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Abstract. In this article we review some recent results of the
existence of solution for nonlinear elliptic equations in R

N having
the form

−F (D2u,∇u) + |u|s−1u = f(x) in IRN ,

where F is a positively homogeneous function of degree d > 0,
s > d and f is a given function. In the analysis of this problem
one rises some questions about which is the most suitable notion
of solutions for its study. Various types of solutions are discussed
and open questions are stated.

1. Introduction

In this article we review some recent results of the existence of solu-
tion for nonlinear elliptic equations in R

N having the form

−F (D2u,∇u) + |u|s−1u = f(x) in IRN , (1.1)

where F is a positively homogeneous function of degree d, s > d and
f is a given function. In the analysis of this problem one rises some
questions about which is the most suitable notion of solutions for its
study. Having as a starting point the notion of viscosity solutions,
we think that this problem suggests various directions of research that
could lead to new notions of solutions or understanding the relations
between known ones.

When F is the Laplace operator the problem was studied by Brezis in
[9]. He showed that one can find a (unique) solution to (1.1) assuming
only local integrability of f . This very weak assumption is enough
when the nonlinearity is increasing and super-linear, as in the case of
|u|s−1u with s > 1. This result was extended to the case of a general
quasilinear operator, including the p-Laplace operator by Boccardo,
Gallouet and Vázquez in [8]. See also the work by Leoni in [24] where
more general nonlinearities are considered.

In the general case, when F has degree of homogeneity d = 1, an
important class of operators considered is this discussion is the Pucci
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operator M+
λ,Λ, with 0 < λ ≤ Λ, which is defined by

M+
λ,Λ(X) = Λ

∑

ei>0

ei + λ
∑

ei<0

ei,

where ei = ei(X) are the eigenvalues of the symmetric matrix X. Since
no confusion arises we simply write M+ = M+

λ,Λ. The first problem
we present is a radially symmetric version of the equation

−M+(D2u) + |u|s−1u = f(x) in IRN , (1.2)

studied by Esteban and the authors in [19].

Theorem 1.1. Assume s > 1 and f is a radially symmetric function
satisfying

∫ R

0
rN+−1|f(r)|dr < ∞, (1.3)

for all R > 0. Here N+ := λ
Λ
(N − 1) + 1, with λ and Λ being the

parameters defining the Pucci operator. Then equation (1.2) has a
unique weak radially symmetric solution and if f is nonnegative then
u is also nonnegative.

In this theorem the notion of weak radially symmetric solution, given
in Definition 2.1 is used. In defining this notion, advantage is taken
from certain variational formulation of the problem which is possible
when we restrict the study to radially symmetric functions.

In the case a general function f and considering the notion of LN -
viscosity solutions introduced by Caffarelli, Crandall, Kocan & Świech
in [13] (see Definition 4.1), the following theorem was proved in [19].

Theorem 1.2. Assume that s > 1. For every function f ∈ LN
loc(IR

N),
the equation (1.2) possesses a unique solution in the LN -viscosity sense
and if f ≥ 0 a.e. then u(x) ≥ 0 for all x ∈ IRN .

In a series of papers, Birindelli and Demengel initiated the study of
a class of fully nonlinear operators which correspond to a fully non-
linear version of the p-Laplacian, see [3], [4], [5], [6] and [7]. As a
representative of this class of equations we may consider the following

−|∇u|αM+(D2u) + u|u|α−1 = f(x) in R
N , (1.4)

where α ∈ (−1, +∞), corresponding to an operator of degree d = α+1.
Since this problem is singular or degenerate, depending on the value
of α, a special notion of solution is needed. This notion is called S-
viscosity solution and was introduced in [3] for continuous function f ,
extending the usual notion of C-viscosity solution as defined in [14],
see Definitions 5.1 and 4.2, respectively.



VISCOSITY SOLUTIONS 3

In a recent paper, Dávila and the authors in [18] obtained a Harnack
inequality for a class of singular fully nonlinear equations, see Theorem
5.1. When this results is applied to (1.4) it says precisely that for
α ∈ (−1, 0), if u ∈ C(RN) is a non-negative S-viscosity solution of
(1.4) then for every compact Ω′

sup
Ω′

u ≤ C
{

inf
Ω′

u + ‖f‖
1

α+1

N,Ω′

}

, (1.5)

where the constant C depends on λ, Λ, N, Ω′ and α. Based on this re-
sult, and taking advantage of some ideas used in proving this inequality,
the superlinear problem studied above was undertaken for this class of
singular operators.

