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Abstract

The main purpose of this paper is to construct families of positive
solutions for the equation

{
−∆u = u

N+2
N−2 + εu in Ω

u = 0 on ∂Ω

which blow-up and concentrate in k ≥ 1 different points of Ω as ε goes
to 0. We exhibit some examples of contractible domains where a large
number of solutions exists.
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0 Introduction

In this paper we are concerned with the problem





−∆u = u
N+2
N−2 + εu in Ω

u > 0 in Ω

u = 0 on ∂Ω

(0.1)

where Ω is a smooth bounded domain in IRN , N ≥ 3 and ε > 0 is a positive
parameter.
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In [6] (see also [2]) Brezis and Nirenberg showed that if N ≥ 4 problem (0.1)
has a solution for any ε ∈ (0, λ1) where λ1 denotes the first eigenvalue of −∆
with Dirichlet boundary condition on Ω. When N = 3 the problem is much
more delicate and a complete answer can be given only when Ω is a ball. In
that case problem (0.1) has a solution if and only if ε ∈ (1

4λ1, λ1).
In [15] Rey showed that if uε are solutions of (0.1) which concentrate around

a point x0 as ε goes to 0 then x0 is a critical point of the Robin’s function τΩ (see
0.4). Conversely he proved that if N ≥ 5 any nondegenerate critical point x0 of
τΩ generates a family of solutions of (0.1) concentrating around x0 as ε goes to
0. Successively in [16] the author proved that for ε small enough (0.1) has at
least as many solutions as cat Ω, i.e. the Ljusternik-Schnirelmann category of
Ω. In [14] Passaseo showed that the number of solutions of (0.1) is not related
to the topology of Ω but to the topology of a domain Ω′ which differs from Ω
by a set of small capacity. For instance if Ω is obtained from Ω′ by cutting off
a set with small capacity, then problem (0.1) has at least cat Ω′ + 1 distinct
solutions even if the domain Ω is contractible in itself.

In this paper we still consider the case N ≥ 5 and we study existence of
solutions which concentrate in one or more than one point of Ω in the sense of
the following definition.

Definition 0.1 Let uε be a family of solutions for (0.1). We say that uε blow-
up and concentrate at k points x1, . . . , xk if there exist rates of concentration
µ1ε, . . . , µkε > 0, and points x1ε, . . . , xkε ∈ Ω with lim

ε→0
µiε = 0 and lim

ε→0
xiε =

xi0, xi0 6= xj0 for i, j = 1, . . . , k, i 6= j, such that

uε −
k∑

i=1

i∗Ω

(
U

N+2
N−2
µiε,xiε

)
−→ 0 in H1

0(Ω) as ε → 0

where i∗Ω is the adjoint operator of the embedding iΩ : H1
0 (Ω) → L

2N
N−2 (Ω) (see

Definition 1.1).

Here (see [1], [7] and [17])

Uλ,y(x) = CN
λ

N−2
2

(λ2 + |x− y|2)N−2
2

, x ∈ IRN , y ∈ IRN , λ > 0,

with CN = [N(N − 2)](N−2)/4, are all the solutions of the equation

−∆u = u
N+2
N−2 in IRN .

Before stating our results it is useful to introduce some notation.
Let us denote by Γx(y) = γN

|x−y|N−2 , for every x, y ∈ IRN , the fundamental
solution for the negative Laplacian. For every point x ∈ Ω∪∂Ω, let us define the
regular part of the Green’s function, HΩ(x, ·), as the solution of the following
Dirichlet problem 




∆yHΩ(x, y) = 0 in Ω,

HΩ(x, y) = Γx(y) on ∂Ω.
(0.2)
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The Green’s function of the Dirichlet problem for the Laplacian is then defined
by Gx(y) = Γx(y)−HΩ(x, y) and it satisfies




−∆yGx(y) = δx(y) in Ω,

Gx(y) = 0 on ∂Ω.
(0.3)

For every x ∈ Ω the leading term of the regular part of the Green’s function

τΩ(x) := HΩ(x, x) (0.4)

is called Robin function of Ω at the point x.
In this paper we study the existence of solutions which blow-up and con-

centrate at k ≥ 1 different points of Ω. Let us introduce the function Ψk :
(IR+)k × Ωk −→ IR defined by

Ψk(λ, x) =
1
2
A2

(
M(x)λ

N−2
2 , λ

N−2
2

)
− 1

2
B

k∑

i=1

λ2
i , (0.5)

where λ
N−2

2 = (λ
N−2

2
1 , . . . , λ

N−2
2

k )T and M(x) =
(
mij(x)

)
1≤i,j≤k

is the matrix
defined by

mii(x) = τ(xi), mij(x) = G(xi, xj) if i 6= j. (0.6)

The constants A,B are given in (2.4). We prove the following result.

Theorem 0.2 Let (λ0, x0) be a stable critical point of Ψk (see Definition (2.4)).
Then there exists a family of solution of (0.1) which blow-up and concentrate at
the points x1

0, . . . , x
k
0 with rates of concentration µ1ε, . . . , µkε such that µεε

1
N−4 −→

λ0 as ε → 0.

In particular, as far as it concerns the existence of solutions which blow-up
and concentrate at one point, i.e k = 1, we improve the results of Rey (see [15]
and [16]).

Theorem 0.3 If x0 is a stable critical point of τΩ (see Definition (2.4)), then
there exists a family of solutions of (0.1) which blow-up and concentrate at x0.

The problem of existence of a family of solution of (0.1) which blow-up and
concentrate at k points of Ω, becomes a purely geometric problem.

Firstly we find many solutions of (0.1) which blow-up and concentrate at one
point of Ω, by constructing a domain Ω for which τΩ has many stable critical
points, which are local minimum points. In order to do this we follow the idea
of perturbing domains. We start with a domain Ω such that τΩ has many
stable critical points (for example Ω is the union of many disjoint domains) and
we perturb Ω adding a set of small capacity (for example we add some very
thin handles). It is easy to prove that the Robin’s function of the perturbed
domain converges in the C1−topology to the Robin’s function of Ω. Therefore
the Robin’s function of the perturbed domain has a large number of stable
critical points, even if the perturbed domain is contractible in itself.

More precisely we can prove the following result.
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Theorem 0.4 For any h ≥ 2 there exists a contractible domain Ω for which
problem (0.1) has at least h different families of solutions which blow-up and
concentrate at a point xi in Ω, i = 1, . . . , h.

Secondly we find a family of solutions of (0.1) which blow-up and concentrate
in k points of Ω, by constructing a domain Ω for which the function Ψk has a
stable critical point. Again we follow the idea of perturbing domains. We start
with a domain Ω such that Ψk has a stable critical point, which is a local
minimum point, (for example Ω is the union of many disjoint domains) and
we perturb Ω adding a set of small capacity (for example we add some very
thin handles). It is easy to prove that the function Ψk of the perturbed domain
converges in the C1−topology to the function Ψk of Ω. Therefore the function Ψk

of the perturbed domain has one stable critical point, even when the perturbed
domain is contractible in itself. More precisely we prove the following result.

Theorem 0.5 For any k ≥ 2 there exists a contractible domain Ω for which
problem (0.1) has a family of solutions which blow-up and concentrate at differ-
ent k points.

Moreover, using the results of [3], we can prove that Theorem 0.4 and The-
orem 0.5 hold also for the slightly subcritical problem (4.1) (see Section 4).

We would like to point out that in [8] Dancer already emphasized that the
number of positive solutions of critical problems, like (0.1) or (4.1), is strongly
affected by the geometry of the domain and not just by its topology. In [8]
he considered a large class of problems with subcritical growth, he constructed
domains as connected approximations to a finite number of disjoint or touching
balls and he proved that the number of positive solutions which are not ”large”
grows with the number of these balls.

The proof of our results is based on a Ljapunov-Schmidt procedure as de-
veloped in [2], [9] and [10]. The paper is organized as follows. In Section 1
we reduce the problem to a finite dimensional one. In Section 2 we study the
reduced problem. In Section 3 we prove our main results. In Section 4 we briefly
treat the slightly subcritical problem. The proof of Theorem 0.2 requires some
technical computations which are given in Appendix A and Appendix B.

1 The finite-dimensional reduction

Let α be a fixed positive number which will be choosen later. Let us set

Ωε := Ω/εα = {x/εα | x ∈ Ω}

and let us introduce the following problem




−∆u = up + ε2α+1u in Ωε

u > 0 in Ωε

u = 0 on ∂Ωε.

(1.1)
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Here p = N+2
N−2 . By a rescaling argument one sees that u(x) is a solution of (0.1)

if and only if w(x) = εα N−2
2 u

(
εαx

)
is a solution of (1.1).

Now let H1
0(Ωε) be the Hilbert space equipped with the usual inner product

(u, v) =
∫

Ωε

∇u∇v, which induces the norm ‖u‖ =




∫

Ωε

|∇u|2



1/2

.

It will be useful to rewrite problem (1.1) in a different setting. To this end
let us introduce the following operator.

Definition 1.1 Let i∗ε : L
2N

N+2 (Ωε) −→ H1
0(Ωε) be the adjoint operator of the

immersion iε : H1
0(Ωε) ↪→ L

2N
N−2 (Ωε), i.e.

i∗ε(u) = v ⇐⇒ (v, ϕ) =
∫

Ωε

u(x)ϕ(x)dx ∀ ϕ ∈ H1
0(Ωε).

Lemma 1.2 i∗ε : L
2N

N+2 (Ωε) −→ H1
0(Ωε) is a continuous function, i.e. there

exists a constant c > 0 such that

‖i∗ε(u)‖ ≤ c‖u‖ 2N
N+2

∀ u ∈ L
2N

N+2 (Ωε), ∀ ε > 0.

Proof. It follows from the fact that the costant of the Sobolev embedding
H1

0(Ωε) ↪→ L
2N

N−2 (Ωε) does not depend on the domain. ut
Now by scaling argument and by using the i∗ε operator, we introduce the

equivalent problem 



u = i∗ε[f(u) + ε2α+1u]

u ∈ H1
0(Ωε).

(1.2)

where f(s) = (s+)p and p = N+2
N−2 .

Let now fix an integer k ≥ 1.

Definition 1.3 For any δ > 0 set

Oδ =
{

(λ, x) ∈ (IR+)k × Ωk | dist (xi, ∂Ω) ≥ δ, δ < λi < 1/δ,

|xi − xl| ≥ δ, i = 1 . . . , k, i 6= l
}

.

