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Abstract

The main purpose of this paper is to construct families of positive
solutions for the equation

N+42

{Au—uN2 +eu in Q

u=20 on 0f)

which blow-up and concentrate in k& > 1 different points of Q as ¢ goes
to 0. We exhibit some examples of contractible domains where a large
number of solutions exists.
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0 Introduction

In this paper we are concerned with the problem

N+2 .
—Au=uN-—2+eu inQ

u>0 in Q (0.1)

u=20 on 0N

where Q is a smooth bounded domain in RY , N >3 and € > 0 is a positive

parameter.



In [6] (see also [2]) Brezis and Nirenberg showed that if N > 4 problem (0.1)
has a solution for any € € (0, A1) where A\; denotes the first eigenvalue of —A
with Dirichlet boundary condition on 2. When N = 3 the problem is much
more delicate and a complete answer can be given only when 2 is a ball. In
that case problem (0.1) has a solution if and only if £ € (31, A1).

In [15] Rey showed that if u. are solutions of (0.1) which concentrate around
a point g as € goes to 0 then x is a critical point of the Robin’s function 7q (see
0.4). Conversely he proved that if N > 5 any nondegenerate critical point g of
Tq generates a family of solutions of (0.1) concentrating around xz( as € goes to
0. Successively in [16] the author proved that for € small enough (0.1) has at
least as many solutions as cat €2, i.e. the Ljusternik-Schnirelmann category of
Q. In [14] Passaseo showed that the number of solutions of (0.1) is not related
to the topology of  but to the topology of a domain €’ which differs from Q
by a set of small capacity. For instance if € is obtained from €’ by cutting off
a set with small capacity, then problem (0.1) has at least cat ' 4+ 1 distinct
solutions even if the domain € is contractible in itself.

In this paper we still consider the case N > 5 and we study existence of
solutions which concentrate in one or more than one point of € in the sense of
the following definition.

Definition 0.1 Let u. be a family of solutions for (0.1). We say that u. blow-

up and concentrate at k points x1,...,x if there exist rates of concentration

Higs- -, ke > 0, and points xi.,...,xx. € Q with liH(l)/,LiE =0 and lin%)xia =
E— E—

Tig, Tig # T4 for 1,5 =1,...,k, i # j, such that

k 2
u —Zi* (Uh >—>O in H(Q) as €—0
€ Q Hig Tie 0
i=1

2N

where 8 is the adjoint operator of the embedding iq : Hi(2) — L~¥=2(Q) (see
Definition 1.1).

Here (see [1], [7] and [17])

>\N72
Uy y(xz) =CnN - > zeRY, yeRY, A>0,

(A + |z —yl?) >

with Cy = [N(N — 2)](N=2)/4_ are all the solutions of the equation
—Au=uN in RY.

Before stating our results it is useful to introduce some notation.

Let us denote by T'y(y) = ‘1:;%, for every x,y € R", the fundamental
solution for the negative Laplacian. For every point z € QUOSY, let us define the
regular part of the Green’s function, Hq(z,-), as the solution of the following
Dirichlet problem

AyHo(z,y) =0 in Q,
(0.2)
Hq(z,y) =T4(y) on 0.



The Green’s function of the Dirichlet problem for the Laplacian is then defined
by G (y) =T'x(y) — Ha(z,y) and it satisfies

—AyGa(y) =0:(y) inQ,
(0.3)
Gz(y)=0 on 0f.

For every x € () the leading term of the regular part of the Green’s function
To(x) := Ho(z, x) (0.4)

is called Robin function of Q1 at the point x.

In this paper we study the existence of solutions which blow-up and con-
centrate at k£ > 1 different points of 2. Let us introduce the function ¥y :
(RT)* x QF — R defined by

k
L (np a5 - Lp s
T(\2) = A (M(x)/\ A ) QB;/\Z-, (0.5)
N2 N_2 N_2
where A7z = (A% ,...,\. % )T and M(z) = (mij(a:))1<ij<k is the matrix
defined by -
mii(x) = 7(x;), my(x) = Gz, xy) it i # 7. (0.6)

The constants A, B are given in (2.4). We prove the following result.

Theorem 0.2 Let (Ao, x0) be a stable critical point of Uy, (see Definition (2.4)).
Then there exists a family of solution of (0.1) which blow-up and concentrate at
the points z}, . .., zk with rates of concentration pu1., . .., pu.. such that ,ugsﬁ —
Ao as € — 0.

In particular, as far as it concerns the existence of solutions which blow-up
and concentrate at one point, i.e k = 1, we improve the results of Rey (see [15]
and [16]).

Theorem 0.3 If x is a stable critical point of Tq (see Definition (2.4)), then
there exists a family of solutions of (0.1) which blow-up and concentrate at xg.

The problem of existence of a family of solution of (0.1) which blow-up and
concentrate at k points of {2, becomes a purely geometric problem.

Firstly we find many solutions of (0.1) which blow-up and concentrate at one
point of 2, by constructing a domain €2 for which 7q has many stable critical
points, which are local minimum points. In order to do this we follow the idea
of perturbing domains. We start with a domain ) such that 7q has many
stable critical points (for example  is the union of many disjoint domains) and
we perturb Q adding a set of small capacity (for example we add some very
thin handles). It is easy to prove that the Robin’s function of the perturbed
domain converges in the C'—topology to the Robin’s function of 2. Therefore
the Robin’s function of the perturbed domain has a large number of stable
critical points, even if the perturbed domain is contractible in itself.

More precisely we can prove the following result.



Theorem 0.4 For any h > 2 there exists a contractible domain 2 for which
problem (0.1) has at least h different families of solutions which blow-up and
concentrate at a point x; in Q, i=1,..., h.

Secondly we find a family of solutions of (0.1) which blow-up and concentrate
in k points of Q, by constructing a domain {2 for which the function ¥ has a
stable critical point. Again we follow the idea of perturbing domains. We start
with a domain € such that W, has a stable critical point, which is a local
minimum point, (for example  is the union of many disjoint domains) and
we perturb Q adding a set of small capacity (for example we add some very
thin handles). It is easy to prove that the function ¥y, of the perturbed domain
converges in the C'' —topology to the function Uy, of Q). Therefore the function Uy,
of the perturbed domain has one stable critical point, even when the perturbed
domain is contractible in itself. More precisely we prove the following result.

Theorem 0.5 For any k > 2 there exists a contractible domain  for which
problem (0.1) has a family of solutions which blow-up and concentrate at differ-
ent k points.

Moreover, using the results of [3], we can prove that Theorem 0.4 and The-
orem 0.5 hold also for the slightly subcritical problem (4.1) (see Section 4).

We would like to point out that in [8] Dancer already emphasized that the
number of positive solutions of critical problems, like (0.1) or (4.1), is strongly
affected by the geometry of the domain and not just by its topology. In [§]
he considered a large class of problems with subcritical growth, he constructed
domains as connected approximations to a finite number of disjoint or touching
balls and he proved that the number of positive solutions which are not ”large”
grows with the number of these balls.