Theorem 1.3. Under the conditions stated above, for every f ∈ C(Rn),
equation (1.4) possesses at least one S-viscosity solution.

If we examine Harnack Inequality (1.5), we observe that the right
hand side contains the LN -norm of the function f . This fact can be used
to extend the notion of solutions to equation (1.4) when f ∈ LN

loc(Ω),
defining good solutions, see Definition 6.1. Then we can prove the
following theorem

Theorem 1.4. Assume α ∈ (−1, 0) and s > α + 1. Then for every
f ∈ LN

loc(R
N), equation (1.4) possesses at least one good solution.

The main portion of this paper is devoted to review and discuss the
theorems just stated, leaving Section §7 to set up some open questions
and discuss some lines of research that are interesting to undertake.

In Section §2 we define the notion of weak radial solution for fully
nonlinear equations involving the Pucci operator. Then in Section §3
we sketch the proof of the existence part of Theorem 1.1. In Section
§4 we discuss the proof of Theorem 1.2, in the existence part. Section
§5 is devoted to introduce the study of non-uniformly fully nonlinear
elliptic operators modelled on the p-laplacian, dicussing the notion of
solution and presenting Harnack inequality for the singular case. Then
in Section §6 we see how to prove Theorem 1.3 presenting a brief sketch.
We also introduce here the notion of good solution and we see how
to prove Theorem 1.4. Finally, in Section §7 we set up some open
problems, research lines and we make some concluding remarks.

2. Radial Solutions for some Fully Nonlinear equations

In this section we define a notion of weak solution for equation (1.2)
in the radially symmetric case, taking advantage of a variational for-
mulation of the problem.
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When u is a radially symmetric function then the Pucci operator has
a much simpler form. In fact, since the eigenvalues of D2u are u′′ and
u′/r with multiplicity 1 and N − 1, respectively, defining θ(s) = Λ if
s ≥ 0 and θ(s) = λ if s < 0, we easily see that

M+(D2u)(r) = θ(u′′(r))u′′(r) + θ(u′(r))(N − 1)
u′(r)

r
.

Then, for a radial function f , equation (1.2) becomes

− θ(u′′(r))u′′ − θ(u′(r))(N − 1)
u′

r
+ |u|s−1u = f(r).

(2.1)

In order to write this equation in a variational form, we make some
definitions. First we observe that for solutions of (2.1) we have

θ(u′′(r)) = θ{−θ(u′(r))(N − 1)
u′

r
+ |u|s−1u − f(r)},

which is more convenient as we will see. We define

Θ(r, u(r), u′(r)) = θ{−θ(u′(r))(N − 1)
u′

r
+ |u|s−1u − f(r))},

the variable dimension

N(r, u(r), u′(r)) =
θ(u′(r))

Θ(r, u(r), u′(r))
(N − 1) + 1

and the weights

ρ(r, u(r), u′(r)) = exp

(

∫ r

1

N(τ, u(τ), u′(τ)) − 1

τ
dτ

)

and

ρ̃(r, u(r), u′(r)) =
ρ(r, u(r), u′(r))

Θ(r, u(r), u′(r))
.

We observe that λ ≤ ρ/ρ̃ ≤ Λ. If we define the dimension numbers
N+ = λ(N − 1)/Λ + 1 and N− = Λ(N − 1)/λ + 1, we see that N+ ≤
N(r, u(r), u′(r)) ≤ N− and also,

rN−−1 ≤ ρ(r, u(r), u′(r)) ≤ rN+−1 if 0 ≤ r ≤ 1.

With these definitions we find that (2.1) is equivalent to

−(ρu′)′ + ρ̃|u|s−1u = ρ̃f(r). (2.2)

When no confusion arises we omit the arguments in the functions ρ
and ρ̃, in particular when we write ρv′ we mean ρ(r, v(r), v′(r))v′(r)
and so on. What is interesting about equation (2.2) is that it allows to
define a notion of weak solution which extends the LN -viscosity sense
to more general f .
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We consider the set of test functions defined as

H = {ϕ : [0,∞) → IR / ∃φ ∈ W 1,∞
0 (IRN) such that φ(x) = ϕ(|x|)},

where W 1,∞
0 (IRN) denotes the space of functions in W 1,∞(IRN) with

compact support.