Let us fix some notation.
If (λ, x) ∈ Oδ, let yi = xi/εα for i = 1, . . . , k and set y := x/εα ∈ Ωk

ε . Set

Ui := Uλi,yi and PεUi := i∗ε
(
Up

λi,yi

)
.

and for j = 1, . . . , n and i = 1, . . . , k

ψ0
i :=

∂Uλi,yi

∂λi
, ψj

i :=
∂Uλi,yi

∂yj
i

and Pεψ
j
i := i∗ε

(
pUp−1

λi,yi
ψj

i

)
.
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Definition 1.4 For any ε > 0, λ ∈ (IR+)k and y ∈ Ωk
ε set

Kε
λ,y =

{
u ∈ H1

0(Ωε) |
(
u, Pεψ

j
i

)
H1

0(Ωε)
= 0, i = 1, . . . , k, j = 0, 1, . . . , n

}
.

Lemma 1.5 Let Πε
λ,y : H1

0(Ωε) −→ Kε
λ,y be the projection, i.e.

Πε
λ,y(u) = u−

∑
i=1,...,k

j=0,1,...,N

(
u, Pεψ

j
i

)
H1

0(Ωε)
Pεψ

j
i .

Then Πε
λ,y is a continuous map, i.e. there exists c > 0 such that for any ε > 0

and for any (λ, y) ∈ (IR+)k × Ωk
ε it holds

‖Πε
λ,y(u)‖ ≤ c‖u‖ ∀ u ∈ H1

0(Ωε).

Proof. It follows by Remark 5.2 and Lemma 1.2. ut

Definition 1.6 Let Lε
λ,y : Kε

λ,y −→ Kε
λ,y be defined by

Lε
λ,y(φ) = Πε

λ,y

{
φ− i∗ε

[
f ′(

k∑

i=1

PεUi)φ + ε2α+1φ
]}

.

Lemma 1.7 For any δ > 0 there exist ε0 > 0 and c > 0 such that for any
ε ∈ (0, ε0) and for any (λ, x) ∈ Oδ if y = x/εα it holds

∥∥∥Lε
λ,y(φ)

∥∥∥ ≥ C‖φ‖ ∀φ ∈ Kε
λ,y.

Proof. We argue by contradiction. Assume there exist δ > 0 and sequences
εn > 0, (λn, xn) ∈ Oδ, φn ∈ H1

0(Ωεn) such that lim
n

εn = 0, lim
n

λin = λi > 0,

lim
n

xin = xi,

φn ∈ Kεn

λn,yn
and ‖φn‖

H1
0
(Ωεn )

= 1 (1.3)

and
Lεn

λn,yn
(φn) = hn with ‖hn‖

H1
0
(Ωεn )

−→ 0. (1.4)

Set Ωn = Ωεn , PnUin = PεnUλin,yin
and Pnψj

i n = Pεnψj
λin,yin

. Therefore we
have

φn − i∗εn
[f ′(

k∑

i=1

PnUin)φn] = hn + wn in Ωn, (1.5)

where wn =
∑
l,j

cn
l,jPnψj

l n
for certain coefficients cn

l,j .

Step1. It holds
lim
n
‖wn‖

H1
0
(Ωεn )

= 0. (1.6)
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By (1.5) we deduce

‖wn‖2
H1

0
(Ωεn )

= (φn, wn)−
∫

Ωn

f ′
( ∑

i

PnUin

)
φnwn − (hn, wn)

≤
∫

Ωn

∣∣∣∣∣f
′(∑

i

PnUin

)−
∑

i

f ′
(
Uin

)
∣∣∣∣∣ |φn| |wn|

+
∫

Ωn

∣∣∣∣∣
∑

i

f ′
(
Uin

)
∣∣∣∣∣ |φn|

∑

l,j

|cn
l,j | |Pnψj

l n
− ψj

l n
|

+‖hn‖
H1

0
(Ωεn )

‖wn‖
H1

0
(Ωεn )

≤ ‖f ′(
∑

i

PnUin

)−
∑

i

f ′
(
Uin

)‖
N
2
‖φn‖ 2N

N−2
‖wn‖ 2N

N−2

+
∑

i

‖f ′(Uin

)‖
N
2
‖φn‖ 2N

N−2

∑

l,j

|cn
l,j |‖Pnψj

l n
− ψj

l n
‖ 2N

N−2

+‖hn‖
H1

0
(Ωεn )

‖wn‖
H1

0
(Ωεn )

(1.7)

since
(φn, wn) =

∑

l,j

cn
l,j

∫

Ωn

f ′(Uin)φnψj
l n

= 0.

Using (1.3), (1.7), Lemma 5.3, Lemma 6.4 and the fact that

‖wn‖2
H1

0
(Ωεn )

=
∑

l,j

cn
l,jc

n
r,s

(
Pnψj

l n
, Pnψr

s

)
=

∑

l,j

cn
l,jc

n
r,s

[
δj,rδl,s + o(1)

]

the claim follows.
Step 2. Let χ : IR −→ [0, 1] be a smooth cut-off function such that χ(x) = 1

if |x| ≤ δ and χ(x) = 0 if |x| ≥ 2δ.
For any h = 1, . . . , k set

φh
n(x) = φn (x + yhn) χn(x), x ∈ Ωn − yhn, (1.8)

where χn(x) = χ(εα
nx).

It holds

lim
n

φh
n = 0 weakly in D1,2(IRN ), h = 1, . . . , k. (1.9)

Here D1,2(IRN ) is the space obtained by taking the completion of C∞0 (IRN )
with the norm ‖u‖ = (

∫
IRN

|∇u|2dx)1/2.

First of all by (1.3) and the smoothness of χ it follows that ‖φh
n‖D1,2(IRN )

is
bounded. So, up to a subsequence, we can assume that

lim
n

φh
n = φh

∞ weakly in D1,2(IRN ).
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By (1.5) we deduce that for any ψ ∈ C∞0 (IRN )
∫

Ωn−yhn

∇φi
n∇ψ

=
∫

Ωn−yhn

∇φn∇(χnψ) +
∫

Ωn−yhn

∇χn(φn∇ψ − ψ∇ψn)

∫

Ωn−yhn

f ′
(∑

i

PnUin(x + yhn)
)
φn(x + yin)χnψdx

+
∫

Ωn−yhn

∇hn(x + yhn)∇(χnψ)dx

+
∫

Ωn−yhn

∇wn(x + yhn)∇(χnψ)dx

+
∫

Ωn−yhn

∇χn(φn∇ψ − ψ∇ψn). (1.10)

By (1.4), (1.6) and (1.8) we get
∫

Ωn−yhn

∇hn(x + yhn)(χnψ)dx

+
∫

Ωn−yhn

∇wn(x + yhn)(χnψ)dx

+
∫

Ωn−yhn

∇χn(φn∇ψ − ψ∇ψn) = o(1). (1.11)

Finally
∫

Ωn−yhn

f ′
(∑

i

PnUin(x + yhn)
)
φn(x + yhn)χn(x)ψ(x)dx

=
∫

Ωn

f ′
( ∑

i

PnUin(x)
)
φn(x)χn(x− yhn)ψ(x− yhn)dx

= ε−α(N−2)

∫

|x−xh|≤2δ

f ′
( ∑

i

PUλinεα
n,xin

(x)
)
φn(x/εα

n)χn(
x− xhn

εα
n

)ψ(
x− xhn

εα
n

)dx

= ε−α(N−2)

∫

|x−xh|≤2δ

f ′
( ∑

i

Uλinεα
n,xin

(x)
)
φn(x/εα

n)χn(
x− xhn

εα
n

)ψ(
x− xhn

εα
n

)dx + o(1)

=
∫

IRN

f ′(Uλh,0)φh
∞ψ. (1.12)

8



Hence, from (1.10), (1.11) and (1.12) we deduce that φh
∞ ∈ D1,2(IRN ) is a

weak solution of

−∆φh
∞ = f ′(Uλ,0)φh

∞ in D1,2(IRN ). (1.13)

Moreover the function φh
∞ satisfies the condition

∫

IRN

∇φh
∞(x)∇ψj

λh,0(x)dx = 0 j = 0, 1, . . . , N. (1.14)

In fact
∣∣∣∣∣∣∣

∫

Ωn−yhn

φh
n(x)f ′

(
Uλhn,0(x)

)
ψj

λhn,0(x)dx

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫

Ωn

φn(y)χn(y − yhn)f ′
(
Un(y)

)
ψj

hn
(y)dy

∣∣∣∣∣∣

=

∣∣∣∣∣∣

∫

Ωn

φn(y)
[
χn(y − yhn)− 1

]
f ′

(
Un(y)

)
ψj

hn
(y)dy

∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣

∫

|y−yhn|≥2δ/εα
n

φn(y)f ′
(
Un(y)

)
ψj

hn
(y)dy

∣∣∣∣∣∣∣

≤ ‖φn‖ 2N
N−2




∫

|y−yhn|≥2δ/εα
n

(
Un(y)

) 2N
N−2 dy




2
N




∫

|y−yhn|≥2δ/εα
n

(
ψj

hn
(y)

) 2N
N−2




N−2
2N

= o(1). (1.15)

¿From [4] and using (1.13) and (1.14), we deduce (1.9).
Step 3. A contradiction arises!
First of all we want to show that

lim
n

∫

Ωn

f ′
( ∑

i

PnUin

)
φ2

n = 0. (1.16)

Using the definition of φh
n we deduce that

∫

Ωn

f ′
( ∑

i

PnUin

)
φ2

n =
k∑

h=1

∫

Ωn

f ′
(∑

i

PnUin

)
(y)φn(y)φh

n(y)dy

+
∫

Ωn\
k∪

h=1
B(yhn,δεα

n)

f ′
( ∑

i

PnUin

)
(y)φ2

n(y)dy. (1.17)
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By (1.9) we deduce that
∫

Ωn

f ′
( ∑

i

PnUin

)
(y)φn(y)φh

n(y)dy −→ 0 ∀ h = 1, . . . , k. (1.18)

Moreover we have
∫

Ωn\
k∪

h=1
B(yhn,δεα

n)

f ′
(∑

i

PnUin

)
(y)φ2

n(y)dy

≤ C
∑

i

∫

Ωn\
k∪

h=1
B(yhn,δεα

n)

Up−1
λin,yin

(y)φ2
n(y)dy

≤ Cε4α
n ‖φn‖2

L2(Ωεn )
. (1.19)

Therefore (1.16) follows by (1.17), (1.18) and (1.19).
Finally by (1.5) we deduce that

∫

Ωn

|∇φn|2 =
∫

Ωn

f ′
(∑

i

PnUin

)
φ2

n +
∫

Ωn

(∇hn +∇wn)∇φn. (1.20)

¿From (1.4), (1.6), (1.7) and (1.16) it follows that lim
n
‖φn‖

H1
0
(Ωεn )

= 0 and

(1.3) gives a contradiction.