The proof of our results is based on a Ljapunov-Schmidt procedure as de-
veloped in [2], [9] and [10]. The paper is organized as follows. In Section 1
we reduce the problem to a finite dimensional one. In Section 2 we study the
reduced problem. In Section 3 we prove our main results. In Section 4 we briefly
treat the slightly subcritical problem. The proof of Theorem 0.2 requires some
technical computations which are given in Appendix A and Appendix B.

1 The finite-dimensional reduction

Let a be a fixed positive number which will be choosen later. Let us set
Qe :=Q/e* ={x/e” | x € Q}

and let us introduce the following problem

—Au =uP + 2ty in Q.
u>0 in Q. (1.1)

u =0 on 0€..



Here p = ££2. By a rescaling argument one sees that u(z) is a solution of (0.1)
if and only if w(z) = 5“¥u(€“m) is a solution of (1.1).
Now let H}(Q.) be the Hilbert space equipped with the usual inner product
1/2

(u,v) = [ VuVov, which induces the norm ||ul| = /|Vu|2

Q Q.

It will be useful to rewrite problem (1.1) in a different setting. To this end
let us introduce the following operator.

Definition 1.1 Let i¥ : L%(QE) — H{(Q.) be the adjoint operator of the
immersion i. : H}(Q:) — L%(QE), i.e.

Zw=v = (9= [uep@d ¥eoen.)
Q.

Lemma 1.2 i} : L%(Qe) — H{(Q.) is a continuous function, i.e. there
exists a constant ¢ > 0 such that
lizl <clul gy VueLF(Q:), Ve>o.
N2
Proof. It follows from the fact that the costant of the Sobolev embedding

HY(Q:) — L~ (Q:) does not depend on the domain. O
Now by scaling argument and by using the i} operator, we introduce the
equivalent problem
u=iz[f(u) + ey
(1.2)
u € H ().

where f(s) = (s7)? and p = {£2.

Let now fix an integer k > 1.

Definition 1.3 For any § > 0 set
05 = {(m) € (RH)F x QF | dist (z;,00) >0, § < \; < 1/6,
i — x| > 6, izl...,k,z‘;él}.

Let us fix some notation.
If (\,x) € Os, let y; = z;/e* for i = 1,...,k and set y := x/c* € QF. Set

Ui:=Uy,,  and PEUi::z’:<Up )

AisYi
and for j=1,...,nandt=1,... )k

0._ aU}‘i,yi . 6U)\i7yi

J . Jo.__ g% p—1 7
W= T, 5 and Pl =i (pU/\i’yiwi).



Definition 1.4 For any e >0, A € (RT)* and y € QF set
_ 1 j _ - L
K5, = {u € Hy(Q) | (U’PEW)H})(QE) =0, i=1,....,k j=0, 1,...,n}.

Lemma 1.5 Let II§ , : H(Qe) — K3, be the projection, i.e.

i,y(u) =u-— . Z (U,Pswg)Hé(Qs)Ps¢g~

Then 115 ,, is a continuous map, i.e. there exists ¢ > 0 such that for any & >0
and for any (\,y) € (R1)* x QF it holds

IS, (@) < cllull ¥ u € Hy(Qe).
Proof. It follows by Remark 5.2 and Lemma 1.2. a

Definition 1.6 Let LS , : K5, — K3, be defined by

k
3(0) =T, {0 = i[O PUD6 + % 6]},
i=1

Lemma 1.7 For any 6 > 0 there exist ¢g > 0 and ¢ > 0 such that for any
e € (0,e0) and for any (A, z) € Oy if y = x/e% it holds

Proof. We argue by contradiction. Assume there exist 6 > 0 and sequences
en > 0, A\, zn) € Os, ¢ € Hi(Q, ) such that lime,, = 0, lim A\;,, = \; > 0,

limz;, = x;,
n

50| > Clol - voe K3,

¢n € K37, and o]l =1 (1.3)

non Hl(2e,)
and
L5 (¢n) = hy  with ||| —0. (1.4)

Y
nyYn Htl)(an)

Set Q, = Q. , P,U;,, = P U,
have

and P,¢! = Pgnwg\imyi”. Therefore we

in Yin

k

i=1
where w, = > c{ijnwlj ,, for certain coefficients cl’fj.
l,j
Stepl. It holds
lim ||w,, || =0. (1.6)
n

Hé((zsn)



By (1.5) we deduce

H(l)(SZEn)

wnl?, = @) = [ P Palia) s = ()
Q. [

| wnl

ZP Uin) Zf
|60l Z|c 1 Paw], — i |

Q,

+||hn|\ v Mlon]

0V En

< ||f, ZP U’Ln Zf in HN ||¢7L|| 2N ||w’fl|| 2N
+Z||f i)y I 0nll gn Zlcl,Jll\inln W nll an

Hl(Qe,,)

il Tl (1.7)
HO(QETL) HO(QEn)
since
(bruwn ch] / Zn (bnwln =
Q,
Using (1.3), (1.7), Lemma 5.3, Lemma 6.4 and the fact that
”w"”iun = > otier (Pat]  Patl) = > ctyer 80015 + o(1)]
oren L,j L,j

the claim follows.

Step 2. Let x : R — [0, 1] be a smooth cut-off function such that x(z) =1
if x| <6 and x(x) =0 if |z| > 20.

Forany h=1,... k set

¢Z(£L’) = d)n (.’E + yhn) Xn(x)a S Qn — Yhn, (18)

where xn(x) = x(e%x).
1t holds

lim¢! =0 weakly in DV*(RY), h=1,... k. (1.9)
Here D2(R") is the space obtained by taking the completion of C§°(R™)
with the norm |jul = ( [ |Vu|?dz)'/2.
N

R
First of all by (1.3) and the smoothness of y it follows that ||¢/||

bounded. So, up to a subsequence, we can assume that

DL,2(RN)

lim ¢! = ¢ weakly in DH2(RN).



By (1.5) we deduce that for any ¢ € Cg°(RY)

/ ViV
Qn—Yhn,
/ VénV (xnth) + / V(62 V0 — Vi)
Qn—Ynnp Qn—Ynnp
anyhn i
/ Vhn(z + yn,)V(xnt)dx
Qn_yhn
/ Vi (& + yn) V et
Qn—Yhn,
/ V(62T — V). (1.10)
Qn_yhn

By (1.4), (1.6) and (1.8) we get

/ V(& + ) (xatd)d

Qn_yhn
/ Vit (@ + ) it
anyhn
+ / Vn (V) — pV,) = o(1). (1.11)
Qn_yhn

Finally

/ P (X Pallin(@ + 91n)) (@ + ) Xn (@) ()
Qn*yhn i

= [ 7( P60 @ = gl = )
S i

_ —a(N-2) / ZPU,\ o o (2)) b (/) xn (2 thn)w(x—xhn)dx

(e
n En
|z—2p|<26

— () de + o(1)

_ —a(N-2) / ZUA oo (7)) On(2/22)X e

|z—2p|<26

- / £ (Unn0) 8. (1.12)

n



Hence, from (1.10), (1.11) and (1.12) we deduce that ¢ € DV2(RY) is a

weak solution of
—Adl, = f'(Uno)dh,  in DVARY).

Moreover the function ¢” satisfies the condition

/ v¢§o(a:)w§h’0(x)dx =0 j=0,1,...,N.