Definition 2.1. We say that u : [0, R] → IR is a weak radially sym-
metric solution of (2.2) with Dirichlet boundary condition at r = R, if
u is absolutely continuous in (0, R], u(R) = 0,

∫ R

0
ρ|u|sdr < ∞,

∫ R

0
ρ|u′|dr < ∞ (2.3)

and
∫ R

0
ρu′ϕ′ + ρ̃|u|s−1uϕdr =

∫ R

0
ρ̃fϕdr ∀ϕ ∈ H. (2.4)

This definition is weaker than the LN -viscosity one since it permits
less regularity on the right hand side and it provides a good framework
to study existence of solutions of nonlinear equations in the radial case.
It poses the question about the possibility of defining a weaker version
of viscosity solution as we discuss in Question 1, Section §7.

3. Application to radial solutions to superlinear

equation in R
N without growth on the data

The goal in this section is to sketch the proof of the existence part
of Theorem 1.1. First we state a theorem, which is a more complete
version of Theorem 1.1.

Theorem 3.1. Assume s > 1 and f is a radial function satisfying
(1.3), for all R > 0. Then equation (2.2) has a unique weak radially
symmetric solution u and if f is nonnegative then u is also nonnegative.
Additionally, for any 1 < q < 2s/(s + 1)

∫ r

0
ρ|u′|qdr < ∞ for all R > 0. (3.1)

Moreover, ρu′ is differentiable a.e. in (0,∞) and it satisfies

lim
r→0

(ρu′)(r) = 0, lim
r→0

∫ r

0
ρ|u′|dr = 0. (3.2)

If we consider a continuous function f in IRN \ {xi / i = 1, ..., k},
such that near each singularity

f(x) ∼
ci

|x − xi|αi
, x ∼ xi, i = 1, ..., k.
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In order to have f ∈ LN
loc(R

N) we need αi < 1 for all i = 1, ..., k. In
contrast, assuming that f is radially symmetric with a singularity at
the origin of the form

f(r) ∼
c

rα
, r ∼ 0, r > 0,

in order to have condition (1.3) we only need α < N+. In particular,
we see that if λ/Λ → 0 then N+ → 1, while if λ/Λ = 1 then N+ = N .
When we have a radial function f being in Lp

loc(IR
N) with p > N/N+

then f satisfies our hypothesis (1.3) and we may apply Theorem 3.1.
This is particularly interesting if N and N+ are close to each other.

In order to prove Theorem 3.1 we use an approximation procedure.
Let {fn} be a sequence of smooth functions such that for all 0 < R

lim
n→∞

∫ R

0
rN+−1|fn(r) − f(r)|dr = 0. (3.3)

We may assume that there exists a function g : (0,∞) → IR such that
|fn(r)| ≤ g(r) for all r > 0 and

∫R
0 rN+−1|g(r)|dr < +∞, for all R > 0.

Using a general existence theorem together with a symmetry result we
can prove the following existence lemma for the approximate problems.
See Lemma 2.1 in [19] and [16].

Lemma 3.1. For every n there is solution un in C2[0, n] satisfying
un(n) = 0, (2.3) with R = n and

∫ n

0
ρnu′

nϕ
′ + ρ̃n|un|

s−1unϕ =
∫ n

0
ρnfnϕ, (3.4)

for all ϕ ∈ H, where ρn(r) = ρ(r, un(r), u′

n(r)) (similarly for ρ̃n).

Now we present some estimates that will allow us to pass to the limit.
These estimates are obtained following the ideas of Boccardo, Gallouet
and Vazquez in [8] and use the divergence form of the equation.

Lemma 3.2. Let {un} be the sequence of solutions found in Lemma
3.1. Then, for all 0 < R and m ∈ (0, s − 1) there is a constant C
depending on R, m, s, N, λ and Λ, such that for all n ∈ N we have

∫ R

0
ρn|un|

sds ≤ C(1 +
∫ 2R

0
rN+−1|f |dr) (3.5)

and for all q ∈ (1, 2s/(s + 1))
∫ R

0
ρn|u

′

n|
qdr ≤ C(1 +

∫ 2R

0
rN+−1|f |dr). (3.6)

Proof of Theorem 3.1 (Sketch of the existence part). Let {un}
be the solutions found in 3.1. From Lemma 3.2, we see that the function
ρnu

′

n has weak derivatives in any interval of the form (r0, R0) with



VISCOSITY SOLUTIONS 7

0 < r0 < R0. Since the function ρn is differentiable a.e., we obtain
then that un is twice differentiable a.e. and u′′

n is in L1(r0, R0). From
here we conclude that u′

n and un are uniformly bounded in (r0, R0). By
the Arzela-Ascoli Theorem there exists a differentiable function u in the
interval (r0, R0) such that, up to a subsequence, un and u′

n converges
to u and u′ respectively, in a uniform way in the interval (r0, R0).

