
SUPER-CRITICAL BUBBLING IN ELLIPTIC BOUNDARY
VALUE PROBLEMS

MANUEL DEL PINO AND MONICA MUSSO

1. JNTRODUCTION

The purpose of this note is to review some recent results concerning solv-
ability of semilinear elliptic boundary value problems near the critical ex-
ponent. When the nonlinearity has apower growth, it is well known that
the critical exponent $\frac{N+2}{N-2}$ sets atreshold where the solution set may change
dramatically, and the effect of lower order terms in the nonlinearity $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$

geometry-topology of the domain becomes crucial in the structure of this
set. This has been asubject broadly studied over the last two decades, so
that the results cited here constitute only partial account of progress made.
Highly non-trivial understanding has been obtained on the effect of critical-
ity in nonlinear elliptic problems, however this effect seems to hide many
misterious aspects not yet unveiled, in particular rather little seems to be
known on the structure of solution sets when the power is super-critical.

Let $\Omega$ be abounded domain in $\mathbb{R}^{N}$ , $N\geq 3$ with smooth boundary $\partial\Omega$ . In
what follows we will restrict ourselves to the two classical boundary value
problems,

$\{\begin{array}{l}-\Delta u=u^{q}+\lambda u\mathrm{i}\mathrm{n}\Omega u>0\mathrm{i}\mathrm{n}\Omega u=0\mathrm{o}\mathrm{n}\partial\Omega\end{array}$ (1.1)

and

$\{\begin{array}{l}-d^{2}\Delta u+u=u^{q}u>0\frac{\partial u}{\partial\nu}=0\end{array}$
$\mathrm{o}\mathrm{n}\partial\Omega \mathrm{i}\mathrm{n}\Omega \mathrm{i}\mathrm{n}\Omega$ (1.2)

where $q>1$ . While solvability of these problems is an elementary fact when
$q< \frac{N+2}{N-2}$ , this is no longer the case for $q \geq\frac{N+2}{N-2}$ due to the loss of com-
pactness of Sobolev embeddings. Our aim is to analyze solutions exhibiting
bubbling behavior to the above problems when one lets the exponent $q$ ap-
proach $\frac{N+2}{N-2}$ from above.

2. SINGLE-BUBBLING IN (1.1)

Integrating the equation against afirst eigenfunction of the Laplacian
yields that anecessary condition for solvability of (1.1) is $\lambda<\lambda_{1}$ . On the
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other hand, if $1<q< \frac{N+2}{N-2}$ and $0<\lambda<\lambda_{1}$ asolution may be found as
follows. Let us consider the Rayleigh quotient

$Q_{\lambda}(u)= \frac{\int_{\Omega}|\nabla u|^{2}-\lambda\int_{\Omega}|u|^{2}}{(\int_{\Omega}|u|^{q+1})^{\frac{2}{q+1}}}$, $u\in H_{0}^{1}(\Omega)\backslash \{0\}$ (2.1)

and set
$S_{\lambda}=$ inf $Q\lambda(u)$ . (2.2)

$u\in H_{0}^{1}(\Omega)\backslash \{0\}$

$S_{\lambda}$ is achieved thanks to compactness of Sobolev embedding if $q< \frac{N+2}{N-2}$ ,
and asuitable scalar multiple of it turns out to be asolution of (1.1). The
case $q \geq\frac{N+2}{N-2}$ is considerably more delicate: for $q= \frac{N+2}{N-2}$ compactness of
the embedding is lost while for $q> \frac{N+2}{N-2}$ there is no such embedding. This
obstruction is not just technical for the solvability question, but essential.
Pohozaev [53] showed that if $\Omega$ is strictly star-shaped then no solution of
(1.1) exists if $\lambda\leq 0$ and $q \geq\frac{N+2}{N-2}$ .

Let $S(N)$ be the best constant in the critical Sobolev embedding,

$S(N)=u \in C_{0}^{1}()\backslash \{0\}\inf_{\mathbb{R}^{N}}\frac{\int_{\mathrm{R}^{N}}|\nabla u|^{2}}{(\int_{\mathbb{R}^{N}}|u|^{\frac{2N}{N-2}})^{\frac{N-2}{N}}}$. (2.3)

Let us consider $q= \frac{N+2}{N-2}$ in (2.1) and the number

$\lambda^{*}=\inf\{\lambda>0/S_{\lambda}<S(N)\}$ . (2.1)

In [12], Brezis and Nirenberg established that $\lambda^{*}=0$ for $N\geq 4$ and $0<$
$\lambda^{*}<\lambda_{1}$ for $N=3$. As aconsequence $S_{\lambda}$ is achieved for $\lambda^{*}<\lambda<\lambda_{1}$ and
hence (1.1) is solvable in this range. In case that $\Omega$ is aball and $N=3$ it is
shown in [12] that $\lambda^{*}=\lrcorner\lambda 4$ and that no solution exists for $\lambda\leq\lambda^{*}$ .

Thus $\lambda>0$ taken at the appropriate range makes compactness restored
and therefore solvability holds. Pohozaev’s result shows that solvability
at the critical exponent for, say, $\lambda=0$ is strongly linked to the effect of
topology $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ geometry. In fact, in sharp contrast with that non-existence
result is the observation due to Kazdan and Warner [39] that compac$\mathrm{t}\mathrm{n}.\mathrm{e}\mathrm{s}\mathrm{s}$

of Sobolev’s embedding is regained within the class of radially symmetric
functions at any exponent if $\Omega$ is aradially symmetric annulus, $\Omega=\{a<$

$|x|<b\}$ , thus yielding existence of aradial solution to Problem (1.1) for
any exponent $q>1$ . Without symmetry the question is harder. This issue
was first considered by Coron [17] who found that (1.1) is solvable when
$q=\overline{\overline{N-2}}N+2$ and A $=0$ in any domain exhibiting asufficiently small hole. Bahri
and Coron [9] extended notably this result proving that if $q= \frac{N+2}{N-2}$ , $\lambda=0$

and some homology group of $\Omega$ with coefficients in Z2 is not trivial, then
(1.1) has at least one solution, in particular in any three-dimensional domain
which is not contractible to apoint. Examples showing that this condition
is actually not necessary for solvability were found by Dancer [18], Ding [29]
and Passaseo [51], showing that geometry and not only topology influence
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existence. In [11] it is raised the question whether the presence of non-trivial
topology in the domain suffices for existence in the super-critical case, as
it is the case in the symmetric annulus. The answer is actually negative
in general. Passaseo in [52] found examples of domains with non-trivial
topology for which (1.1) is not solvable for $\lambda=0$ in case that the power
$q$ is sufficiently large. The question of existence for super-critical powers
close to critical remained however open. This note will survey some results,
which in particular establish the presence of solutions to (1.1) for slightly
subset-critical powers, which become unbounded as the exponent $q= \frac{N+2}{N-2}$ is
approached.

2.1. Blowing-up solutions. By ablowing-up solution for (1.1) near the
critical exponent we mean an unbounded sequence of solutions $u_{n}$ of (1.1)
for A $=\lambda_{n}$ bounded, and $q=q_{n}arrow\overline{\overline{N-2}}N+2$ . Setting

$M_{n}=ae^{-1} \max_{\Omega}u\mathrm{n}=\alpha^{-1}u_{n}(x_{n})arrow+\infty$

we see then that the scaled function
$v_{n}(y)=M_{n}u_{n}(x_{n}+M_{n}^{(q_{n}-1)/2}y)$ ,

satisfies
$\Delta v_{n}+v_{n}^{q_{n}}+M_{n}^{-(q_{n}-1)}\lambda_{n}v_{n}=0$

in the expanding domain $\Omega_{n}=M_{n}^{(q_{n}-1)/2}(\Omega-x_{n})$ . Assuming for instance
that $x_{n}$ stays away from the boundary of $\Omega$ , elliptic regularity implies that
locally over compacts around the origin, $v_{n}$ converges up to subsequences to
apositive solution of

$\Delta w+w^{p}=0$

in entire space, with $w(0)= \max w=\alpha$ . It is known, see [15], that for the
convenient choice $\alpha_{N}=(N(N-2))^{\frac{N-2}{4}}$ , this solution is explicitly given by

$w(z)= \alpha_{N}(\frac{1}{1+|z|^{2}})^{\frac{N-2}{2}}$ (2.5)

which corresponds precisely to an extremal of $S(N)$ , see $[8, 57]$ . Coming
back to the original variable, we expect then that “near $x_{n}$

” the behavior
of $u_{n}(y)$ can be approximated as

$u_{n}(y)= \alpha_{N}(\frac{1}{1+M^{\frac{4}{n^{N-2}}}|x-x_{n}|^{2}})\frac{N-2}{2}M_{n}(1+o(1))$ . (2.6)