In fact

/ (@) (Un,0(@) 03, o(2)da

n " Yhnp

= /¢n(y)xn(y — Ynn) F (Un ()3, (y)dy

- / 60 (1) Xm0 — vnn) — 1] £ (Un ()], (v)dy

IN

G ) f (Un(v)) ), (v)dy

ly—yn,|>20/%

ZJw

IN

ol | [ Wal)Fay

|y—ynn|>25/e% i |y—ynn|>25/e%

=o(1).

(From [4] and using (1.13) and (1.14), we deduce (1.9).
Step 8. A contradiction arises!
First of all we want to show that

tim [ /(3 Pati)2 =0
., i

Using the definition of ¢! we deduce that

(1.13)

(1.14)

(1.16)

/f PILUNE Z/f 5 Pl )6 ) )

s [ MR WEW

k
Qn\ u B(yhnyésﬁ)
h=1

(1.17)



By (1.9) we deduce that

/f/(zPnUin)(yMn(y)qﬁZ(y)dy —0 Vh=1,...,k (1.18)
Q, i

Moreover we have

[ R w6 w

k
Qn\} U B(ynn,deq)
h=1

ey [ wlwew
D b Blnse)
h=1

< Cet| b)) : (1.19)

L2 (Qey,)

Therefore (1.16) follows by (1.17), (1.18) and (1.19).
Finally by (1.5) we deduce that

/ Vonl? = / P PUs) 62 + / (Vhn + V) V. (1.20)
2n 2n ‘ Qn
(From (1.4), (1.6), (1.7) and (1.16) it follows that lim ||¢y|| =0 and
n HE (Qep,)

(1.3) gives a contradiction.

Proposition 1.8 Let a = ﬁ. For any § > 0 there exist g > 0 such that
for any € € (0,e9) and for any (N, z) € Os, if y = x/e®, there exists a unique
PS5, € K5, such that

k k k
i,y{ Y PU+¢—i[fO_PUi +¢) + () P.U + ¢)] } =0 (1.21)
=1 i=1

i=1
and
8]l < e (1.22)
with ) N .
5+ 2a SIN=T) if N>6
u= (1.23)
% + 2a = % if N =
Proof.

First of all we point out that ¢ solves equation (1.21) if and only if ¢ is a
fixed point of the operator T , : K5, — K§ , defined by

Ti,0) = [(55,) ol 0]
k k k k
[f(z PU+¢) =Y f(U) = f'(Q_ PU)e+T Y PU| .
=1 =1 =1 =1

10



Step 1: there exist g > 0 and p > 0 such that for any e € (0,eq) we have

ol <" = ITX, (o)l <& (1.24)

From Lemma 1.7, Lemma 1.5 and Lemma 1.2 we deduce that

k

175, (@Il < e[l SRt o) - ZPU I PU
i=1 i=1

k

k
IO PU) Z M g, e Y RU 2
i=1

i=1 i=1

E

] (1.25)

Now it is easy to see that

||fZPU+¢> ZPU ZPU 01l g < clloll”1.26)

=1 =1

By Lemma 5.3 we deduce that

k k ceTVND  f N > 7,
Hf(z:PsUi)_ZJC(Ui)Hﬁf2 < N ce?|loge| if N =6, (1.27)
4 i=1 ce? if N =5.

Moreover Remark 5.2 implies

N-—

l\)

k ceN—1 if N > 7,
SN PU L < 25, >0  if N =6, (1.28)
; NF2 6r—7

ce m, re(0,7) if N=5.

Finally from (1.25), (1.26), (1.28) and (1.27) the claim (1.24) easily follows.
Step 2: there exist g > 0 and pu > 0 such that for any e € (0,eq)

15, Alloll < e} — {lIgll < €} is a contraction mapping. (1.29)

In fact arguing as in the previous step we can prove that if ||¢1]|, ||¢2] < e

then

||T§y<¢>1) ~ 1%, (2]
< c[lls( ZPU + 1) - ZPU + o) — ZPU +02)0nl gy

i=1

MO P+ 6a) - ZPU —62)ll g |

N+2
i=1

< (|1 — dal” + || dal”™ 1||¢1 —¢a]) < Lll¢1 — o2,

for some L € (0,1). The claim (1.29) follows.

11



2 The reduced problem

k

;From Proposition 1.8 we deduce that the function u. = 3 P-Ujs e + 65 _,
i:l r k2 ErJE

is a solution of (1.2) if and only if the parameters A. and the points y. are such
that foranyi=1,...,kand j=0,1,...,n

k
(Z PsUi + ¢’a Pswg\f,%?)
Hg(Q:)

=1

k k
- (Z [FOQPU+¢) + (3 PU + )], PE¢§f7ye> =0.
H(l)(QE)

i
=1 i=1

(2.1)

Now we establish the asymptotic expansion of the left-hand side of the pre-
vious expression using the crucial estimates in Appendix B.

Proposition 2.1 Let o = ﬁ. Ifj=1,...,Nand h=1,...,k then

(Z P.U; + ¢, awi)

- (ZZ [f(z PEUi + ¢) + 5204—}-1(2 PEUi+¢):| ’ PE¢%>

Hg(Q0)

H5(9:)
k
OH oG N-2 | N-1
_ 42 N—2 N2 =
=A @(xh,:ch))\h 7;@(‘%]—“%[)()\}1)\[) 2 gEN-14
I#h
+o (5%) (2.2)
as € — 0 uniformly with respect to (\,x) € Os.
Moreover if j =0 and h=1,...,k then
(Z P.U; + ¢,Ps¢i;>
i HE(2:)
- (z [FOQ_PU +¢) + 21D PUL )], &wi)
‘ i Hg(Q0)
k
N-2 Ny N2 _
= S A | H an,en) A S Glan a)\F AT | 4+ B, p v
=1

1%h

(2.3)

12



as € — 0 uniformly with respect to (\,z) € Os.
Here the constants A and B are given by

A= | UP(z)dx and B= [ U*(z)dx. (2.4)
/ /

Proof. We have

<Z P.U; + ¢, Pwi)

i H{(Qe)

- (z [f(Z P.U; + ¢) + 62““(2 P.U; 9)], P%)
/Zf VPl — /fZPU+¢ )P-f,
Y / P.U P — 241 / oP.]

= / [Zf(Ui) - f(Z P.U;)| Py, —sh“Z/PgUiPEwi
Q. ¢ ! '
- [ Qo RV +0) = FGRU) = f' (3 PUIOIPA,
Q. !
/ ZP U;) Zf )| oP,

D> / £ (U)oP.v,

—e2tl [ opyl. (2.5)
/

H ()

We will estimate first the terms involving the function ¢ taking in account
(1.22) of Proposition 1.8. We get firstly

L/ ZP Ui + ¢) — ZP U;) ’(Z P.U;)¢| P,

€

< d|¢|® < e (2.6)

Secondly by (5.9) of Lemma 5.4 we get

L/[f’(ZPEU Zf ] oP,

=

13



< clldll on 1P (PO PU) = F U on
N-—-2 i i N+2
<cp)|e® ™ < ettt (2.7)

Moreover by Lemma 6.4 we get

/ 7SS UoP | = / 7S UNGP, — )

< gl 1/ (U 1Pt = i

N
< {c&‘)‘]zv“‘“ if j £0, (2.8)
= e T i j=0, '

and finally

| | c20t I i >0, N >17
et [ Pl <ol 4y Pl gy < ettt 521 N =5,
- )
2

Nz C€a+1+p’ lf] :07 N = )

Finally we can prove the following crucial expansions.