Proposition 1.8 Let α = 1
N−4 . For any δ > 0 there exist ε0 > 0 such that

for any ε ∈ (0, ε0) and for any (λ, x) ∈ Oδ, if y = x/εα, there exists a unique
φε

λ,y ∈ Kε
λ,y such that

Πε
λ,y

{ k∑

i=1

PεUi + φ− i∗ε
[
f(

k∑

i=1

PεUi + φ) + ε2α+1(
k∑

i=1

PεUi + φ)
]}

= 0 (1.21)

and
‖φ‖ ≤ εµ (1.22)

with

µ =





1
2 + 2α = N

2(N−4) if N ≥ 6

1
4 + 2α = 9

4 if N = 5.
(1.23)

Proof.
First of all we point out that φ solves equation (1.21) if and only if φ is a

fixed point of the operator T ε
λ,y : Kε

λ,y −→ Kε
λ,y defined by

T ε
λ,y(φ) =

[(
Lε

λ,y

)−1 ◦Πε
λ,y ◦ i∗ε

]

[
f(

k∑

i=1

PεUi + φ)−
k∑

i=1

f(Ui)− f ′(
k∑

i=1

PεUi)φ + ε2α+1
k∑

i=1

PεUi

]
.
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Step 1: there exist ε0 > 0 and µ > 0 such that for any ε ∈ (0, ε0) we have

‖φ‖ ≤ εµ =⇒ ‖T ε
λ,y(φ)‖ ≤ εµ. (1.24)

¿From Lemma 1.7, Lemma 1.5 and Lemma 1.2 we deduce that

‖T ε
λ,y(φ)‖ ≤ c

[
‖f(

k∑

i=1

PεUi + φ)− f(
k∑

i=1

PεUi)− f ′(
k∑

i=1

PεUi)φ‖ 2N
N+2

+‖f(
k∑

i=1

PεUi)−
k∑

i=1

f(Ui)‖ 2N
N+2

+ ε2α+1‖
k∑

i=1

PεUi‖ 2N
N+2

]
. (1.25)

Now it is easy to see that

‖f(
k∑

i=1

PεUi + φ)− f(
k∑

i=1

PεUi)− f ′(
k∑

i=1

PεUi)φ‖ 2N
N+2

≤ c‖φ‖p∧2(1.26)

By Lemma 5.3 we deduce that

‖f(
k∑

i=1

PεUi)−
k∑

i=1

f(Ui)‖ 2N
N+2

≤




cε
N+2

2(N−4) if N ≥ 7,
cε2| log ε| if N = 6,
cε3 if N = 5.

(1.27)

Moreover Remark 5.2 implies

ε2α+1‖
k∑

i=1

PεUi‖ 2N
N+2

≤




cε
N−2
N−4 if N ≥ 7,

cε2 r−1
r , r > 0 if N = 6,

cε
6r−7
2r , r ∈ (0, 7) if N = 5.

(1.28)

Finally from (1.25), (1.26), (1.28) and (1.27) the claim (1.24) easily follows.
Step 2: there exist ε0 > 0 and µ > 0 such that for any ε ∈ (0, ε0)

T ε
λ,y : {‖φ‖ ≤ εµ} −→ {‖φ‖ ≤ εµ} is a contraction mapping. (1.29)

In fact arguing as in the previous step we can prove that if ‖φ1‖, ‖φ2‖ ≤ εµ

then

‖T ε
λ,y(φ1)− T ε

λ,y(φ2)‖

≤ c
[
‖f(

k∑

i=1

PεUi + φ1)− f(
k∑

i=1

PεUi + φ2)− f ′(
k∑

i=1

PεUi + φ2)φ1‖ 2N
N+2

+‖[f ′(
k∑

i=1

PεUi + φ2)− f ′(
k∑

i=1

PεUi)
]
(φ1 − φ2)‖ 2N

N+2

]

≤ c
(‖φ1 − φ2‖p + ‖φ2‖p−1‖φ1 − φ2‖

) ≤ L‖φ1 − φ2‖,

for some L ∈ (0, 1). The claim (1.29) follows.

11



2 The reduced problem

¿From Proposition 1.8 we deduce that the function uε =
k∑

i=1

PεUλε
i
,yε

i
+ φε

λε,yε

is a solution of (1.2) if and only if the parameters λε and the points yε are such
that for any i = 1, . . . , k and j = 0, 1, . . . , n

(
k∑

i=1

PεUi + φ, Pεψ
j
λε

i
,yε

i

)

H1
0(Ωε)

−
(

i∗ε
[
f(

k∑

i=1

PεUi + φ) + ε2α+1(
k∑

i=1

PεUi + φ)
]
, Pεψ

j
λε

i
,yε

i

)

H1
0(Ωε)

= 0.

(2.1)

Now we establish the asymptotic expansion of the left-hand side of the pre-
vious expression using the crucial estimates in Appendix B.

Proposition 2.1 Let α = 1
N−4 . If j = 1, . . . , N and h = 1, . . . , k then

(∑

i

PεUi + φ, Pεψ
j
h

)

H1
0(Ωε)

−
(

i∗ε
[
f(

∑

i

PεUi + φ) + ε2α+1(
∑

i

PεUi+φ)
]
, Pεψ

j
h

)

H1
0(Ωε)

= A2


 ∂H

∂xj
h

(xh, xh)λN−2
h −

k∑
l=1
l6=h

∂G

∂xj
h

(xh, xl)(λhλl)
N−2

2


 ε

N−1
N−4

+o
(
ε

N−1
N−4

)
(2.2)

as ε → 0 uniformly with respect to (λ, x) ∈ Oδ.
Moreover if j = 0 and h = 1, . . . , k then
(∑

i

PεUi + φ, Pεψ
j
h

)

H1
0(Ωε)

−
(

i∗ε
[
f(

∑

i

PεUi + φ) + ε2α+1(
∑

i

PεUi+φ)
]
, Pεψ

j
h

)

H1
0(Ωε)

=





N − 2
2

A2


H(xh, xh)λN−3

h −
k∑

l=1
l6=h

G(xh, xl)λ
N
2 −2

h λ
N−2

2
l


 + Bλh





ε
N−2
N−4

+o
(
ε

N−2
N−4

)

(2.3)
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as ε → 0 uniformly with respect to (λ, x) ∈ Oδ.
Here the constants A and B are given by

A =
∫

IRN

Up(x) dx and B =
∫

IRN

U2(x) dx. (2.4)

Proof. We have
(∑

i

PεUi + φ, Pεψ
j
h

)

H1
0(Ωε)

−
(

i∗ε
[
f(

∑

i

PεUi + φ) + ε2α+1(
∑

i

PεUi+φ)
]
, Pεψ

j
h

)

H1
0(Ωε)

=
∫

Ωε

∑

i

f(Ui)Pεψ
j
h −

∫

Ωε

f(
∑

i

PεUi + φ)Pεψ
j
h

−ε2α+1
∑

i

∫

Ωε

PεUiPεψ
j
h − ε2α+1

∫

Ωε

φPεψ
j
h

=
∫

Ωε

[ ∑

i

f(Ui)− f(
∑

i

PεUi)
]
Pεψ

j
h − ε2α+1

∑

i

∫

Ωε

PεUiPεψ
j
h

−
∫

Ωε

[
f(

∑

i

PεUi + φ)− f(
∑

i

PεUi)− f ′(
∑

i

PεUi)φ
]
Pεψ

j
h

−
∫

Ωε

[
f ′(

∑

i

PεUi)−
∑

i

f ′(Ui)
]
φPεψ

j
h

−
∑

i

∫

Ωε

f ′(Ui)φPεψ
j
h

−ε2α+1

∫

Ωε

φPεψ
j
h. (2.5)

We will estimate first the terms involving the function φ taking in account
(1.22) of Proposition 1.8. We get firstly

∣∣∣∣∣∣

∫

Ωε

[
f(

∑

i

PεUi + φ)− f(
∑

i

PεUi)− f ′(
∑

i

PεUi)φ
]
Pεψ

j
h

∣∣∣∣∣∣
≤ c‖φ‖2 ≤ cε2µ. (2.6)

Secondly by (5.9) of Lemma 5.4 we get
∣∣∣∣∣∣

∫

Ωε

[
f ′(

∑

i

PεUi)−
∑

i

f ′(Ui)
]
φPεψ

j
h

∣∣∣∣∣∣
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≤ c‖φ‖ 2N
N−2

‖Pεψ
j
h(f ′(

∑

i

PεUi)−
∑

i

f ′(Ui))‖ 2N
N+2

≤ c‖φ‖εα N+2
2 ≤ cεµ+α N+2

2 . (2.7)

Moreover by Lemma 6.4 we get
∣∣∣∣∣∣

∫

Ωε

f ′(
∑

i

Ui)φPεψ
j
h

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

Ωε

f ′(
∑

i

Ui)φ(Pεψ
j
h − ψj

h)

∣∣∣∣∣∣

≤ c‖φ‖ 2N
N−2

‖f ′(
∑

i

Ui)‖N
2
‖Pεψ

j
h − ψj

h‖ 2N
N−2

≤
{

cεα N
2 +µ if j 6= 0,

cεα N−2
2 +µ if j = 0,

(2.8)

and finally

ε2α+1

∣∣∣∣∣∣

∫

Ωε

φPεψ
j
h

∣∣∣∣∣∣
≤ ε2α+1‖φ‖ 2N

N−2
‖Pεψ

j
h‖ 2N

N+2
≤





cε2α+1+µ if j ≥ 0, N ≥ 7,
cε2α+1+µ if j ≥ 1, N = 5, 6
cεα+1+µ if j = 0, N = 5, 6.