Apoint to be made is that since the convergence in expanded variables is
only local over compacts, it is not at all clear how far from $x_{n}$ the approxi-
mation (2.6) holds true, even if only one maximum point $x_{n}$ exists. Roughly
speaking, we say that the solution solution $u_{n}(x)$ exhibits single-bubbling
around $x_{n}$ if (2.6) holds with $\mathrm{o}(1)arrow 0$ uniformly in some fixed open subset
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2.2. Super-critical bubbling for $\lambda=0$ . As we mentioned above, the
question of existence remained open concerning powers close to critical from
above. In $[24, 25]$ this issue has been adressed for aclass of domains which
includes that considered by Coron in [17], for $\lambda=0$ . It is established that
asolution to (1.1) exists for $\lambda=0$ , $q= \frac{N+2}{N-2}+\epsilon$ with any small $\epsilon$ $>0$ if for
instance $\Omega$ is asmooth domain exhibiting asufficiently small hole. Unlike
the proofs by Coron or by Bahri-Coron, which are indirect, the solutions
are found constructively: considering $\epsilon$ as asmall parameter, the solution
exhibits single-bubbling around exactly two points and ceases to exist when
$\epsilon$ $=0$ . More precisely, let 7) be abounded, smooth domain in $\mathbb{R}^{N}$ , $N\geq 3$ ,
and $P$ apoint of 7). Let us consider the domain

$\Omega=D$ $\backslash \overline{B}(P, \mu)$ (2.7)

where $\mu>0$ is asmall number. Then there exists a $\mu 0>0$ , which depends
on $V$ and the point $P$ such that if $0<\mu<\mu 0$ is fixed and $\Omega$ is the domain
given by (2.7), then the following holds: There exists $\epsilon 0>0$ and asolution
$u_{\epsilon}$ , $0<\epsilon$ $<\epsilon_{0}$ of (1.1) with A $=0$ of the form

$u_{\epsilon}(x)= \sum_{j=1}^{2}\alpha_{N}(\frac{1}{1+\epsilon^{-\frac{2}{N-2}}\Lambda_{j\epsilon}^{-2}|x-\xi_{j}^{\epsilon}|^{2}})\frac{N-2}{2}\Lambda^{\frac{N-2}{j\epsilon^{2}}}\epsilon^{\frac{1}{2}}(1+o(1))(’ 2.8)$

where $o(1)arrow 0$ uniformly as $\epsilon$ $arrow 0$ . The numbers $\Lambda_{j\epsilon}$ and the points $\xi_{j}^{\epsilon}$

converge (up to subsequences) to acritical point of certain function built
upon the Green’s function of 0. The role of Green’s function in concen-
tration phenomena associated to almost-critical problems on the subcritical
side, namely $q= \frac{N+2}{N-2}-\epsilon$ , has already been considered in several works, see
for instance [13, 54, 10]. The above result is extended in [25] to the case
of adomain exhibiting multiple small holes, showing that these tw0-spike
solutions can actually be “glued” yielding existence of multiple solutions.

The assumption of “small hole” is used in an essential way in the proof.
The case of asymmetric annulus with larger inner radius for instance is
not covered by the result in [24]. It is however proven in [26] that the con-
centration phenomena involved is in fact much richer than may be apriori
expected, at least in the case of domains exhibiting symmetries. In particu-
lar we find the presence of alarge number of geometrically distinct solutions
to problem (1.1) when $\Omega$ is an annulus,

$A_{a}^{b}=$ {x $/a<|x|<b\}$ , (2.9)

for given $0<a<6$ , provided that $\epsilon$ $>0$ is sufficiently small. More precisely,
we find that a $\mathrm{f}\mathrm{c}$-spike solution of (1.1) exists for any $k$ sufficiently large.
This is also the case for any solid of revolution around the $x_{3}$-axis in $\mathbb{R}^{3}$ ,
symmetric on the variable $x_{3}$ , which does not contain the origin. The fc-spike
solution found has its maxima on the vertices of aregular polygon contained
in the plane $x_{3}=0$ .
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These facts lead naturally to conjecture that in adomain with nontrivial
topology, $\mathrm{f}\mathrm{c}$-bubble solutions exist whenever $k$ is sufficiently large. Recently
in [46] it was shown that for $q= \frac{N+2}{N-2}$ asolution exists for any negative,
sufficiently small value of $\lambda$ , in the small-hole situation. The solution found
is again adouble spike blowing-up as A $\uparrow 0$ .

3. MULTIPLE-BUBBLING IN (1.1). THE RADIAL CASE

The solutions in the previous section exhibit single bubbling around a
finite number of points. In this section we consider the case of $\Omega=B$ , the
unit ball in $\mathbb{R}^{N}$ , and search for radial solutions to Problem (1.1). As we
will see, for $q= \frac{N+2}{N-2}+\epsilon$ and certain range $\lambda=o(1)$ , depending on $\epsilon$ , one
can see bubbling solutions. Somewhat surprisingly, much more than single-
bubble solutions is going on in this problem: we find the presence of towers
constituted by superposition of bubbles of different blow-up orders. In fact,
given any number $k$ $\geq 1$ , there is an $\epsilon$-dependent range for Afor which there
exist solutions of the form

$u_{\epsilon}(y)= \alpha_{N}\sum_{j=1}^{k}(\frac{1}{1+M_{j}^{\frac{4}{N-2}}|y|^{2}})\frac{N-2}{2}M_{j}(1+o(1))$ as
$yarrow 0,(3.1)$

where $M_{j}arrow+\infty$ and $M_{j}=o(M_{j+1})$ for all $j$ . This is in strong contrast
with the case in which $\epsilon=0$ and one lets $\lambda\downarrow \mathrm{O}$ or A $=0$ and $\epsilon\uparrow 0$ where
only asingle bubble is present, as established by Brezis and Peletier [13],
also see $[54, 38]$ . For simplicity in the exposition, we restrict ourselves in
this section to the case $N\geq 5$ . We have the validity of the following result,
established in [20]

Theorem 1. [20] Assume N $\geq 5$ and q $= \frac{N+2}{N-2}+\epsilon$ . Then, given an integer
k $\geq 1$ , there exists a number $\mu_{k}>0$ such that if $\mu>\mu k$ and

A $=\mu\epsilon^{\frac{N-4}{N-2}}$ ,

then there are constants $0<\alpha_{j}^{-}<\alpha_{j}^{+}$ , $j=1$ , $\ldots$ , $k$ which depend on $k$ , $N$

and $\mu$ and two solutions $u_{\epsilon}^{\pm}$ of Problem (1.1) of the $form$

$u_{\epsilon}^{\pm}(y)= \alpha_{N}\sum_{j=1}^{k}(1+[\alpha_{j}^{\pm}\epsilon^{\frac{1}{2}-j}1]^{\frac{4}{N-2}}|y|^{2})\frac{N-2}{2}\alpha_{j}^{\pm}\epsilon^{\frac{1}{2}-j}(1+o(1))(’ 3.2)$

where $o(1)arrow 0$ uniformly on $B$ as $\epsilonarrow 0$ .

We shall next sketch the proof of Theorem 1. The problem of finding ra-
dial solutions $u$ to Problem (1.1) corresponds to that of solving the boundary
value problem

$u’+ \frac{N-1}{r}u’+u^{p+\epsilon}+\lambda u=0$ , $u’(0)=0$ , $u(1)=0$ . (3.1)
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Here and in what follows $p= \frac{N+2}{N-2}$ and we write simply $u=u(r)$ with
$r=|y|$ . We transform the problem by means of the following change of
variable

$v(x)=( \frac{2}{p-1})^{-\frac{2}{p-1+e}}r^{\frac{2}{p-1}}u(r)$ with r $=e^{-L^{-\underline{1}}}2x$ , x $\in(0, +\infty)$ ,
(3.4)

avariation of the s0-called Emden-Fowler transformation, first introduced
in [31]. Problem (3.3) then becomes

$\{$

$v’-v+e^{\epsilon x}v^{p+\epsilon}+(^{\mathrm{g}} \frac{-1}{2})^{2}\lambda e^{-(p-1)x}v=0$ on $(0, \infty)$ ,

$v(0)=0$ , $v>0$ , $v(x)arrow 0$ as $xarrow+\infty$ . (3.5)

The energy functional associated to Problem (3.5) is given by

$E_{\epsilon}(w)=I_{\epsilon}(w)- \frac{1}{2}(\frac{p-1}{2})^{2}$ A $\int_{0}^{\infty}e^{-(p-1)x}|w|^{2}dx$ (3.6)

with

$I_{\epsilon}(w)= \frac{1}{2}\int_{0}^{\infty}|w’|^{2}dx+\frac{1}{2}\int_{0}^{\infty}|w|^{2}dx-\frac{1}{p+\epsilon+1}\int_{0}^{\infty}e^{\epsilon x}|w|^{p+\epsilon+1}dx$ .
(3.7)