Proposition 2.2 Let U, be the function defined by (0.5). If j=1,...,N and
h=1,...,k then

(Z P.U; + ¢, Pewi;)

Hy (2)

- (z O PU+¢)+e (> PEU¢+¢>],P5¢;'>
i i HY(920)
oV,

N-1
— 5N—4

(2.10)

as € — 0 uniformly with respect to (\,z) € Os.
Moreover if j =0 and h =1,...,k then

(Z P.U;i + ¢, awi)

H§ ()

— (z FO_PU+¢)+ 52““(2 P.U; . ¢)], Pﬁ/}i)

N1 B‘i’:(x,x) + 0(1)} (2.11)

Hy (2:)

M)

=¢
as € — 0 uniformly with respect to (\,x) € Os.

14



Proof. Let usrecall thatif 7(z) = H(x, z) then g—;(as) = 22—;{(17 x). Therefore
the claim follows by (0.5) and Proposition 2.1. O

At this point we can give the necessary condition.

k
Theorem 2.3 Let u. = i; P.UN,. .. + 95, ,. be a family of solution of (1.1)

such that lin% Ae = Ao > 0 and hl% Eﬁyg = 1z with (Ao, o) € Os for some
E— E—
6 > 0. Then (Mo, x0) is a critical point of Vy,.

Proof. Set z;. = e%y;, € Q for i = 1,...,k. By Proposition 2.2 we deduce
that for j=1,...,N and h =1,...,k we have
ovy, ovy,

ﬁ()\g,xg) +o0(1)=0 and a(/\g,xg) +o0(1)=0. (2.12)
h

Since estimates (2.10) and (2.11) hold uniformly with respect to (A, z) in Oy,
we can pass to the limit as € goes to zero in (2.12) and hence the claim follows.
O

The next result gives a sufficient condition which ensures the existence of
a family of solutions which blow-up and concentrate at k given points of )
according to Definition 0.1.

Firstly we need to recall the following definition (see [13]).

Definition 2.4 Let g: D — R be a C'—function, where D C R™ is an open
set. We say that xo is a stable critical point of g if Vg(xg) = 0 and there exists
a neighbourhood U of xo such that

Vg(x) #0 V x € dU,

Vg(x) =0, ze€U = g(z)=g(xo)

and
deg (Vg, U, O) #0,

where deg denotes the Brouwer degree.

It is clear that any nondegenerate critical point of g is a stable critical point
in the sense of Definition (2.4). Moreover it easy to see that if zo is a minimum
point or a maximum point of the function g (not necessarily nondegenerate)
then z is a stable critical point of g according to Definition (2.4).

Proof of Theorem 0.2. We will prove that for some § > 0 there exists
(Ae, ) € Os with lin%) Ae = X and lir% xe = o such that if y. = x./e® then

E— E—
k
us = 3 PUy, y,  +5_,. is afamily of solution of (1.1). The claim will follow
i=1
by scaling such a function and by assuming ;. = \;e® (see Definition 0.1).

By Proposition 2.2 and Definition 2.4 we deduce that for € small enough there
exist (z¢, Ae) such that lir% Ae = Ao and lin% T. = xg such that for j=1,..., N
E— E—

and h=1,...k
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c—a(N-1) (Z P.U; + ¢, Pgwfl)
%

H5(2:)

_emalv-) (z [FOOCPU A ) +227(Y PEUHM’PW?%)

o
= 8—;(/\5,1;5) +o(1)=0 (2.13)
Th,

H§ ()

and also

c—a(N-2) (Z P.U; + ¢>,P5wi>

Hg ()
—em N2 (z [FOQ_PU A+ ) + 24> PUL )], Psw;;)
i i Hg ()
oYy,
= —"(Ag, T 1) = 2.14
T (Aeva) +o(1) =0 (214)
Hence by (2.13), (2.14) and Proposition 2.2 the claim follows. O
3 Examples

Firstly let us consider the case k = 1. In this case the function ¥y : RT™ xQ —
R reduces to

T\ z) = %AQT(@AN*Q - %B)\Q.
We have the following result.
Lemma 3.1 If xy is a stable critical point of T, then ()\o,xo) with
Ao = [(NE% ﬁ] A is a stable critical point of V.

Proof. First of all we have
N —2 1
VU (A7) = (TAQT(a;))\N_3 — B, §A2V7—(gc))\N_2).

Let H : [0,1] x R" xQ — R" x R be the homotopy defined by
H(tv )\,l’) = tv\Pl(A,.’ﬂ) + (1 - t) (h()‘)7 V’T(.’t)) )

where h(\) = Y22 A%7(20) AV =3 — BA. It is easy to check, using Definition (2.4),
that for some p > 0

H(t,A\,x)#0 Vte[0,1], V(\z)ed(UxV),

16



where U and V' are neighborhoods of \y and xg respectively. By the homotopy
invariance of the degree we deduce that

deg (vqfl, U x v,o) = deg (h,U,0) - deg (V7,V,0)

and the claim follows because deg (h, V, O) =1
O
Proof of Theorem 0.3. It follows by Theorem 0.2 and Lemma 3.1. O

Our next step consists in giving examples of contractible domains on which
problem (0.1) has an arbitrary number of family of solutions which blow-up and
concentrate at one point or a family of solutions which blow-up and concentrate
at an arbitrary number of points.

Let Qg = Q1 Uy, where Q7 and €5 are two smooth bounded domains such
that Q1 N Qs = (). Assume that

O c{(z,2) eRxRV ! |0<a<z <b}
and
QQC{(.’L‘17$/)€RXIRN_1 | —nglg—a<0}.
For any ¢ > 0 let

Cs ={(z1,2") e RxRN™" | 21 € (=b,b), || <4}
Let Qs be a smooth connected domain such that
Qo C N5 C QU . (3.1)
Lemma 3.2 It holds

1

;imo T, (2) = 1o, ()  Cl—uniformly on compact sets of Qg (3.2)

and

;in(l) Ga,(z,y) = Ga,(z,y)  C*—uniformly on compact sets of QoxQ\{z = y}.
(3.3)

Proof. Let us prove (3.2). For any z € Qg and y € Qp we have, by a
comparison argument, that Hg, (z,y) is decreasing with respect to § and 0 <
Hq,(x,y) < Hg,(x,y). Then Hq,(z,y) converges increasingly as § decreases to
0. By harmonicity the pointwise limit of Hq, (-, ) in Q¢ X Qg is therefore uniform
on compact sets of g x ¢y as J goes to zero. Moreover for any =z € g the
resulting limit is an harmonic function with respect to y in €y which coincides
with W on 0y, namely the resulting limit is Hq, (z, -). Moreover if K is
a compact set of g x 9 we have the following interior derivative estimate (see
Theorem (2.10), [11])

max |VHQ<5 (l’, y) - VHQO (9:7 y)|
(z,y)eEK

N
< Ho,. — H.
S Tt 0 < ) (fﬁ?é%' s (2,y) — Ha, (2, )|,

17



which proves our claim.
The proof of (3.3) is similar. O

Lemma 3.3 It holds

#{stable critical points of Tq,} >
#{stable critical points of T, } + #{stable critical points of T, }
(3.4)

Proof. Tt follows from Definition 2.4 and (3.2) of Lemma 3.2. O

Proof of Theorem 0.4. We point out that in virtue of Theorem 0.3 it is
enough to construct a domain 2 so that the Robin’s function 7 has at least h
different stable critical points.

