BUBBLING ALONG BOUNDARY GEODESICS NEAR THE SECOND
CRITICAL EXPONENT
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ABSTRACT. The role of the second critical exponent p = Z—fé,

one dimension less, is investigated for the classical Lane-Emden-Fowler problem Au + u? = 0,
u > 0 under zero Dirichlet boundary conditions, in a domain 2 in R™ with bounded, smooth
boundary. Given I', a geodesic of the boundary with negative inner normal curvature we find
that for p = 27:15 — ¢, a solution ue such that |Vue|? converges weakly to a Dirac measure
on I' as ¢ — 071 exists, provided that I' is non-degenerate in the sense of second variations of
length and e remains away from certain explicit discrete set of values for which a resonance

the Sobolev critical exponent in

phenomenon takes place.
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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

A Dbasic model of nonlinear elliptic PDE is the classical Lane-Emden-Fowler problem [20]

Au+u? = 0 in
> 0 in
=0 on 09,
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(1.1)

where (2 is a bounded domain with smooth boundary in R™ and p > 1. While simple looking,
the structure of the solution set of this problem is in general very complex and a number of basic
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questions remain mostly unsolved. Among those, solvability for powers p above the critical expo-
nent Z—f% is a especially difficult one. When 1 < p < Z—fg, compactness of Sobolev’s embedding
yields a solution as a minimizer of the variational problem

2
S(p)= _ inf IQLML (1.2)
u€Hg (2)\{0} (fﬂ |u|p+1) pFI
For p > Z—fg this approach fails and essential obstructions to existence arise: Pohozaev [26] found
that no solution to (1.1) exists if the domain is star-shaped. In contrast, Kazdan and Warner
[22] observed that if Q is a symmetric annulus then compactness holds for any p > 1 within
the class of radial functions, and a solution can again always be found by the above minimizing
procedure. Compactness in the minimization is also restored, without symmetries, by the addition
of suitable linear perturbations exactly at the critical exponent p = Z—fg, as established by Brezis
and Nirenberg [7].

Topology and geometry of the domain are crucial factors for solvability : when p = Z—J_rg it
was proven by Bahri and Coron [2] that solutions to (1.1) exist whenever the topology of € is
non-trivial in suitable sense. For powers larger than critical direct use of variational arguments
seems hopeless, and finding general conditions for solvability is a notoriously open issue.

A question raised by Rabinowitz, stated by Brezis in [5] is whether the presence of nontrivial
topology in the domain suffices for solvability in the supercritical case p > Z—fg Strikingly
enough, the answer was found to be negative in dimension n > 4: Passaseo [24] discovered that
for a domain constituted by a thin tubular neighborhood of a copy of the sphere S"~2 embedded

in R™, a Pohozaev-type identity yields that no solution exists if p > Z—fé We call the latter

n+2
n—27

number, which is strictly greater than the second critical exponent.

The purpose of this paper is to construct solutions of (1.1) when p is below but sufficiently
close to the (supercritical) second critical exponent. Assuming that 9§ contains a non-degenerate,
closed geodesic I' with strictly negative curvature, we find a solution to (1.1) with a concentration
behavior as p approaches Zi‘é in the form of a bubbling line, eventually collapsing onto I'. One
should generically expect that this geometric condition holds if for instance 2 has a convex hole
or it is a deformations of a torus-like solid of revolution like Passaseo’s domain.

We recall next the familiar notion of “point bubbling” in the slightly subcritical case for
problem (1.1),

n+2

Au+un—2"% = 0 in  Q
> 0 in Q (1.3)
=0 on 09,

for small € > 0. The loss of compactness of Sobolev’s embedding as € — 0 triggers the presence
of bubbling solutions around special points of the domain, which resemble a sharp extremal of the
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best Sobolev constant in R™

v 2

S’n, = . %?Rf o) f]Rn | U|
ueD n (f 2n

R™ u|n—2)

a type of point-concentration behavior extensively considered in the literature. This is precisely
the behavior of a solution wu. of (1.3) which minimizes S(p) in (1.2) for

n+2

n_2 ©

see [6, 14, 27, 19]. We have that S(p.) — S,, and

n—2

n

D =D =

1

_N—2
ue(z) = pe * wn(ﬂ‘;l(x*zs)) + o(1), He ~ ENZZ,
as € — 0" , where w, is the standard bubble,

n—2

wn(x)z( n ) e = (n(n —2))72, (1.4)

1+ |z?

a radial solution of s
Aw+w»—2 =0 inR"

corresponding to an extremal for S, [1, 30]. The blow-up point z. approaches (up to a subse-
quences) a harmonic center xg of 2, namely a minimizer for Robin’s function of the domain, the
diagonal of the regular part of Green’s function. The solution concentrates as a Dirac mass at
xp, namely

|Vu | — Sg 0z, ase—0 (1.5)
in the sense of measures. It is found in [27] that actually solutions of (1.3) with this behavior
exist, concentrating at any given non-degenerate critical point xy of Robin’s function. We refer

the reader to the works [3, 10, 21] and to the survey [13] for related results on construction of
point-bubbling solutions for problems near the critical exponent.

Now, we are interested in problem (1.1) for powers slightly below the second critical exponent,
namely
ntl

Au+un3"° = 0 in  Q
v > 0 in Q (1.6)
u = 0 on Of.

We want to find a solution u. with a behavior analogous to that just described for (1.3), now
concentrating along a curve, with a sectional profile given by a scaled standard bubble in one
dimension less. This problem is substantially harder than (1.3), in particular because a global
variational characterization of the solution does not seem possible in view of its supercritical
character. In addition, this solution has formally a large e-dependent Morse index, and the
construction requires us to avoid special values of € where change of topological type occurs.

We shall assume that 02 contains a closed geodesic I', non-degenerate, which has globally
negative curvature, and in addition a non-resonance condition of the following form:
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|k252% - K| > sen=s  for all k = 1,2,... (1.7)
where k > 0 is given explicitly in terms of T" by formula (8.9).

Theorem 1.1. Let n > 8 and Q@ C R™ be a domain with smooth, bounded boundary OS2, which
contains a closed geodesic I', non-degenerate with negative inner normal curvature. Then, given
d > 0, we have that for all e > 0 sufficiently small satisfying condition (1.7), problem (1.6) has a
solution u. that satisfies

9 n—1
Vuel = 8,7, 6r

as € — 0 in the sense of measures, where dr is the Dirac measure supported on the curve T.
Besides, us can be described according to formula (1.9) below.

Much more precise information on the solution can indeed be gathered as we shall explain
later. The condition n > 8 seems essential for the method used, while we believe the phenomenon
described should also be true for lower dimensions.

Theorem 1.1 includes the case of an exterior domain, Q\ A, with A bounded. It is worthwhile
mentioning that for this case it was established in [8, 9] that Problem (1.1) is actually always
N+2

solvable if p > 5. In fact a continuum of solutions exist except that they are of slow decay

(infinite energy). Finding finite-energy (fast decay) solutions for supercritical powers is a much
n+2

harder question, which is only answered in [9] for p very close from above to %5. In turns out
that a dramatic change of structure in the set of slow decay solutions takes place precisely when
n+1

p = ;=3, the second critical exponent.

The line-bubbling phenomenon here discovered is conceptually quite different to point bub-
bling. In spite of zero boundary data, concentration eventually collapses on the boundary. On
the other hand, point concentration is determined by global information on the domain encoded
in Green’s function, while only local structure of the domain near the curve I' is relevant to the
line-bubbling. In order to describe more precisely the solution we introduce a local system of
coordinates near I':

For notational simplicity we will write in all what remains of the paper N = n — 1, so that the
problem is embedded in RV,

We consider the metric induced by the Euclidean one on 99 and denote by V the associated
connection. We introduce Fermi coordinates in a neighborhood of I" in 0. Given ¢ € T, there is
a natural splitting

T,00 =T,I'  N,I'
into the normal and tangent bundle over I'. We assume that I' is parameterized by arclength x,
xo — y(xo) and denote by Ej a unit tangent vector to I'. In a neighborhood of a point ¢ of T',

assume we are given an orthonormal basis E;, i =1,..., N — 1, of N,I". We can assume that E;
are parallel transported along I" which means that

Ve, Ei =0
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fori=1,...,N — 1. The geodesic condition for I' translates precisely into

Vi, Eo = 0.

To parameterize a neighborhood of a point of I in 92 we define

F(x0,Z) := Expf??xo)(xiEi), Z:=(x1,...,2N),

where Exp” is the exponential map on o) and summation over ¢ = 1,..., N — 1 is understood.
To parameterize a neighborhood of I" in , we consider the system of coordinates (x¢,z) € RNV *!
given by
G(xo,z) = F(x0,%) — xy n(F(x0,7)), z=(Z,xn)€RY (1.8)

where z is close to 0 and N designates outward unit normal.

In term of the outward unit normal n, we mean that I' has globally negative curvature in the
sense that

530’)’ = hoon,

with hgg a strictly positive function along I'.

The solution u. predicted by the theorem can be described in these coordinates at main order
as follows:

_N-2

ue(wo, ) = pe 7wy (pz' (w —de)) +o(1) (1.9)

where
~ . N—1 _
djc(xo) ~edj(zo), j=1,...,N, pe(wo) ~e™=2f(xo),

where Jj and [i are smooth functions of xy with dy and [ strictly positive, and wy is given by
(1.4).

Finally, let us make explicit the meaning of nondegeneracy of the geodesic I'. Let us denote
by R the Ricci tensor on 0f2. Then nondegeneracy of I' translates exactly into the fact that the
linear system of equations

N—-1
—di + Y _(R(Eo, Ej)Eo - Ey)d; =0, o €[~4,0], k=1,...,N -1, (1.10)
j=1

has only the trivial 2¢-periodic solution d = 0.

The rest of this paper will be devoted to the proof of Theorem 1.1. We point out that the
resonance phenomenon has already been found to arise in the analysis of higher dimensional
concentration in other elliptic boundary value problems, in particular for a Neumann singular
perturbation problem in [15, 16, 17, 18] and in Schrodinger equations in the plane in [12]. Theorem
1.1 seems to be the first result on higher dimensional concentration phenomena associated to
critical exponents. The question of whether one can find concentration results for larger critical
exponents, say k-dimensional concentration slightly below Ztg:’]z arises naturally but we will not
treat it in this paper.




6 MANUEL DEL PINO, MONICA MUSSO, FRANK PACARD

2. SCHEME OF THE PROOF OF THEOREM 1.1

Let us write Problem (1.6) as

Au+uP™® = 0 in Q,
u > 0 in  Q, (2.1)
u = 0 on 0.
where here and in what follows we label p = % A key element of the proof of Theorem 1.1

consists of the construction of a first approximation of the solution to our problem. The main
part of the construction is that close to the geodesic. Let us consider the system of coordinates
(z0,Z, ) introduced in (1.8), which straightens the boundary of € in a neighborhood of the
geodesic, as the hyperplane xny = 0. In this language the geodesic is represented by the xp-axis.
We recall that x¢ designates arclength of the curve and xzx > 0 is the normal coordinate to the
boundary. Then for a function u defined on this neighborhood we write

(xzo, x) = u(G(xp, x)). (2.2)

Let 2¢ represent the total length of the geodesic. Extending @ in a 2¢-periodic manner in xg, it
is convenient to regard it as a function defined on the infinite half cylinder

D:{(x07:f7xN) / |‘,E|2+|xN‘2<a7 $N>07 }

where a > 0 is a fixed small number. Equation (2.1) for u reads in terms of @ in D as

Ad+B(@)+ @~ = 0, u>0 in D,
u(zg,z,0) = 0 for all (o, Z), (2.3)
w(xo+20,z,2n) = a(zo,T,TN) for all  (zo,Z,xN).

where B is a second order linear operator of the form
B = by (w0, 2)0y + bi(z0,7)0;

with smooth coefficients, 2¢-periodic in xg, bix(zo,0) = 0 which we explicitly find in terms of
geometric quantities in §4. If @ is sufficiently small, the differential operator involved in (2.3) can
be regarded as a small perturbation of the Laplacian inside D. To construct an approximation
to a solution of (2.3) with the desired properties the main observation we make is that if

N—-2

w(z) = <1+C]|Vx|2) o (2.4)

then for small numbers p > 0 and d = (d,dy) € RY the function

N-—-2

_ _N2—2 1 _d :< 7chu ) 2
o= Wi e = d) p? + |7 —dP? + oy — dy]?

satisfies
Au + uP 0, u>0 in D,
u(zo+20,Z,zn) = u(zo,Z,zN) for all (xo,Z,2zN)
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and can therefore be considered as an approximation of a solution to (2.3). We assume dy > 0
so that the maximum set of ug is inside the domain, with value ~ ,u’¥. In addition, we want
that the boundary values are small compared with this order, which is achieved if y << dy. In
this case the boundary values are bounded by ~ u’¥ (n/ dN)¥. Unfortunately, to obtain a
good approximation it does not suffice to choose p and d just to be constants. We assume instead
that they define smooth functions of xy. As we will see later, a sound choice is to take

de(w0) = ede(wo),  pelwo) = plic(wo), p=e¥2, (2.6)
where [i. and d. are uniformly bounded 2¢-periodic smooth functions so that, also, ji., dn. are
positive and uniformly bounded below away from zero. In particular, observe that p. ~ evz den,
and we set as an approximation to a solution of (2.3),

N—

fio(w0,7) = pe 7 w(pZ (@ — d2)).