(2.9)
Taking into account (1.23) the claim follows from Lemma 6.5 in Appendix B. ut

Finally we can prove the following crucial expansions.

Proposition 2.2 Let Ψk be the function defined by (0.5). If j = 1, . . . , N and
h = 1, . . . , k then

(∑

i

PεUi + φ, Pεψ
j
h

)

H1
0(Ωε)

−
(

i∗ε
[
f(

∑

i

PεUi + φ) + ε2α+1(
∑

i

PεUi+φ)
]
, Pεψ

j
h

)

H1
0(Ωε)

= ε
N−1
N−4

[
∂Ψk

∂xj
h

(λ, x) + o(1)

]
(2.10)

as ε → 0 uniformly with respect to (λ, x) ∈ Oδ.
Moreover if j = 0 and h = 1, . . . , k then

(∑

i

PεUi + φ, Pεψ
j
h

)

H1
0(Ωε)

−
(

i∗ε
[
f(

∑

i

PεUi + φ) + ε2α+1(
∑

i

PεUi+φ)
]
, Pεψ

j
h

)

H1
0(Ωε)

= ε
N−2
N−4

[
∂Ψk

∂λh
(λ, x) + o(1)

]
(2.11)

as ε → 0 uniformly with respect to (λ, x) ∈ Oδ.
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Proof. Let us recall that if τ(x) = H(x, x) then ∂τ
∂xi

(x) = 2 ∂H
∂xi

(x, x). Therefore
the claim follows by (0.5) and Proposition 2.1. ut

At this point we can give the necessary condition.

Theorem 2.3 Let uε =
k∑

i=1

PεUλiε,yiε
+ φε

λε,yε
be a family of solution of (1.1)

such that lim
ε→0

λε = λ0 > 0 and lim
ε→0

ε
1

N−4 yε = x0 with (λ0, x0) ∈ Oδ for some

δ > 0. Then (λ0, x0) is a critical point of Ψk.

Proof. Set xiε = εαyiε ∈ Ω for i = 1, . . . , k. By Proposition 2.2 we deduce
that for j = 1, . . . , N and h = 1, . . . , k we have

∂Ψk

∂xj
h

(λε, xε) + o(1) = 0 and
∂Ψk

∂λh
(λε, xε) + o(1) = 0. (2.12)

Since estimates (2.10) and (2.11) hold uniformly with respect to (λ, x) in Oδ,
we can pass to the limit as ε goes to zero in (2.12) and hence the claim follows.
ut

The next result gives a sufficient condition which ensures the existence of
a family of solutions which blow-up and concentrate at k given points of Ω
according to Definition 0.1.

Firstly we need to recall the following definition (see [13]).

Definition 2.4 Let g : D −→ IR be a C1−function, where D ⊂ IRm is an open
set. We say that x0 is a stable critical point of g if ∇g(x0) = 0 and there exists
a neighbourhood U of x0 such that

∇g(x) 6= 0 ∀ x ∈ ∂U,

∇g(x) = 0, x ∈ U =⇒ g(x) = g(x0)

and
deg

(∇g, U, 0
) 6= 0,

where deg denotes the Brouwer degree.

It is clear that any nondegenerate critical point of g is a stable critical point
in the sense of Definition (2.4). Moreover it easy to see that if x0 is a minimum
point or a maximum point of the function g (not necessarily nondegenerate)
then x0 is a stable critical point of g according to Definition (2.4).

Proof of Theorem 0.2. We will prove that for some δ > 0 there exists
(λε, xε) ∈ Oδ with lim

ε→0
λε = λ0 and lim

ε→0
xε = x0 such that if yε = xε/εα then

uε =
k∑

i=1

PεUλiε,yiε
+φε

λε,yε
is a family of solution of (1.1). The claim will follow

by scaling such a function and by assuming µiε = λiε
α (see Definition 0.1).

By Proposition 2.2 and Definition 2.4 we deduce that for ε small enough there
exist (xε, λε) such that lim

ε→0
λε = λ0 and lim

ε→0
xε = x0 such that for j = 1, . . . , N

and h = 1, . . . , k

15



ε−α(N−1)

(∑

i

PεUi + φ, Pεψ
j
h

)

H1
0(Ωε)

−ε−α(N−1)

(
i∗ε

[
f(

∑

i

PεUi + φ) + ε2α+1(
∑

i

PεUi+φ)
]
, Pεψ

j
h

)

H1
0(Ωε)

=
∂Ψk

∂xj
h

(λε, xε) + o(1) = 0 (2.13)

and also

ε−α(N−2)

(∑

i

PεUi + φ, Pεψ
j
h

)

H1
0(Ωε)

−ε−α(N−2)

(
i∗ε

[
f(

∑

i

PεUi + φ) + ε2α+1(
∑

i

PεUi+φ)
]
, Pεψ

j
h

)

H1
0(Ωε)

=
∂Ψk

∂λh
(λε, xε) + o(1) = 0 (2.14)

Hence by (2.13), (2.14) and Proposition 2.2 the claim follows. ut

3 Examples

Firstly let us consider the case k = 1. In this case the function Ψ1 : IR+×Ω −→
IR reduces to

Ψ1(λ, x) =
1
2
A2τ(x)λN−2 − 1

2
Bλ2.

We have the following result.

Lemma 3.1 If x0 is a stable critical point of τ, then
(
λ0, x0

)
with

λ0 =
[

2B
(N−2)A2

1
τ(x0)

] 1
N−4

is a stable critical point of Ψ1.

Proof. First of all we have

∇Ψ1(λ, x) =
(N − 2

2
A2τ(x)λN−3 −Bλ,

1
2
A2∇τ(x)λN−2

)
.

Let H : [0, 1]× IR+×Ω −→ IRN × IR be the homotopy defined by

H(t, λ, x) = t∇Ψ1(λ, x) + (1− t) (h(λ),∇τ(x)) ,

where h(λ) = N−2
2 A2τ(x0)λN−3−Bλ. It is easy to check, using Definition (2.4),

that for some ρ > 0

H(t, λ, x) 6= 0 ∀ t ∈ [0, 1], ∀ (λ, x) ∈ ∂
(
U × V

)
,
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where U and V are neighborhoods of λ0 and x0 respectively. By the homotopy
invariance of the degree we deduce that

deg
(
∇Ψ1, U × V, 0

)
= deg

(
h,U, 0

) · deg
(∇τ, V, 0

)

and the claim follows because deg
(
h, V, 0

)
= 1.

ut
Proof of Theorem 0.3. It follows by Theorem 0.2 and Lemma 3.1. ut

Our next step consists in giving examples of contractible domains on which
problem (0.1) has an arbitrary number of family of solutions which blow-up and
concentrate at one point or a family of solutions which blow-up and concentrate
at an arbitrary number of points.

Let Ω0 = Ω1 ∪Ω2, where Ω1 and Ω2 are two smooth bounded domains such
that Ω1 ∩ Ω2 = ∅. Assume that

Ω1 ⊂ {(x1, x
′) ∈ IR× IRN−1 | 0 < a ≤ x1 ≤ b}

and
Ω2 ⊂ {(x1, x

′) ∈ IR× IRN−1 | − b ≤ x1 ≤ −a < 0}.
For any δ > 0 let

Cδ = {(x1, x
′) ∈ IR× IRN−1 | x1 ∈ (−b, b), |x′| ≤ δ}.

Let Ωδ be a smooth connected domain such that

Ω0 ⊂ Ωδ ⊂ Ω0 ∪ Cδ. (3.1)

Lemma 3.2 It holds

lim
δ→0

τΩδ
(x) = τΩ0(x) C1−uniformly on compact sets of Ω0 (3.2)

and

lim
δ→0

GΩδ
(x, y) = GΩ0(x, y) C1−uniformly on compact sets of Ω0×Ω0\{x = y}.

(3.3)

Proof. Let us prove (3.2). For any x ∈ Ω0 and y ∈ Ω0 we have, by a
comparison argument, that HΩδ

(x, y) is decreasing with respect to δ and 0 <
HΩδ

(x, y) ≤ HΩ0(x, y). Then HΩδ
(x, y) converges increasingly as δ decreases to

0. By harmonicity the pointwise limit of HΩδ
(·, ·) in Ω0×Ω0 is therefore uniform

on compact sets of Ω0 × Ω0 as δ goes to zero. Moreover for any x ∈ Ω0 the
resulting limit is an harmonic function with respect to y in Ω0 which coincides
with 1

|x−y|N−2 on ∂Ω0, namely the resulting limit is HΩ0(x, ·). Moreover if K is
a compact set of Ω0×Ω0 we have the following interior derivative estimate (see
Theorem (2.10), [11])

max
(x,y)∈K

|∇HΩδ
(x, y)−∇HΩ0(x, y)|

≤ N

dist(K, ∂(Ω0 × Ω0))
max

(x,y)∈K
|HΩδ

(x, y)−HΩ0(x, y)|,
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which proves our claim.
The proof of (3.3) is similar. ut

Lemma 3.3 It holds

#{stable critical points of τΩδ
} ≥

#{stable critical points of τΩ1}+ #{stable critical points of τΩ2}
(3.4)

Proof. It follows from Definition 2.4 and (3.2) of Lemma 3.2. ut
Proof of Theorem 0.4. We point out that in virtue of Theorem 0.3 it is

enough to construct a domain Ω so that the Robin’s function τΩ has at least h
different stable critical points.

Firstly we consider the case h = 2. Let us fix two smooth disjoint bounded
domains Ω1 and Ω2, so that the function τΩ1 has a strict minimum point in Ω1

and τΩ2 has a strict minimum point in Ω2. Let Ωδ be defined as in (3.1). By
(3.2) of Lemma 3.2 we deduce that if δ is small enough τΩδ

has two different
strict minimum points, which are stable according to Definition 2.4. The claim
is proved. The general case can be proved by using Lemma 3.3. ut

Proof of Theorem 0.5. We point out that in virtue of Theorem 0.2 it is
enough to construct a domain Ω so that the function Ψk

Ω : (IR+)k×(Ω)k −→ IR
defined by

Ψk
Ω(λ, x) =

1
2
A2




k∑

i=1

τΩ(xi)λN−2
i −

∑
i,j=1,...,k

i 6=j

GΩ(xi, xj)λ
N−2

2
i λ

N−2
2

j


−1

2
B

k∑

i=1

λ2
i

has a stable critical point.
Let Ω0 = Ω1 ∪ . . . ∪ Ωk, where Ω1, . . . , Ωk are k smooth bounded domains

such that Ωi ∩ Ωj = ∅ if i 6= j. It is easy to check that the function Ψk
Ω0 has

a strict minimum point in the connected component (IR+)k × Ω1 × . . .× Ωk of
the set (IR+)k × (Ω0)k.