Firstly we consider the case h = 2. Let us fix two smooth disjoint bounded
domains 2, and 9, so that the function 7o, has a strict minimum point in €4
and 7, has a strict minimum point in Q5. Let Q5 be defined as in (3.1). By
(3.2) of Lemma 3.2 we deduce that if § is small enough 7, has two different
strict minimum points, which are stable according to Definition 2.4. The claim
is proved. The general case can be proved by using Lemma 3.3. O

Proof of Theorem 0.5. We point out that in virtue of Theorem 0.2 it is
enough to construct a domain € so that the function ¥, : (RT)¥ x (2)* — R
defined by

k k
1 N2 N2 | ]

Q _ 2 AWN-2 ) = 2

UM x) = ;4 ;Tg(xl)xi =Z k Galzi,zj)A; 7 A, ° QBZIAZ-
= iy =
has a stable critical point.

Let Qo = Q1 U...UQy, where €2y,...,8y are k smooth bounded domains
such that Q; N Q; = 0 if ¢ # j. It is easy to check that the function ¥, % has
a strict minimum point in the connected component (R™)¥ x Q) x ... x Qj of
the set (RT)* x (Q)*.

Assume that
QiC{(Il,x/)ERXRN_l |ai§x1§bi} with bi<ai+1, i=1,...,k.
For any ¢ > 0 let

Cs ={(z1,2") e Rx RN | 21 € (a1,by), |2'| <6}
Let Qs be a smooth connected domain such that Qg C Q5 C Qg U Cs.
Arguing as in the proof of Lemma 3.2 we can prove that

;irrtl) 7q;(7) = 1o, (r) Cl—uniformly on compact sets of

and

gin%) Ga,(z,y) = Ga,(z,y) C'—uniformly on compact sets of QoxQp\{z = y}.
Therefore we deduce that ¥, converges C''—uniformly on compact sets of
(Q0)* x (RT)¥. Therefore if § is small enough the function ¥, has a strict

minimum point, which is stable according to Definition 2.4. The claim is proved.
O

18



4 Some remarks on a slightly subcritical prob-
lem

Let us consider the problem

N+2 .
—Au=uN-2"° in{

u>0 in (4.1)

u=20 on 0N

where Q is a smooth bounded domain in RY, N > 3 and ¢ > 0 is a positive
parameter.

Let @, : (RT)* x (Q)F — R be defined by

log (Ao Xn),  (4.2)

p (N, 2) = %AQ (M(x)AN*Z N*2> N-2

where the matrix M is defined in (0.6).
Arguing as in Section 1 and Section 2 and using estimates contained in [3],
one can prove the following result.

Theorem 4.1 Let (Mg, x0) be a stable critical point of ®y. Then there ex-
ists a family of solution of (4.1) which blow-up and concentrate at the points
x}, ..., xk, in the sense of Definition (0.1).

Proof. We argue as in the proof of Theorem 0.2. O
Arguing exactly as in Section 3 we can show the following examples.

Theorem 4.2 If xg is a stable critical point of T, then there exists a family of
solutions of (4.1) which blow-up and concentrate at xg.

Proof. Firstly one has to prove that if zg is a stable critical point of 7,

then (Ao, o) with Ag = [m} "% is a stable critical point of ®; (see Lemma

3.1). Finally one gets the claim, arguing as in the proof of Theorem 0.3 and
using Theorem 4.1. ad

Proposition 4.3 For any h > 2 there exists a contractible domain Q for which
problem (4.1) has at least h different families of solutions which blow-up and
concentrate at a point x; in Q, i =1,...,h.

Proof. We argue as in the proof of Proposition 0.4, using Theorem 4.1. O

Proposition 4.4 For any k > 2 there exists a contractible domain Q for which
problem (4.1) has a family of solutions which blow-up and concentrate at differ-
ent k points.

Proof. We argue as in the proof of Proposition 0.5, using Theorem 4.1. O
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5 Appendix A
Set for y € RY and X > 0
PU (@) =5 (UF,) @), zcQ

and
PUxy(2) = ig, (Uf,y) (2), z € Q. ( see (1.1)).

In particular it holds
PUoycoy(z) = e~ P.Uy,, (E%) zeq. (5.1)
Lemma 5.1 Set & = ™y. We have

N-—2

PUcore(x) = Usarg(x) — A(e*N) 2

H(z,§)+o (Ea(¥)) , TEQ

and
N-—-2

T G(z,8)+o (Ea(y)) , z€Q

PUEa)\’g(x) = A(EaA)
as € — 0 uniformly on compact sets of Q\ {£} where A is given in (2.4).

Proof. See [15]. O
If (A\,x) € Os (see Definition 1.3) let y; = x;/e“ for i = 1,...,k and set
y:=ux/e* € QF. Set

Ui == Uy, .y, and P.U; =i (Ui,yq) ’

and for j=1,...,nandt=1,...k

0._ aU)\iayi Jo._ aU)\iyyi

Vi = , Y= oy

O\ and Pgw{ =l (;DUf*;q/)zﬂ) ]

Remark 5.2 There exists ¢ > 0 such that for any e > 0 and foranyi=1,...,k
and j =0,1,...,n it holds

||P6U2H <cg, HPEUlll 2N <c and ||P€¢i” 2N <ec

N-—-2 N-2
Moreover
c if N>T,
4o .
|1P-U;|| oy < gce" 7, >0 if N =6,

Ta

A ce~ 2z, r€(0,7) if N=25,

|PA| .y Sc  if j#0,

N+2

if N >7
0 <le , WN=T
([ Perbs || 2 { ce™% if N=5,6.
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Lemma 5.3 For any § > 0 and for any €9 > 0 there exists C > 0 such that for

any (A, z) € Os and for any € € (0,e9) we have

k k Cea™5* if N> T,
||f(z P.U;) — Z FO) o < § Ce*e|loge| if N =6,
i=1 i=1 Cedo ifN =5

and

17(>2PUs) Zf iy <cC

(5.2)

(5.3)

Proof. Let us prove (5.2). The proof of (5.3) is similar. Since (\,z) € Oy it

holds |z; — x;| > ¢ for any i # j. We have by using (5.1)

/ (_ijPgny))”—iUf(y)

2N
N+2

dy (set x = e%y)

Qa
2N
k k N2
(Z PUyeo () — Z Uf oy, (@) dz
Q i=1 i=1
k k » k 2
= Z (Z PU),co o, (a:)) - Z US o, () dz
j:lB(wJ,g) i=1 i=1
2N
p N+2
+ / > PUvee (@) =Y UR e, dz.
k
2\ U B(z;.4)
Firstly
.k iz
/ (x)) S U (@) da
i=1

k s
Q\B B(zj,5)

k
2N _
=0 Z [ uiiarsoy e <cen.
i=1
Q\ U B(I],Q)