It is natural to consider the further change of variables
N—

Wz, ) = pe = v(p~ wo, s (@ —d2)), v =0(yo,y), (2.7)

under which g reads simply as w(y). Equation (2.3) is transformed in terms of v into

S(v) := ao(pyo)doov + Ayv + A(v) + pe ? SoP=f = 0 inD,
v(y05g7idliv; (pyo)) = Oa (28)
v(yo +20p~",y) v(yo,y)

where

A = a;(yo,y)0i; + ai(yo, y) 0 + c(vo,y)
is again a small operator and now we reduce the original cylinder to take D as a region of the
form

de ) )
Y (oyo) < yn < > ly| < ;}, (2.9)

D = {(y0,9,yn) | — y

£

where § > 0 is a small number which will be further reduced if necessary. Here
ao(xo) = p~ 22 (o) = fie(0)?, (2.10)

and A is a differential operator with coefficients becoming small with e, which we will fully
N-2

identify later. Noting that u. 2 ® — 1 and that the domain D is expanding into entire RV *1,

then we see that w(y) indeed approximates a solution to the equation. We will actually take an

approximation w which differs little from w which in particular satisfies the boundary condition.
Now, setting v = w + ¢ with ¢ small, the equation takes the form

L(¢) == ag0o0¢ + Ay¢ + pwP ¢ + A(¢) = —S.(w) — N(¢)

where the operator N(¢) is of order smaller than linear in ¢. More precisely

_N-2 _N-2

N@)=pe * "W+ @)= —pe ?

“whe — pwP Lo
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It is therefore important to understand bounded solvability of a linear equation involving the
operator L. This is a rather subtle issue since the limiting L does have a kernel in the space of
bounded functions in RV, Indeed, the equation

8009 + Ay + pwP o =0
has the bounded solutions Z;, 1,..., N + 1, and Zy(z) cos(v/A1z0), Zo(z)sin(v/A1zp), where
N -2
Z;i=0;w, i=1,...,N, ZNH:x-Vw—&—Tw, (2.11)

and by Zy, A\; > 0 the first eigenfunction and eigenvalue in L2(RY) of the problem
Ayd+pw(y)Ptp=Ap in RV (2.12)

As we shall show these are all the bounded solutions of the equation.
Let us consider a bounded function h(yg, y) 2¢-periodic in yo and the following projected problem
in which we mod out the above functions, and look for bounded functions ¢;(yo) and ¢ such that

L(#) = apdood + Dy + pwP o+ A(9) = h+ Nt ei(yo)Zi in D,
¢ = 0 ondD, (2.13)
Dlyo+ 2007 y) = od(yo.y). '
nyO d(yo,y)Zi(y)dy = Oforaly,eR, i=0,...,N.

As we will see, this problem has a unique solution whenever € is small enough provided that
certain uniform estimates for the parameters involved and its derivatives hold. In addition ¢
satisfies a uniform a priori estimate in L°°-weighted-norms. We develop this theory in fact in
larger generality in §3. Then we consider the projected nonlinear problem

L(¢) = —S:(w) - N(0)+ 3.5 ei(yo)Zi inD,
¢ = 0 ondD, o1
o(yo + 26/)717 y) = éo,y)- :
fpyo d(yo,y)Zi(y)dy = OforallypeR, i=0,...,N+1,

where Dy, = {y / (yo,y) € D}, to which we can apply the linear solvability theory and contraction
mapping principle to find a unique small solution. Besides, we have that

qm/‘ﬁ~/ S.(w)Zidy
RN Dy,

and therefore to have a solution of the original problem (with ¢; = 0) we need a set of relations
that look (approximately!) like

/ S.(w)Z;dy =0, forallyy, ¢=0,...,N+1. (2.15)
DyO

At this point we mention that the approximation w carries as an additive term a function of
the form e.(pyo)Zo(y) where e, is another parameter of the form e.(xg) = €é-(xg). It turns
out that adjusting conveniently the (N + 2) parameters p., d., e. we can achieve that the above
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N + 2 relations hold as a system of differential equations for these quantities, which turns out
to be solvable because of the non-degeneracy assumptions made. The story is however more
involved since the parameters enter the nonlinear relations at different orders so that a further
improvement of the approximation w of the form W = w + II. This is the main purpose of the
work in §5. II is built upon solving the linear problem (2.13) for h = —S.(w), after identifying
the right main order values of the parameters in the solvability conditions (2.15), which turns
out to reduce substantially the size of the error of approximation S¢(W). Another crucial step is a
gluing procedure carried out in §6, where the full problem (2.1), for which a global approximation
is built by just multiplying W by a cut-off function, is reduced to solving an equation similar to
(2.14) for ¢; = 0, just in a neighborhood of the geodesic, but where the operator N(¢) is replaced
by a similar one which includes nonlocal terms in ¢ encoding the information of the rest of the
domain. This is what tells us that the influence of geometry of the remaining part of the domain is
basically negligible. The corresponding projected version of the nonlinear problem is solved in §7
and the final adjustment of the remaining parts of the parameters is done in §8, thus completing
the proof of Theorem 1.1. We devote the rest of this paper to carry out the program outlined
above.

3. THE LINEAR THEORY

In this section we will develop a linear theory suitable to solve problem (2.13). Our main
result is contained in Proposition 3.1 below, for which we need some preliminaries. Let w(x) the
function defined in (2.4) as

N—2

o= (1)

where 2 € RN and ¢y = (N(N — 2))2 which is, we recall, an entire solution of the problem

Agvw+wP =0 in RN (3.1)

where p = % Let us consider the operator
Lo := Agn +pwP™L,
which corresponds to the nonlinear operator in (3.1) linearized at w.

To analyze the point spectrum of this operator, we use the conformal invariance of (3.1). Let
us consider on R, the metric

2
gsN = (ﬁ) dI'Q,

which is conformal to the euclidean metric dz? and corresponds to the standard metric on S™V
when parameterized by the inverse of the stereographic projection
N 2 1—|z? N

In polar coordinates, we have the expression of the Laplace-Beltrami operator on S¥ given by

—n n—2 -2
AS’N = (71%?7“2) rl_"ar <<1+2Tg) r”_l(‘?T) + (71%?7‘2) 7’_2 AsN—l,
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where r = |z|. The following identity follows from the conformal invariance of the so called
”conformal Laplacian” [?] or can also be obtained by direct computation

N+2 2—N

L=(tp) © @+ M) ()

We also have
/ Z(A+ N) Zdvolgn = / Z L Z dvolgn,
SN RN
where Z and Z are related by

N-2

. 9 -z
Z = Z.
1472

Now, the operator Agn + N has a N + 1 dimensional kernel corresponding to the coordinate
functions on SV (since N is an eigenvalue of —Agn). This implies that the L2-null space of the
operator L is N 4+ 1 dimensional and spanned by the functions

Zj = 0w, j=1,...,N, and ZN+1::x~Vw+¥w

(see (2.11)). The fact that L Z; = 0 can also be checked directly or can be proved using the fact
that (3.1) enjoys some translation and dilation invariance in the sense that, for all A > 0 and
a € RY, the function

T T u(Az + a),
is a solution of (3.1) whenever u is a solution of (3.1). Differentiation with respect to A or with
respet to a, at A = 1 and a = 0 directly shows that Z; are solutions of L Z; = 0.

Moreover, the space where the quadratic form

Z— — Z (A + N) Z dvolgn,
SN
is negative definite is one dimensional, and coincides with the space of constant functions, which
implies that the space where
Z— — Z L Z dvolgn ,
RN
is negative is also one dimensional. Hence, the operator Ly has one negative eigenvalue —\; < 0,
and we denote by Zy the corresponding eigenfunction (normalized to have L?-norm equal to 1).
See (2.12). We observe that this eigenfunction decays exponentially at infinity with exponential

order O(e=VAtlal),
Having understood the point spectrum of the operator L we have the

Lemma 3.1. Assume that & ¢ {0,/ 1}. Then given h € L¥(RY), there exists a unique
bounded solution of
(Lo = &) ¥ =h
in RN . Moreover
9]l Lo < ce [[hll Lo
for some constant c¢ > 0 only depending on &.
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Proof. For all 7 > 0, we denote B, the ball of radius 7 in R" centered at the origin. We assume
that & ¢ {0, £/ A1} is fixed. We first prove that, there exists 7 > 0 (depending on &) such that,
for all » > r¢, the following a priori estimate

[/l (5, < e (L = [€°) ¢llLe=(s,) (3.2)
holds for any bounded function v vanishing on 0B,.

Assume for the time being that this estimate is already proven. Then, for » > r¢, the operator
Lo — |€|? is injective on the ball of radius 7 (being understood that we consider 0 Dirichlet
boundary conditions). Fredholm alternative implies that, for all » > r¢, we can find a unique
solution of

(Lo = |g*) v = h
on B, with ¢, = 0 on 0B,. Given a sequence where 7; tending to oo, the a priori estimate (3.2),

elliptic estimates and Ascoli-Arzela’s theorem allow one to extract from (¢,); a subsequence
which converges (uniformly on compacts) to a function v, solution of

(Lo — ¢ v =h

in RY. Moreover, passing to the limit in (3.2), we find that ||¢)||p= < c¢ ||h||L=. This completes
the proof of the existence of ¥. Uniqueness follow at once from the fact that (3.2) extends to the
case where the functions are defined on R,

It remains to prove the validity of relation (3.2). First observe that, since £ # 0, there exists
7¢ > 0 such that

pwl™h =g < =5 [¢f?

in RV \ By,. Given r > 7¢ and using the constant function as a barrier, we find immediately the
estimate

[l (5\5e) < ce (10 = 1€ V(s + [¥llix @8, ) (33)
for any bounded function v vanishing on 0B,

We now argue by contradiction and assume that (3.2) does not hold. Then there exists a
sequence of radii r; tending to co and functions ; vanishing on dB,, such that

[¥llz=s,,) =1
while
lim [|(Lo — [€1*) ¥l (B,.) =0
j—o0 J

Observe that, without loss of generality, we can assume that r; > 7¢, and (3.3) implies that that
||¢j||Loo(BF£) remains bounded away from 0 as j tends to oco.

Elliptic estimates and Ascoli-Arzeld’s theorem allow us to extract from (¢;); a subsequence
which converges (uniformly on compacts) to a function v, solution of

(Lo —[€]*) =0
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in RY. Moreover, ¢ is bounded and not identically equal to 0 (since ||1);]] L (Br,) remains bounded

away from 0). But, since & ¢ {0, £+4/A1}, this contradicts the classification of the point spectrum
of L. The proof of the a priori estimate is therefore complete. O

If = is the coordinate in RY, we denote by (xo,z) the coordinate in R x RY = RN*1. We
consider the operator
E = Jyo +ARN + %wﬁ,
The next result classifies the bounded solution of the homogeneous problem L ¢ = 0 in RV *1,
Lemma 3.2. The bounded solutions (xq, ) — (o, x) of the equation iq/) =0 in RN+ are all
linear combinations of the functions

(ZC(),JC) — Zj(x)v
forj=1,...,N+1, and the functions
(zo,2) —> Zo(z) cos(Ng zp) (z0, ) —> Zo(z) sin(Ag xp).

Proof. Assume that ¢ is a bounded solution of L ¢ = 0 in RV+1. We take Fourier transform in
the x( variable and define

¢@mw:/é“%mmem.

Then, (;AS is a distribution which depends parametrically on 2 and which satisfies the equation

(L= =0 in RN+L (3.4)
The precise meaning of this equation is that
[, 6 (L—1ep) vagda =0, (3.5)
RN+1

for any 1 € C>®(RN*1) which is rapidly decreasing in ¢ (and decreasing enough in x so that
Y(wo,-) € LYRY), for all zo).

We would like to show that ¢ = 0. To this aim, we choose g € C®(R \ {0,+\o}) and
h € C(RY). We set
¢(&,x) = g(&) h(=)
and define ¥(&, z) to be the unique bounded solution of the equation
(L—1¢P) ¢=¢ mRY.
Here £ is considered as a parameter. Using the result of Lemma 3.1, it is easy to check that
is well defined (since the function ( is supported away from 0 and +)\g), moreover x — ¥ (&, x)

is rapidly decreasing (in fact decays exponentially like the function x — e~1€1%). Also observe
that 1 is compactly supported in the £ variable. Inserting the function 1 in (3.5), we get

0= v h(l‘) <(£(',$),g>pl7p dx
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Since h is arbitrary, we conclude that
<QA5('7$)7 g)prp=0 for all z € RY.