Repeating the argument in any interval and using a diagonal proce-
dure we can prove that {un} and {u′

n} converge point-wise to a differen-
tiable function u : (0,∞) → IR. Notice that {ρn} converges point-wise
to ρ(r) = ρ(r, u(r), u′(r)).

Next we use the estimate (3.6), to prove that the sequence {ρnu
′

n} is
equi-integrable in [0, R] and then it converges in L1[0, R] to ρu′, for all
R > 0. It is only left to prove that {ρ̃n|un|

s} converges in L1[0, R]. For
this purpose we introduce, as in [8], a new function φ in IR defined as
φ(ν) = min{ν − t, 1} if ν ≥ 0 and extended as an odd function to all
IR, for a parameter t > 0. Testing the equation with cut-off function
φ(un)θ we get

∫

Et+1
n ∩(0,R)

ρ̃n|un|
sdr ≤

∫

Et
n∩(0,2R)

ρ̃n|fn|dr + C
∫

Et
n∩(0,2R)

ρn|u
′

n|dr,

where Et
n = {r > 0 / |un(r)| > t}. From (3.5) and (3.6) it follows

that the second integral approaches zero if t → ∞. From here the
equi-integrability of ρn|un|

s follows and we conclude.
Finally (3.2) is consequence of the integrability properties just proved

for un that also hold for u. This finishes the proof. 2

We do not discuss in detail the the proof of uniqueness and non-
negativity of weak solutions in Theorem 3.1. One needs to use a com-
parison argument which is bit delicate in this case. In a natural way we
may define the notion of weak subsolutions (supersolution) by writing
≤ and use only nonnegative test functions in (2.4). It happen that, if
u is a weak subsolution and v is a weak supersolution, we cannot be
sure that w = u − v is a weak subsolution, since we do not have good
control of ρw′ at the origin.

Remark 3.1. Given a f a function in IRN we define

g(r) = max{|f(x)| / |x| = r}

and assume that g satisfies (1.3). Then we may construct a solution
of (2.2). This solution would be a ’candidate’ for a supersolution of
equation (1.2), however this is not so since the two notion of solutions
are not compatible.
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4. General superlinear equation in R
N without growth

assumption on the data

In this section we study the solvability of the differential equation
(1.2) or the more general version

−F (D2u) + |u|s−1u = f(x) in IRN , (4.1)

when F is a fully nonlinear, uniformly elliptic operator, s > 1 and for
f having only local integrability properties, but without assuming any
growth condition at infinity.

On the operator F we assume uniform ellipticity, that is:

M−

λ,Λ(M − N) ≤ F (M) − F (N) ≤ M+
λ,Λ(M − N) for all N, M ∈ SN ,

and F (0) = 0. Here SN denotes the set of N ×N symmetric matrices.
In order to find a solution to (4.1), we have to work in the viscosity
solution framework so we cannot use test functions and integration
by parts to derive a priori estimates. In the case of the Laplacian,
solution exists asumming that f ∈ L1

loc(R
N), however in this more

general case we need to assume that f ∈ LN
loc(IR

N), because we only
known local estimates in this case and because there is no L1

loc(R
N)

theory of viscosity solutions.
We start recalling the notion of solution suitable when the right

hand side in (4.1) is in Lp
loc(IR

N). Following the work by Caffarelli,
Crandall, Kocan and Swiech [13], we notice that the framework requires
p > N − ε0, where ε0 > 0 depends on the ellipticity constants λ and Λ.
Thus the case p = N , which will be our framework, is covered by the
theory. According to [13] we have the following definition:

Definition 4.1. Assume that f ∈ Lp
loc(IR

N), then we say that a contin-
uous function u : IRN → IR is an Lp-viscosity subsolution (supersolu-
tion) of the equation (4.1) in IRN if for all ϕ ∈ W 2,p

loc (IRN) and x̂ ∈ IRN

at which u − ϕ has a local maximum (respectively, minimum) one has

ess lim inf
x→x̂

(−F (D2ϕ(x)) + |ϕ(x)|s−1ϕ(x) − f(x)) ≤ 0 (4.2)

(ess lim sup
x→x̂

(−F (D2ϕ(x)) + |ϕ(x)|s−1ϕ(x) − f(x)) ≥ 0). (4.3)

Moreover, u is an Lp-viscosity solution of (4.1) if it is both and Lp-
viscosity subsolution and an Lp-viscosity supersolution.