Assume that

Ωi ⊂ {(x1, x
′) ∈ IR× IRN−1 | ai ≤ x1 ≤ bi} with bi < ai+1, i = 1, . . . , k.

For any δ > 0 let

Cδ = {(x1, x
′) ∈ IR× IRN−1 | x1 ∈ (a1, bk), |x′| ≤ δ}.

Let Ωδ be a smooth connected domain such that Ω0 ⊂ Ωδ ⊂ Ω0 ∪ Cδ.
Arguing as in the proof of Lemma 3.2 we can prove that

lim
δ→0

τΩδ
(x) = τΩ0(x) C1−uniformly on compact sets of Ω0

and

lim
δ→0

GΩδ
(x, y) = GΩ0(x, y) C1−uniformly on compact sets of Ω0×Ω0\{x = y}.

Therefore we deduce that Ψk
Ωδ converges C1−uniformly on compact sets of

(Ω0)k × (IR+)k. Therefore if δ is small enough the function Ψk
Ωδ has a strict

minimum point, which is stable according to Definition 2.4. The claim is proved.
ut
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4 Some remarks on a slightly subcritical prob-
lem

Let us consider the problem





−∆u = u
N+2
N−2−ε in Ω

u > 0 in Ω

u = 0 on ∂Ω

(4.1)

where Ω is a smooth bounded domain in IRN , N ≥ 3 and ε > 0 is a positive
parameter.

Let Φk
Ω : (IR+)k × (Ω)k −→ IR be defined by

Φk(λ, x) =
1
2
A2

(
M(x)λ

N−2
2 , λ

N−2
2

)
− N − 2

2
log (λ1 · . . . · λk) , (4.2)

where the matrix M is defined in (0.6).
Arguing as in Section 1 and Section 2 and using estimates contained in [3],

one can prove the following result.

Theorem 4.1 Let (λ0, x0) be a stable critical point of Φk. Then there ex-
ists a family of solution of (4.1) which blow-up and concentrate at the points
x1

0, . . . , x
k
0 , in the sense of Definition (0.1).

Proof. We argue as in the proof of Theorem 0.2. ut
Arguing exactly as in Section 3 we can show the following examples.

Theorem 4.2 If x0 is a stable critical point of τ, then there exists a family of
solutions of (4.1) which blow-up and concentrate at x0.

Proof. Firstly one has to prove that if x0 is a stable critical point of τ,

then
(
λ0, x0

)
with λ0 =

[
1

A2τ(x0)

] 1
N−2

is a stable critical point of Φ1 (see Lemma
3.1). Finally one gets the claim, arguing as in the proof of Theorem 0.3 and
using Theorem 4.1. ut

Proposition 4.3 For any h ≥ 2 there exists a contractible domain Ω for which
problem (4.1) has at least h different families of solutions which blow-up and
concentrate at a point xi in Ω, i = 1, . . . , h.

Proof. We argue as in the proof of Proposition 0.4, using Theorem 4.1. ut

Proposition 4.4 For any k ≥ 2 there exists a contractible domain Ω for which
problem (4.1) has a family of solutions which blow-up and concentrate at differ-
ent k points.

Proof. We argue as in the proof of Proposition 0.5, using Theorem 4.1. ut

19



5 Appendix A

Set for y ∈ IRN and λ > 0

PUλ,y(x) = i∗Ω
(
Up

λ,y

)
(x), x ∈ Ω

and
PεUλ,y(z) = i∗Ωε

(
Up

λ,y

)
(z), z ∈ Ωε ( see (1.1)).

In particular it holds

PUεαλ,εαy(x) = ε−α N−2
2 PεUλ,y

( x

εα

)
x ∈ Ω. (5.1)

Lemma 5.1 Set ξ = εαy. We have

PUεαλ,ξ(x) = Uεαλ,ξ(x)−A(εαλ)
N−2

2 H(x, ξ) + o
(
εα( N−2

2 )
)

, x ∈ Ω

and
PUεαλ,ξ(x) = A(εαλ)

N−2
2 G(x, ξ) + o

(
εα( N−2

2 )
)

, x ∈ Ω

as ε −→ 0 uniformly on compact sets of Ω \ {ξ} where A is given in (2.4).

Proof. See [15]. ut
If (λ, x) ∈ Oδ (see Definition 1.3) let yi = xi/εα for i = 1, . . . , k and set

y := x/εα ∈ Ωk
ε . Set

Ui := Uλi,yi and PεUi := i∗ε
(
Up

λi,yi

)
,

and for j = 1, . . . , n and i = 1, . . . , k

ψ0
i :=

∂Uλi,yi

∂λi
, ψj

i :=
∂Uλi,yi

∂yj
i

and Pεψ
j
i := i∗ε

(
pUp−1

λi,yi
ψj

i

)
.

Remark 5.2 There exists c > 0 such that for any ε > 0 and for any i = 1, . . . , k
and j = 0, 1, . . . , n it holds

‖PεUi‖ ≤ c, ‖PεUi‖ 2N
N−2

≤ c and ‖Pεψ
j
i ‖ 2N

N−2
≤ c.

Moreover

‖PεUi‖ 2N
N+2

≤




c if N ≥ 7,
cε−

4α
r , r > 0 if N = 6,

cε−
7α
2r , r ∈ (0, 7) if N = 5,

‖Pεψ
j
i ‖ 2N

N+2
≤ c if j 6= 0,

‖Pεψ
0
i ‖ 2N

N+2
≤

{
c if N ≥ 7,
cε−

α
2 if N = 5, 6.
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Lemma 5.3 For any δ > 0 and for any ε0 > 0 there exists C > 0 such that for
any (λ, x) ∈ Oδ and for any ε ∈ (0, ε0) we have

‖f(
k∑

i=1

PεUi)−
k∑

i=1

f(Ui)‖ 2N
N+2

≤




Cεα N+2
2 if N ≥ 7,

Cε4α| log ε| if N = 6,
Cε3α if N = 5,

(5.2)

and
‖f ′(

∑

i

PεUi

)−
∑

i

f ′
(
Ui

)‖
N
2
≤ Cε2α (5.3)

Proof. Let us prove (5.2). The proof of (5.3) is similar. Since (λ, x) ∈ Oδ it
holds |xi − xj | > δ for any i 6= j. We have by using (5.1)

∫

Ωε

∣∣∣∣∣
( k∑

i=1

PεUi(y)
)p

−
k∑

i=1

Up
i (y)

∣∣∣∣∣

2N
N+2

dy (set x = εαy)

=
∫

Ω

∣∣∣∣∣
( k∑

i=1

PUλiεα,xi(x)
)p −

k∑

i=1

Up
λiεα,xi

(x)

∣∣∣∣∣

2N
N+2

dx

=
k∑

j=1

∫

B(xj , δ
2 )

∣∣∣∣∣
( k∑

i=1

PUλiεα,xi(x)
)p

−
k∑

i=1

Up
λiεα,xi

(x)

∣∣∣∣∣

2N
N+2

dx

+
∫

Ω\ k∪
j=1

B(xj , δ
2 )

∣∣∣∣∣
( k∑

i=1

PUλiεα,xi(x)
)p

−
k∑

i=1

Up
λiεα,xi

(x)

∣∣∣∣∣

2N
N+2

dx. (5.4)

Firstly

∫

Ω\ k∪
j=1

B(xj , δ
2 )

∣∣∣∣∣
( k∑

i=1

PUλiεα,xi(x)
)p

−
k∑

i=1

Up
λiεα,xi

(x)

∣∣∣∣∣

2N
N+2

dx

≤ C

k∑

i=1

∫

Ω\ k∪
j=1

B(xj , δ
2 )

U
2N

N−2
λiεα,xi

dx ≤ C

k∑

i=1

(λiε
α)N ≤ CεαN . (5.5)

Secondly for j = 1, . . . , k

∫

B(xj , δ
2 )

∣∣∣∣∣
( k∑

i=1

PUλiεα,xi(x)
)p

−
k∑

i=1

Up
λiεα,xi

(x)

∣∣∣∣∣

2N
N+2

dx

≤
∫

B(xj , δ
2 )

∣∣∣∣∣
( k∑

i=1

PUλiεα,xi(x)
)p

− Up
λjεα,xj

(x)

∣∣∣∣∣

2N
N+2

dx
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+
k∑

i=1
i 6=j

∫

B(xj , δ
2 )

∣∣∣Up
λiεα,xi

(x)
∣∣∣

2N
N+2

dx. (5.6)

It holds

k∑
i=1
i6=j

∫

B(xj , δ
2 )

∣∣∣Up
λiεα,xi

(x)
∣∣∣

2N
N+2

dx

≤
k∑

i=1
i 6=j

∫

B(xj , δ
2 )

(
λiε

α

(λiεα)2 + |x− xi|2
)N

≤ CεαN . (5.7)

Finally by Lemma 5.1 using the mean value theorem we get
∫

B(xj , δ
2 )

∣∣∣PUp
λjεα,xj

(x)− Up
λjεα,xj

(x)
∣∣∣

2N
N+2

dx

= p

∫

B(xj , δ
2 )

∣∣∣∣
(
Uλjεα,xj + θ(x)

(
PUλjεα,xj − Uλjεα,xj

)
(x)

)p−1(
PUλjεα,xj − Uλjεα,xj

)
(x)

∣∣∣∣
2N

N+2

dx

≤ C(εα)N if N ≥ 7. (5.8)

Therefore if N ≥ 7 the claim follows by (5.4), (5.5), (5.6), (5.7) and (5.8). If
N = 5 or N = 6 we need only to give a different estimate of (5.8) in order to
get the claim.