Since g is chosen arbitrarily, with compact support in R\ {0, £}, by definition the distribution
¢(+, ) has its support contained in this set. From standard distribution theory, this implies that

¢(-,x) is a linear combination (with z-dependent coefficients) of derivatives of Dirac masses at
the points 0, £)g. Taking the inverse Fourier transform and using the fact that ¢ is bounded, we
obtain the decomposition of ¢ as

d(xg, z) = a(x) + b(x) cos(Ag o) + c(x) sin(Ag o).
Moreover, the functions a, b, ¢ are bounded solutions of
La=0, Lb—M\sb=0, Le—Mc=0,
in RY. This immediately implies that the function ¢ must be a linear combination of the functions

Zj, for j =1,...,N 41, while the functions b, ¢ have to be scalar multiples of Zy. The proof of
the result is complete. O

We shall use the previous result in order to obtain a priori estimates and a solvability theory
for problem (2.13). We consider here a slightly more general problem that involves the essential
features needed. For a positive smooth function R(yo) and a constant M > 0 we consider the
domain D defined as

D = {(y0,9:yn) ERV*' / = R(yo) <yn < M, [y| < M}
and for functions ¢ defined on D, an operator of the form
L(9) := b(y0)O00® + Ay + pwP ™" + bij (Yo, ¥) ;b + bi (Yo, y)0sd + d(yo, y)d

where bgg = 0. Then for a given function h we want to solve the following projected problem.

L(¢) = h+35 eiyo)Zily) inD,
10) 0 on 0D, (3.6)
nyg d)(y()a y)ZZ(y)dy 0 for all Yo € Ra 1= 07 s 7N7

where
Dy, = {y e RY / (o, y) € D}.
We fix a number 2 < v < N and consider the following L°°-weighted norms.

o]l = S%p(l + 191" 7)o (o, y)| + S%p(l + [z De(xo, ),

| = S%p(l +[yl”)Ih(yo, y)! -

We assume that all functions involved are smooth. We will establish existence and uniform a
priori estimates for problem (3.6) in the above norms, provided that appropriate bounds for the
coefficients hold.
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Proposition 3.1. Assume that N > 7, N —2 < v < N. Assume that for a number m > 0 we
have that

m <b(yo) <m™'  for all yo € R.
Then there exist positive numbers 6, C such that if, for all i,j

[00R]cc + M|Oo0Rl 0o + M||00bllco + [|biloo &7
4+ 1Dbijlloo + 11+ |yDbilloe + (1 + y1*)d]ls <,

and
51 < R(yo), M 'R(yo) <6 forall yo € R, (3.8)

then for any h with ||h||« < +oo there exists a unique solution ¢ = T'(h) of problem (3.6) with
loll < 400 we have
6]l < CllAws-

Proof. The proof of this result will be carried out in three steps.

Step 1. Let us assume that in Problem (3.6) the coefficients b;,d, and the functions ¢; are
identically zero. We will prove that , C' as in the above statement can then be chosen so that for
any h with [|A||«« < 400 and any solution ¢ of problem (3.6) with ||¢||. < 400 we have

[8]l« < CllAll -

To establish this we argue by contradiction, namely we assume the existence of 0", ¢y, hn, b},
R,,, M, such that
m <b"(yo) <m~'  for all o € R,
[#nlle =1, [[hnfles =0,
Mn”aOanoo + Mrjl‘an“oo + ”aoRnHoo + MnHaOORnHoo + ||b:7||oo — 0, iilof R, — +o0

and satisfy
b (Y0)Doobn + Ay + b50:50n + pw(y)’ ' dp = hn,  in D,
together with the orthogonality and boundary conditions.

To achieve a contradiction we will first show that

[[@nlloc — 0. (3.9)

If this was not the case then we may assume that there is a positive number ~y for which ||@p | e >

~. Since we also know that
C
o, y)| < ————,
DL Gy
we conclude that for some A > 0,
| pnllLos (jzj<a) = V-
Let us fix an yg, such that

.
Pn(Yon, Lo (y1<a) = 3
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By elliptic estimates and compactness of Sobolev embeddings, we see that we may assume that
the sequence of functions é(yo + Yon,y) converges uniformly over compact subsets of RV*1 to a
nontrivial, bounded solution of

Ayd+aFdood +pw(y)P'é=0 in RNT!

where ag® is a positive constant, which with no loss of generality via scaling, we may assume
equal to one. By virtue of Lemma 3.2 and the orthogonality conditions assumed, which pass to
the limit thanks to dominated convergence, and the assumptions N > 7, N —2 < «, we find then
that ¢ = 0. This is a contradiction that shows the validity of statement (3.9).

Let us conclude now the result of Step 1. Since ||¢n||« = 1, there exists (Yon,yn) with r, =
|yn| — 400 such that

TZ_2|¢n(y0n»yn)‘ + TZ_1|D¢n(y0m Yn)| > v >0.

Let us consider now the scaled function

an(za T) = 7’;72¢n(90n + Tn20,Tn2)

defined on D given by

D ={(20,% 2n) | — Rn(20) < z2nv < Myr Y, |2| < Myr;ty.
with En(zo) =77 'R,y (yon + Tnz0). Note that M,r; ' > 1/4/2. Then we have

|6 (20, 2)| + |21|Dg(20, 2)| < [2]*™* in D
and for some z, with |z,| =1,
[@n(0, 20)| + D0, 2)| >~ > 0.

by, satisfies

a0n000Pn + Asdn +0(1)0ijdy + O(ry?)|2| *¢pp = hy, in D
where,
hn(20,2) = 15 (Yon + Tnz0,mnz), " (20) = 0" (Yon + Tnz0)

Let us observe that from the assumptions made we get
186b" [[oo + [0 R0 + 1800 Bonloc — 0.
Then, we may assume that
b"(20) — by > 0,
and that the function ¢, converges uniformly, in C''-sense over compact subsets of D, \ {z =0}
to ¢ which satisfies
b0+ A.dp =0 inD,\{z=0}
where either
D. ={(20,2,2nv) /| 0 < 2y < ds, |2 < d.}
with 1 < d, < +00, or
D, ={(20,2,2n) / ax < 2N}
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with a, > 0 or
D* _ RNJrl.
and ¢ satisfies
|6(20, 2)| + [2](20, 2)| < [2*7 in RYT\ {z = 0}

with the value ¢ = 0 assumed continuously on the boundary of D, \ {z = 0}. Besides, since
dooR,, is uniformly bounded, standard elliptic estimates at the boundary yield the presence of
a uniform C* bound for qgn, which thus implies that the limit of the derivative is uniform,
therefore ¢ % 0. With no loss of generality we may assume that b, = 1. If the singular line z = 0
lies inside D, the fact that ¥ < N makes it removable. Indeed, the limit gz~5 is easily seen to be
weakly harmonic in D,. This plus boundedness the boundary value zero yields that (;~§ =0 in all
cases. If the singularity lies on the boundary, this happens on the hyperplane zy = 0. In such
a case, an odd reflection reduces us to the case of the interior singularity, so that in any event,
¢ = 0. We have obtained a contradiction which concludes Step 1.

Step 2. We claim that the a priori estimate estimate obtained in Step 1 is in reality valid
for the full problem (3.6), potentially reducing the value of 6. Let § be a small number so that
the conclusion of Step 1 holds. Now we additionally assume:

[Dbijlloc + I (1 + [y)billoc + 1 (1 + |yl*)dlloc < 0 (3.10)

where ¢ will be taken smaller if necessary. Then there exist positive numbers J, C' such that if the
conditions of Proposition 3.1 and estimate (3.10) hold for all ¢, j, then for any h with ||h]|.«. < 400
and any solution ¢ of problem (3.6) with ||¢||« < +o00 we have that for all 4,

|ciloo + |9l < CllA|xx-
Cl(yo)/
D

where o(1) = 0 as § — 0.

Besides
7t = - /D h(yo,y)Zi(y) dy + o(1)[A]..
Yo

Yo

Testing the equation against Z;(y) and integrating only in y we find

Cl(yo)/ ZIQ Zb(yo)/D 800¢Zl —/D th—F/D bijaiquZpL (311)
Y0 Yo Yo

Dy,

/D (b:0ip + d) 71 + / 215, R(y0)) 9y (w01 5. R(y0)) .

N—-1
Yo R

Now, we have that

[ 26 R0y blantd Rl df | < Nl [ ('] + R ¥y < 570

RN-1

for some o > 0 depending on o and N. We immediately find that also

| / (b:i6+ ) 21| < Coldl.,
Dyo
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while, integrating by parts in indices carrying the y’ variables,
[ asduoni=1 [ oite 209501 < Clo..
Dy, Dy,
and
[ bzi<cp.
D'!/O
Now, we know that

/ (Yo, y)Zi1(y)dy =0
D

Yo

and hence, using the boundary value zero,

A 80¢(y07y)Zl(y)dy = 07
or

R(yo)

/N dy/ / 80¢(y07g7t)2l(y/at) dt = Oa
RN-1 —o0

so that differentiating once more we find

0 = / 3oo¢>sz£+3oR(l‘o)/ 09 (yo, U, R(y0)) Z1(y', R(yo)) dy’
D R

vo N-—1
from where it follows that

|/ DoodZidy| < C67[6)]-.
Dyﬂ

Combining the above inequalities into (3.11) we then find the estimate

lci(yo)l < C(lIAllx + 67 [8]]) - (3.12)
On the other hand, Lemma 3.1 implies that

18]l < Cllialler + D NleiZilla] < Cllibllax + Y lleilloo + lIgI1]-

Combining this last inequality and (3.12), reducing the value of ¢ if necessary, we obtain that ¢;s
are controlled by h,

leilloo < CllAlx,

and the result of Step 2 readily follows. O

Step 3. We shall discuss next the issue of existence for Problem (3.6), under the assumptions
so that the result of Step 2 holds true. We consider first the case of right hand sides h(yo,y)
which are T-periodic in yg, for and arbitrarily large but fixed T', the same property being valid
for the coefficients. This is in reality the assumption we need. We then look for a weak solution
¢ to (3.6) in the space Hr defined as the subspace of functions 1 which are in H'(B) for any
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bounded subset of D, which are T-periodic in yg, such that in addition ¢ = 0 on 9D in the trace
sense and so that

/ Y(yo,y)Zij(y)dy =0 forallypeR, j=0,...,N+1.
DyO

Let Dy = {y € D yo € (—T,T)} and the bilinear form defined in Hp (after one integration by
parts)

B(¢, ) = . YLo.

Then Problem (3.6) gets weakly formulated as that of finding ¢ € Hp such that

B(é,) :/ hp  for all i € Hr

Dr
If A is smooth, elliptic regularity yields that a weak solution is a classical one. The weak formu-
lation can be readily be put into the form

¢+ K(¢)=h

in Hp, where h is a linear operator of h and K is compact. The a priori estimate of Step 2 yields
that for A = 0 only the trivial solution is present. Fredholm alternative thus applies yielding
that problem (3.6) is thus solvable in the periodic setting. While this is enough for our purposes,
it is worthwhile observing that approximating a general h by periodic functions of increasing
period, and using the uniform estimate provided by Step 2, we obtain in the limit a solution to
the problem with the desired property. This completes the proof of the proposition. O

4. GEOMETRIC SETTING

We consider the metric induced by the Euclidean one on dQ and denote by V the associated
connection. We introduce Fermi coordinates in a neighborhood of I in

3= 0Q.
Given g € T', there is a natural splitting
7,2 =T,I'® N,I.
into the normal and tangent bundle over I'. We assume that I" is parameterized by arclength
zo € (=4, 0),
zo — (o),

and denote by Ej a unit tangent vector to I'. In a neighborhood of a point ¢ of I', assume that we
are given an orthonormal basis E;, ¢ =1,..., N — 1, of N,I'. We can assume that E; are parallel
transported along I' which means that

Ve, Ei =0
fori=1,...,N — 1. The geodesic condition for I' translates precisely into

@EOEO =0.
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To parameterize a neighborhood of ¢ € ' in ¥ we define

F((E(),Lf) = Expg(zo)(z €T Ez), T = (1’1, e ,.’ENfl),

where Exp” is the exponential map on ¥ and summation over i = 1,..., N — 1 is understood.
This parameterization induces coordinate vector fields

Xo = F(0z,),
fora=0,...,N —1.
By construction X, = E, along I' and
Ve,E, =0 (4.1)

Let g denote the metric on ¥ which is induced by the Euclidean metric. The Fermi coordinates
above are defined in such a way that the coefficients of g

Jab = Xa . Xb7

are equal to d,p along I'. We now compute higher terms in the Taylor expansions of the functions
Jap- The metric coefficients at ¢ := F(zo,Z) are given in terms of geometric data at p := F(xg,0)
and Z.

Notation The symbol O(|Z|") indicates a smooth function whose Taylor expansion does not

involve any term up to order r in the variables z;, t =1,..., N — 1.