Secondly for j =1,...,k

z\erz
/ ZPUA o (1)) ZUfsarl da
B(z;,5)
k 3
(3" PUs o, (a:))p UL, (@) de
B(z;,3) =t
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(5.6)
73 B(z;.8)
It holds
ﬁ%
S [ o]
z#;B(mJ72)
N
= < CceN. 5.7
Z / (ASO‘ +|xx12> = e (5.7)
L#J B(z],2
Finally by Lemma 5.1 using the mean value theorem we get
ez
/ ‘PU/Z\)J-EO‘,J;J- (x) - Ufjgan (Z) dx
B(xjv%)
2N
p—1 N+2
-P / ‘(U’\jaa"” +0(@) (PUx; e, = U/\J'E“awj)(x)) (PUxcow; — Unjeoa,) () dx
B(z;.9)

<CE)N  ifN>T. (5.8)
Therefore if N > 7 the claim follows by (5.4), (5.5), (5.6), (5.7) and (5.8). If

N =5 or N =6 we need only to give a different estimate of (5.8) in order to
get the claim.

In fact, if N =6, we have

2N
/ |PUS ) (@) = UF o (@) i =

B(z;,%)

= oN-1
CenN+2 N+2 a(N=2) / I EE—y v
0 (1+et) ¥
on the other hand, if N = 5, using the substitution x — x; = A\;e“z, we get

/ ‘PUg\)js"‘,zj (.’E) - Ug\)js”‘,.rj ({E)

B(z;,%)

do < CE%O‘(N”)\ Inel;

1
N+2 dm§0513$2a(N72)/ — =
R (11 =)

O

Lemma 5.4 For any 0 > 0 and for any eq > 0 there exists C > 0 such that
for any (\,z) € Os and for any ¢ € (0,e0) we have for h = 1,...,k and
j=01,...,N

I[F (S Pv) = S P O] Pty < CeF

(5.9)
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Proof. Since (A, z) € Oy it holds |z; — x;| > § for any i # j. First of all by
(5.3) and Lemma 6.4 we get
2N
N+2
)

/(f’(;PEU -3

Qe
</<f’(ZPEU Zf )| [P, — wzj)
0. @
+/<f’(ZPEU I W)
Q. C

N2 N2

<P Qo PU) = S Oy ™ 1P = il ™

vi

Q.

2N

) o (5.10)

(S ru) -3 5

Now by using (5.1) we have

2N

N+2
/(f’(ZPsU -Yrw wh) (set @ = eoy)
Q. v
=)
5QN+&N%1;/<f/(ZPU)\%60‘ Zf U)\ i €Y,T W))\he“ zh>
Q 7
iz
< emoN+aN T / (f’(ZPUA,.,Ea v Zf Unieoas) | 103, o )
B(zn,3) ‘
iz
temoNtaN T / (f’(ZPUW o Zf Unieo s ‘wk,ﬁa mhl)
\B(zn,3) ‘

(5.11)

Firstly we have (by using Lemma 5.1)

2N
Nt2
/ ( f/( Z PUAisU‘,I,;) — Z f/(UAiEO‘yIi)| |q/}g\h5a7l'h |>
B(zn,3) ‘ ‘
2N
) N+2
<C / ( ZPU)‘ e Ii (UAhfa zh) |¢§\hs"‘,zh|>
B(mlug)
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N

oy / 1 Unieoe) |16 )

1;6h

B(xn,$)

2N

<C / |PUx, co x, — Unpeo o, | & S NTD WA;;E“,%;L N2

B(xn,3)

2N

+CZ / |Ux,e0 o, | T=2NFD 2 NTD) |%h5a,zh\ 2
1;6h

B(zn,3)
< ™3 Wiz, (5.12)

Secondly we have

[

(D PUy) Zf
Q\B(zn,3) !
< Z / U(N 2)(N+2) |w}\ha°,wh|

%

Q\B(zn,3)

< Ce™7 i3, (5.13)

2N

N+2
M)

By (5.10), (5.11), (5.12) and (5.13) the claim follows. O

6 Appendix B

Set for y € RY and A > 0

Uy 4 B N -2 N4 |z —y|? — A2

_ N
%,y(x)— I\ (z)=Cn 9 (A2+|$_y|2)N/2’ zeR

and for j=1,...,N

U, N2 xd —qd
() =—Cn(N —2)A"=2 O 1 |z — y2)N/2’

W, () = By veRY.
This family satisfies the equation
—Ag, =pUL Y, in RV,
Set for y € RY
P (o) =it (pUR 04, ) (@), weQ

and
j 1
P, (2) = (pUp“yl Ay) (), zeQ.
For j=0,1,...,Nand ¢ =1,...,k we have

) ok x
Pwi“)\,eay(x) = b Pe Ny (570‘) z €. (61)
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Lemma 6.1 Let £ € Q. We have for j=1,...,N

2 0G
/3

Pyl @) = AN T Z2 @8 +o(«2777), zeQ

and
PUlunele) = AN 20200, +o (2F ), 2eq
as € — 0 uniformly on compact sets of Q\ {£}, where A is given in (2.4).

Proof. We recall that

_A_Pz/}g; (@) = pUE (2)¢ay (z) inQ,
P’L/}ga)\7£ =0 on 89,

Ifj=1,...,N, we have for z €

Pweax )= / Ufa)\lg( )1/)Za/\’§(z)G(m,z)dz

Q

— _pCP (N = 2)(eoN) F /G(x, 2) —¢

~—dz
J ((e9N)? + |z — €2) =+

(set z = w + &)

N J
— _pCB (N — 2) (N F 2 / Ol e + ) ————dw
ol (1+[w]?)?

XN

= —(e")) *—Z/Gxg )\w+§) (Up( ))dw

= (N> 2 / 9 (G(x, 6% Mw + €))UP (w)dw

N / g—(az e\ + ) UP (w)duw

G ajxf(m/Up dw)+0(0‘22>.

Moreover for x € Q

P o(o) = /lﬁ&w<>wM4@GuJMz

_ 2 ay 2
o /Giz R G
(e*N)2 + |z — &]? )
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(set z =e*dw + &)

N—2 N_o |w|2—1

= pC&, (eN\)2 G(x, e w + €) fore
ole (1 [w]?)®
eXX
N -2 2-1
=pC} 5 (e2N) % 2 / G(z, e w +§) el T2
ol (1 +fwl?)?

=

(because of Remark 6.2)

>

N6 | [ Up(w)dw> +o(eotd2).