This notion extends the notion of C-viscosity (sub or super) solution
of (4.1) replacing the tests function space C2(IRN) by ϕ ∈ W 2,p

loc (IRN):

Definition 4.2. Assume that f ∈ C(IRN), then we say that a con-
tinuous function u : IRN → IR is a C-viscosity solution subsolution
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(supersolution) of the equation (4.1) in IRN if for all ϕ ∈ C2(IRN) and
x̂ ∈ IRN at which u − ϕ has a local maximum (respectively, minimum)
one has

−F (D2ϕ(x̂)) + |ϕ(x̂)|s−1ϕ(x̂) − f(x̂) ≤ 0 (4.4)

−F (D2ϕ(x̂)) + |ϕ(x̂)|s−1ϕ(x̂) − f(x̂) ≥ 0. (4.5)

The proof of Theorem 1.2 is done by an approximation procedure
together with a local estimate based on a appropriate cut-off of the so-
lution and the application of the Alexandroff-Bakelman-Pucci inequal-
ity. Given f ∈ LN

loc(IR
N) we assume {fn} is a sequence of C∞(IRN)

functions so that for every bounded set Ω

lim
n→∞

∫

Ω
|fn − f |Ndx = 0. (4.6)

The following is a basic existence and regularity result we need in our
construction of a solution to (4.1).

Lemma 4.1. For every n ∈ N there is a solution un ∈ C1(Bn) of the
equation

−F (D2un) + |un|
s−1un = fn(x) in Bn (4.7)

where Bn = B(0, n) is the ball centered at 0 and with radius n.

Now we consider a crucial local estimate for solutions of (4.7). This
result was proved by Brezis [9] in the context of the Laplacian, see
also [8], and its proof is based on the use suitable test functions and
integration by parts. This cannot be done here since the differential
operator does not have divergence form. For this result the fact that
s > 1 is essential.

Lemma 4.2. Let s > 1 and g continuous in IRN . Suppose that g ≥ 0
and u is a C1 nonnegative C-viscosity solution of

−M+(D2u) + |u|s−1u ≤ g in Ω,

then for all R > 0 and R′ > R

sup
BR

u ≤ C(1 + ‖g‖LN(BR′ )), (4.8)

where C = C(s, R, R′, N, λ, Λ) does not depend on g nor n.

Sketch of the Proof. Consider the functions ξ(x) = (R′)2 − |x|2,
β = 2/(s− 1) and v = ξβu. Suppose that v − ϕ has a local maximum,
v(x̂) = ϕ(x̂), Dv(x̂) = Dϕ(x̂) and ϕ ∈ C2. Then u − ξ−βϕ has a local
maximum at x̂. Therefore ξ−βϕ is a test function for u and so

−M+(D2ϕ) + ξ−2|ϕ|s−1ϕ ≤ ξβg + I + II + III,
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I := −βξ−1vM−(D2ξ)

II := β(β + 1)ξ−2vM+(Dξ ⊗ Dξ)

III := −βξ−1M−(Dξ ⊗ Dϕ + Dϕ ⊗ Dξ)

So v satisfies the equation

−M+(D2v) + v|v|s−1 ≤ ξβg + I + II + III (4.9)

in B(R′) in the C-viscosity sense. Here in I, II and III we replace Dϕ
by Dv. Consider the contact set for the function v, which is defined as

Γ+
v = {x ∈ BR′ / ∃ p ∈ IRN with v(y) ≤ v(x) + 〈p, y − x〉, ∀y ∈ BR′}.

We observe that Γ+
v ⊂ Ω+ ∩ BR′ and that if v̄ is the concave envelope

of v in BR′ then for x ∈ BR′ we have v(x) = v̄(x) if and only if x ∈ Γ+
v .

Here Ω+ = {x ∈ Ω / v(x) > 0}. The function v̄, being concave, satisfies

|Dv(x)| ≤
v(x)

R′ − |x|
, for all x ∈ Γ+

v . (4.10)

Then we prove that the function v satisfies

−M+(D2v) + ξ−2v(|v|s−1 − C) ≤ ξβg for all x ∈ Γ+
v .

Now we define w = max{v − C1/(p−1), 0} in BR′ and we observe that
Γ+

w ⊂ Γ+
v and Γ+

w ⊂ {x ∈ BR′ / w > 0}. Consequently

−M+(D2w) ≤ ξβg, a.e in Γ+
w .