We now give the expansion of the metric coefficients. The expansion of the g;;,4,j =1,...,N—
1, agrees with the well known expansion for the metric in normal coordinates [28], [23] or [31],
but we briefly recall the proof here for completeness. We agree that indices a, b, ¢, ... run from 0

to N — 1 while indices 4, 7, k, ... run from 1 to N — 1.

Proposition 4.1. At the point ¢ = F(xg,Z), the following expansions hold

gi; = 0ij+3 (R(Ei, Ex) E; - Ep) xp x4 O(|7]?)
goi = O(z*) (4.2)
goo = 1+ (R(Eo, Ey)Eo - Ep) xp 20+ O(|Z]).

where i,7,k, 0 =1,...,N — 1 and summation over repeated indices is understood. Here R denote

the curvature tensor on (3,g).

Proof: We compute
Xigay = Vx, Xa - Xo + Xa - Vx, Xy,
Using (4.1) we get
Xi Gab = 0.
along I'. This yields the first order Taylor expansion

Jav = O(|7).
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To compute the second order terms, it is enough to compute X Xi gqp at a point of I' and then
to polarize (i.e. replace Xy by X; + X, ...). We compute

X Xk gab = Vi, Xa  Xp + Xo Vi, Xo +2Vx, X0 - Vx, X (4.3)
Recall that, since X, are coordinate vector fields, we have
?%QCXG:?X,C vxa szvxa ?Xkaﬁ—R(Xk,Xa)Xk. (4.4)

Therefore, we get
Xk Xk Gap = 2R(Xp, Xo) Xk Xp +2Vx, Xo - Vx, Xp
+ Vx,Vx. Xk Xp+Xo Vy, Vx, X
Using this, together with (4.1) we get
EvEygi; = 2R(Ex,E)Ey-E;i+Vg Vg.Ey Ej+FE;,Vg, Vg Ej (4.6)
along I'. To proceed, first observe that
VxX, =VxX =0

along I, for any X € NpI'. Indeed, for all p € I', X € N,I' is tangent to the geodesic s —
exp? (sX), and so VxX = V%X =0 at p. In particular, taking X = X, + ¢ X, we obtain

0=Vgter VEter, (Ey + € Ej)
Equating the coefficient of € to 0 gives Vg, Vg, Ex = =2V, Vg, E;, and hence
3V%, Ej = R(Ey, E;) Ey,.
So finally, using (4.3) together with (4.6), we get
Ey By gij = % (R(Ek7Ei) E, -Ej)
along I'. The formula for the second order Taylor coefficient for g;; now follows at once.
Finally, it follows from (4.5) together with (4.1) that
EyEygoo = 2R(Ey,Eo)Ey-Eo+2VE,VE.Ey - Ey
along T. Since Vg, Ex, = 0 along K, we also get Vg, Vg, Ex = 0 along I'. We conclude that
B} Ey, Goo = 2 (R(Ey, Eo)Ey, - Eq)
along I' and this gives the formula for the second order Taylor expansion for ggo. a
Notation In what follows in the paper, we will use the following notation
Rijim = (R(Ei, E;)E; - Em) . (4.7)
To parameterize a neighborhood of a point ¢ € I' in €, we consider the system of coordinates
(w0, z) € RNVF! introduced in (1.8) given by
G(zo,z) = F(x0,Z) — xy n(F(z0, 7)), == (%, zy) RN

where € R¥ is close to 0 and n designates the outward unit normal to X.
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In these coordinates, the coefficients of the Euclidean metric read
gNN = 1a and 9gaN = gNa = Oa (48)

forall a=0,..., N — 1. Finally, for a,b =0,..., N — 1, the coefficients g,; can be expanded, in
powers of z as
Gab = Jab + 2hap TN + kap 23 + O(237)

where g is the metric on % whose expansion has been given in the last section,

hop :=—FE4-Vgn=—E,-Vgn (4.9)
are the coefficients of the second fundamental form h of ¥ and
]%ab = (B ® B)ab = Z Bac ngEdb (410)
c,d

are the coefficients of the square of the second fundamental form. An important remark is that
hoo, computed along I, is a smooth function of the arclength which represent the normal curvature
along the geodesic in the sense that

97,7 = Vi, Eo = hoon (4.11)
along T

Building on the expansion of the metric, which has been obtained above, we give the expansion
of the Laplace operator in the above defined coordinates. Recall that the Laplacian is given, in
terms of the coefficients of the metric, by

A= ﬁ% (V191 9% 02,) = 79 0u,, Oy + 0p 9 Oy + 5 Trg(02,9) g°° Ouy

where the indices «, 5 run from 0 to N and where |g| denotes the determinant of the metric.
Since (4.8) holds, the above formula simplifies into

A= aiN + % Trg(amNg) a«”N + gabaﬂﬂaaﬂib + 8Iagabaﬂﬂb + % Trg(awag) gab 6:rb7
where the indices a, b run from 0 to N — 1.

We have the following decomposition (recall that we agree that the indices 4, j,k, ¢, m, ... run
from 1 to N —1):

A = 03 43,00 +05, + AN 37 AY Oy, Ony
+ Zi,j (—% Zk,l (R(E“Ek) Ej . E@) T Ty — QBij N +Aij) 8%.6%.
+ B0y + Y, (Xk (3 (R(E, E)) E; - Ey) + (R(Eo, Ej)Eo - Ey)) x + B7) 0,
+ (TrgB—Trgl_cmN+BN) Oz n

(4.12)

where the curvature tensor R, the metric § and the tensors h and k are computed along I', and
hence only depend on zy while the functions A*? and B* do depend on zg, x1,...,zy and enjoy
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the following decomposition

AP = AR an + Yo AN e

AT = A% Ty + (Zk A%k mk) TN+ D pom AZJZ Tk Lo Tn

AV = A% JSN—FZ,C’ZA%I%J}@

(4.13)

BO = B?VxN+ZkB2.’L‘k

B = Bgvg:N+Zk7€B£gl‘k:L‘g

BN = ByaX + (3B wk) an + 3, B} x;
Here the functions A%, A%, A%, ... and the functions BY;, BY, BY, ... are smooth functions de-
pending on zg,...,zyx hence they can be further decomposed using Taylor’s expansion. More

precise expansions can be given in terms of the geometric data defined above but they will not
appear in the final result so we have chosen to leave the expansion as it is. For example A?\? can
be further expanded in powers of z and we have

07 7 10,7 .2
AJ\? = 74hoj TN +AN] TN,

~07 . . .
where A}/ is a smooth function depending on z, ...,z N.

5. CONSTRUCTION OF A FIRST APPROXIMATION

This section is devoted to the construction of an approximation for a solution to our problem
Au+uN3°=0 in Q, u=0 on 00 (5.1)

As explained in Section 2, the idea is to build the approximation using the standard bubble w in
RY solution of
Au+ud2 =0 in RV,

centered and translated along a curve which is located inside the domain 2 and, at the same
time, very close to the geodesic I' in 02. We will thus first introduce a precise description of the
approximation in a region extremely close to the geodesic, without taking into account the outer
region. Since the solution turns out to be very concentrated, this description is accurate enough
and a gluing procedure we perform in Section 6 is the key instrument to gather together this thin
region close to the geodesic with the outer region.

Let (9, ) € RV*! be the local coordinates along the geodesic introduced in (1.8). We perform
the change of variables introduced in Section 2, formula (2.7),

N-2 N—-1

1£C0,,U,€_1(£U—d5)), vzv(yo,y)7 PZEN*Q,

w(Glzo,2) = pz 7 vl(p~

where
ME(xO) = pﬂs(xO)’ ds(xO) = 5d~5($0) (52)
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are function of the arclength zg € (—¢,/), see (2.6). We now need to be more precise in the
description of u. and d.. We assume that

fie(0) = p(w0) + eplxo),  den(wo) = dly (o) + edn (o), (5.3)
and
dgj($0) = Edj(ﬂ?o) for al]_] = 1, .. .,N —1. (54)
In (5.3), u2 and d.n(z0) are explicit smooth functions of zo of the form
1l = po(w0) + e ™21 (w0),  den(wo) = don(wo) + ™2 diy (o), (5.5)
with 8
o
M €T = -, d €T = = 5 56
(o) hoo (o) on (20) hoo(zo) (5.6)

where a and /3 are positive constants depending only on the dimension N and hqg is the normal
curvature along the geodesic T, which is assumed to be smooth and strictly positive, see (4.11).
The functions p1, diy in (5.5) are smooth functions of xg, uniformly bounded in € together with
their derivatives, whose precise definition we give later in Section 5, (5.37).

Finally in (5.3) and (5.4), we assume that u, d = (dy,...,dn_1,dN) are parameter functions
defined in (—¢, £) to be adjusted only in the final finite dimensional reduction. For now, we assume
they are smooth functions of xy and that they have the following norms bounded

letlla = ™ filloo + €7 filloo + |l (5.7)
and
N-1
ldlla = lldnllo + > lld;lle, (5.8)
j=1
where
Il = lled oo + lle* oo + 1Al (5.9)
forj=1,...,N—1,
djlle = lld;lloo + lldjlloo + lld;]loo- (5.10)

In the previous expressions and in the rest of the paper, with the notation we denote the derivative
with respect to xg.
The (yo,y) variable belong to the set D defined in (2.9). We recall the definition of D

D = {(yo,9,yn) | — fen

b) )
Y <y <77 g<7a
(Pyo) N P 7] p}

S

for some fixed positive number & we will chose later. The domain D is expanding, as € — 0 to
the whole space RY. Observe that, with our choice of . and d.y in (5.3)-(5.5), we have
daN
e

where + is a positive constant, depending only on N, and where O(1) denotes a smooth function of
xg, which is uniformly bounded in €, together with its derivative, for u and d with ||p||o+]|d||a < ¢

= "7 |y+e7320(1)], (5.11)
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see (5.7)-(5.8)). In particular, the function %X satisfies assumption (3.8). Not only this. We
He
have that

den _a . ; 3
100 (%) e < cpe 2 (<l + eyl < e,

€

and

_ den 1 . u B3N8
00 () o < oo™ (<l + ellvllec) < ¥,

g

Thus the function d;:’ satisfies (3.7).
We also define

Dy, ={y / (yo,y) € D}, (5.12)

As we rigorously prove in Lemma 5.1 below, the Laplace operator whose expansion is described
in (4.12), after the change of variable (2.7) gets transformed by the following relation

N+2
e 2 Au= A(v) (5.13)
where, in the region D, the differential operator A can be written in the following compact form
Av = agd2v + Ayv + Av. (5.14)

In (5.14), ag is given by
ag = (Mo + Eﬁ,ul + Eﬂ)27
see (2.10). Observe that
P~ 90l < ceilloc < eV,

thus the function ag satisfies (3.7).
Furthermore, in D the differential operator A can be described as follows

Av = Z 00,800,80 + Z ba0av + cv, (5.15)

where aq g, do, and c are functions of the variable (pyo,y), depending in an algebraic way on the
parameter functions p. and d.. More precisely, given the choice in (5.2), (5.3) and (5.4), one has,
in the region under consideration,

aap =0+ p*yl*) if a#0,B#0, app=0(), and ago =0,
while
bo = pO(e + ply|) and c= p?O(1).

Condition (3.7) is thus satisfied by the differential operator A. This fact, together with the
estimates on d;N in the definition of D in (2.9), gives that the linear theory developed in Section

3 for the linear operator A + pwP~! in the domain D can be applied.

Next Lemma gives the detailed computation of the differential operator A in terms of the
geometry of the problem.
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Lemma 5.1. After the change of variable (2.7), the following holds true
5
pe? Au= A(v) == agdgv + Ayv + Z Arv + B(v), (5.16)
k=0

where ag is defined in (2.10). In the previous expression Ay denotes the following differential
operators

Aov = 12 [Dyyv [y + 2(1 +7) Dyoly] + (1 + 7)v]
+ fte [Dyyv[y] + ’YDyU] [ds] + Dyyv [ds]z
v ] o (5.17)
= 2[R Dy (000)ljtey + d] + viies™ N g
p1eDy v [de] — pefic (vo + Dy [y])
Ao = 3, [=5Riji(peyr + deg) (peyr + dey) — 2hij (peyn + dey)
(5.18)

+ D a%k(ﬂsyk +de)(peyn + dey) | Oizv,
) j hi: is ai ; . ij ij , N=L
where Rjij; is defined in (4.7), hij is given in (4.9) and the functions ay, = ay,(e¥=2yo) are
given by
ARy = afpan + 0(aR),

with A%, defined in (4.13). Purthermore,

Ao = 3, [—4hoj(peyn + deoy) X
Nod (5.19)
(—Dy(aﬂ)) [d] + pee™ 372 0g;v — (700 + Dy (9;v) [y])/le)}
and
Asv = (3, 0 peyr + deg] + b (peyn + den)) x
. N1 (5.20)
Lise [~Dyo [de] + pee™ 800 — fic(yv + Dyw o)) }
where b are smooth functions of E%yo given by
BY =blay + O(2%)
(see (4.13) for BY). Finally,
2 .
Ao = ; l;(SRijik + Rojor) (teyr + dei) + by (peyn + dsN)] pe0jv, (5.21)

where bgv are smooth functions of enN=2 Yo given by

Bl =byay + O(z%)
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(see (4.13) for BL), and
Asv = (Trgh — Trgk(peyn + dox)) pedno, (5.22)
where h is given by (4.9) and k by (4.10). The operator B(v) can be described as follows

B(U) = 0 (|/1'5?] + CZ5|2 + (NayN + daN) + (MayN + daN)(:usg + Je)) .Ao(’U)
+ 0 (|.us?j + JE|3 + (Heyn + den)| ey + JE|2 + (peyn + deN)Q) 0ijv
+ O (|u53j + c?€|2 + (NeyN + dsN)lﬂeg + ‘26| + (NeyN + dsN)2)
N1 _N-1
X [,ues N3 9,0 + pree” N2 0gv — Dy (9;v) [d.]