Let us consider the unique solution $U(x)$ to the problem

$\{$

$U’-U+U^{p}=0$ on $(-\infty, \infty)$

$U’(0)=0$

$U>0$ , $U(x)arrow \mathrm{O}$ as $xarrow\pm\infty$

(3.8)

This solution is nothing but the one given by the Emden-Fowler tranfor-
ma $\mathrm{i}\mathrm{n}$ (with $\epsilon=0$ ) of the radial solution of $\Delta w+w^{p}=0$ given by (2.5),
namely

$U(x)=( \frac{4N}{N-2})^{\frac{N-2}{4}}e^{-x}(1+e^{-\frac{4}{N-2}x})^{-\frac{N-2}{2}}$ (3.9)

Let us consider points $0<\xi_{1}<\xi_{2}<\cdots<\xi k$ . We look for asolutioix of
(3.5) of the form

$v(x)= \sum_{\dot{|}=1}^{k}(U(x-\xi:)+\pi:)+\phi$ (3.4)

where $\phi$ is small and $\pi:(x)=-U(\xi:)e^{-x}$ . The correction $\pi_{i}$ is meant to make
the ansatz satisfy the Dirichlet boundary conditions. Amain observation
is that $v(x) \sim\sum_{i=1}^{k}U(x-\xi_{\dot{\iota}})$ solves (3.5) if and only if (going back in the
change of variables)

$u(r) \sim\alpha_{N}\sum_{\dot{|}=1}^{k}(\frac{1}{1+e^{\hat{N-2}}r^{2}4\xi}.)^{\frac{N-2}{2}}e^{\xi}.\cdot$

90



SUPER-CRITICAL BUBBLING IN ELLIPTIC PROBLEMS

solves (3.3). Therefore the ansatz given for $v$ provides (for large values of
the $\xi_{i}’ \mathrm{s}$ ), abubble-tower solution for (1.1) of the form (3.1) with $M_{i}=e^{\xi_{i}}$ .

Let us write

$U_{i}(x)=U(x-\xi_{i})$ , $V_{i}=U_{i}+\pi_{i}$ , $\pi_{i}(x)=-U(\xi_{i})e^{-x}$ , $V= \sum^{k}V_{i}i=(3.1’ 1^{\cdot})$

It is easily checked that $V_{i}$ is nonnegative on $\mathbb{R}^{+}$ . We shall work out asymp-
totics for the associated energy functional at the function $V$ , assuming that
the numbers $\xi_{\dot{1}}$ are large and also very far apart but at comparable distances
from each other.

We make the following choices for the points $\xi_{i}$ :
$\xi_{1}=-\frac{1}{2}\log\epsilon+\log\Lambda_{1}$ ,

(3.12)
$\xi_{i+1}-\xi:=-\log\epsilon-\log\Lambda_{i+1}$ , $i=1$ , $\ldots$ , $k-1$ ,

where the $\Lambda_{i}’ \mathrm{s}$ are positive parameters. For notational convenience, we also
set $\Lambda=$ $(\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{k})$ . The advantage of the above choice is the validity
of the expansion of the energy $E_{\epsilon}$ defined by (3.6) given as follows.

Lemma 3,1. Let N $\geq 5$ . Fix a small number $\delta>0$ and assume that
$\delta<\Lambda:<\delta^{-1}$ for all i $=1$ , \ldots , k. (3.13)

Assume also that $\lambda=\mu\epsilon^{\frac{N-4}{N-2}}$ for some $\mu>0$ . Let $V$ be given by (3.11).
Then, with the choice (3.12) of the points $\xi_{\dot{1}}$ , there are positive numbers $ai$ ,
$i=0$ , $\ldots$ , 5, depending only on $N$ such that the following expansion holds:

$E_{\epsilon}(V)=ka_{0}+\epsilon$ Oe $( \mathrm{A})+\frac{k^{2}}{2}$ a3 $\epsilon\log\epsilon+a_{5}\epsilon$ $+\epsilon\theta_{\epsilon}(\Lambda)$ , where (3.14)

$\Psi_{k}(\Lambda)=a_{1}\Lambda_{1}^{-2}-ka_{3}\log\Lambda_{1}-a_{4}\mu\Lambda_{1}^{-(p-1)}+\sum_{i=2}^{k}[(k-:+1)a_{3}\log\Lambda_{i}-a_{2}\Lambda:]$ ,

(3.15)

and as $\epsilonarrow 0$ , the term $\theta_{\epsilon}(\Lambda)$ converges to 0uniformly and in the $C^{1}$ -sense
on the set of $\Lambda_{i}$ ’s satisfying contraints (3.13).

If there is indeed asolution of (3.5) of the form $v=V+\phi$ , with $V$ as in
the statement of the lemma, and $\phi$ small, it is natural to expect that this
occurs if the vector $\Lambda=$ (Ai, $\ldots$ , $\Lambda_{k}$ ) corresponds to acritical point of the
function $\Psi_{k}$ . This is in fact true, as it follows $\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m},\mathrm{a}$ Lyapunov-Schmidt
reduction procedure. Before, let us analyze the critical points of $\Psi_{k}$ :

$\Psi_{k}(\Lambda)=\varphi_{k}^{\mu}(\Lambda_{1})+\sum_{\dot{l}=2}^{k}\varphi_{i}(\Lambda_{i})$ ,

$\varphi_{k}^{\mu}(s)=a_{1}s^{-2}-ka_{3}\log s-a_{4}\mu s^{-(p-1)}$ and $\varphi_{i}(s)=(k-i+1)a_{3}\log s-a_{2}s$ .
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Let us observe that there is anumber $\mu_{k}>0$ such that $\varphi_{k}^{\mu}$ has exactly
two critical points: anondegenerate maximum, $s_{k}^{+}(\mu)$ , and anondegenerate
minimum, $s_{k}^{-}(\mu)$ . On the other hand, each of the functions $\varphi_{j}$ has exactly
one nondegenerate critical point, amaximum,

$s=(k-j+1)b_{3}$ , for each $j=2$, $\ldots$ , $k$ ,

with $b_{3}$ certain positive constant depending on N.
Then we have:

Lemma 3,2. Assume that $\mu>\mu k$ . Then, the function $\Psi_{k}(\Lambda)$ has exactly
two critical points, given by

$\Lambda^{\pm}=$ $(s_{k}^{\pm}(\mu), (k-1)b_{3}$ , $(k-2)b_{3}$ , $\ldots$ , $b_{3}$ ).

These critical points are nondegenerate.

Let us consider again points $0<\xi_{1}<\xi_{2}<\ldots<\xi_{k}$ , which are for now ar-
bitrary. We keep the notations Ui, $V_{i}$ and $V$ defined by (3.11). Additionally
we define

$Z_{\dot{l}}(x)=U_{\dot{1}}’(x)-U_{i}’(0)e^{-x}$ , $i=1$ , $\ldots$ , $k$

and consider the problem of finding afunction $\phi$ for which there are constants
$\mathrm{q}.$ , $i=1$ , $\ldots$ , $k$ , such that, in $(0, \infty)$

$\{\begin{array}{l}-(V+\phi)’’+(V+\phi)-e^{\epsilon x}(V+\phi)_{+}^{p+\epsilon}-\lambda(R\frac{-1}{2})^{2}e^{-(p-\mathrm{l})x}(V+\phi)=\sum_{\dot{l}=1}^{k}c_{i}Z_{\dot{l}}\phi(0)=0,\lim_{xarrow+\infty}\phi(x)=0,(3.16)\int_{0}^{\infty}Z_{\dot{l}}\phi dx=0\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}i=1,\ldots,k\end{array}$

This problem turns out to be solvable for points $\xi$:chosen in aconvenient
range. After this, the original problem becomes reduced to adjusting the
points $\xi$:so that $c_{\}$

. $=0$ for all $i$ .
In order to solve Problem (3.16), let us consider the linearized operator

around $V$ defined as
$\mathcal{L}_{\epsilon}\phi=-\phi’+\phi-(p+\epsilon)e^{\epsilon x}V^{p+\epsilon-1}\phi-\lambda(^{\epsilon}\frac{-1}{2})^{2}e^{-(p-1)x}\phi$ .

Then problem (3.16) can be rewritten as

$\{\begin{array}{l}\mathcal{L}_{\epsilon}\phi=N_{\epsilon}(\phi)+R_{\epsilon}+\sum_{\dot{\iota}=\mathrm{l}}^{k}c_{i}Z_{|}.\mathrm{i}\mathrm{n}(0,\infty)’\phi(0)=0,\lim_{xarrow+\infty}\phi(x)=0\int_{0}^{\infty}Z_{\dot{l}}\phi dx=0\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}i=1,\ldots,k\end{array}$ (3.17)
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where
$N_{\epsilon}(\phi)=e^{\epsilon x}[(V+\phi)_{+}^{p+\epsilon}-V^{p+\epsilon}-(p+\epsilon)V^{p+\epsilon-1}\phi]$ and (3.18)

$R_{\epsilon}=e^{\epsilon x}[V^{p+\epsilon}-V^{p}]+V^{p}[e^{\epsilon x}-1]+[V^{p}- \sum_{i=1}^{k}V_{\dot{l}}^{p}]+\lambda(\frac{\mathrm{p}-1}{2})^{2}e^{-(p-1)x}V$ .