In fact, if N = 6, we have
∫

B(xj , δ
2 )

∣∣∣PUp
λjεα,xj

(x)− Up
λjεα,xj

(x)
∣∣∣

2N
N+2

dx =

Cε
2N

N+2 α(N−2)

∫ 1
εα

0

%N−1

(1 + %2)
4N

N+2
d% ≤ Cε

2N
N+2 α(N−2)| ln ε|;

on the other hand, if N = 5, using the substitution x− xj = λjε
αz, we get

∫

B(xj , δ
2 )

∣∣∣PUp
λjεα,xj

(x)− Up
λjεα,xj

(x)
∣∣∣

2N
N+2

dx ≤ Cε
2N

N+2 α(N−2)

∫

IRN

1

(1 + |z|2) 4N
N+2

dz.

ut
Lemma 5.4 For any δ > 0 and for any ε0 > 0 there exists C > 0 such that
for any (λ, x) ∈ Oδ and for any ε ∈ (0, ε0) we have for h = 1, . . . , k and
j = 0, 1, . . . , N

‖
[
f ′

( ∑

i

PεUi

)−
∑

i

f ′
(
Ui

)]
Pεψ

j
h‖ 2N

N+2
≤ Cεα N+2

2 (5.9)
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Proof. Since (λ, x) ∈ Oδ it holds |xi − xj | > δ for any i 6= j. First of all by
(5.3) and Lemma 6.4 we get

∫

Ωε

(∣∣∣∣∣f
′(∑

i

PεUi

)−
∑

i

f ′
(
Ui

)
∣∣∣∣∣ |Pεψ

j
h|

) 2N
N+2

≤
∫

Ωε

(∣∣∣∣∣f
′( ∑

i

PεUi

)−
∑

i

f ′
(
Ui

)
∣∣∣∣∣ |Pεψ

j
h − ψj

h|
) 2N

N+2

+
∫

Ωε

(∣∣∣∣∣f
′(∑

i

PεUi

)−
∑

i

f ′
(
Ui

)
∣∣∣∣∣ |ψ

j
h|

) 2N
N+2

≤ ‖f ′(
∑

i

PεUi

)−
∑

i

f ′
(
Ui

)‖
N
2

N+2
2N ‖Pεψ

j
h − ψj

h‖ 2N
N−2

N+2
2N

+
∫

Ωε

(∣∣∣∣∣f
′(∑

i

PεUi

)−
∑

i

f ′
(
Ui

)
∣∣∣∣∣ |ψ

j
h|

) 2N
N+2

. (5.10)

Now by using (5.1) we have

∫

Ωε

(∣∣∣∣∣f
′( ∑

i

PεUi

)−
∑

i

f ′
(
Ui

)
∣∣∣∣∣ |ψ

j
h|

) 2N
N+2

(set x = εαy)

= ε−αN+αN N+4
N+2

∫

Ω

(∣∣∣∣∣f
′(∑

i

PUλiεα,xi

)−
∑

i

f ′
(
Uλiεα,xi

)
∣∣∣∣∣ |ψ

j
λhεα,xh

|
) 2N

N+2

≤ ε−αN+αN N+4
N+2

∫

B(xh, δ
2 )

(∣∣∣∣∣f
′(∑

i

PUλiεα,xi

)−
∑

i

f ′
(
Uλiεα,xi

)
∣∣∣∣∣ |ψ

j
λhεα,xh

|
) 2N

N+2

+ε−αN+αN N+4
N+2

∫

Ω\B(xh, δ
2 )

(∣∣∣∣∣f
′(∑

i

PUλiεα,xi

)−
∑

i

f ′
(
Uλiεα,xi

)
∣∣∣∣∣ |ψ

j
λhεα,xh

|
) 2N

N+2

.

(5.11)

Firstly we have (by using Lemma 5.1)

∫

B(xh, δ
2 )

(∣∣∣∣∣f
′(∑

i

PUλiεα,xi

)−
∑

i

f ′
(
Uλiεα,xi

)
∣∣∣∣∣ |ψ

j
λhεα,xh

|
) 2N

N+2

≤ C

∫

B(xh, δ
2 )

(∣∣∣∣∣f
′( ∑

i

PUλiεα,xi

)− f ′
(
Uλhεα,xh

)
∣∣∣∣∣ |ψ

j
λhεα,xh

|
) 2N

N+2
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+C
∑

i 6=h

∫

B(xh, δ
2 )

(∣∣f ′(Uλiεα,xi

)∣∣ |ψj
λhεα,xh

|
) 2N

N+2

≤ C

∫

B(xh, δ
2 )

|PUλhεα,xh
− Uλhεα,xh

| 8N
(N−2)(N+2) |ψj

λhεα,xh
| 2N

N+2

+C
∑

i 6=h

∫

B(xh, δ
2 )

|Uλiεα,xi
| 8N
(N−2)(N+2) |ψj

λhεα,xh
| 2N

N+2

≤ Cεα N
2

2N
N+2 . (5.12)

Secondly we have

∫

Ω\B(xh, δ
2 )

(∣∣∣∣∣f
′( ∑

i

PεUi

)−
∑

i

f ′
(
Ui

)
∣∣∣∣∣ |ψ

j
λhεα,xh

|
) 2N

N+2

≤
∑

i

∫

Ω\B(xh, δ
2 )

U
8N

(N−2)(N+2)
i |ψj

λhεα,xh
| 2N

N+2

≤ Cεα N
2

2N
N+2 . (5.13)

By (5.10), (5.11), (5.12) and (5.13) the claim follows. ut

6 Appendix B

Set for y ∈ IRN and λ > 0

ψ0
λ,y(x) =

∂Uλ,y

∂λ
(x) = CN

N − 2
2

λ
N−4

2
|x− y|2 − λ2

(λ2 + |x− y|2)N/2
, x ∈ IRN

and for j = 1, . . . , N

ψj
λ,y(x) =

∂Uλ,y

∂yj
(x) = −CN (N − 2)λ

N−2
2

xj − yj

(λ2 + |x− y|2)N/2
, x ∈ IRN .

This family satisfies the equation

−∆ψj
λ,y = pUp−1

λ,y ψj
λ,y in IRN .

Set for y ∈ IRN

Pψj
λ,y(x) = i∗Ω

(
pUp−1

λi,yi
ψj

λ,y

)
(x), x ∈ Ω

and
Pεψ

j
λ,y(z) = i∗ε

(
pUp−1

λi,yi
ψj

λ,y

)
(z), z ∈ Ωε

For j = 0, 1, . . . , N and i = 1, . . . , k we have

Pψj
εαλ,εαy(x) = ε−α N

2 Pεψ
j
λ,y

( x

εα

)
x ∈ Ω. (6.1)
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Lemma 6.1 Let ξ ∈ Ω. We have for j = 1, . . . , N

Pψj
εαλ,ξ(x) = A(εαλ)

N−2
2

∂G

∂ξj
(x, ξ) + o

(
εα N−2

2

)
, x ∈ Ω

and

Pψ0
εαλ,ξ(x) = A

N − 2
2

(εαλ)
N
2 −2G(x, ξ) + o

(
εα( N

2 −2)
)

, x ∈ Ω

as ε −→ 0 uniformly on compact sets of Ω \ {ξ}, where A is given in (2.4).

Proof. We recall that
{
−∆Pψj

εαλ,ξ(x) = pUp−1
εαλ,ξ(x)ψj

εαλ,ξ(x) in Ω,

Pψj
εαλ,ξ = 0 on ∂Ω,

If j = 1, . . . , N, we have for x ∈ Ω

Pψj
εαλ,ξ(x) =

∫

Ω

pUp−1
εαλ,ξ(z)ψj

εαλ,ξ(z)G(x, z)dz

= −pCp
N (N − 2)(εαλ)

N
2 +1

∫

Ω

G(x, z)
zj − ξj

(
(εαλ)2 + |z − ξ|2)

N
2 +2

dz

(set z = εαλw + ξ)

= −pCp
N (N − 2)(εαλ)

N
2 −2

∫

Ω−ξ
εαλ

G(x, εαλw + ξ)
wj

(
1 + |w|2)

N
2 +2

dw

= −(εαλ)
N
2 −2

∫

Ω−ξ
εαλ

G(x, εαλw + ξ)
∂

∂wj

(
Up(w)

)
dw

= (εαλ)
N
2 −2

∫

Ω−ξ
εαλ

∂

∂wj

(
G(x, εαλw + ξ)

)
Up(w)dw

= (εαλ)
N
2 −1

∫

Ω−ξ
εαλ

∂G

∂wj
(x, εαλw + ξ)Up(w)dw

= (εαλ)
N
2 −1 ∂G

∂yj
(x, ξ)




∫

IRN

Up(w)dw


 + o

(
εα N−2

2

)
.

Moreover for x ∈ Ω

Pψ0
εαλ,ξ(x) =

∫

Ω

pUp−1
εαλ,εαy(z)ψ0

εαλ,ξ(z)G(x, z)dz

= pCp
N

N − 2
2

(εαλ)
N
2

∫

Ω

G(x, z)
|z − ξ|2 − (εαλ)2

(
(εαλ)2 + |z − ξ|2)

N
2 +2

dz
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(set z = εαλw + ξ)

= pCp
N

N − 2
2

(εαλ)
N
2 −2

∫

Ω−ξ
εαλ

G(x, εαλw + ξ)
|w|2 − 1

(
1 + |w|2)

N
2 +2

dw

= pCp
N

N − 2
2

(εαλ)
N
2 −2

∫

Ω−ξ
εαλ

G(x, εαλw + ξ)
|w|2 − 1

(
1 + |w|2)

N
2 +2

dw

(because of Remark 6.2)

= (εαλ)
N
2 −2G(x, ξ)




∫

IRN

Up(w)dw


 + o

(
εα( N

2 −2)
)

.

ut
Remark 6.2 It holds

pCp
N

N − 2
2

∫

IRN

|w|2 − 1
(
1 + |w|2)

N
2 +2

dw =
N − 2

2

∫

IRN

Up(w)dw.

Proof. Let us remark that

pCp
N

N − 2
2

∫

IRN

|x|2 − 1

(1 + |x|2)N
2 +2

dx = p

∫

IRN

Up−1(z)
(

∂Uλ,0

∂λ

)

|λ=1

(z)dz.