~ (1950 + Dy (90) [W)ie — Dyvds — fic (y0 + Dyoly]) + 0]
+ O (et + de)® + (pey + do) (peyn + den) + (peyn + den)?) pednv.

Proof. We will show first that
p2 P2 0gu(xo, x) = p~ 2 p285v(yo, y) + Ao(v(Y0,y))- (5.23)
If v = v(yo, y), we define
(20, 2, pe) = p2 Yv(z0, pz 1 2).
We have u(xg,z) = 9(p~wg,z — d, ). Then we compute
dou = D, [—d.] + p~19o® + 10,7,
and
Ou = D..0lde)* + p 2030 + 2026 — 2p" ' D (000)[de] + 20~ 100, T — 241 D2 (0., ) [de]

—D.[d.] — icD,,D.
Thus formula (5.23) follows expressing the previous computations in terms of v. To get the rest
of (5.16), one argues in a similar way. a

With respect to the local coordinates along the geodesic I' previously introduced and after

scaling the variables as in (2.7), the original equation reduces locally close to the geodesic to
N-2
Av+pe 2 0P =0, (5.24)
where A is defined in (5.14) and p = % We denote by S. the operator given by (5.24), namely
N-2

S.(v):= Av 4 pe = “vP7 (5.25)

In the rest of this section we study equation (5.24) in the set (yo,y) € D and we build an

approximate solution to (5.24) which furthermore satisfies zero Dirichlet boundary condition in

the region yny = —dﬁ—:’. Indeed, our approximation close to the geodesic is
W=w+IL (5.26)

We start with the description of w. The definition of IT will be given at the end of this section.
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We define w to be given by

w =W+ e (pyo)x=(¥) Zo- (5.27)
The first term in (5.27) is @ defined as follows
@(y) = 1+ ac) (wly) — w(y)), (5.28)
(N-2)2

with w given in (2.4), ac := e °  —1and @

de
©(y) = w(@yn +2—).

€

Observe that
Al +a)w) + s T (1+a)w)P =0 in RV,
In the second term in (5.27), Zo denotes the first eigenfunction in L?(R”) of the problem
Ap+pw(E)Ptp=Xp in RY, X\ >0
with [ Z2 = 1 and x. is a cut off function defined as follows. Let x = x(s), for s € R, with x(s) =1
if s <&, x(s) =0if s > 2§, for some fixed 0 < & chosen in such a way that Xg(gj,—d;—:’) =0,

where x.(y) = x(e¥ = |y|). Observe that the function w satisfies the Dirichlet boundary condition
for = —den

YN -

Finally, in (5.27) the function e.(pyo) is defined as follows

e =cé., with é =el+ee, and e =eo+ Eﬁel, (5.29)
where e; is an explicit smooth function, uniformly bounded in e, whose expression we give in
Section 5, (5.37) and
2 [pn 01w Zo
==
Finally, in (5.29), the function e is unknown and, for now, it plays the role of a parameter. This
function e will be chosen later on, together with u, dy,...,dx in (5.3) and (5.4), to be solution

of a system of (N + 2) ordinary differential equations. For the moment, we assume that e is a
smooth function with the following norm

€o (Trg}_l - }_lo()) dON’ (530)

lelle = [1e 72800 + (€72 ¢l 0 + llelloo (5.31)

uniformly bounded by a positive constant independent of e.

The error one commits in considering w a real solution to (5.24) is given by the size of S.(w),
which is itself a function of the parameter function p, d and e. Assume that the parameter
functions u, d and e, defined respectively in (5.3), (5.4) and (5.29) satisfy the following assumption

(ks ds €)= [lulla + lldlla + llelle < ¢ (5.32)

for some constant ¢ > 0, independent of €.
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Then for all € small enough and (yo,y) € D, we have the validity of the following expansion
SE(W) = —pwp’l(b —ewPlogw + ¢ [—QFLijdgNﬁijw + /\162Z0]

€1+ﬁ ,LLg [—QBiijaijw + T?”g}_lan] (533)
+ 82 [(pzaoé + )\16) Zo - 2Bideaijw

+ 3(didy — FRijrdids + a,dpd®y + dhojdidy)Os0 + Y]
+ ¥t ul [— > 0w - dj + (- 2 3R jrayrdiOijw + 2a%kykdgN8ijw)
+  (2Rijik + Rojor)drojw + 4BOjd'inaijUJi|
+ Ee [_NSBNW ~dy — %Rijklykdlaijw + w(3Rijir + Rojor)dpOjw
(12dn + ngN) <2a%kyk8ijw + bgvajw — Trgfzan>
(ne + pe?) (—2hijyn0ij Zo + Trghdn Zo) |
+ V2 [jipZy

20112 (— 3 Rikjt yuw Oijw + (3 Rijir + Rojor)yrOjw + bhyndjw — TTgEyNan)}

et(loge)r
where
Y. ="To+e¥2T., (5.34)
with
Yo = —2h;;doneodi; Zo + p(p — De2wP™2 72 + peqw? logwZ,

YT! a sum of functions of the form

FEF T2 y0) folu, dy e) fa(y)

with f1 a smooth explicit function of the variable sHﬁyO, uniformly bounded in €, f; a smooth
function of p, d and e and uniformly bounded in ¢ for p, d and e satisfying (5.32), and f3 a
smooth function of the variable y, with sup(1 + |y|¥=2)|f3(y)| < +oc.

In the previous expansion, h is the second fundamental form on ¥ defined in (4.9), k is
the square of the second fundamental form defined in (4.10), R;jx; are the components of the
curvature tensor R on (¥, ) as defined in (4.7). Here indexes i, j, k,l are understood to run
from 1 to N — 1 and summation is understood under repeated indexes. Finally a%k is defined as
AYy = aipen + O(2%), see (4.13).

Finally the term r the expansion (5.33) is a sum of functions of the form

ho(e" T ™2 o) [fl(u,d,ﬂ,d) +0(1) f2(p, dy e, 1,d, &, i, d, €)| f3(y)
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with hg a smooth function uniformly bounded in e, f; and fo are smooth functions of their
arguments, uniformly bounded in € as u, d and e satisfy (5.32). An important remark is that the
function fo depends linearly on the argument (ji, d, ¢). Concerning f3, we have

sup(1 + [y|V )| f3(y)| < +o0.

We postpone the proof of the expansion (5.33) to the Appendix, Section 9 and we continue
the description of w in (5.27).

We now use formula (5.33) to compute, for each yo, the L?(D,,) projection of the error Se(w)
(see (5.25) and (5.27)) along the functions Z;, i = 0,1,..., N + 1 (see (2.11) and (2.12)). Here
D,, denotes the yq section of the domain D, defined in (5.12),

Dy, ={y : (vo0,y) € D}.

Cl ZZ/ ZE, 02 = / Z]Qv+1, Cg = / Zg
RN RN RN

We start with the projections in the tangential directions Z;, for i = 1,..., N — 1. Assume pu,
d and e satisfy (5.32). Then for & small enough, and for any k =1,..., N — 1, we have

Denote

Ip,, Sk = e E Oy [Ho (—dk + Rojord;) + a(pyo) +€Br(pyo; i d, €)

+ &3

(5.35)

In (5.35), Rojox are the components as defined in (4.7) of the curvature tensor R on (¥, 3) as in
Proposition 4.1, the functions «j, are explicit, smooth and uniformly bounded in . The functions
Br are smooth functions of their arguments, they are bounded in € as p, d and e satisfy (5.32)
and they do not depend of the derivatives of u, d and e. Finally the term r denotes a sum of
functions of the form

ho(pyo)[hl(u, dv €, ,[L, dv 6) + 0(1)}7’2(:”’7 d7 €, ﬂ, da év )Uﬂ Ja 6) } (536)

where hg is a smooth function uniformly bounded in e, hy and ho are smooth functions of their
arguments, uniformly bounded in € as u, d and e satisfy (5.32), o(1) — 0 as € — 0. An important

remark is that hs depends linearly on the argument (ji, d, ¢). We postpone the proof of (5.35) to
the Appendix, Section 9.

Concerning the projection os S¢(w) in the remaining directions Zyn41, Zy and Zj, they turn
out to be much bigger in size to the projections along Z;, for i = 1,..., N — 1. Indeed, roughly
speaking, they are at main order of size €. To reduce this size, we make an expansion of fi., don
and é. through the functions pg, don, g1, diy in (5.5) and of e, e; in (5.30).

Indeed, if we assume p, d and e satisfy (5.32), then we can prove that there exist a constant
w > 0 depending on N and smooth functions

po, don, e€o, 1, din, e1:(=(,0) =R, (5.37)
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in the definitions (5.5), (5.29), (5.30) such that, as € — 0, for all yo € (—p~ 14, p~1¥), we have

Jp,, Se()Zni = & [Ahoop + Bhoodn + any1(pyo) + €Bn+1(pyo; i, d, €)] (5.38)
5.38
+ T = [—Coupji] + er
and
@ [p, S:(0)Zx = = [Bhoop+ Choody + an(pyo) + B (pyo: p- d: )]
(5.39)

+ 63+ﬁ |:—01,LLQCZN:| + 647‘.

In (5.38) and (5.39), A, B and C are explicit constants which depend only on the dimension N,
with A, C > 0 and AC — B? > 0. The function hgq is the curvature of the geodesic ' on the
boundary ¥ as defined in (4.11). The functions an11, an are explicit, smooth and uniformly
bounded in €. The functions By1, Sy are smooth functions of their arguments, they are bounded
in € as p, d and e satisfy (5.32) and they do not depend of the derivatives of u, d and e.
Finally,
fD SE(W)ZO = g2 Cs [ano'e' +Xe — 2(Tr§h — h()o) (f aiinO) dy + Oéo(pyo)

Yo

+

S(d? = IRy dpdy + a¥iy didon + 4hojdidon ) ([ 9iwZo) (5.40)
+  &2Bo(pyo; . d; €)]

54’1".

In (5.40), ag is the function defined in (2.10) and h is the second fundamental form of ¥ as
defined in (4.9). Again o denotes an explicit smooth function, uniformly bounded in ¢ and Sy
is a smooth function of its arguments, which is bounded in € as p, d and e satisfy (5.32) and it
does not depend of the derivatives of i, d and e.

In (5.38), (5.39) and (5.40), the term r denotes a sum of functions of the form (5.36).

We postpone the proof of (5.38), (5.39) and (5.40) to the Appendix, Section 9.