The operator $\mathcal{L}_{\epsilon}$ turns out to be boundedly invertible under the orthog0-
nality conditions for an appropriate norm. We introduce the following norm
which depends on the points $\xi_{i}$ . For asmall, fixed positive number $\sigma$ and a
function $\psi(x)$ defined on $(0, \infty)$ , let us set

$|| \psi||_{*}=\sup_{x>0}(_{i=1}\sum^{k}e^{-\sigma|x-\xi:}|)^{-1}|\psi(x)|$ . (3.19)

Consider the linear problem of, given afunction $h$ , finding $\phi$ such that

$\{$

$\mathcal{L}_{\epsilon}\phi=h(x)+\sum_{\dot{|}=1}^{k}c_{i}Z_{i}$ in $(0, \infty)$ ,

$\phi(0)=0$ , $\lim_{xarrow+\infty}\phi(x)=0$ ,

$\int_{0}^{\infty}Z_{\dot{l}}\phi dx=0$ for all $i=1$ , $\ldots$ , $k$ ,

(3.20)

for certain constants $c_{i}$ . Then we have the validity of the following result.

Lemma 3,3. There exist positive numbers $\mathrm{e}\mathrm{o}$ , $\delta_{0}$ , $\delta_{1}$ , $R_{0}$ , and a constant
$C>0$ such that if the scalar Aand the points $0<\xi_{1}<\xi_{2}<\cdots<\xi_{k}$ satisfy

$R_{0}<\xi_{1}$ , $R_{0}<1^{\mathrm{m}}\leq|.<k!^{\mathrm{n}(\xi_{i+1}}-\xi:)$ , $\xi_{k}<\frac{\delta_{0}}{\epsilon}$ , $\lambda<\delta_{1}$ ,
(3.21)

then for all $0<\epsilon<\epsilon_{0}$ and all h $\in C[0, \infty)$ with $||h||_{*}<+\infty$ , problem
(3.20) admits a unique solution $\phi=:T_{\epsilon}(h)$ . Besides,

$||T_{\epsilon}(h)||_{*}\leq C||h||_{*}$ and $|\mathrm{q}.|\leq C||h||_{*}$ .

Now we are ready to solve Problem (3.16). We shall do this after restrict-
ing conveniently the range of the parameters $\xi$:and A. Let us consider for a
number $M$ large but fixed, the following conditions:

$\{\begin{array}{l}\xi_{1}>\frac{1}{2}\mathrm{l}\mathrm{o}\mathrm{g}(M\epsilon)^{-\mathrm{l}},\mathrm{l}\mathrm{o}\mathrm{g}(M\epsilon)^{-1}<\min_{\mathrm{l}\leq\dot{l}<k(\xi}..+1-\xi_{i})’\xi_{k}<k\mathrm{l}\mathrm{o}\mathrm{g}(M\epsilon)^{-1},\lambda<M\epsilon^{\frac{N-4}{N-2}}\end{array}$

(3.22)

Useful facts that we easily check is that under relations (3.22), $N_{\epsilon}$ and $R_{\epsilon}$

defined by (3.18) satisfy for all small $\epsilon>0$ and $|| \phi||_{*}\leq\frac{1}{4}$ the estimates:
$||N_{\epsilon}(\phi)||_{*}\leq C||\phi||_{*}^{p}$ and $||R^{\epsilon}||_{*}\leq C\epsilon^{1-\sigma}$ , (3.23)

provided that $\sigma$ is chosen small enough
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Lemma 3.4. Assume that relations (3.22) hold. Then there is a constant
$C>0$ such that, for all $\epsilon>0$ small enough, there exists a unique solution
$\phi=\phi(\xi)$ to problem (3.16) which besides satisfies

$||\phi||_{*}\leq C\epsilon^{1-\sigma}$

Moreover, the rnap $\xi-t\phi(\xi)$ is of class $C^{1}$ for the $||\cdot$ $||_{*}$ -norm and
$||D_{\xi}\phi||_{*}\leq C\epsilon^{1-\sigma}$

Proof. We will only prove the existence statement Problem (3.16) is
equivalent to solving afixed point problem. Indeed $\phi$ is asolution of (3.16)
if and only if

$\phi=T_{\epsilon}(N_{\epsilon}(\phi)+R_{\epsilon})=:A_{\epsilon}(\phi)$ .
Thus we need to prove that the operator $A_{\epsilon}$ defined above is acontraction
in aproper region. Let us consider the set

$\mathcal{F}_{r}=\{\phi\in C[0, \infty) : ||\phi||_{*}\leq r\epsilon^{1-\sigma}\}$

with $r$ apositive number to be fixed later. From Proposition 3.3 and (3.23),
we get

$||A_{\epsilon}(\phi)||_{*}\leq C||N_{\epsilon}(\phi)+R_{\epsilon}||_{*}\leq C[(r\epsilon)^{p}+\epsilon^{1-\sigma}]<r\epsilon^{1-\sigma}$

for all small $\epsilon$ , provided that $r$ is chosen large enough, but independent
of $\epsilon$ . Thus $A_{\epsilon}$ maps $\mathcal{F}_{r}$ into itself for this choice of $r$ . Moreover, $A_{\epsilon}$ turns
out to be acontraction mapping in this region. This follows ffom the fact
that $N_{\epsilon}$ defines acontraction in the $|$ { $\cdot$ $||_{*}$-norm, which can be proved in a
straightforward way. This concludes the proof. $\square$

Now let us fix alarge number $M$ and assume that conditions (3.22) hold
true for $\xi=$ $(\xi_{1}, \ldots,\xi_{k})$ and A. According to the previous results, our
problem has been reduced to that of finding points $\xi_{\dot{1}}$ so that the constants
$\mathrm{q}$

. which appear in (3.17), for the solution $\phi$ given by Lemma 3.4, are all
zero. Thus we need to solve the system of equations

$c_{\dot{l}}(\xi)=0$ for all i $=1$ , \ldots , k. (3.24)

If (3.24) holds, then $v=V+\phi$ will be asolution to (3.16) with the desired
form. This system turns out to be equivalent to avariational problem, which
we introduce next.

Let us consider the functional
$\mathrm{I}_{\epsilon}(\xi)=E_{\epsilon}(V+\phi)$ ,

where $\phi=\phi(\xi)$ is given by Lemma 3.4 and $E_{\epsilon}$ is defined by (3.6). We claim
that solving system (3.24) is equivalent to finding acritical point of this
functional. In fact, integrating (3.16) against $Z_{i}$ and using the definition of
$E_{\epsilon}$ and $\phi$ , we obtain

$DE_{\epsilon}(V +\phi)[Z_{\dot{l}}]=0$ for all i $=1$ , \ldots , A. (3.22)
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Now, it is easily checked that

$\frac{\partial}{\partial\xi_{i}}(V+\phi)=Z_{i}+o(1)$ ,

with $o(1)arrow 0$ in the ’-norm as $\epsilonarrow 0$ . We can decompose each of the
$o(1)$ terms above as the sum of asmall term which lies in the vector space
spanned by the $Z_{i}’ \mathrm{s}$ , and afunction $\eta$ with $\int_{0}^{+\infty}Z_{i}\eta dx=0$ for all $i$ . Again,
from equation (3.16), we get $DJe(V+\phi)[\eta]=0$ . What we have shown is
that system (3.25) is equivalent to

$\nabla \mathrm{I}_{\epsilon}(\xi)=0$ .
The following fact is crucial to find critical points of $\mathrm{I}_{\epsilon}$ .
Lemma 3.5. Assume that $\sigma<\frac{1}{2}$ in the definition of $the*$ -norrn. Then the
following expansion holds

$\mathrm{I}_{\epsilon}(\xi)=E_{\epsilon}(V)+o(\epsilon)$ ,

where the term $o(\epsilon)$ is unifor$\mathrm{r}m$ in the $C^{1}$-sense over all points satisfying
constraint (3.22), for given $M>0$ .
Proof of Theorem 1. Let us assume $\mu>\mu_{k}$ . We need to find acritical
point of $\mathrm{I}_{\epsilon}(\xi)$ . We consider the change of variable $\xi$ $=\xi(\Lambda)$