Remark 6.2 It holds

N -2 21 N -2
pCh / ol ~—dw = —— / UP(w)dw.
2 (1 + |w‘2)7+2 2

RV RV

Proof. Let us remark that

N —2 lz|2 — 1 _ U o
P — p—1 >
pCly 5 / 0t o) Ee de=p / UP=(2) ( ) (2)dz.
]RN

RN

Hence we get

N -2 |z —1 / _1, \OUxp
c? dr = u? ’ d
PPN /(1+x|2)¥+2 T=p o (753 N (2)dz
RN ]RN A=1

= / % (Uf’o)lle (z)dz = % / Uio(z)dz)
|

RN N

A=1

4 ()\N / Up(z)dz) - (5 -1) [ e
|

RN

Let us now set

UL,
Ry e(z) = a(saAf (2) = PYlare(z), 2€Q

and for j=1,...,N

j U« .
Rloy (@) = Wg\&(l’) = PYlay (@) weq
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Lemma 6.3 Let £ € Q. We have for j=1,...,N

' n-20H
Rlap (o) = AN T 556 +0(777), ze0

and

N -2
ROy (2) = A== (")) ¥ 2H(x,€) + 0 (sa%*?)) . zeQ
as e — 0 uniformly on compact sets of Q\ {£}, where A is given in (2.4).

Proof. We argue as in the proof of Lemma 6.1. O
First of all we deduce the following estimate.

Lemma 6.4 Fori=1,...,k we have

j j aly .
||P5w5—¢3||%§052 ifji=1,...,N

and
—2

N
||Ps¢?*¢?||%<cga 2.

Proof. It follows easily by (6.1) and Lemma 6.3. O
A crucial estimate is needed to get the expansion in Proposition 2.1. We
give it here.

Lemma 6.5 Leta:ﬁ. Ifj=1,...,Nand h=1,...,k then

/ [D £ W) = £ PU| Pef, — 227> / P.U; Py},
[ [ [ Q.

Q.
OH 3 kL oa N
=4 ﬁ(x’b’xh))‘izv Q_Zij(l‘hwz)()\h/\l) T | eN-a
Oxy, ~ 9r),
I%h

(6.2)
as € — 0 uniformly with respect to (A, &) € Os.
Moreover if j =0 and h=1,...,k then
/ [Z f(Uz) - f(z PEUi)] Pswioz - €2a+1 Z/PEU¢PE¢2
Q. ¢ @ O,
N -2 k N_o N=2 N—2
= TA2 H(zp,ap)Ay * =Y Glapa)NZ N7 | +ABevs
12
+o (5%:2)
(6.3)

as € — 0 uniformly with respect to (\,§) € Os. A and B are given in (2.4).
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The proof of the previous Lemma is a consequence of the following three
Lemmas.

Lemma 6.6 If j=1,....N andi,h=1,... k, i # h then

; n—2 0G
/ UPPp) = A*(Aidn) T o (i, ap)e V) —i—o(s"‘(N_l)) (6.4)
Oxy,
Q.
and if i =h
/Uzppewi = AQ/\N 28 (x“xz)go‘(]\[ D+ 0( (N_l)) (6.5)
d o)

as € — 0 uniformly with respect to (\,x) € Os.
Moreover if j =0 and i,h=1,...,k, i # h then

/ UP P = AT G s an)e* VD 4o <€O‘(N_2)) (6.6)
and if i =h
/ U P — N = 2A2)\N 3 H (2;, )V =) +o(aa<N*2>) (6.7)
Q.

as € — 0 uniformly with respect to (\,x) € Os.

Proof. Set

Uy o s, o OUne s,
—e and )= ST
(hie) Y=

(2

) = (6.8)

In the following we will always use estimate (6.1), Lemma 6.1 and Lemma 6.3.
Let j=1,...,N and i # h then we have

[vrerdiway == [ UL, @ P

Q. Q
= Ea(Aheo‘)N';?A/ oG (z,2p)UL., , (z)dx
axh k2 il 2
+o 6°‘N/2/8—Cj(a: zp)ULy, ., (2)d
J Oxy,
= A\ )N 2 a(N-1) / oG — (\e® z—l—x“xh)U - (2 )dz+0( a(N_l))
o 3xib Ais s
A;:"i
=A? ()\h)\ ) (N 1)87G($1,$h) +o0 (EQ(N71)> .

&’ch
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Let j=1,...,N and i = h then we have

/Uﬂwawﬁw@:wafvgmﬁmﬂ%ﬂ@m

O, o)
OU.o ) . )
=t [0 0 PR e — e [UL, L @R )i
Q i )

R it / Up(z)%(z)dz
als 7

g

OH
_ oy ~a\N-2 ) A2 a(N-1)
e*(Me®) o] (zi,2)A +0<5 )

i
e

oU

—\. P a(N+1)

Y / U (Z)azf (z)dz+o(5 )
RN

H
oy N2 OH e (aa“v*l))
ox!

0H
— _pa(N=1)\N=20H 2 a(N-1))
€ A; o] (xs,2:)A° + o0 (5 )

Let j =0 and ¢ # h then we have

[urraswy == [UL, @) P3 s
Q. Q

N -2
:5("()\;150‘)%*272 A/Up

EYN;, Ty

()G(z,zp)dz + 0 <5O‘(N72)>
Q

2N -2
2

Let j =0 and ¢ = h then we have

N—2
= Ea(N_Q))\iT /\h% A%G(xq,2) + 0 (EQ(N_Q)) )

/W@&w@@:f/@@m@WW@m

Q. Q

6U QN x.
_ P EXAT; _ L« P 0
- /UeaAi,zi(x) 8(50‘)\) (.’I})d.’II € /Uea)\i,zi(m)Rz (.Z‘)dI
Q Q

[x=1

12
Q—x;
;e

N oN—2
e ¥ 20 / US e () H () + 0 (%Y=
Q

3t [ (5) @)
) .
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N -2
7€a(>\i€a)%72+N7¥ A / UY o (2)H(Nie%2 + @, 2:)d2

+o (5“<N—2))

_ N2 2A2 a(N— 2))\N SH(wi,x ,)+0(EQ(N—2)>.

M

Lemma 6.7 If j=1,...,N and h=1,...,k we have
k .
O P.U) Py,
Q. =1
e x2 OH
=242 —(xn, x1)(Ap N = - Th, Th AN=2| galN=1)
; &dl( )(ArAr) 3xh( )AL
1#£h
+o (E"(N_l)> (6.9)
as € — 0 uniformly with respect to (A, x) € Os.
Moreover j =0 and h=1,...,k we have
k
JEO AT
o, i=1
N_o N-—2
Z G xh,xl 2 2)\1 2 = H(l‘h,l‘h))\hN_B g®(N=-2)
l;&h
+o (EO‘(N_Q)) (6.10)
as € — 0 uniformly with respect to (A, x) € Os.

Proof. In the following we will always use estimate (5.1), Lemma 5.1
estimate (6.1), Lemma 6.1 and Lemma 6.3.