Thanks to the choice of the parameters performed in (5.37), from the expansion given in (5.33)
we conclude that the error S.(w), computed in (5.33), reduces to

Se(w) = €Sy + € [p*aoé + Aie] xZo + %51, (5.41)

where S is a smooth function of pyg, uniformly bounded in . Observe that Sy does not depend
on i, d and e. Furthermore, Sy satisfies, for all i =0,1,...,N 4+ 1,

/ SoZ;dy =0, for all yq,
Dyo

and

||SO||** S C,
for some positive constant ¢ independent of €. In (5.41), ao is the function defined in (2.10), Zy is
given by (2.12), e is the parameter function which enters in the definition (5.29) and whose || - ||,

norm is bounded uniformly in e (see (5.31)). On the other hand, S; depends on p, d and e.
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Now we introduce a further correction II to w, to get the final approximation W = w+II (5.26).
The correction II is chosen to Define II to reduce the size of the error (5.41), eliminating the term
€5, as the unique solution of the following linear problem

apO2TT + AT + AT + pwP I = —eS; + Z ciZ; in D (5.42)
/ M(yo,y)Zidy =0 Vyo, Vi=0,...,N+1 (5.43)
Dy,
and
(yo, ¥, yN)Iavyo =0 for all yo. (5.44)

In (5.42) ag is defined as in (2.10), A in (5.15). Taking into account the description of the linear
operator (5.14) carried out at the beginning of this Section, the assumptions of Proposition 3.1
are satisfied and the linear theory developed in Section 3 can be applied and it gives the validity
of the following estimate

(T[] < ce, (5.45)

for some given positive constant ¢. The linear operator in (5.42) depends on p and d (but not
on e). This implies that II itself depends on p and d. A direct analysis of (5.42), together with
(5.14), shows that

sy = M ol < €[ (p1 = 2, di = da). (5.46)

We next compute the size of ¢; = ¢;(pyo). Multiplying equation (5.42) against Z;, integrating on
the section D,,, we obtain, for all yo,

D Dy, D

Taking into account (5.43) and (5.32), we have

|/ 5‘0HZZ-|§ 0(1)53, |/ 88HZZ-|§ 0(1)53,
Dy Dy,

(AT + pwP M) Z; + / A Z;. (5.47)
Dy()

Yo Yo

where o(1) denotes a small function of yg. Furthermore, integrating by parts and using (5.43),
we have

|/ (AT erwp*lH)ZAg o(1)e3.
Dy
Finally, from (5.14) we obtain
|/ A(M) Z;| < o(1)€®.
D’UO
Thus we conclude that
sup |c;| < o(1)e3. (5.48)

Directly from (5.47) and (5.46) we get that ¢; = c¢;[u,d] depends smoothly on u, d and their
derivatives. Indeed, we have

llcilpa, di] = cilpa, da]lloe < c||(1 — p2, d1 — da)||. (5.49)
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Let ¢ := JpIl. We have

aod5) + Aytp + A + pwP M) + pagdoty = h+ > ociZ; in D (5.50)
with )
h = —ap(’)OSO — 80A(H)
/ Y(yo,y)Zidy = o(l)e Vyo, Vi=0,...,N+1 (5.51)
DyO
and J
¢(y0733, yN)|aDyO - 80( ;N )aNH(y()vyvyN)bDyo =0 for all Yo- (552)
€
Direct computations show that
|7l < Cep

and condition (5.52) reduces to

Q/J(y(), g7 yN)|3DyO = 0(1)53_ﬁ 5
where O(1) denotes a smooth function of yg, uniformly bounded in e, for u, d and e satisfying
(5.32). We thus conclude that
[[Go11]] < cpe.
With this choice of II we have that
S.(W) = 281 + e [pPagé + Mie] xeZo + Ni(ID) + Y _ ciZ;, (5.53)

(see (5.41)), where

N-—2

Ni(T) = pe 2 ° [(w+ )P~ —wP~¢] — pwP~ 1. (5.54)
Observe that S7 depends smoothly on the parameter u, d and e and
151 (1, dvs e1) — Si(p2, das e2)|lsx < cl[(p1 — pa,di — da, e1 — ea)]. (5.55)

We next estimate || Ny (I1)|4s. If |y| < de~2, we have
| N1 (IT)] < c|wP™2T12|.
Thus in this region, we have that

sup (14 |y)N 2N (ID)] < e
\y|<557%

If now |y| > de~2, then
[N (ID] < efTT],
so that

(14 Jy) "2

LAV 2N < ePsup

su
Plisse—3

8
< cet vz,

We conclude that
| N1 (T0) [ ane < €|wP 2T r < c£2. (5.56)
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This concludes the construction of our approximation W (5.26) and the analysis of the error S, (W)
(5.53).

6. THE GLUING PROCEDURE

This section is devoted to perform a gluing procedure that reduces the full problem (2.1) A
first observation is that replacing u by p¥ u(pz) the problem becomes equivalent to

Au + p*¥€u”’5 =0 in Q.
> 0 in £, (6.1)
= 0 on 0f..

where Q. = p~ Q.

The function W(yp,y) built in the previous section in (5.26) defines an approximation W to
a solution of (2.1) near the geodesic through the natural change of variables (5.3)-(5.2). More
generally, let us denote by z € RN*! the original variable in Q.. Then for a function f(z) defined
on a small neighborhood of I' we use in this section the notation

N—2

f(z)=fi= > (pyo)f(yo,y), for z = p~'G(pyo, piic(pyo)y + ed(pyo))

or

- N-2 _ -
Fyo,y) = fice ™ (pyo) f(p™" G(pyo, pit=(pyo)y + ed=(pyo) )

so that in particular W and W are linked as W = W. In fact we recall that near I'., setting in this

language v := 4, the equation in (6.1) becomes

N-—2

S.(v) = Av 4 pe 2 0P =0, (6.2)
where A is the operator defined in (5.14).
Let § > 0, be a fixed number, with 46 < §, where § was chosen in (2.9). We consider a smooth

cut-off function &s(s), such that £(s) =1if 0 < s <, and = 0 if s > 2J. Let us consider the
cut-off function

5 (Wo, ) = G(1G(pyos fie(pyo) py + ede(pyo) 1),
and its pull-back to €., supported near p—'T, defined as
n5(2) = G5 (yo,y)  for 2 = p~ G(pyo, fi=(pyo) py + £d=(pyo) )-

We also denote We observe that with this definition 75(z) does not longer carry dependence on
the parameter functions and it is well-defined in entire 2., by just extending it by zero outside
the range of the variables (yo,y). We define our global first approximation w(z) to a solution of
(2.1) to be simply

w(z) = n5(2)w(z), (6.3)
We look for solution to Problem (6.1) of the form u = w + &, namely
AP +pwP l® + N(@®)+FE = 0 in Q.

= 0 on 09..
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where
N-—2
5 €

N(®)=p~ (W4 )P —wP™c —pwP 'd, E=Aw+wlc.
According to (6.2), near the geodesic v = @ + ® must then satisfy

AD + pwP 1D + N(D) + S.(W) =0 (6.5)

where now
~ N-—2

N(<I>) _ ﬂs_TE(W + (i))p—a _ b« —pVNVp_lé, SE(‘;V) = AW + WP,
We look for @, solution of (6.4) in the following form:

o= 7725¢ + 1/)7
where the function ¢ is such that é is in principle defined only in D. It is immediate to check that
® of this form will satisfy the above problem if the pair (v, ¢) satisfies the following nonlinear
coupled system.
Ap+pWlo = —N(G50+1) —E—pw’ ) in D, (6.6)

¢ = 0 on ID.

A + (1 — ns)pwP™l = —2VVnss — dAnss
—(L—=m3s) N(m3s®+v) in Qe
W = 0 on 9N.. (6.8)

Given ¢ such that in D ¢ has a sufficiently small | - ||,-norm, we first solve problem (6.8) for ).
Let us assume first that € is bounded. Since Q. = p~'Q, the problem
—AyYp=h in Q., ¢¥=0 on I, (6.9)
has a unique solution 1) := (—A)~1(h) for each given h € L>().). Besides

N-1\""
ol <€ (5=5)  Ihl

Let us observe that, for instance,

1An55¢lloe < CO* 10l Lo (1y15p-1) < CoV 2|16l
We obtain similarly
V055V élloo < Cp™ 2|8l
Let us assume now |[¢|oo < Rp™N |||« and consider in this ball the operator
M(¢) == (1= m35) N(n5¢ + v) = (1 = n35) (356 + ¥)"
we have that

1M (1) = M(¥2)lloo < CUIBlI Lo (y155p-1 + ROV HISL)P [t = 2l <

4(

_ N —4) _
CA+RP p = [[0]27 lvr — ¥nlox
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Observe that, also,
(1 = n5)p WP~ Y [loo < Cp*[[]] oo

By adjusting R suitable large but fixed, we see directly from an application of contraction mapping
principle that the fixed point problem, equivalent to (6.8),

¥ = (=A)THM W) + (1 —155)p WP~ + 2V V35 + pA15,)
has a unique solution ¢ = ¥(¢) with ||¢]lee < RpN"%||¢||«, whenever ||¢||. is sufficiently small,

N—-4 _ N-3—

independently of €. Note that p € 7. In addition, the nonlinear operator v satisfies

a Lipschitz condition of the form
14(61) = $(d2) oo < OV 5552 61 — .. (6.10)

Let us consider now the case = RN \ A with A bounded. In this case, exactly the same
arguments go through. Indeed, let us pull back the equation for ¥ to € in the following way:
Associated to f(z) defined in Q. let us write f(z) := f(z/¢). Equation (6.8) then becomes

A+ p7 (1= igs)p WPl =
~2072VoVn5, — dp 2Angy — p 2(1— i5) (M550 + D) in
1[) =0 on 09,
or
A+ 0(p*)xtr = =20(pN )| dllx = p 2 (O Igllx + )7 in
where x is just a function with bounded support. In the case of the exterior domain, after a
Kelvin transform we see that the problem (in RN*1),

—“AYp=h in Q ¢¥=0 on 99, (6.11)

has a solution ¢ := (—A)~1(h) with
I+ V() oo < Ol + |2V F*)A(2) oo < +oo.
We can do a Fixed point scheme similar to that before in this setting, the reason being that if
I+ VD)) le < OOV 0Bl
then R R
()P < p~ 2N OP|GP(L + [2]) 7PN

and we also have p(N — 1) = (N +2)(N —1)/(N —2) > N — 3. Thus (6.8) can be solved in the
same way as before, and the conclusion remains unchanged. It is worthwhile observing that the

energy of ¢ in ). is small with € indeed small in any case, provided that ||é\|* is bounded by
some small fixed constant.

As a conclusion, substituting ¢ = 1(¢) in equation (6.6), we have reduced the full problem
(2.1) h to solving the following (nonlocal) problem in D.

Ap+pwP o = —N((550 +¥()) — S=(W) — pWP1P(¢) in D, (6.12)
5 0 on OD.

-
|
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We will solve a projected version of this problem in the next section, and in Section 8 we will
solve it in full.
7. THE NONLINEAR PROJECTED PROBLEM

This section is devoted to solve a projected problem associated to (6.12). We shall relieve the
notation in (6.12) dropping the ~symbol and write it as

L) = S.w)+N(¢) in D
O(yo+p Hy) = oyo,y), forallyo,y
¢ = 0 on 0D,
where L(¢) = A¢ + pwP~1¢, with A defined in (5.14) and w in (2.4), and N(¢) is given by
N(¢) = p(wP™" —wP~1)p — N(C550 + ¥(9)) + (5spwP ™ (), (7.1)
with

N(¢) =i * “(WH@)P " —w " —pwP 14,
Let us observe that S. (W) can be decomposed in the following way.
S-(W) = E + {e [p®aoé(pyo) + Me(pyo)] } X Zo, (7.2)

(see (5.53)). The projected version of the problem is as follows: Given p, d and e satisfying (5.32),
the projected problem we want to solve is: find functions ¢, ¢;(yo), for i = 0,..., N + 1, so that

L(¢) = E+N($)+)Y ¢Z in D (7.3)
oo +p ' y) = dyo,y), forall yo,y (7.4)
¢ = 0 on 9D, (7.5)
/ ¢Z; = 0, foralli=0,...,N+1, for all yg. (7.6)
Dy,

Observe that the last term in (7.2) have been absorbed in ¢y Zp.

For further reference, it is useful to point out the Lipschitz dependence of the term of error S;
on the parameters p, d and e for the norms defined in (5.7)-(5.31). We have the validity of the
estimate

|E(u1,d1,e1) — E(u, diyer)|loo < ce®||(p1 — pia, di — da, e — e2)|| (7.7)
This is consequence of (5.53), (5.49), (5.46), (5.55). As already observed, we can apply the linear
theory developed in Section 3. Given Proposition 3.1, solving (7.3)—(7.6) reduces to solve a fix
point problem, namely
¢ =T(E+ N(9)) := A(¢), (7.8)
where T is the operator defined in Proposition 3.1.
Consider the set

M= {¢ : ||glls < cc?}

for a certain positive constant c.
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We first show that A maps M in itself. Assume |||« < ce?. Then
[A(O)]l« < CIE + N()]|«x-
We first estimate || E||««. Given the definition (5.53) for Si, we get that
X Bl < Ce>. (7.9)
Next we estimate ||N(¢)]|.«.. We have

IN(@)]lex < C{INwP™" = w7 Blls + 155N (155 + ()]s + [IN55W ™ 9 (6) [ |-

We get

[@P=t = gl < O [(w+eeZo+ TP = w? ] ]

< ClwP?(eeZo + M)
< Cellgll«;

furthermore

IG5N (G50 + Y (Ol < Csup 3 [(1+ [y V202 (6 + 4)?]

b DYl + 1)
< Cet

and

IG5 WP T () lax < CENTPTFE sup (L4 )N O 0]l < C2FEE g

_N-—
ly|<ce N=2

-

Thus we get

IN@)«x < Ce?
for all ||¢]|. < 2. Given (7.9), we conclude that A(¢) € M for any ¢ € M, provided c in the
definition of M is chosen large enough.