$\xi_{1}=-\frac{1}{2}\log\epsilon-\log\Lambda_{1}$ , $\xi_{\dot{\iota}+1}-\xi_{i}=-\log\epsilon-\log\Lambda_{i}$ , $i\geq 2$ ,

where the $\Lambda_{:}$ ’s are positive parameters, and we denote $\Lambda=$ $(\Lambda_{1}, \ldots, \Lambda_{k})$ .
Thus it suffices to find acritical point of

$\Phi_{\epsilon}(\Lambda)\equiv\epsilon^{-1}\nabla \mathrm{I}_{\epsilon}(\xi(\Lambda))$

. .
Prom the above lemma and the decomposition (3.14) given in Lemma 3.1,
which actually holds with the $o(\epsilon)$ term in the $C^{1}$ sense uniformly on points
satisfying constraints (3.22), we obtain

$\nabla\Phi_{\epsilon}(\Lambda)=\nabla\Psi_{k}(\Lambda)+o(1)$ ,

where $o(1)arrow 0$ uniformly on points Asatisfying (3.13). We assume that
for our fixed $\mu>\mu_{k}$ , the critical points $\Lambda^{\pm}$ of $\Psi_{k}$ in Lemma 3.5 satisfy this
constraint. Since the critical points $\Lambda^{\pm}$ are nondegenerate, it follows that
the local degrees $\deg(\nabla\Psi_{k}, \gamma_{\pm}, 0)$ are well defined and they are non-zero.
Here $\mathcal{V}_{\pm}$ are arbitrarily small neighborhoods of the points $\Lambda^{\pm}$ in $\mathbb{R}^{k}$ . We
also conclude that $\deg$ (VIe) $y_{\pm},$ $0)\neq 0$ for all sufficiently small $\epsilon$ . Hence we
may find critical points $\Lambda_{\epsilon}^{\pm}$ of $\Phi_{\epsilon}$ with

$\Lambda_{\epsilon}^{\pm}=\mathrm{A}^{\pm}+o(1)$ , $\lim_{\epsilonarrow 0}o(1)=0$ .

For $\xi_{\epsilon}^{\pm}=\xi(\Lambda_{\epsilon}^{\pm})$ , the functions $v^{\pm}=V+\phi(\xi_{\epsilon}^{\pm})$ are solutions of Problem
(3.5). Prom the equation satisfied by $\phi$ , (3.16), and its smallness in $\mathrm{t}\mathrm{h}\mathrm{e}*-$

norm, we derive that $v=V(1+\mathrm{o}(1)$ , where $o(1)arrow 0$ uniformly on $(0, \infty)$ .
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Further, if we set simply $\xi^{\pm}\equiv\xi(\Lambda^{\pm})$ , then it is also true that

$v^{\pm}(x)= \sum_{1=1}^{k}U(x-\xi_{i}^{\pm})(1+o(1))$ ,

again with $o(1)arrow 0$ uniformly on $(0, \infty)$ . Finally, if we go back in the change
of variables (3.4) to asolution of (1.1), the explicit form of the parameters
$\Lambda^{\pm}$ found in Lemma 3.2 provides the expression (3.2) for the solutions. This
concludes the proof of Theorem 1. 0

4. SUPER-CRITICAL BUBBLING IN ANEUMANN PROBLEM

Let $\Omega$ be abounded domain in $\mathbb{R}^{N}$ , $N\geq 3$ with smooth boundary an.
The boundary value problem

$\{$

$-d^{2}\Delta u+u=u^{q}$ in $\Omega$

$u>0$ in $\Omega$

$\frac{\partial u}{\partial\nu}=0$ on an
(4.1)

where $q>1$ and $d>0$ , has deserved alot of attention in recent years.
It arises for instance as the shadow system associated to activator-inhibitor
systems in mathematical theory of biological pattern formation such as the
Gierer-Meinhardt model and in certain models of chemotaxis, see references
in [45]. In such models, and related ones, it is particularly meaningful the
presence of solutions exhibiting peaks of concentration, namely one or several
local maxima around which the solution remains strictly positive, while
being very small away from them.

The works [45, 48, 49] have dealt with precise analysis of least energy
solutions to this problem in the subcritical case, 1 $<q< \frac{N+2}{N-2}$ namely
solutions which minimize the Rayleigh quotient

$Q(u)= \frac{d^{2}\int_{\Omega}|\nabla u|^{2}+\int_{\Omega}|u|^{2}}{(\int_{\Omega}|u|^{q+1})^{\frac{2}{q+1}}}$ , $u\in H^{1}(\Omega)\backslash \{0\}$ , (4.2)

for small $d$ . From those works, it became known that for $d$ sufficiently small,
aminimizer $ud$ of $Q$ has aunique local maximum point $xd$ which is located
on the boundary. Besides, $H(xd) arrow\max_{x\in\partial\Omega}H(x)$ where $H$ denotes mean
curvature of an and

$u_{d}(x) \sim W(\frac{x-x_{d}}{d})$ , (4.3)

where W denotes the (unique) radially symmetric solution of
$\Delta W-W+W^{p}=0$ in $\mathbb{R}^{N}$ (4.1)

$W>0$ , $\lim$ $W(x)=0$ .
$|x|arrow+\infty$

This solution decays exponentially which implies indeed the presence of a
very sharp, bounded spike for the solution around x&. See also [23] for a
short proof of these facts
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Solutions other than least energy with similar qualitative behavior around
one or several points of the boundary or inside the domain have been found
by several authors, see [19, 27, 33, 37, 34, 40, 42, 60] and their references.
In particular, it is known from [60] that such aspike solution exists around
any non-degenerate critical point of $H(x)$ .

Phenomena of this type occur as well in the critical case $q= \frac{N+2}{N-2}$ , however
several important differences are present. For instance, since compactness
of the embedding of $H^{1}(\Omega)$ into $L^{q+1}(\Omega)$ is lost, existence of minimizers of
$Q(u)$ becomes non-0bvious (and in general not true for large $d$ as recently
established in [44] $)$ . It is the case however, as shown in $[1, 58]$ , that such a
minimizer does exist if $d$ is sufficiently small. However the asymptotic profile
(4.3) is lost. In fact, as aconsequence of Pohozaev’s identity, no solution
to (4.4) for $q \geq\frac{N+2}{N-2}$ exists. The profile and asymptotic behavior of this
least energy solution has been analyzed in [4, 50, 56]. Again only one local
maximum point $x_{d}$ located around apoint of maximum mean curvature
of an exists. However, unlike the subcritical case now its maximum value
$M_{d}$ $=ud(xd)arrow+\infty$ . The asymptotic profile of $u_{d}$ is now, at leading order

$ud(x)\sim(Md/\alpha N)w((Md/\alpha_{N})^{\mathrm{L}^{-\underline{1}}}2(x-x_{d}))$

where $p= \frac{N+2}{N-2}$ and $w$ is given by (2.5). The energy level of $u_{d}$ is now well
approximated by

$d^{-2}Q(u_{d}) \sim\frac{\frac{1}{2}\int_{\mathrm{R}^{N}}|\nabla w|^{2}}{(\frac{1}{2}\int_{\mathrm{R}^{N}}|w|^{p+1})^{\frac{2}{p+1}}}$ . (4.5)

Construction of solutions with this type of bubbling behavior around one
or more critical points of mean curvature has been achieved for instance in
[2, 3, 32, 35, 55, 59]. An important difference with the subcritical case is that
now mean curvature is required to be positive at these critical points. In fact,
non-negativity of curvature is actually necessary for existence [5, 56, 36].
Recently in [36], behavior of solutions with energy values (4.5) have been
thoroughly characterized, improving previous results in [5]. In particular
blow-up points for such solutions are shown to be simple, in the sense that an
appropriate constant multiple of $w(x)$ bounds globally from above the scaled
solution around its maximum point. This type of estimates for bubbling for
other elliptic problems at the critical exponent are found in $[41, 43]$ .

Little is known for Problem (4.1) when the power $q$ is supercritical, namely
$q> \frac{N+2}{N-2}$ . Sobolev embedding no longer holds, so that variational constant
tion of solutions becomes difficult. Here we consider this case for powers
close to critical, where now we let the parameter $d$ be fixed, with no loss of
generality $d=1$ . Our first result establishes existence of boundary bubbling
solutions when $q$ approaches critical from the super-critical side, namely
$q= \frac{N+2}{N-2}+\epsilon$ with small $\epsilon>0$ . Given anon-degenerate critical point of
mean curvature (or, more generally, asituation of topologically non-trivial
critical point) with positive critical value, asolution exhibiting boundary
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bubbling around such apoint as $\epsilon$ $arrow 0$ exists. Thus we deal with the
setnilinear elliptic problem

$\{$

$-\triangle u+u=u^{\frac{N+2}{N-2}+\epsilon}$ in $\Omega$

$u>0$ in $\Omega$

$\frac{\partial u}{\partial\nu}=()$ on ac
(4.6)

where $\epsilon>0$ . Let $H(x)$ denote mean curvature of $\partial\Omega$ . We explain next what
we mean by topologically non-trivial critical $point\cdot situation$ for $H(x)$ , which
includes as special cases, local minima, maxima or non-degenerate critical
points.