Let j # 0 and h = 1. Fix § such that |x; — x| > ¢ for any i # j. We have

by 6.8,
k p p B
/(ZP@@)) P! (z)dx = /(ZPU,\ o, z> P (2)dz

0. =l Q \i=l

k p
(Z PU)\/L'E“,%' (Z)> PU§\715”‘ 1 (Z)

i=1

B(Il,(s)

/ PUY .o a, (2) P (2)dz

B(Il,é)

30



k k p B
Jrgaz / <ZPUM6”7I¢(Z)> Py (z)dz

=2B@s) N
k p
+50¢ / (Z PU)\,;s‘l,m,‘,(Z)> P'l/A){(Z)dZ (611)
i=1

k
Q\ U B(x1,0)
=1

Firstly we have for any j =1,...,k

k P
/ (Z PUyea 2, (Z)> PiZAJ{(Z)dz

k
\ U B(=1,9)
1=1

k
S C Z / U)\ieo‘ \ T
i=1

aU)\lEoc’zl

i dz
Oxq

k
Q\ U B(z1,0)
=1

IN

C/aaN;25a¥dx < CeV, (6.12)
Q

k
because |z — ;| > § for any i = 1,...,k and z € Q\ Y B(xy, ). Secondly

k P
[(Z PU}\laa‘ﬁfl (x)) - PUfla(’,wl (I) Piﬁ{(l‘)d?ﬂ
B(z1,6) - N=L
k p=l
—p / PUy, co o, + () ZPUMQ,M] > PUyeo o Pda
B(21,6) =2 =2
i 0
- Z % [(PUME”,M th(x)PUAzs”,mz)p] PUy e o da
=23z 8) !
- ) ) N2
== | 5 [(PUscea - 60) PUx e ) () 5 Gl ) Adi
X
=2pz.,6) !
+o (sa(N’z))

—_A Z(Al)\l)yga(l\f—%
s
0
/ — [(PUxe0 0y + 8(@) PUxeo 2,)" (21 + Me¥2)] G(21 + M2, 1) d

0]
B(0, x3%=)
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+o (so‘(N*Q))

k
_ A2 N2 o(n-2) 0G a(N-2)
A ;()\Ml) T ¢ o] (x1,21) + 0 (s ) :
Moreover for any [ # 1
k p
/ ( PUyco o, (z)) Py (z)dz
B(a,s) M1
k e
N—2
=(\eY)T A / > PUneow(2) | ——(@,21)dz
= oxy
B(z,6) =
+o0 (50‘(1\[72))
= (>\1>\l)¥5a(N72)A
k p
Z PU) e 5, (@) + Ne®2)) a—j(a:l + N\e%z, x1)dz
i
BO,xtw) '
+o0 (5”‘(1\[’2))
= ()\1/\1)¥EQ(N_2)A287G’.(1‘[, xl)dz + o0 (SQ(N_Q)) . (614)
oz}
Finally we have
(PUs,co 2, )PP (2)dz
B(z1,6)
an)\le“,.m PRI
= (PUX15°‘73?1) ade - (PU)\lfa,iCl) Rl(x)dx(615)
B(a1.6) !

B(ZDl,(S)

Now setting ¢z, ce oy = Unjeo,zy — PUx co o, We have

P 8U>\1€Q

L1
(PU)\1E"‘,$1) T{E‘{dw
B(zx1,6)
Uy, eo 2
(Unjeo oy — d’/\laavil)p#dx
Ox]
B(z1,9)
8U e¥,x
N B (N R [
X
B(z1,6) '
Uy, e
P ZZAETT
+ / U/\18“,I1 5%{ dz
B(x1,0)
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aUAy&‘ Z L1 d

-7 / (U)‘lf"‘ﬂh - t(x)¢A1€“7w1)p_1 ¢>\1€°‘7I1
5951

xlw
/Up dz+o< O‘(N*2))

— / 8¢A15a T Up

a(N—-2
ox] T w0 (6 | ))

B(z1,0)

H
= _AN-2ga(N-2) AQZ (ml,x1)+0(€o‘(N_2)). (6.16)
]

On the other hand we have
| @O PRI
B(:El,(S)

)\N 2 a (N— 2)A2 oH (1.1 xl) +O(EQ(N—2)) . (617)
ot

By (6.15), (6.16) and (6.17) we get
(PUy,co )PP (z)d2
B(Il,(s)

H
- f2,\{V—25a<N*2>A2%(xl, 1) + o (e““V*?)) . (6.18)
1

If j=0and h =1 we write

k P
/ <ZPEUZ~(JZ)> Py (x)da
0. 1=1
k P .
Q =1

B(:El 5)

PyY(2)dz

p
<Z PUy,coz,( > — PUY o, (2)

&2 / PUY. ., (2 2) Py (2)dz

B(Il,(s)

k k p .
=SS / (ZPUW,M(ZO P9 (2)dz

1=2p(0 5 \i=l

k pe
+e / (Z PUAI.Eam(z)) Py (2)dz. (6.19)

k
Q\ U B(x,0)
=1
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Firstly arguing as in the proof of (6.12), we have for any j = 1,...,k

k p

k
\ U B(z,0)
=1

N+2 N—4
SC/EO‘ 2 77 dx
Q

< C{-ja(N_l),

Secondly, arguing as in the proof of (6.13), we get

3 P
l(z PU/\ZSQ,:L’, (JJ)) _PUfls"‘,ml (LU) Plﬂ?(ﬂ?)dl‘
B(z,6) - M=1
k
N —2 N N_2
_ AQT(ga(N—S))\lg 22/\l 5 G(l‘1,$l) +o (aa(N—B)) _

=2

Moreover, arguing as in the proof of (6.14), we get for any [ # 1

k P
/ (Z PUyco (Z)> Py?(z)dz
B(z;,0)

=1

N -2 N _o N=2
= TA25"(N_3))\1]2V 2/\1 2 Gz, ) +o (EQ(N_3)> :

Moreover, arguing as in the proof of (6.18), we get
(PUME"‘Jl)pP’([}?(x)dZ

B(zl,é)

N —2
-5 A2A§V*35Q(N_3)H(x1, x1)+o (EQ(N_3)) .

Lemma 6.8 Ifj=1,...,N andi,h=1,...,k, then

/awﬂﬁzoww
Qe

as € — 0 uniformly with respect to (\,z) € Os.
Moreover if j =0 and i # h then

/am&%zom
Q
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(6.21)

(6.22)

(6.23)

(6.24)

(6.25)



and if i = h then

/PgUiPawf =MB+o(1) (6.26)
Qs

as € — 0 uniformly with respect to (A, x) € Os.

Proof. In the following we will always use estimate (5.1), Lemma 5.1,
estimate (5.1), Lemma 6.1 and Lemma 6.3.
Let j = 0 and ¢ = h. We have

/P Ui(2) Py (x)dx  (set x = z/e®, use (5.1) and Lemma 6.1)

= €_a/PU)\@'E"‘JM(Z)P¢gia“,zi(z)dz
Q

o2 )2
= ¢ ()\iga)N_?’/(( |z — @i (Aie®) 71d2_~_0(€a(N—3)>

Xie®)2 + |z — i 2)Y

set z = x; + N\ie®w
(

—a o w27]‘ @
=) [ e +o

Q—a;

ppye]
A€

=MNB+o(l).
because argumg exactly as in the proof of Remark 6.2, we can prove that
|w|?—1
f THuPr=T 4
Letj—l , N and i = h. We have
/PEUi(CU)PE’(/Jg(.T)dl‘ (set . = z/e®, use (5.1) and (5.1))

QE

/PUA o (VP o 1 (21

Zj — Xij
=7 [ (\e® Nfl/ J L] dz+o (Sa(Nfl))
N e+ ey

(set z = x; + \ie“w)

_ a2 wj
. (AZE)Q/I. T+ o ()
Pera

In a analogous way we can prove that if i # h
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/PEUZ-PEwg =o(1).

and if j #0

O
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