Thus, from Alexandroff-Bakelman-Pucci inequality

sup
BR′

w ≤ C‖ξβg‖LN (BR′ ),

but then

c sup
BR

u ≤ sup
BR′

v ≤ sup
BR′

w + C1/(p−1) ≤ C(1 + ‖g‖LN (BR′ )),

where c and C represent generic constants depending on the desired
quantities. 2

Proof of Theorem 1.2 (Existence) We use Lemma 4.1 to construct
a sequence of solutions {un} of equation (4.7). We can prove that un

satisfies the hypothesis of Lemma 4.2, so that for every 0 < R < R′ < n
we have

sup
BR

|un| ≤ C(1 + ‖f‖LN (B′

R
)),

where C does not depend on f nor in n. With this inequality in hand
we look at equation (4.7) and use Proposition 4.10 in [14] to obtain,
for every bounded open set Ω,

‖un‖Cα(Ω) ≤ C,
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where C does not depend on n, but only on f , Ω and the other param-
eters. Then we obtain a subsequence satisfying

−F (D2un) + |un|
s−1un = fn,

and converging uniformly over every bounded subset of IRN . Then
using Theorem 3.8 in [13] we conclude that u is an LN -viscosity solution
of (4.1), completing the proof of existence in Theorem 1.2. 2

5. Singular operators and Harnack inequality

In this section we discuss Harnack inequality for positive solutions a
class of singular fully nonlinear elliptic equations of the form

− F
(

∇u, D2u
)

+ u |u|α = f in Ω, (5.1)

where α ∈ (−1, 0) and F : R
N \{0}×SN → R is a continuous function

that satifies

(H1) F (tp, µX) = tαµF (p, X) , ∀t, µ ∈ R
+.

(H2) For all p 6= 0 and M, N ∈ SN , N ≥ 0

λ |p|α tr (N) ≤ F (p, M + N) − F (p, N) ≤ Λ |p|α tr (N) ,

where Λ ≥ λ > 0.

In equation (5.1) we consider that Ω is a domain in R
N and c, f : Ω → R

are continuous functions.
The study of equation (5.1) was initiated in a series of papers by

Birindelli and Demengel [3], [4], [5], [6] and [7], where a notion of
solution is introduced and an existence theory for the Dirichlet bound-
ary value problem based on Perron’s method is developed. They also
studied first eigenvalue theory and existence for some non-proper op-
erators. One of the difficulties in the study of these equations is that
the associated differential operator does not have divergence form and
simultaneously it is not sublinear in any reasonable sense.

In [18] Dávila with the authors continued the study of equation (5.1)
proving the Harnack inequality in the singular case, that is when α ∈
(−1, 0). This inequality is usually obtained as a consequence of the
Alexandroff-Bakelman-Pucci (ABP) inequality in the fully nonlinear
case, using a sublinearity property of the operator. Here however,
even though a version of the ABP inequality is known [17], this is not
possible.

The Harnack inequality was derived originally by Harnack for two
dimensional harmonic functions, it was later extended by Moser [25],
Serrin [27] and Trudinger [29] for divergence form operators. The proof
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of these results uses in an esential way the divergence structure, inte-
grating by parts against appropriate tests functions and an iteration
procedure. For linear elliptic operators in non-divergence form with
general coefficients, the Harnack inequality was proved by Krylov and
Safonov [22], opening the way to the general theory of fully nonlinear
elliptic operators, case studied by Caffarelli in [12].

Before stating the Harnack inequality in precise terms we recall the
notion of solution introduced in [3]-[6], which is a notion of viscosity
solution adapted to (5.1), since we cannot test functions with vanishing
gradient. (5.1).

Definition 5.1. Let Ω ⊆ R
N an open bounded set, α ∈ (−1,∞) and

u ∈ C(Ω). We say that u is a viscosity supersolution of

−F
(

D2u,∇u
)

= g(x, u),

in Ω if for every x0 ∈ Ω we have

(i) Either for all ϕ ∈ C2(Ω) such that u − ϕ has a local minimum
at x0 and ∇ϕ(x0) 6= 0 then

− F
(

D2ϕ(x0),∇ϕ(x0)
)

≥ g(x0, u(x0)). (5.2)

(ii) Or there is an open ball B (x0, δ) ⊂ Ω, δ > 0 where u is con-
stant, u = C and