Let Abe a(relative) open subset of $\partial\Omega$ with smooth boundary. We say
that $H$ links non-trivially in Aat critical level $\mathcal{H}_{\Lambda}$ relative to $B$ and $B_{0}$ if
$B$ and $B_{0}$ are closed subsets of Asuch that $B$ is conected and $B_{0}\subset B$ such
that the following conditions hold: if we set

$\Gamma=\{\Phi\in C(B, \Lambda)/\Phi|_{B_{0}}=Id\}$

then
$\sup_{y\in B_{0}}H(y)<H_{\Lambda}\equiv\inf_{\Phi\in\Gamma}\sup_{y\in B}H(\Phi(y))$

,

and for all $y\in\partial\Lambda$ such that $H(y)=H_{\Lambda}$ , there exists avector $\tau_{y}$ tangent to
$\partial\Lambda$ at $y$ such that

$\nabla H(y)\cdot\tau_{y}\neq 0$ .
Standard deformation arguments show that under these conditions acrit-

deal point $\overline{y}\in \mathrm{A}$ of $H$ with $H(\overline{y})=H_{\Lambda}$ in fact exists. It is easy to check
that the above conditions hold if

$\inf_{x\in\Lambda}H(x)<\inf_{x\in\partial\Lambda}H(x)$ , or $\sup H(x)>\inf_{x\in\partial\Lambda}H(x)$ ,
$x\in\Lambda$

namely the case of (possibly degenerate) local minimum or maximum points
of $H$ . They also hold if Ais any small neighborhood of anon-degenerate
critical point of $H$ . This notion of local linking was used in [27] to build up
boundary spikes in the subcritical case of (4.1), and was previously used in
[22], An alternative notion of non-trivial critical point of $H$ was used in this
context in [42].

Our first result is the following.

Theorem 2. [28] Assume that $N\geq 4$ and that there is an open, smooth
subset Aof an where mean curvature $H(x)$ notrivially links at critical level
$\mathcal{H}_{\Lambda}$ . If additionally $H_{\Lambda}>0$ , for all sufficiently small $\epsilon>0$ there is $a$

solution $u_{\epsilon}(x)$ of (4.6) of the following $form$,

$u_{\epsilon}(y)= \alpha_{N}(\frac{1}{1+\lambda^{2}\epsilon^{-2}|y-\zeta_{\epsilon}|^{2}})^{\frac{N-2}{2}}\lambda^{\frac{N-2}{2}}\epsilon^{-\frac{N-2}{2}}(1+o(1))$

where $o(1)arrow 0$ uniformly in 0,
$\lambda=\gamma_{N}H_{\Lambda}$ ,
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$\gamma_{N}>0$ is $a$ explicit constant, and (, is a point in $\Lambda$ such that

$H(\zeta_{\epsilon})arrow \mathcal{H}_{\Lambda}$ , $\nabla H(\zeta_{\epsilon})arrow 0$ ,

as $\epsilonarrow 0$ . The same statement holds true for dimension $N=3$ , where now

$u_{\epsilon}(y)= \alpha_{3}(\frac{\mathrm{l}}{1+\lambda^{2}\epsilon^{-2}|1\mathrm{o}\mathrm{g}\epsilon|^{2}|y-\zeta_{\epsilon}|^{2}})\frac{1}{2}\lambda^{\frac{1}{2}}\epsilon^{-\frac{1}{2}}|\log\epsilon|^{\frac{1}{2}}(1+o(1))$ .

Recently in [16] it has been found that if $N\geq 4$ , $d$ is left fixed and one
considers the exponent $q$ as aparameter approaching the critical exponent
from below, then singl\^e bubbling solutions exist in certain cases. In par-
ticular, they find existence of single-bubble solutions with maximum points
located on the boundary, near critical points of mean curvature with negative
value.

The situation we deal with is more delicate because of breaking of Sobolev’s
embedding. This makes the approach of construction of solutions employed

with bubbling in the latter situation arises: the blow-up rate actually de-
creases as the value of curvature $H_{\Lambda}$ does. Blow-up is instead enhanced for
$q= \frac{N+2}{N-2}$ , $darrow \mathrm{O}$ as the critical value of curvature decreases to zero.

Our second result shows that in analogy to Theorem 1, super-critical bub-
bling does not need to be simple. In fact we are able to construct solutions
with just one maximum point for which multiple bubbling is present. For
instance if $\Omega$ is aball, there exists asolution whose shape is that of atower,
constituted by superposition of an arbitrary number of single-bubblins of dif-
ferent blow-up orders. This phenomenon actually takes place just provided
that $\Omega$ is symmetric with respect to the first $(N-1)$ variables, and $\mathrm{O}\in\partial\Omega$

is apoint with positive mean curvature.

Theorem 3. [28] Assume that 06an, $H(0)>0$ and $N\geq 4$ . Moreover,
assume that for any $i=1$ , $\ldots$ , $N-1$ ,

if $(y_{1},$
\ldots ,$y_{i},$\ldots ,

$y_{N})\in\Omega$ then $(y_{1},$
\ldots ,

$-y_{\dot{1}}, \ldots,y_{N})\in\Omega$ .

Then, given k $\geq 1$ , there exists for all sufficiently small $\epsilon>0$ a solution $u_{\epsilon}$

of (4.6) of the fo rm

$u_{\epsilon}(y)= \alpha_{N}\sum_{i=1}^{k}(\frac{1}{1+\lambda_{\dot{l}}^{2}\epsilon^{-2+(1-i)\frac{4}{N-2}}|y|^{2}})\frac{N-2}{2}\lambda^{\frac{N-2}{i2}}\epsilon^{-\frac{N-2}{2}-i+1}(1+o(1))$

where $o(1)arrow 0$ uniformly in Q. Here

$\lambda:=\frac{H(0)}{k}[\gamma_{N}\beta_{N}^{\dot{|}-1}\frac{(k-i)!}{(k-1)!}]\overline{N}-2=$ ,
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for $i=1$ , $\ldots$ , $k$ , where the positive constants $\gamma_{N}$ , $\beta_{N}$ are explicit. The same
statement holds true for $N=3$ except that $\hslash ow$

$u_{\epsilon}(y)= \alpha_{3}\sum_{\dot{\iota}=1}^{k}(\frac{1}{1+\lambda_{i}^{2}\epsilon^{2-4i}|\log\epsilon|^{2}|y|^{2}})\frac{1}{2}\lambda^{\frac{1}{i^{2}}}\epsilon^{\frac{1}{2}-:}|\log\epsilon|^{\frac{1}{2}}(1+o(1))$

The solution predicted by this theorem is asuperposition of $k$ bubbles
with respective blow-up orders $\epsilon^{-\frac{N-2}{2}-i+1}$ for $N\geq 4$ and $\epsilon^{\frac{1}{2}-:}|\log\epsilon|^{\frac{1}{2}}$ for
$N=3$ , $i=1$ , $\ldots$ , $k$ .

The proofs of Theorems 2and 3rely on aform of Lyapunov-Schmidt pr0-
cedure similar to that used in Theorem 1which reduces the construction of
the seeked solutions to afinite-dimensional variational problem. In order to
overcome the supercritical nature of the problem, we work out this reduction
in some $\mathrm{a}\mathrm{d}$-hoc weighted $L^{\infty}$ spaces. Very useful for this purpose, especially
in the description of the multi-bubbling effect, is the introduction of polar
coordinates around areference point $\zeta\in\partial\Omega$ , and then atransformation
of the radial coordinate similar to (3.4), after which dilations are converted
into translations in aone-dimensional variable. More precisely, we set

$\rho=|y-\zeta|$ and $\theta=\frac{y-\zeta}{|y-\zeta|}$ . (4.7)

Here $(\rho, \theta)\in\tilde{\Omega}_{\zeta}$ , which is asubset of $\tilde{S}=(0, +\infty)\cross S^{N-1}$ , and then

$v(x, \theta)=(\frac{2}{p-1})^{\frac{2}{p-1+e}}\rho^{\frac{2}{p-1}}\tilde{u}(\rho, \theta)$ , $\rho=e^{-\mathrm{L}^{-\underline{1}}}2x$ . (4.8)

We denote by $D$ the $\zeta$-dependent subset of $S=\mathbb{R}\mathrm{x}S^{N-1}$ where the variables
$(x, \theta)$ vary. After these changes of variables, problem (4.6) becomes

$\{$

$v0( \frac{2}{p-1,>},)^{2}\Delta_{S^{N-1}}v+v’-v+e^{\epsilon x}v^{p+\epsilon}-(\frac{2}{p-1})^{2}e^{-(p-1)x}v=0$ in $D$

in $D_{\zeta}$ (4.9)
$( \frac{2}{p-1})\nabla_{\theta}v\cdot\nu^{\theta\partial v}+Tx\nu^{x}+v\nu^{x}=0$ on $\partial D$ .