We next prove that A is a contraction mapping, so that the fixed point problem (7.8) can be
uniquely be solved in M. This fact is a direct consequence of (6.10). Indeed, arguing as in the
estimates above

[A(d1) = A(2)[lx < ClIN(d1) = N(¢2)llsx < Celld1 — 2|
Emphasizing the dependence on u, d, e what we find for the Linear operator T is the Lipschitz
dependence
”Tlthdhel - T#27d27€2” < 05”(.“1 = p2, di —da, e1 — 62)”'
We recall that we have the Lipschitz dependence (7.7). Moreover, the operator N also has

Lipschitz dependence on (u, d, e). It is easily checked that for |||, < Ce? we have, with obvious
notation,

||N(#17d17€1)(¢) - N(#27d27€2)(¢)||** < C€3H(M1 — M2, dy —da, e1 — 62)”.
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Hence from the fixed point characterization we then see that

[D(urdrrer) = Plun, donen) I+ < O [[(1 = pio, di = do, €1 — ea). (7.10)
We have thus proved the following

Proposition 7.1. There is a number ¢ > 0 such that for all sufficiently small € and all p,d,e
satisfying respectively (5.32), problem (7.3)-(7.6) has a unique solution ¢ = ¢(u,d,e) and ¢; =
ci(p, d, e) which satisfies

6. < ce?. (7.11)

Besides ¢ depends Lipschitz-continuously on i, d and e in the sense of estimate (7.10).

8. THE FINAL ADJUSTMENT OF PARAMETERS: CONCLUSION OF THE PROOF

In this section we will find the equations relating p, d and e to get all the coefficients ¢; in (7.3)
identically equal to zero. To get this, we multiply equation (7.3) against Z;, foralli = 0,..., N+1,
(see (2.11) and (2.12)) and we integrate in y. Thus, the system

ci(pyo) =0 foralli=0,..., N+1

is equivalent to

S. (W) Z;dy +/ (N(¢) — Ap —wP™'¢) Z; =0, foralli, Vyo

Dyo DQO

where S. (W) is defined in (5.53), N(¢) in (7.1), A in (5.14), w in (2.4)
Taking into account Section 7 and the result of Proposition 7.1, we get that

/ (N(¢) — Ap — wP1¢) Z; = &%r,
D

Yo

where 7 is the sum of functions of the form

ho(ﬂyo)[ hl (/~La da 6, ﬂ? da 6) + 0(1)h2(ﬂv d7 6, p“a da éa ,U,, dla 6) ]

where hg is a smooth function uniformly bounded in €, h; depends smoothly on u,d, e and their
first derivative, it is bounded in the sense that

1P1lloe < cll(p, d, €|
and it is compact, as a direct application of Ascoli Arzeld Theorem shows. The function ho
depends on (u,d,e), together vsiith their first and second derivatives. An important remark is
that hy depends linearly on ji, d and €. Furthermore it is Lipschtz, with
[h2(p1, di,er) = ha(pz, d2, e2)lloo < o(1)[[(1 — p2, dy — d2, €1 — e2)].
We next study [ S.(W)Z;dy, with S:(W) given by (5.53). First we have that

/D [Nl(H) T Z CiZZ} Z; = €*ho(pyo) + o(1)e’r

Yo

where ho(pyo) is a smooth function of pyg, which does not depend on u, d, e, and r as before.
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Taking into account the previous computation and the results of Section 5, (5.35), (5.38),
(5.39), (5.40), we conclude that the equations

Ci:(]

are equivalent to solve the following limit system of N+2 non linear ordinary differential equations
in the unknowns pu, di,...,dy, e,

Lyii() = —Coe™ %2 pgji+ Ap+ Bdy = any1 +eMy i1
Ly(dn)

Li(dy) = —dy+ Z;V:_ll Rojord; = ag + My, (8.1)

fC’lws,uole + Bu+Cdy =any +eMy

k=1,...,N—1

Lo(e) = p*aoé(pyo) + Melpyo) +Yodn = g + Qo + €2 My

where u, dy, ..., dy and e satisfy periodic boundary conditions in [—¢, ¢]. In (8.1), we have A > 0,
C > 0 and AC — B? > 0. The functions «; are explicit functions of zy, smooth and uniformly
bounded in e. The function ~q is given by 9 = 2(Trgﬁ — hoo) (J 9iwZy). The operators
M; = M;(p,d, e) can be decomposed in the following form:

Ml(fﬂ 6) = Ai(u7d7 e) + Ki(lu’>d7 e)

where K; is uniformly bounded in L>°(—¢,¢) for (u,d, e) satisfying constraints (5.32) and is also
compact. The operator A; depends on (u,d,e) and their first and second derivatives and it is
Lipschitz in this region, namely

| Ai(p1,dr,en) — Ai(pe, da, e2)]lco < Co(1)||(pt1 — p2, d1 — d2,e1 — e2)]|.

We remark that the dependence on i, d and ¢ is linear. Finally, the operator Qg is quadratic in
d and it is uniformly bounded in L (—¢,¢) for (p,d, e) satisfying constraints (5.32).

Our goal is now to solve (8.1) in u, d and e. To do so, we first analyze the invertibility of the
linear operators L;.

We start with a linear theory in L setting for the problem of finding 2/-periodic solutions of
the problem

Lyii(p) =h1,  Ln(d) = he, (82)

with h; and ho bounded. This is the content of next Lemma.

Lemma 8.1. Assume that A >0, C > 0 and AC — B2 > 0 and that ||hy|sc + ||h2]|ec s bounded.
Then there exist (u,d) 2¢-periodic solution to the above system and a constant ¢ such that

1, 1 .. PENT
illo + lldll oo + 2772 lftll o + €2 [ldlloo <

c[llPalloe + lIh2lloc ] -
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Proof. System (8.2) has a variational structure. The associated energy functional on the class
of 2¢-periodic functions is positive, bounded from below away from zero and convex. Existence
of solution thus follows.

In order to get the a-priori estimate, we will argue by contradiction. Assuming the opposite
we have the existence of a sequence (hiy,, hop) with

[h1nlloo + [[h2nlloc — 0,

and a sequence of solutions (i, d,) with

1.1 . 1
l1tnlloo + lldnlloe + SRR [itnlloo + €2 |ldn oo = 1.

Since A > 0 and C' > 0, applying the maximum principle to each equation in the system, we
see that ||fin oo < ¢lldnlloo and ||dnlloo < ¢f|pinlloo- Hence we can assume d,,(my) = ||dn|loo > 9

and m,, — m. Scaling the system with y = *=~™, we obtain that the scaled functions, which we

denote by fi,, and d, solve
—e¥ 2 Cafifin + Afin = —Bd,, + o(1)

—cl%gdn + Cdy = —Bjin + o(1). (8.3)
From the second equation we read that ||dy|les + [|dnlles < ¢ and a direct application of Ascoli-
Arzeld theorem implies that
dp —d
uniformly on compact sets.
We state that
Afin — —Bd. (8.4)
Assume by contradiction that this is not true. There exists a compact interval I and a sequence
of points z,, € I such that
|Ajiy () + Bd(2,)|> a (8.5)
for a certain fixed positive constant a. Up to subsequence, that we still denote z,, we have
T, — Tg. We now scale with z = Ey;iz, so that the scaled functions fi,, and d,, satisfy

In this scale, we get ||dn]c < c£7® 5 — 0. This implies that d, converges uniformly over
compact sets to a constant and this constant has to be (i(:ﬁo). Hence Afi,, + Bd,, converges to 0
locally over compacts. This is in contradiction with (8.5). This proves (8.4).

We now fo back to (8.3), which reduces to say that d solves

N B2 n
—C1jid C——1]d=0.
110+ ( ) )
Since C' — 372 > 0, we conclude that d=0. A contradiction. |

Concerning the invertibility of the operator Ly, we have the validity of the following Lemma.



BUBBLING ALONG GEODESICS 41

Lemma 8.2. Assume that condition (1.7) holds. If f € C(—{,£) N L>®(—{,¢) then there is a
unique solution e of Lo(e) = f which is 2¢-periodic and satisfies
PllElloc + pllélloc + llelloc < Co™ I flloc-
Moreover, if f is in C*(—(, (), then
PlIElloo + pllélloe + llelloo < Clll flloo + 1 flloo + [1F1loo]-

Proof. Consider the following transformation

l:/z 1 I°,(Vao(0)~ do - 12

dS, t= )
) ao(s) l

and
Then problem

reduces to 3 )
PPg+Mi=Ff, y(0)=y(r), §(0)=y(n). (8.6)
Thus (8.6) is solvable if and only if 02X\ # A, for all k > 0, where )\, in an infinite sequence of

eigenvalues for (8.6), with f = 0, where y(t) is an orthonormal basis on L?(0, ) constituted by
the eigenfunctions

i +4K25 =0, yx(0) = yr(n), §1(0) = gx(7)
Furthermore,

— 1

When solvable, the solution to (8.6) is given by

oo

fi

y(t) = ) ————5u(t), (8.7)
kZ:O /\1 - 4k52p2
and || |2 = (fOTr f,?) *. Choose
|p24k? — \i| > cp (8.8)

for all k, where ¢ is small. This corresponds precisely to the condition (1.7) in the statement of

the theorem with ,
1
H:g,/)q/ (8.9)
—

ds .
Vao(s)

From (8.8) we then find that [A; — App?| > $p if p is also sufficiently small. It follows directly

from expression (8.7) that |[|yl|zec(0,x) < Cp_lllf:HLoo(O’Tr). Observe also that
1+ Al .- 4y F 12
< <C ) (A4Sl
(A1 = App?)? 2.

(o]
1y I 0.y < D Ifal?
k=0 k=0



42 MANUEL DEL PINO, MONICA MUSSO, FRANK PACARD

Hence
Y |l 0,m) + 9l Lo, < Co™ I fll Lo (0,m)-
Besides, if f is in C2(0,7) with f(0) = f(n), f/(0) = f'(x), then the sum ok k*f2 is finite and
bounded by the C?-norm of f. This automatically implies
P21y | Lo 0.7y + 1Y [l o= 0.0) + 1911 o< (0.0) < Cllfllez0,m)5

and the proof is complete. ([l
We now conclude with

Proof of Theorem 1.1. Since the geodesic I' is non degenerate, the linear operator Lj is
invertible in the set of 2¢-periodic functions. More precisely, for any f € L™ (—/,¢), there exist a
2¢ periodic function dj, and a positive constant C such that L (d;) = f and

ldiklloo + lldilloo + lldkllsc < Cllflloo,
Define fig, don and doy to be solution of

Ly+1(fo) = ant1, Ly(don) = an
and
Li(doy) = forall k=1,...,N —1.
Thus we have
elldonlloo + 22 [l donlloe + ldonllse < € lldoklloo + lldorlloo + lldoklloo <
and
e o oo + €22 oo + Il i0lloo < .

We now solve LO(EO) = — 2(Trgh—hgo) ([ 0iiwZo) CZQN—l—ao—f—EQO(CZO), where dy = (Jm, .. 7JON).

Since the right hand side is regular, by Lemma 8.2 we have

e 72 |0l oo + | Boflow < c.
We have
[ (fio, do, Eo)|| < c.
Define
p=jo+i, d=do+d;, e=EFEy+é.
The system (8.1) reduces to

Lyyi(fn) =eMyy1, Ly(diy) =My
Lp(dy) =eM;, k=1,...,N—1 (8.10)
Lo(él) = — 2(TT§77, — Boo) (f aiinO) CZU\/‘ + SQMO
Let us observe now that the linear operator

L(p1,di,e1) = (Ly1(), Lnv(din), Lnv-1(di(v-1)), - - - L1(d11), Lo(e1) )
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is invertible with bounds for L(u1,ds,e1) = (f, g, h) given by

N

-1
=2 |hfloo | -

[(p1, drse) | < C ([ flloc + Iglloe +27
It then follows from contraction mapping principle that, given o > 0, the problem
[£4 (eMyy1,eMy,eMy_y,...,eMy, e Mo)|(p,d1,ex) = (f, g, h)

is uniquely solvable for ||(u1,dy,e1)|| < ce? if || flloo < €72, [|glloc < €71 ||A|l2 < eI N for
some p > 0. The desired result for the full problem (8.10) then follows directly from Schauder’s

N-3

fixed point theorem. In fact we get ||(ji1,d1,é1)|| = O(e¥=2) for the solution. O

9. APPENDIX

Proof of (5.33). We write

Sc(w) = S(@)+ {p2a0é6(py0) + Ales(pyO)} XeZo + A(SEXEZO)
+ 2eEvXEVZO + NO(eSXEZO) (91>
where
_N-2_ e epe _
No(ecx:Zo) = pe ° : [(W +ecxeZo)’ ™ — P ] — pecw? 1XsZO- (9.2)
We start analyzing S.(©). Expanding S.(©) in € and taking into account that
N-—2
All+a)w] +pe * [(I+a)w?=0 in RY, (9.3)
we have
S(@) = Y oAkw —puP o — ewPlogw
+ B(w) — A®) + e A(w — @) + agd3 [oe(w — )] (9.4)

+ b(py07 Y5 s d)EQ(“)pv
where the operators Ay and A are defined in Lemma 5.1 and 5.14, the operator B is given by
(5.16) and b is a sum of functions of the form

bo(pyo)bi (i, d)

with by a smooth of pyg, uniformly bounded in € together with its derivatives, and b; a smooth
function of its arguments, uniformly bounded in €. A remark to be made is that b; does not
depend on the derivatives of its arguments.
The main part in (9.4) is
5
eo = Z Apw — pwP ™o — ewP log w. (9.5)
k=0

Indeed, B(w) is of lower order with respect to 22:0 Ajw as shown by Lemma 5.1, so is the term
given by A(®) since @ = O(e)w and also the term a.A(w — @) since . = O(e|logel|) as ¢ — 0.
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Observe furthermore that d2a. = p?0(ae), so that apd} [ae(w — @)] = o(1)p?w. Summarizing,
we can write

Se(@) = eo + £2b(pyo; p, d)wP + %, (9:6)
where r is a sum of functions of the form

ho(pyo) f1 (1, d, f1, d) f2(y)
with hg a smooth function uniformly bounded in e, f; a smooth function of its arguments,
homogeneous of degree 3, uniformly bounded in £ and
sup(1 + [y|¥7?)| fa(y)| < +o0.