Hence we get

pCp
N

N − 2
2

∫

IRN

|x|2 − 1

(1 + |x|2)N
2 +2

dx = p

∫

IRN

(
Up−1

λ,0 (z)
∂Uλ,0

∂λ

)

|λ=1

(z)dz

=
∫

IRN

∂

∂λ

(
Up

λ,0

)
|λ=1

(z)dz =
d
dλ




∫

IRN

Up
λ,0(z)dz



|λ=1

=
d
dλ


λ

N
2 −1

∫

IRN

Up(z)dz



|λ=1

=
(

N

2
− 1

) ∫

IRN

Up(z)dz.

ut
Let us now set

R0
εαλ,ξ(x) =

∂Uεαλ,ξ

∂(εαλ)
(x)− Pψ0

εαλ,ξ(x), x ∈ Ω

and for j = 1, . . . , N

Rj
εαλ,ξ(x) =

∂Uεαλ,ξ

∂(ξ)
(x)− Pψj

εαλ,ξ(x) x ∈ Ω.
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Lemma 6.3 Let ξ ∈ Ω. We have for j = 1, . . . , N

Rj
εαλ,ξ(x) = A(εαλ)

N−2
2

∂H

∂ξj
(x, ξ) + o

(
εα N−2

2

)
, x ∈ Ω

and

R0
εαλ,ξ(x) = A

N − 2
2

(εαλ)
N
2 −2H(x, ξ) + o

(
εα( N

2 −2)
)

, x ∈ Ω

as ε −→ 0 uniformly on compact sets of Ω \ {ξ}, where A is given in (2.4).

Proof. We argue as in the proof of Lemma 6.1. ut
First of all we deduce the following estimate.

Lemma 6.4 For i = 1, . . . , k we have

‖Pεψ
j
i − ψj

i ‖ 2N
N−2

≤ Cεα N
2 if j = 1, . . . , N

and
‖Pεψ

0
i − ψ0

i ‖ 2N
N−2

≤ Cεα N−2
2 .

Proof. It follows easily by (6.1) and Lemma 6.3. ut
A crucial estimate is needed to get the expansion in Proposition 2.1. We

give it here.

Lemma 6.5 Let α = 1
N−4 . If j = 1, . . . , N and h = 1, . . . , k then

∫

Ωε

[ ∑

i

f(Ui)− f(
∑

i

PεUi)
]
Pεψ

j
h − ε2α+1

∑

i

∫

Ωε

PεUiPεψ
j
h

= A2


 ∂H

∂xj
h

(xh, xh)λN−2
h −

k∑
l=1
l6=h

∂G

∂xj
h

(xh, xl)(λhλl)
N−2

2


 ε

N−1
N−4

+o
(
ε

N−1
N−4

)

(6.2)

as ε → 0 uniformly with respect to (λ, ξ) ∈ Oδ.
Moreover if j = 0 and h = 1, . . . , k then

∫

Ωε

[ ∑

i

f(Ui)− f(
∑

i

PεUi)
]
Pεψ

0
h − ε2α+1

∑

i

∫

Ωε

PεUiPεψ
0
h

=





N − 2
2

A2


H(xh, xh)λN−3

h −
k∑

l=1
l 6=h

G(xh, xl)λ
N
2 −2

h λ
N−2

2
l


 + λiB





ε
N−2
N−4

+o
(
ε

N−2
N−4

)

(6.3)

as ε → 0 uniformly with respect to (λ, ξ) ∈ Oδ. A and B are given in (2.4).

27



The proof of the previous Lemma is a consequence of the following three
Lemmas.

Lemma 6.6 If j = 1, . . . , N and i, h = 1, . . . , k, i 6= h then
∫

Ωε

Up
i Pεψ

j
h = A2(λiλh)

N−2
2

∂G

∂xj
h

(xi, xh)εα(N−1) + o
(
εα(N−1)

)
(6.4)

and if i = h
∫

Ωε

Up
i Pεψ

j
i = −A2λN−2

i

∂H

∂xj
i

(xi, xi)εα(N−1) + o
(
εα(N−1)

)
(6.5)

as ε → 0 uniformly with respect to (λ, x) ∈ Oδ.
Moreover if j = 0 and i, h = 1, . . . , k, i 6= h then
∫

Ωε

Up
i Pεψ

0
h =

N − 2
2

A2λ
N−2

2
i λ

N
2 −2

h G(xi, xh)εα(N−2) + o
(
εα(N−2)

)
(6.6)

and if i = h
∫

Ωε

Up
i Pεψ

0
i = −N − 2

2
A2λN−3

i H(xi, xi)εα(N−2) + o
(
εα(N−2)

)
(6.7)

as ε → 0 uniformly with respect to (λ, x) ∈ Oδ.

Proof. Set

ψ̂0
i :=

∂Uλiεα,xi

∂(λiεα)
and ψ̂j

i :=
∂Uλiεα,xi

∂xj
i

. (6.8)

In the following we will always use estimate (6.1), Lemma 6.1 and Lemma 6.3.
Let j = 1, . . . , N and i 6= h then we have

∫

Ωε

Up
i (y)Pεψ

j
h(y)dy = εα

∫

Ω

Up
εαλ,xi

(x)Pψ̂j
h(x)dx

= εα(λhεα)
N−2

2 A

∫

Ω

∂G

∂xj
h

(x, xh)Up
εαλi,xi

(x)dx

+o


εαN/2

∫

Ω

∂G

∂xj
h

(x, xh)Up
εαλi,xi

(x)dx




= A(λhλi)
N−2

2 εα(N−1)

∫

Ω−xi
λiεα

∂G

∂xj
h

(λiε
αz + xi, xh)Up

λi,
xi
εα

(z)dz + o
(
εα(N−1)

)

= A2(λhλi)
N−2

2 εα(N−1) ∂G

∂xj
h

(xi, xh) + o
(
εα(N−1)

)
.
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Let j = 1, . . . , N and i = h then we have
∫

Ωε

Up
i (y)Pεψ

j
i (y)dy = εα

∫

Ω

Up
εαλi,xi

(x)Pψ̂j
i (x)dx

= εα

∫

Ω

Up
εαλi,xi

(x)
∂Uεαλ,xi

∂xj
i

(x)dx− εα

∫

Ω

Up
εαλi,xi

(x)Rj
i (x)dx

= εα(λiε
α)N+ N

2 −N−N+2
2

∫

Ω−xi
λiεα

Up(z)
∂U

∂zj
i

(z)dz

−εα(λiε
α)N−2 ∂H

∂xj
i

(xi, xi)A2 + o
(
εα(N−1)

)

= λi

∫

IRN

Up(z)
∂U

∂zj
i

(z)dz + o
(
εα(N+1)

)

−εα(N−1)λN−2
i

∂H

∂xj
i

(xi, xi)A2 + o
(
εα(N−1)

)

= −εα(N−1)λN−2
i

∂H

∂xj
i

(xi, xi)A2 + o
(
εα(N−1)

)
.

Let j = 0 and i 6= h then we have
∫

Ωε

Up
i (y)Pεψ

0
h(y)dy = εα

∫

Ω

Up
εαλi,xi

(x)Pψ̂0
h(x)dx

= εα(λhεα)
N
2 −2 N − 2

2
A

∫

Ω

Up
εαλi,xi

(x)G(x, xh)dx + o
(
εα(N−2)

)

= εα(N−2)λ
N−2

2
i λ

N
2 −2

h

N − 2
2

A2G(xi, xh) + o
(
εα(N−2)

)
.

Let j = 0 and i = h then we have
∫

Ωε

Up
i (y)Pεψ

0
i (y)dy = εα

∫

Ω

Up
εαλi,xi

(x)Pψ̂0
i (x)dx

= εα

∫

Ω

Up
εαλi,xi

(x)
∂Uεαλ,xi

∂(εαλ)
(x)dx− εα

∫

Ω

Up
εαλi,xi

(x)R0
i (x)dx

= εα(λiε
α)N−N+2

2 + N−4
2 +2−N

∫

Ω−xi
λiεα

Up(z)
(

∂U

∂λ

)

|λ=1

(z)dz

−εα(λiε
α)

N
2 −2 N − 2

2
A

∫

Ω

Up
λiεα,xi

(x)H(x, xi)dx + o
(
εα(N−2)

)

= λ−1
i

∫

IRN

Up(z)
(

∂U

∂λ

)

|λ=1

(z)dz + o
(
εαN

)
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−εα(λiε
α)

N
2 −2+N−N+2

2
N − 2

2
A

∫

Ω−xi
λiεα

Up

λi,
xi
εα

(z)H(λiε
αz + xi, xi)dz

+o
(
εα(N−2)

)

= −N − 2
2

A2εα(N−2)λN−3
i H(xi, xi) + o

(
εα(N−2)

)
.

ut
Lemma 6.7 If j = 1, . . . , N and h = 1, . . . , k we have

∫

Ωε

f(
k∑

i=1

PεUi)Pεψ
j
h

= 2A2




k∑
l=1
l6=h

∂G

∂xj
h

(xh, xl)(λhλl)
N−2

2 − ∂H

∂xj
h

(xh, xh)λN−2
h


 εα(N−1)

+o
(
εα(N−1)

)
(6.9)

as ε → 0 uniformly with respect to (λ, x) ∈ Oδ.
Moreover j = 0 and h = 1, . . . , k we have

∫

Ωε

f(
k∑

i=1

PεUi)Pεψ
0
h

= (N − 2)A2




k∑
l=1
l6=h

G(xh, xl)λ
N
2 −2

h λ
N−2

2
l −H(xh, xh)λN−3

h


 εα(N−2)

+o
(
εα(N−2)

)
(6.10)

as ε → 0 uniformly with respect to (λ, x) ∈ Oδ.

Proof. In the following we will always use estimate (5.1), Lemma 5.1,
estimate (6.1), Lemma 6.1 and Lemma 6.3.