0 ≥ g (x, C) ∀x ∈ B (x0, δ) . (5.3)

Analogously, we say that u is a viscosity subsolution of

−F
(

D2u,∇u
)

= g(x, u),

in Ω if for every x0 ∈ Ω we have

(i) Either for all ϕ ∈ C2(Ω) such that u − ϕ has a local maximum
at x0 and ∇ϕ(x0) 6= 0 then

− F
(

D2ϕ(x0),∇ϕ(x0)
)

≤ g(x0, u(x0)). (5.4)

(ii) Or there is an open ball B (x0, δ) ⊂ Ω, δ > 0 inside which u is
constant, u = C and

0 ≤ g (x, C) ∀x ∈ B (x0, δ) . (5.5)

Now we state the main theorem in [18] on Harnack inequality for
equation (5.1), which may be seen as a fully nonlinear version of the
p-laplacian operator in case α ∈ (−1, 0), corresponding to 1 < p < 2,
that is the singular case.
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Theorem 5.1. Assume α ∈ (−1, 0) and F satisfies (H1) and (H2).
If u ∈ C (Ω) is a non-negative viscosity solution of (5.1), with a, b and
f continuous functions in Ω, then for every Ω′ ⊂⊂ Ω we have

sup
Ω′

u ≤ C
{

inf
Ω′

u + ‖f‖
1

α+1

N,Ω′

}

. (5.6)

where the constant C depends on λ, Λ, N, Ω′, Ω and α.

Here and in what follows we denote by ‖·‖N,A the norm in LN(A).

A proof of this theorem is given in [18], following the presentation in
Gilbarg and Trudinger [20], which is based on Krylov, Safonov [22]
original approach. By taking advantage of the fact that α ∈ (−1, 0)
we can reduce the application of ABP to inequalities having the Pucci
operator as the main term. We think that inequality (5.6) is also true
for solutions of the equation (5.1), but with α > 0, but at this point
we are not able to prove it.

It is interesting (and useful) to see that in case the differential oper-
ator is continuous, that is, α ≥ 0, then Definition 5.1 is equivalent with
the definition of C-viscosity solution as given in Definition 4.2 (with
the adequate changes). Next lemma is the precise statement of this
remark and it is proved in [18].

Lemma 5.1. Let F : R
N ×SN → R be a continuous function satisfying

F (p, 0) = 0 for all p ∈ R
N . Then u is a S-viscosity supersolution

(subsolution) of

− F
(

D2u,∇u
)

= g(x, u) in Ω, (5.7)

if and only if u is a C-viscosity supersolution (subsolution) of (5.7).

This lemma is useful even when the operator is not continuous, when
α ∈ (−1, 0), since one can prove that solutions of equation (5.1) also
satisfy an equation with a continuous operator. We discuss this in
detail in [18].

6. Singular superlinear equation in R
N without growth

on the data: Continuous case and good solutions case

In section §5 we considered equation (5.1) with F satisfying (H1)-
(H2), α ∈ (−1, 0), s > 1 + α and f continuous. This problem was
discussed in section §4 in the case of a fully nonlinear operator. When
the operator is singular, satisfying (H1)-(H2) with α ∈ (−1, 0) we ob-
tain existence of a solution generalizing the result of Esteban, Felmer
and Quaas in [19], however we assume f is continuous. We proved in
[18] the following theorem, which is more general that Theorem 1.3.
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Theorem 6.1. Assume that α ∈ (−1, 0) and F satisfies (H1) and

(H2). If s > 1 + α, then for every f ∈ C0
(

R
N
)

, equation (5.1)

possesses at least one solution.

In the proof of this theorem we use a compactness property derived
from the Cβ regularity obtained from the Harnack as proved in [18],
together with a local estimate. This estimate is similar to (4.8) and
it is proved with ideas from the proof of Theorem 5.1. In the ear-
lier works in [9] and [19] uniqueness and positivity of solutions is also
proved. However here we cannot do it since we lack of sublinearity of
the differential operator, the use of the Osserman function as in [9] and
the standard uniqueness argument is not possible.

In what follows we sketch the proof of Theorem 6.1. We start with a
sequence of approximate problems in bounded domains Bn. The next
lemma summarizes what we know about existence and regularity in
bounded domains for the approximate problems and its proof follows
from the existence theory developed in [6].

Lemma 6.1. For every n ∈ N there exists an S-viscosity solution
un ∈ Cγ (Bn) of equation

{

−F (∇un, D
2un) + |un|

s−1 un = f(x) in Bn,
un = 0 in ∂Bn

, (6.1)

where Bn is the ball centered at 0 and with radius n and γ ∈ (0, 1).