Here $’= \frac{\partial}{\partial x}$ . This language is especially useful in the analysis of the lin-
earized operator around aproper ansatz similar to that in (3.10). Estimates
for solutions of the associated linearized operator in weighted norms, which
would appear quite involved in original variables, take here natural forms.
After this analysis, the finite dimensional variational problem can be studied
in afairly direct way. To be remarked is that the symmetry assumption in
the multi-bubble case avoids that the reduced problem analogous to that in
the proof of Theorem 1be overdetermined.

5. DUALITY SUB-SUPERCRITICAL BUBBLING IN PROBLEM (1.1)

Precise asymptotics for radial blowing-up solutions of (1.1) in aball re-
spectively when $\lambda\leq\lambda^{*}$ , $q= \frac{N+2}{N-2}-\epsilon$ and when $q= \frac{N+2}{N-2}$ , $\lambda=\lambda^{*}+\epsilon$ were
found by Atkinson and Peletier $[6, 7]$ and by Brezis and Peletier [13]. The
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results in [13] strongly suggested the role of Green’s function in the loca-
thon of blow-up for single-bubble solutions $u$ of (1.1) in ageneral domain, a
fact later confirmed from results by Rey [54] and Han [38]. Let us consider
Green’s function $G_{0}(x, y)$ of $\Omega$ , which for given $x\in\Omega$ solves

$-\triangle_{y}G_{0}=\delta_{x}$ y $\in\Omega$ ,

$G_{0}(x, y)=0$ y $\in\partial\Omega$ ,
where $\delta_{x}$ is the Dirac mass centered at $x$ . We consider Robin’s function
go (x) defined as

go $(x)=H_{0}(x, x)$

where
$H_{0}(x, y)= \frac{c_{N}}{|y-x|^{N-2}}-G_{0}(x, y)$ .

$g_{0}$ is asmooth, strictly positive function which goes to $+\infty$ as $x$ approaches
an. Rey [54] found that for $N\geq 4$ solutions $u\lambda$ of (1.1) for $q= \frac{N+2}{N-2}$ , $\lambda>0$

with energy $Q_{\lambda}(u_{\lambda})=S(N)+\mathrm{o}(1)$ as $\lambdaarrow 0$ constitute single-bubbles with
blow-up points around acritical point of go- Reciprocally, he finds existence
of single-bubble solutions with blowing-up points near any non-degenerate
critical point of go{x). For $N=3$ , rather than go, the results of [13] suggest
that the object responsible for the presence of blowing-up solutions is the
Robin’s function $g\lambda$ defined as follows. Let $\lambda<\lambda_{1}$ and consider Green’s
function $G_{\lambda}(x, y)$ , solution for given $x\in\Omega$ of

$-\Delta_{y}G_{\lambda}-\lambda G_{\lambda}=\delta_{x}$ $y$
$\in\Omega$ ,

$G_{\lambda}(x, y)=0$ $y\in\partial\Omega$ .
Then we define

$g_{\lambda}(x)=H_{\lambda}(x, x)$

where
$H_{\lambda}(x, y)= \frac{1}{4\pi|y-x|}-G_{\lambda}(x, y)$ .

$g_{\lambda}(x)$ is again asmooth function which goes to $+\infty$ as $x$ approaches an.
Unlike $g\circ$ , its minimum value is not necessarity positive. In fact this number
is decreasing in A. It is strictly positive when Ais close to 0and approaches
$-\infty$ as A $\uparrow\lambda_{1}$ . The number $\lambda_{*}$ given by

$\lambda_{*}=\sup\{\lambda>0/\min_{\Omega}g_{\lambda}>0\}$ , (5.1)

which equals $\lrcorner\lambda 4$ in the case of aball, is suggested in [13] to be precisely the
least value of Afor which aleast energy solution of (1.1) exists in dimension
$N=3$ . This has been recently established by Druet in [30]. Besides, it is
shown that least energy solutions $u_{\lambda}$ for $\lambda\downarrow\lambda_{*}$ constitute asingle-bubble
with blowing-up near the set where $g_{\lambda_{5}}$ attains its minimum value zero.

We consider here the role of non-trivial critical values of $g_{\lambda}$ in existence
of solutions of (1.1) in dimension $N=3$ . In fact their role is intimate,
not only in the critical case $q=5$ and in the sub-critical $q=5-\epsilon$ . More
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interesting, their connection with solvability of (1.1) for powers above critical
is found. In fact phenomena apparently unknown even in the case of the ball
is established, which put in evidence an amusing duality between the sub
and subset-critical cases. We also find parallel results in dimensions $N\geq 4$ ,
where the relevant object is go rather than $g_{\lambda}$ . For the sake of focusing, we
only state below our results for dimension 3. The meaning of anon-trivial
critical value of $g_{\lambda}$ is the same introduced in Theorem 2: Let 7) be an open
subset of $\Omega$ with smooth boundary. We recall that $g_{\lambda}$ links non-trivially in
$V$ at critical level COx relative to $B$ and $B\circ$ if $B$ and $B\circ$ are closed subsets
of $\overline{D}$ with $B$ conected and $B\circ\subset B$ such that the following conditions hold:
if we set

$\Gamma=\{\Phi\in C(B, D)/\Phi|_{B_{0}}=Id\}$

then
$\sup_{y\in B_{0}}g_{\lambda}(y)<\mathcal{G}_{\lambda}\equiv\inf_{\Phi\in\Gamma}\sup_{y\in B}g_{\lambda}(\Phi(y))$

,

and for all $y\in\partial D$ such that $g\lambda(y)=\mathcal{G}_{\lambda}$ , there exists a vector $\tau_{y}$ tangent to
$\partial D$ at $y$ such that

$\nabla g_{\lambda}(y)\cdot\tau_{y}\neq 0$ .

Under these conditions acritical point $\overline{y}\in D$ of $g\lambda$ with $g_{\lambda}(\overline{y})=\mathcal{G}\mathrm{O}\mathrm{x}$ in
fact exists.

Theorem 4. [21] Let us assume that $N=3$ and that there is a set 7) where
$g_{\lambda}$ has a non-trivial critical level $\mathcal{G}_{\lambda}$ .
(a) Assume that $\mathcal{G}_{\lambda}<0$ $q=5+\epsilon$ . Then Problem (1.1) is solvable for all
sufficiently small $\epsilon$ $>0$ . More precisely, there exists a solution $u_{\epsilon}$ of (1.1)
of the $fom$

$u_{\epsilon}(y)= \alpha_{3}(\frac{1}{1+M_{\epsilon}^{4}|y-\zeta_{\epsilon}|^{2}})^{\frac{1}{2}}M_{\epsilon}(1+o(1))$

where $o(1)arrow 0$ uniformly in $\overline{\Omega}$ as $\epsilonarrow 0$ ,

$M_{\epsilon}= \frac{2^{\frac{3}{2}}}{3^{\frac{1}{8}}\pi}(-\mathcal{G}_{\lambda})^{1/2}\epsilon^{-\frac{1}{2}}$

and $\zeta_{\epsilon}$ is a point in 7) such that $g_{\lambda}(\zeta_{\epsilon})arrow \mathcal{G}_{\lambda}$ , $\nabla g_{\lambda}(\zeta_{\epsilon})arrow 0$ , as $\epsilon$ $arrow 0$ .
(b) Assume that $\mathcal{G}_{\lambda}>0$ , $q=5-\epsilon$ . Then Problem (1.1) has a solution

$u_{\epsilon}$ of (1.1) exactly as in part (a) but with

$M_{\epsilon}= \frac{2^{\frac{3}{2}}}{3^{\frac{1}{8}}\pi}(\mathcal{G}_{\lambda})^{1/2}\epsilon^{-\frac{1}{2}}$

The result of part (b) recovers the asymptotics found for the radial s0-

lution of (1.1) when $\Omega$ is aball and $0<\lambda<\lrcorner\lambda 4$ in Theorem 1of [13]. As
aconsequence of Part (a), we find the following solvability result for the
super-critical case of (1.1)
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Corollary 1. If $N=3$ and $\lambda_{*}<\lambda<\lambda_{1}$ where $\lambda_{*}$ is given by (5.1), then
Problem (1.1) is solvable for $q=5+\epsilon$ and all sufficiently small $\epsilon>0$ .
More presicely, a single-bubble solution exists with blow-up point near the
minimum set of $g_{\lambda}$ .

