof of the second estimate.
Proof of the third estimate. The closest neighbors of the point ym+1 in Π are ym,
z1 and R−1

k z2n−1 = Γ z1. We have

ym − ym+1 = −` e1 + (αm − αm+1) e1,

z1 − ym+1 = ¯̀t +
(
β1 + sin

π

k
αm+1

)
t +

(
¯̀γ1 − cos

π

k
αm+1

)
n,

and

Γ z1 − ym+1 = ¯̀t∗ +
(
β1 + sin

π

k
αm+1

)
t∗ +

(
¯̀γ1 − cos

π

k
αm+1

)
n∗.

Making use of (5.6), we get∫
RN

Ξ(· − ym+1)E dx =
(
Ψ(`) e1 + Ψ(¯̀) ( t∗ + t)

)
+ Ψ(`)κ (αm − αm+1) e1

− Ψ(¯̀) κ̄ (β1 + sin π
k αm+1) (t∗ + t)

+ Ψ(¯̀) ( γ1 − ¯̀−1 cos πk αm+1) (n∗ + n)

+ e−δ5`B + Ψ(`)D,

where δ5 > 1. One should be careful that the copies of w come with positive signs at
ym+1 and ym while they come with negative signs at z1 and Γ z1. The formula follows
at once from (5.10).
Proof of the fourth estimate. The closest neighbors of z1 in Π are ym+1 and z2.
We can write

ym+1 − z1 = −¯̀t−
(
β1 + sin

π

k
αm+1

)
t−

(
¯̀γ1 − cos

π

k
αm+1

)
n,

and

z2 − z1 = ¯̀t + (β2 − β1) t + ¯̀(γ2 − γ1) n.

Arguing as above, we get∫
RN

Ξ(· − z1)E dx = Ψ(¯̀) κ̄ (2β1 − β2 + sin
π

k
αm+1) t

+ Ψ(¯̀) (γ2 − 2γ1 + `−1 cos
π

k
αm+1) n

+ e−δ5`B + Ψ(`)D,

where δ5 > 1. Again, one should be careful that the copies of w come with alternative
signs. The proof of the fourth estimate then follows at once.
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Proof of the fifth and sixth estimate. For h = 2, . . . , n, we have

zh−1 − zh = −¯̀t + (βh−1 − βh) t + ¯̀(γh−1 − γh) n,

and

zh+1 − zh = ¯̀t + (βh+1 − βh) t + ¯̀(γh+1 − γh) n.

Applying (5.6), we conclude that

(−1)h
∫
RN

Ξ(· − zh)E dx = Ψ(¯̀) κ̄ (βh−1 − 2βh + βh+1) t

− Ψ(¯̀) (γh−1 − 2γh + γh+1) n

+ e−δ5`B + Ψ(`)D,

where δ5 > 1. Again, one should be careful that the copies of w come with alternative
signs. This completes the proof of the fifth estimate. The sixth estimate follows from
similar considerations.

The next result is easier to get. It reads :

Lemma 5.3. — The following expansions hold∫
RN

Ξ(· − y)Lφdx = Ψ(`) e−δ3`B,

and ∫
RN

Ξ(· − y)Q(φ) dx = Ψ(`) e−δ3`B,

where δ3 > 0 and B = B(`,m, n;α, β, γ) denote smooth vector valued functions (which
vary from line to line), whose Taylor expansion in α, β and γ has coefficients which
are uniformly bounded as `→∞, provided α, β and γ satisfy (2.4)

Proof. — The key point is to prove that both quantities tends to 0 much faster than
e−` as ` tend to infinity. Both estimate rely of the fact that, by construction, the
solution φ defined in Proposition 4.1, satisfies

‖φ‖∗ ≤ C e−δ1 `,

and, as mentioned right after the statement of this Proposition, it is possible to chose
η < 0 in such a way that δ1 >

1
2 .