By means of Lemma 5.1 and taking into account notation (5.2), we can expand in power of ¢ the
first term in (9.5)

1

22:0 Ak(&]) = £ |:72}_lijJNaijw:| + €1+N*2 [JJ [72}_11']’1,/1\[3”&] + T’I’gf_Lan}

+ £2 {ZZ]( ~di~djf %Rijkldkdl —+ a%kdkdj\/ + 450]-(51-&1\;)81-]-4

_|_

52+ﬁ [—[LDyw od— %Rijklykdlaijw + 2[La%kydeaijw

+

(2 Ryjir, + Rojor)dr0jw + 4ho;j (yn Dy(9;w)0 + fidn (9w + Dy(95w)y))
Vi dn Oy — Trokjidnonw — 20D, Zy 11 - d]

e = [—fiiZN

2 (= Rigji ykyi 9sjw + (2Rijin + Rojor)ywdiw + by yn0jw — TrakynOnw)
4hojfifiyn (v0j0 + Dy(8jw) - y)

(1)*(Dyywly]® + 2(1 + 7)Dyw - y + (1 + 7)w)]

edr

+ + + + + o+

(9.7)
where 7 denotes the sum of functions of the form

hO(ﬂ?JO)[fl(% d’ /.1’? d) + 0(1)f2(/~t7 d7 /:1/7 da /:lv d)]fS(y)

with ho a smooth function of pyo uniformly bounded in €, f1, fo smooth functions of their
arguments, f; homogeneous of degree 3, f5 linear in the variables (ji, d), and

sup(1+ [y|N 2| f3(y)| < +o0.

The previous expansion, together with (9.5), (9.6) and the notation (5.2), give precise description
of the first term S (@) in (9.1). Let us now consider the term A(e.x.Zp). Arguing as before, we

have that .

Alecx=2o) = Z Ay (ecZo) + €°r,

k=0



BUBBLING ALONG GEODESICS 45

where r is the sum of functions of the form

ho(pyo)[f1 (Va da €, /‘17 d’ 6) + O(l)fQ(:uv d, €, ;[1'7 da é, /jfv d.a 6)}f3(y)
with ho a smooth function of pyo uniformly bounded in e, fi, f2 smooth functions of their
arguments, f; homogeneous of degree 3, f5 linear in the variables (ji,d, €), and

sup(1+ [y ?)[ f3(y)| < +o0.

Let us then consider the term ZZ:O A (ecZy). Directly from Lemma 5.1 and taking into account
(5.30), we obtain

Ar(ecZy) = €A+ 2t v2éB

=
Il ot
<]

where

A = ¢ [—QBij(iNaijZQ} +€1+ﬁﬂ [—QBiij&jZo +TrgB8NZ0]

+ &2 [Zij(didj — iR didy + a% drdy + 47Loj'cziJN)5ijZo}

+

# ~ ) ~ ~ ~ .. ~ ~ ~
et w2 |:_MDyZO cd — ERijui yed105; Zo + 21 yidn0ij Zo + (3 Rijir + Rojor) de0; Zo

Ahoj; (fiyn Dy (95 Z0)d + fidn (v0; Zo + Dy(9;Z0)y))

+

Vi fidnd; Zo — Trakfidnn Zo — 2fi(vDyZo + Dy Zo[y]) - d"]

et [—itiZN

2 (— 3 Rikjt 105 Zo + (3 Rijir + Rojor) yk0; Zo + bynd; Zo — Trgkynon Zo)
hos iy (70520 + Dy (9; Zo) - y)

(1)2(Dyy Zoly]* + 2(1 + ) Dy Zo -y + (1 + 7) Zo)]

+ + o+ o+ o+ o+

edr

and r is as before. On the other hand,
B = ¢ |:—2ﬂDyZO . 6 — 4B0jﬂd~NajZ0:|

et w2 (20D, Zy -y — 2viiiZo — 4(f)?hojyn0; Zo|
827‘,

with r as before.
Expanding in ¢ the term Ny(eex:Zp) defined in (9.2), we get

No(eexeZoy) = &2 [p(p —1)E2wP=2Z2 + pEqwP~!log wZO]

+ &3llogelr
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where 7 is the sum of functions of the form

ho(pyo)hi(p, d, e)ha(y)

with hg a smooth function, uniformly bounded in €, h; a smooth function of its arguments and
sup(1 + |y|)¥*2|ha|(y) < C. Summing up all the computation, we obtain the proof of (5.33). [

Proof of (5.35), (5.38), (5.39), (5.40). The proof consists of two steps. In the first step we
compute the expansion in ¢ of the projections assuming that

N-—1 ~
pe =€N2[i, d.y =edn, dej=c¢ed; and e.=ce.

In the second part, we will chose i1, dy1 and e; to get the above expansion when p, d and e are
defined as in (5.3), (5.2), (5.5), (5.29) and (5.30).
Step 1.  We start with the projection of the non linear part

h=—pwP o — ewP logw.

We have the validity of the following facts: as € — 0,

_\N-2 L _\N-1 _
Jp, WZnirdy = e {AQ (g‘L) — Ayt eV (J‘fv) gNH(dfjv)] (9.9)
_\N-1 L _\N _
Jp, hZndy = St rts {_Al (ffv) eV (i) gN(JA;)] , (9.10)
and _
/ hZ, dy—52+Nf2gk(~£) (9.11)
D(’JO dN
fork=1,...,N —1, and
~ N-2 ~ N—-1 ~
/ hZody =e | —Aq <“> — Ay +evs (“) go(ﬂ)] . (9.12)
Dy dn dn dn

In the previous formula, the functions g; are smooth function with g;(0) # 0 and A; are positive
constants.
We first prove (9.10). Expanding in Taylor we have

N+42
— p=1 _ p) N-—-2 YN
_p nyO OJ(JJp ZN == pCN nyo ( T = N_—3 e dy

1[G+ lyn+2e N=2 S 12) 72 (T4 [y]?) 2

= o e () e () v

The constant A; which appears in (9.9) is precisely given by

N+2

T~

N+4 )

2n L+1yl*)

Furthermore, we have

75/ wPlogwZy = et ¥z O((LL)M).
D dn

Yo
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This proves (9.10). Concerning the projection along Zy .1, arguing as before we get

_ N=2 _ .
—p/ WP Znp =€ | Ay (H> +€N£2(~L)N_19N(~£) ;
D dN dN dN

Yo

for a positive constant A, which can be computed explicitly.
Finally, we get

—€ wPlogwZn41 = —eAz + 52+ﬁ0((~i)]\[)
Dy(] dN
where Aj is the positive constant given by

N -2 s
As :/wplongNH = T/w”“logw—k/long(w )y
p

+1
1 N
_ v _ +1
T op+1 wr w-y(p+1)2/wp '

This proves (9.9). Estimate (9.12) follows in a similar way. We conclude with (9.11) which follows
from the observation that

p/wp_lwzk:/wplongk:o forall k=1,...,N —1,

due to symmetry. This gives (9.11).
We continue with the projections of S := S.(w) — h. We have

nyO SZyy1 = € [[TeZnyi (1+0(e))]
+ e [~Oajifi + ()2 [IDyywy? + 2(1+7) Dywy + (L +7)w] 2y
- ()?[Trgk [ ynOnwZni1 + 5 Rikjt [ yeyiOijwZn41]]
+ &
(9.13)
where 7 is a sum of functions of the form (5.36).
Concerning the projection along Zy, we get at main order
fD SZn = €1+ﬁﬁ [727112- nyanaﬁw + Trgl_z f(@Nw)Q]
Yo
+ ¥ e {*ClﬁjN - QﬁnyZN—O—l[j]ZN
+ 4}_L0j (/Nl,dj nyBjijN + [LdN faNajwyNan) — ClﬂdNTTgl_ﬂ
o \N-1 )
— Al (C{;v) e — Qhooed]v nyOJp_ Z()ZN:| (914)
2

= 61+ﬁ01ﬂ}7l00 + 82+ﬁ01 {—ﬂd:]\/ — T’/’gE[LCZN + QBOjﬂdj

N-1 B _
_ A1 ( H ) € — 2h00édeyNWPIZOZN:| —&-53*%71’

dn
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where we use the following computations

/yNajjwan = %Cl, /8jZN+18N =0, for all j.

We now see the projection along Zy, for k =1,..., N — 1. First we write
nyo SZy = v {_Cld'k + (=2 Ritjm [ YmOijwZy + C1(3Riji + Rojor)) dl}

+ dy (QG%I S widijwZy, + bf\[CH) + dLN (4hor fZ/NaNkak)}

1
by 19

2% 40y [—Jk + Rojodi + Yordn + 'Ylde} + 3wy

since we have the validity of the following fact

—ERiujmds [ ymOijwZ; = —3 {Rilik Sy Y0iwZi + Ragi [, yi0ixwZi

+ Rkljj fDN yjakijk} dl
= —1C1 [Ruik — Ruks) di = —2C1 Ry
In (9.15), vor and 71 denote smooth explicit functions of pyg.
Finally, using the orthogonality in L? of Z; with respect to Z;, for i = 1,..., N + 1, direct
computations show
fD SZO = 603 |:—2(TT§B — ]jLo())CZN:|

Yo
+ 20 {p%oé + N é+d?— $Ripudid; + a% dydy + 4hojd;dy + [ TEZO}
+ rt [(2)2 + f1(pyo)ii® + folpyo)fifi] + €37
(9.16)

where f; are explicit smooth functions, uniformly bounded in €, and r is as before.
Summing up the previous calculations, we conclude that at main order

oy 5@t = <[22 ()" as e () o] 0 e

wayO S.(wZydy = etva {Clﬁfhooﬂ—Al (df;‘V)N_l Fev (%)NQN (Ji)} (I+0(1)),

and

_ _ ~ _\N-2
Jp, S-()Zody = e {Alé — 2(Trgh — hoo)( [ OuiwZo) dy — As ( 7 ) — As
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Part 2. Let now (u2,d%y,e2) € (0,00) x (0,00) x R be the solution to the following system of

nonlinear equations
p NNV /
7 ~ 4 _
(E) gN+1 (E) =0

N-2 .
A2 (ﬁ) —A3+€N*2

ChA2h A LN71_~_5N—2 2\ o () —o
174, ltookt 2 \dn dn 9N \ oy
(9.17)

B B N-2
Are = 2(Trgh — hoo) ([ OuwZo) dn — As (dﬂ 4

Lew (L)N_lg (L) —0
dn 0\ dn :

It is easy to show that the solution (u2,d?y,€?) has the form

~ 1 kl 1 N 1
p=po+e™2p, dy=do+e¥2din, €é=¢ey+eV-2ey,

where pg, dony and Ey is the solution to
N-2
Ag (ﬁ) —As
A7 L N-1
qudeﬁe):: C&g%hmﬂt_i42(g;) -
_ _ N-2
)\1 e — 2(T7"gh — hoo)(f &-ino) dN — A4 (ﬁ) — A5

o

Observe that oy > 0 and dy > 0. Direct computations show that

N-—-3 N—-2
(N - 2)A2§gv—,2 —(N —2)A; 58— 0
Foi= Vi o Flbo,do Eo) = | —(N = 2)Aphr (N = 1) A5 0 0
0 —2(T7“gfl - Boo) fan'wzo A1

Since
N-2

det (Vy,dy e F' (110, do, Eo)) = (N — 2)14201)\1%500 > 0,
0
solving system (9.17) is equivalent to solve a fixed point problem, which is uniquely solvable in
the set
{(p1,dinser) = |luallso <6, ldinllc < 6, [le1]loc < 0}
for some proper small § > 0.
We conclude the validity of the expansions (5.38), (5.39) and (5.40), with
N-3 N—2 N—1
A=(N-24,5 >0, B=—(N-24,5— c=N-1aL_ >0
) dy dy
An easy computation shows that AC'— B? > 0. Thus this concludes the proof of the Proposition.
O
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