Our next result exhibits arather striking phenomenon taking place in
the super-critical case $q=5+\epsilon$ . Not only the single-bubble solution above
predicted or that of part (a) exists. In fact, under the presence of sym-
metries, unbounded solutions with just one maximum point, but for which
the approximation (2.6) does not hold globally, appear. This solution has
the shape of atower constituted by asuperposition of an arbitrary number
of single bubbles. We say that $\Omega\subset \mathbb{R}^{N}$ is symmetric with respect to the
coordinate axes if for any $i=1$ , $\ldots$ , $N$ ,

$(y_{1}, \ldots, y:, \ldots, y_{N})\in\Omega$ $\mathrm{i}_{-}\mathrm{m}\mathrm{p}1\mathrm{i}\mathrm{e}\mathrm{s}$ $(y_{1}, \ldots, -y_{i}, \ldots, y_{N})\in\Omega$ .

Theorem 5. [21] Assume that $N=3$ , $0\in\Omega$ , and that $\Omega$ is symmetric with
respect to the coordinate axes Assume also that $g\lambda(0)<0$ and $q=5+\epsilon$ .
Then, given $k\geq 1$ , there exists for all sufficiently small $\epsilon$ $>0$ a solution $u_{\epsilon}$

of Problem (1.1) of the form

$u_{\epsilon}(x)= \alpha_{3}\sum_{j=1}^{k}(\frac{1}{1+M_{j\epsilon}^{4}|x|^{2}})\frac{1}{2}M_{j\epsilon}(1+o(1))$

where $o(1)arrow 0$ unifo rmly in $\overline{\Omega}$ and

$M_{j\epsilon}=(-g_{\lambda}(0))^{1/2}[c \sqrt{}^{i-1}\frac{(k-i)!}{(k-1)!}]^{2}\epsilon^{\frac{1}{2}-j}$,

for $j=1$ , $\ldots$ , $k$ , where $c$ and $\beta$ are explicit constants.

The solution predicted by this theorem is asuperposition of $k$ bubbles
with respective blow-up orders $\epsilon^{\frac{1}{2}-j}j=1$ , $\ldots$ , $k$ .

Our next result refers to phenomena associated to anon-trivial critical
value zero of $g_{\lambda}$ for anumber $\lambda=\lambda_{**}$ , which apply in particular to the
number $\lambda_{*}$ in (5.1). For the statement we make the following observation.
Since $g_{\lambda}$ and its derivative depend continuously on $\lambda$ , it turns out that if $g_{\lambda_{\mathrm{s}\mathrm{s}}}$

non-trivially links in 7) relative to $B$ and $B_{0}$ at level $\mathcal{G}_{\lambda.\mathrm{t}}$ , then so does $g_{\lambda}$

at awell defined critical level $\mathcal{G}_{\lambda}$ for all $\lambda$ sufficiently close to $\lambda_{**}$ . Besides,
since $g_{\lambda}$ is strictly decreasing in A

$\mathcal{G}_{\lambda^{1}}<\mathcal{G}_{\lambda_{*}}$ . $<\mathcal{G}_{\lambda^{2}}$

whenever $\lambda^{1}>\lambda_{**}>\lambda^{2}$ . To fix ideas, let us think of the local minimum
situation in $D$ ,

$g_{\lambda_{\mathrm{r}}}$ . $= \inf_{x\in D}g_{\lambda_{**}}(x)<\inf_{x\in\partial D}g_{\lambda_{*}}.(x)$

then for Aclose to $\lambda_{**}$ we $\mathrm{t}$ he

$\mathcal{G}_{\lambda}=\inf_{x\in D}g_{\lambda}(x)$ .
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Theorem 6. [21] Let us assume that $N=3$ and that for a number A $=\lambda_{**}$

and an open, smooth subset 7) of $\Omega$ , $g_{\lambda_{\mathrm{r}\mathrm{r}}}$ has a nontrivial critical value
$\mathcal{G}_{\lambda_{\mathrm{r}\mathrm{r}}}=0$ . Consider as well for Aclose to $\lambda_{**}$ the associated non-trivial
critical value $\mathcal{G}_{\lambda}$ .

(a) Assume that $q=5+\epsilon$ . Let

$\gamma>\frac{\sqrt{16-3\pi}}{4}3^{\frac{1}{8}}\sqrt{\pi}$

be fixed and assume additionally that $\lambda>\lambda_{**}$ is the unique number for which

$\mathcal{G}_{\lambda}=-\gamma^{\sqrt{\lambda}}\epsilon^{\frac{1}{2}}$ .
Then for all $\epsilon$ sufficiently small there exist two solutions $u_{\epsilon}^{\pm}$ to Problem (1.1)
of the forrn

$u_{\epsilon}^{\pm}(x)=\alpha_{3}$ $M_{\epsilon}^{\pm}(1+o(1))$ (5.2)

where $o(1)arrow 0$ unifo rmly in $\overline{\Omega}$ as $\epsilonarrow 0$ ,

$M_{\epsilon}^{\pm}=m_{\pm}(\gamma)\epsilon^{-\frac{1}{4}}$

where $m\pm(\gamma)$ are the two positive roots of
$am^{2}-\gamma m+b=0$

with

$a=2 \lambda(1-\frac{3}{16}\pi)$ , $b= \frac{3^{\frac{1}{4}}}{8}\pi$ (5.3)

and $\zeta_{\epsilon}$ is a point in $D$ such that

$g_{\lambda}(\zeta_{\epsilon})arrow 0$ , $\nabla g_{\lambda}(\zeta_{\epsilon})arrow 0$ as $\epsilonarrow 0$ . (5.4)

(b) Assume that q $=5-\epsilon$ . Let $\gamma\in(-\infty, +\infty)$ be fixed and assume addi-
tionally that A(close to $\lambda_{**}$ ) is the unique number for which

$\mathcal{G}_{\lambda}=\gamma^{\sqrt{\lambda}\frac{1}{2}}\epsilon$ .
Then for all $\epsilon$ sufficiently small there exist a solutions $u_{\epsilon}$ to Problem (1.1)

of the $fom$ $(\mathit{5}.\mathit{2})$ with $M_{\epsilon}^{\pm}$ replaced by $M_{\epsilon}$ where

$M_{\epsilon}=m(\gamma)\epsilon^{-\frac{1}{4}}$

where $m(\gamma)$ is the unique positive root of
$am^{2}+\gamma m-b=0$

with $a$ , $b$ as in (5.3) and $\zeta_{\epsilon}$ satisfies (5.4).
(c) Assume that $q=5$ . Then for all $\lambda>\lambda_{**}$ sufficiently close to $\lambda_{**}$ there

104



SUPER-CRITICAL BUBBLING IN ELLIPTIC PROBLEMS

exists a solution $u_{\lambda}$ of Problem (1.1) of the form (5.2) with (, replaced by $a$

point $\zeta_{\lambda}$ in $V$ as in (5.4), with $M_{\epsilon}^{\pm}$ now replaced by $M_{\lambda}$ where

$M_{\lambda}=[ \frac{5\pi}{23^{\frac{1}{4}}}|\mathcal{G}_{\lambda}|^{2}-2\lambda(1-\frac{3}{16}\pi)]\frac{1}{2}(-\mathcal{G}_{\lambda})^{-\frac{1}{2}}$

Part (c) shows that ageneral domain may in principle have several Brezis-
Nirenberg numbers $\lambda_{**}$ , other than $\lambda_{*}$ , where a“branch” of solutions $u_{\lambda}$

comes down to the right of it. The result of part (b) recovers the asymptotics
found in Theorem 2of [13] for the radial solution in aball when $\gamma=0$ .

It is illustrative to describe the results of Theorems 4-6 in terms of the
bifurcation branch for the positive solutions of (1.1) in aball which stems
from A $=\lambda_{1}$ , $u=0$ , for any value of $q$ . This branch does not have turning
points for $q=5$ (uniqueness of the positive radial solution is known from
[61] $)$ and blows-up at $\lambda=\lrcorner\lambda 4^{\cdot}$ On the other hand, as soon as $\epsilon>0$ , $q=5+\epsilon$

the branch turns right near the asymptote and then lives until getting close
to $\lambda_{1}$ . This “upper part” of the branch is the one described in Theorem 4,
part (a). It is of course reasonable to ask how the turning point looks like,
in particular showing the presence of two solutions for Aslightly to the right
of it.. This is the interpretation Theorem 6, part (a). Formal asymptotics of
this first turning point, which are fully recovered by this result, were found
by Budd and Norbury [14].

It is of course natural to ask what is the behavior of this branch “later”.
The result of Theorem 5partly answers this question: for $\epsilon>0$ the branch
oscillates wildly between $\underline{\lambda}_{[perp]}4$ and $\lambda_{1}$ , giving rise for fixed Abetween these
numbers to an arbitrarily large number of solutions. The towers of Theorem
5may be interpreted as the solution found on the branch between the fc-th
and $k+1$ turning points.
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