Now, observe that∫
RN

Ξ(· − y)Lφdx =

∫
RN

φL(Ξ(· − y)) dx.

Taking the above remark under consideration, the proof of the first estimate is follows
the line of the proof of Lemma 3.1.

The proof of the second estimate is easy and follows from the proof of the estimates
in Proposition 4.1. Details are left to the reader.
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Proof of Proposition 5.1. — Recall that, as ` tends to infinity,∫
RN

(ej · Ξ(· − y))(ei · Ξ(· − z)) dx =
1 + o(1)

N

∫
RN
|∇w|2 dx,

if i = j and y = z ∈ Π and is equal to 0 otherwise, as was already mentioned in the
proof of Lemma 3.1.

Now, we use the identity∫
RN

(L(φ, c, d) + E +Q(φ)) (ei · Ξ(· − y)) dx = 0,

so that, thanks to the above remark, all ci and dh are zero, if and only if∫
RN

(Lφ+ E +Q(φ)) (ei · Ξ(· − y)) dx = 0

for all y ∈ Π and all i = 1, . . . , N . Using the previous Lemmas, it is easy to check
that this reduces to the solvability a nonlinear system in α, β and γ which can be
written in the form

2α1 − α2 =
(

1− 2
κ̄

κ
sin

π

k

)
α1 + e−δ3 `B +D

−αj−1 + 2αj − αj+1 = e−δ3 `B +D for j = 2, . . . ,m

−αm + 2αm+1 =
κ̄

κ
β1 +

(
1 +

κ̄

κ
sin

π

k

)
αm+1

+
1

κ
cot

π

k

(
γ1 − ¯̀−1 cos

π

k
αm+1

)
+ e−δ3 `B +D,


2β1 − β2 = − sin

π

k
αm+1 + e−δ3 `B +D

−βh−1 + 2βh − βh+1 = e−δ3 `B +D for h = 2, . . . , n− 2

−βn−2 + 2βn−1 = e−δ3 `B +D,

and 
2 γ1 − γ2 = ¯̀−1 cos

π

k
αm+1 + e−δ3 `B +D

−γh−1 + 2 γh − γh+1 = e−δ3 `B +D for h = 2, . . . , n− 1

−γn−1 + 2 γn = γn + e−δ3 `B +D.

One recognizes immediately the action of matrices of the form T , for n̄ equal to
m+ 1, n− 1 or n, on the left hand side of these equations. This system can then be
put in the desired form using the inverse of the matrices T .

Observe that we implicitly use the fact that the integers n and m are bounded by
`A, for some fixed A > 0 so that the norms of the inverses of the matrices T blow up
at most polynomially in ` and this can easily be absorbed since the error tends to 0
exponentially fast in `.
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We now explain how (5.4) can be solved. We claim that this system is equivalent
to 

α = e−δ̃2`B +D,

β = e−δ̃2`B +D,

γ = e−δ̃2`B +D,

where δ̃2 > 0 and B = B(`,m, n;α, β, γ) and D = D(`,m, n;α, β, γ) satisfy the usual
assumptions.

Observe that the system (5.4) is almost of the correct form. Below, we agree

that both δ̃2 > 0 and the nonlinear functions B = B(`,m, n;α, β, γ) and D =
D(`,m, n;α, β, γ) may change from line to line but they satisfy the usual assump-
tions. In fact, using the second and third equation together with the expression of S↑

and S↓ one checks that γ1, β1 and γn can be expressed in terms of αm+1 and lower
order terms. More precisely, we get

β1 = −n− 1

n
sin

π

k
αm+1 + e−δ̃2`B +D

¯̀γ1 = cos
π

k
αm+1 + e−δ̃2`B +D

¯̀γn = cos
π

k
αm+1 + e−δ̃2`B +D.

Hence we get

κ̄

κ
β1 +

1

κ
cot

π

k
γ1 + λ2 αm+1 =

(
1 +

1

n

κ̄

κ
sin

π

k

)
αm+1 + e−δ̃2`B +D.