Let j 6= 0 and h = 1. Fix δ such that |xi − xj | > δ for any i 6= j. We have,
by 6.8,

∫

Ωε

(
k∑

i=1

PεUi(x)

)p

Pεψ
j
1(x)dx = εα

∫

Ω

(
k∑

i=1

PUλiεα,xi(z)

)p

Pψ̂j
1(z)dz

= εα

∫

B(x1,δ)

[(
k∑

i=1

PUλiεα,xi(z)

)p

− PUp
λ1εα,x1

(z)

]
Pψ̂j

1(z)dz

+εα

∫

B(x1,δ)

PUp
λ1εα,x1

(z)Pψ̂j
1(z)dz
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+εα
k∑

l=2

∫

B(xl,δ)

(
k∑

i=1

PUλiεα,xi(z)

)p

Pψ̂j
1(z)dz

+εα

∫

Ω\ k∪
l=1

B(xl,δ)

(
k∑

i=1

PUλiεα,xi
(z)

)p

Pψ̂j
1(z)dz. (6.11)

Firstly we have for any j = 1, . . . , k

∣∣∣∣∣∣∣∣∣∣

∫

Ω\ k∪
l=1

B(xl,δ)

(
k∑

i=1

PUλiεα,xi
(z)

)p

Pψ̂j
1(z)dz

∣∣∣∣∣∣∣∣∣∣

≤ C

k∑

i=1

∫

Ω\ k∪
l=1

B(xl,δ)

Uλiεα,xi

∣∣∣∣∣
∂Uλ1εα,x1

∂xj
1

∣∣∣∣∣ dz

≤ C

∫

Ω

εα N+2
2 εα N−2

2 dx ≤ CεαN . (6.12)

because |x− xi| > δ for any i = 1, . . . , k and x ∈ Ω \ k∪
l=1

B(xl, δ). Secondly

∫

B(x1,δ)

[(
k∑

l=1

PUλlεα,xl
(x)

)p

− PUp
λ1εα,x1

(x)

]
Pψ̂j

1(x)dx

= p

∫

B(x1,δ)

[
PUλ1εα,x1 + t(x)

k∑

l=2

PUλlεα,xl

]p−1 k∑

l=2

PUλlεα,xl
Pψ̂j

1dx

= −
k∑

l=2

∫

B(x1,δ)

∂

∂xj
1

[(PUλ1εα,x1 + t(x)PUλlεα,xl
)p] PUλlεα,xl

dx

= −
k∑

l=2

∫

B(x1,δ)

∂

∂xj
1

[(PUλ1εα,x1 + t(x)PUλlεα,xl
)p] (λlε

α)
N−2

2 G(x, xl)Adx

+o
(
εα(N−2)

)

= −A

k∑

l=2

(λ1λl)
N−2

2 εα(N−2)

∫

B(0, δ
λ1εα )

∂

∂zj
1

[(PUλ1εα,x1 + t(x)PUλlεα,xl
)p (x1 + λ1ε

αz)] G(x1 + λ1ε
αz, xl)dx
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+o
(
εα(N−2)

)

= A2
k∑

l=2

(λ1λl)
N−2

2 εα(N−2) ∂G

∂xj
1

(x1, xl) + o
(
εα(N−2)

)
. (6.13)

Moreover for any l 6= 1

∫

B(xl,δ)

(
k∑

l=1

PUλlεα,xl
(z)

)p

Pψ̂j
1(z)dz

= (λ1ε
α)

N−2
2 A

∫

B(xl,δ)

(
k∑

l=1

PUλlεα,xl
(z)

)p

∂G

∂xj
1

(x, x1)dx

+o
(
εα(N−2)

)

= (λ1λl)
N−2

2 εα(N−2)A
∫

B(0, δ
λlεα )

(
k∑

l=1

PUλlεα,xl
(xl + λlε

αz))

)p

∂G

∂xj
1

(xl + λlε
αz, x1)dz

+o
(
εα(N−2)

)

= (λ1λl)
N−2

2 εα(N−2)A2 ∂G

∂xj
1

(xl, x1)dz + o
(
εα(N−2)

)
. (6.14)

Finally we have
∫

B(x1,δ)

(PUλ1εα,x1)
pPψ̂j

1(x)dz

=
∫

B(x1,δ)

(PUλ1εα,x1)
p ∂Uλ1εα,x1

∂xj
1

dx−
∫

B(x1,δ)

(PUλ1εα,x1)
pRj

1(x)dx.(6.15)

Now setting φλ1εα,x1 = Uλ1εα,x1 − PUλ1εα,x1 we have
∫

B(x1,δ)

(PUλ1εα,x1)
p ∂Uλ1εα,x1

∂xj
1

dx

=
∫

B(x1,δ)

(Uλ1εα,x1 − φλ1εα,x1)
p ∂Uλ1εα,x1

∂xj
1

dx

=
∫

B(x1,δ)

[
(Uλ1εα,x1 − φλ1εα,x1)

p − Up
λ1εα,x1

] ∂Uλ1εα,x1

∂xj
1

dx

+
∫

B(x1,δ)

Up
λ1εα,x1

∂Uλ1εα,x1

∂xj
1

dx
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= p

∫

B(x1,δ)

(Uλ1εα,x1 − t(x)φλ1εα,x1)
p−1

φλ1εα,x1

∂Uλ1εα,x1

∂xj
1

dx

+
∫

IRN

Up(z)
∂U

∂zj
(z)dz + o

(
εα(N−2)

)

= −
∫

B(x1,δ)

∂φλ1εα,x1

∂xj
1

Up
λ1εα,x1

dx + o
(
εα(N−2)

)

= −λN−2
1 εα(N−2)A2 ∂H

∂xj
1

(x1, x1) + o
(
εα(N−2)

)
. (6.16)

On the other hand we have∫

B(x1,δ)

(PUλ1εα,x1)
pRj

1(x)dx

= λN−2
1 εα(N−2)A2 ∂H

∂xj
1

(x1, x1) + o
(
εα(N−2)

)
. (6.17)

By (6.15), (6.16) and (6.17) we get
∫

B(x1,δ)

(PUλ1εα,x1)
pPψ̂j

1(x)dz

= −2λN−2
1 εα(N−2)A2 ∂H

∂xj
1

(x1, x1) + o
(
εα(N−2)

)
. (6.18)

If j = 0 and h = 1 we write
∫

Ωε

(
k∑

i=1

PεUi(x)

)p

Pεψ
0
1(x)dx

= εα

∫

Ω

(
k∑

i=1

PUλiεα,xi(z)

)p

Pψ̂0
1(z)dz

= εα

∫

B(x1,δ)

[(
k∑

i=1

PUλiεα,xi(z)

)p

− PUp
λ1εα,x1

(z)

]
Pψ̂0

1(z)dz

+εα

∫

B(x1,δ)

PUp
λ1εα,x1

(z)Pψ̂0
1(z)dz

+εα
k∑

l=2

∫

B(xl,δ)

(
k∑

i=1

PUλiεα,xi(z)

)p

Pψ̂0
1(z)dz

+εα

∫

Ω\ k∪
l=1

B(xl,δ)

(
k∑

i=1

PUλiεα,xi(z)

)p

Pψ̂0
1(z)dz. (6.19)
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Firstly arguing as in the proof of (6.12), we have for any j = 1, . . . , k

∣∣∣∣∣∣∣∣∣∣

∫

Ω\ k∪
l=1

B(xl,δ)

(
k∑

i=1

PUλiεα,xi
(z)

)p

Pψ̂0
1(z)dz

∣∣∣∣∣∣∣∣∣∣

≤ C

∫

Ω

εα N+2
2 εα N−4

2 dx

≤ Cεα(N−1). (6.20)

Secondly, arguing as in the proof of (6.13), we get

∫

B(x1,δ)

[(
k∑

l=1

PUλlεα,xl
(x)

)p

− PUp
λ1εα,x1

(x)

]
Pψ̂0

1(x)dx

= A2 N − 2
2

εα(N−3)λ
N
2 −2
1

k∑

l=2

λ
N−2

2
l G(x1, xl) + o

(
εα(N−3)

)
. (6.21)

Moreover, arguing as in the proof of (6.14), we get for any l 6= 1

∫

B(xl,δ)

(
k∑

l=1

PUλlεα,xl
(z)

)p

Pψ̂0
1(z)dz

=
N − 2

2
A2εα(N−3)λ

N
2 −2
1 λ

N−2
2

l G(xl, x1) + o
(
εα(N−3)

)
. (6.22)

Moreover, arguing as in the proof of (6.18), we get
∫

B(x1,δ)

(PUλ1εα,x1)
pPψ̂0

1(x)dz

= −N − 2
2

A2λN−3
1 εα(N−3)H(x1, x1) + o

(
εα(N−3)

)
. (6.23)

ut
Lemma 6.8 If j = 1, . . . , N and i, h = 1, . . . , k, then

∫

Ωε

PεUiPεψ
j
h = o (εα) (6.24)

as ε → 0 uniformly with respect to (λ, x) ∈ Oδ.
Moreover if j = 0 and i 6= h then

∫

Ωε

PεUiPεψ
0
h = o (1) (6.25)
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and if i = h then ∫

Ωε

PεUiPεψ
0
i = λiB + o (1) (6.26)

as ε → 0 uniformly with respect to (λ, x) ∈ Oδ.

Proof. In the following we will always use estimate (5.1), Lemma 5.1,
estimate (5.1), Lemma 6.1 and Lemma 6.3.

Let j = 0 and i = h. We have
∫

Ωε

PεUi(x)Pεψ
0
i (x)dx (set x = z/εα, use (5.1) and Lemma 6.1)

= ε−α

∫

Ω

PUλiεα,xi
(z)Pψ0

λiεα,xi
(z)dz

= ε−α


(λiε

α)N−3

∫

Ω

|z − xi|2 − (λiε
α)2

((λiεα)2 + |z − xi|2)N−1
dz + o

(
εα(N−3)

)



(set z = xi + λiε
αw)

= ε−α


(λiε

α)
∫

Ω−xi
λiεα

|w|2 − 1
(1 + |w|2)N−1

dw + o (εα)




= λiB + o (1) .

because, arguing exactly as in the proof of Remark 6.2, we can prove that
B =

∫
IRN

|w|2−1
(1+|w|2)N−1 dw.

Let j = 1, . . . , N and i = h. We have
∫

Ωε

PεUi(x)Pεψ
j
i (x)dx (set x = z/εα, use (5.1) and (5.1))

= ε−α

∫

Ω

PUλiεα,xi(z)Pψj
λiεα,xi

(z)dz

= ε−α


(λiε

α)N−1

∫

Ω

zj − xij

((λiεα)2 + |z − xi|2)N−1
dz + o

(
εα(N−1)

)



(set z = xi + λiε
αw)

= ε−α


(λiε

α)2
∫

Ω−xi
λiεα

wj

(1 + |w|2)N−1
dw + o

(
ε2α

)



= o (εα) .

In a analogous way we can prove that if i 6= h
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∫

Ωε

PεUiPεψ
0
h = o (1) .

and if j 6= 0 ∫

Ωε

PεUiPεψ
j
h = o (εα) .

ut
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