Introducing these in the first equation, we are left to solve a coupled system in α1

and αm+1. This system reads
(

1 + 2 (m+ 1)
κ̄

κ
sin

π

k

)
α1 −

(
1 +

1

n

κ̄

κ
sin

π

k

)
αm+1 = e−δ̃2`B +D,

−
(

1− 2
κ̄

κ
sin

π

k

)
α1 +

(
1− 1

n
(m+ 1)

κ̄

κ
sin

π

k

)
αm+1 = e−δ̃2`B +D.

This system can be solved to be put in diagonal form provided D0, the determinant
of the 2 by 2 system on the left had side, is non zero. But, we have

D0 =
κ̄

κ
sin

π

k

m+ 2

n

(
2n− 1− 2m sin

π

k

κ̄

κ

)
.

Using (1.12) together with (1.17), we conclude that

D0 =
κ̄

κ2
sin

π

k

m+ 2

n
(2n− 1)

(
`− ¯̀

`
+O(`−2)

)
,

which, thanks to (1.29), is certainly bounded from below by some constant times m/`
for all ` large enough. This completes the proof of the claim.

It is now straightforward to prove, using Browder’s fixed point theorem, that
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Lemma 5.4. — There exist C > 0 and `0 > 0 such that, for all ` ≥ `0, there exists
a solution of (5.11) such that

‖α‖+ ‖β‖+ ‖γ‖ ≤ C e−δ̃2 `,

where, as usual, the norm of a vector is defined to be the sup norm.

The proof of this last lemma is standard and left to the reader and follows from the
properties of B• and D• in Proposition 5.1. Observe that, with some more care, one
can prove that the solution in Proposition 4.1 depends smoothly on the parameters
and then (increasing the value of `0 if this is necessary) one can use a fixed point
theorem for contraction mapping to prove Lemma 5.4. This has the advantage to
prove some local uniqueness for the solution of (5.11) and in turn, this shows the
unique (local) solvability of the nonlinear equation once the parameters m,n and `, ¯̀

solutions of (1.17) and (1.24) are fixed.
This last result completes the proof of Theorem 1.2.

6. Appendix

To complete the paper, we now explain how to formally justify the constraint we
impose on the choice of the parameters ` and ¯̀. Let us recall that if u is a solution of
(1.8) then

div

(
(a · ∇u)∇u− 1

2
(|∇u|2 + u2) a+

1

p+ 1
|u|p+1 a

)
= 0,

for any fixed vector a ∈ RN (just multiply (1.8) by a · ∇u and use simple manipu-
lations). In particular, the divergence theorem implies that, for any smooth domain
Ω ⊂ RN , the vector

Y (u,Ω) :=

∫
∂Ω

(
(∇u · ν)∇u− 1

2
(|∇u|2 + u2) ν +

1

p+ 1
|u|p+1 ν

)
dσ,

is equal to 0. Here ν is the outside unit vector field to ∂Ω. We hope that a function
of the form

U = w +
∑
i

εi w(· − zi) +O(e−
3`
2 ),

is, in the ball B`/2 of radius `/2 centered at the origin, close to a genuine solution of
(1.8), where εi ∈ {±1} and where the points zi have the property that

|zi| = `+O(1).

If this intuition is correct, then the associated vector Y (U,B`/2) should be reasonably
close to 0 as ` tends to ∞. But, a computation shows that

Y (U,B`/2) =
∑
i

εi Ψ(|zi|)
zi
|zi|

+O(e−δ`),
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for some δ > 1, as ` tends to 0. Therefore, in order for the construction to be
successful, it is reasonable to ask that∑

i

εi Ψ(|zi|)
zi
|zi|

= 0.

This is precisely the balancing condition we were referring to. Applying this to the
approximate solution Ů at the points y1 and ym+1 leads to (1.24).
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