In the study of the sequence {un} of solutions of (6.1), the next
lemma us crucial, since it allows for local uniform estimates.

Lemma 6.2. Let s > 1 + α and g continuous in R
N . Assume u is an

S-viscosity solution of

−F
(

∇u, D2u
)

+ |u|s−1 u ≤ g in Ω,

where Ω is a subset of R
N . Then for every R > 0 and R

′

> R such
that BR′ ⊂ Ω we have

sup
BR

u ≤ C(1 + ‖g‖
1

1+α

LN (B
R
′ )
), (6.2)

where C = C
(

s, R, R
′

, N, λ, Λ
)

does not depend on g.

Idea of the Proof. We get the desired bound using the fact that u
satisfies

− |∇u|α M+
(

D2u
)

+ |u|s−1 u ≤ g in Ω.

We assume, without lose of generality, that u is non-trivial, B = B1(0)
and λ = 1. We may also assume that u ∈ C2(Ω) ∩ C(Ω̄), since we can
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use an appropriate approximation procedure. For β ≥ 1, let us define
the function η as follows: η(x) = (1 − |x|2)β if x ∈ B and η(x) = 0 if
x 6∈ B and consider the function v = ηu. We have

M+
(

D2v
)

≥ ηM+
(

D2u
)

+ M−

(

∇u ⊗∇η + uD2η
)

and then

M+
(

D2v
)

≥ C1η

{

− |g| + |u|s−1 u

(η−1/βu)
α

}

− C2vη
−2

β in Γ+(v),

where Γ+(v) is the contact set of v and C1, C2 are constants. For
details see [18]. Now, given u > 0 we have that in Γ+(v)

η
− |g| + |u|s−1 u

(η−1/βu)
α = −η1+α/β+α |g| v−α + ηα/β+1+α−svs−α.

Thus we have

−M+
(

D2v
)

+ C1η
α/β+1+α−svs−α − C2η

−2/βv

≤ C1η
1+α/β+α |g| v−α. (6.3)

Taking β = max {−α/(1 + α), (α + 2)/(s − 1 − α)} , we obtain that
ηα/β+1+α−s ≥ η−2/β and then, from (6.3), we obtain

−M+
(

D2v
)

+ η−2/βv
(

vs−α−1 − C
)

≤ C1η
1+α/β+α |g| v−α.

As in [19], we define w = max
{

v − C1/(s−α−1), 0
}

and notice that

Γ+(w) ⊂ Γ+(v) and Γ+(w) ⊂ {x ∈ Ω |w(x) ≥ 0}. Thus, w satisfies

−M+
(

D2w
)

≤ Cη1+α/β+α |g| v−α in Γ+(w).

Here we apply ABP inequality to get

sup
B

w ≤ C
∥

∥

∥η1+α/β+αgv−α
∥

∥

∥

LN (B)

and then

sup
B

v ≤ sup
B

w + C1/(s−α−1) ≤ C(1 +
∥

∥

∥η1+α/β+αgv−α
∥

∥

∥

LN (B)
).

Finally we notice that

∥

∥

∥η1+α/β+αgv−α
∥

∥

∥

LN (B)
≤

(

sup
B

v

)

−α

‖g‖LN (B) ≤ sup
B

vε−
1

α + ‖g‖
1

1+α

LN (B)

from where we conclude

sup
B

v ≤ C
(

1 + ‖g‖LN (B)

)

2

In order to prove Theorem 6.1 we use Lemma 6.2 to get compactness
of the sequence of approximate solutions and a limit function u. Then
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we prove that u is an actual solution by carefully arguing taking the
different possibilities in the definition of S-viscosity solution. These
type of arguments were used in [5], see also [18].

It is interesting to see that in case f ∈ LN
loc(R

N) we may always find
a sequence of smooth functions fn such that

lim
n→∞

∫

Ω
|fn − f |N dx = 0 (6.4)

for any bounded domain Ω. Then we can use (6.1) with right hand side
fn instead of f to find a sequence of approximate solutions {un} and
we can apply Lemma 6.2 to get (6.2) with un on the left and the norm
of f on the right. Together with Harnack inequality, we the obtain a
function u which is the locally uniform limit of a subsequence of un.
According to the definition below, u is a good solution, so the proof of
Theorem 1.4 is complete.

To end, let us see the precise definition

Definition 6.1. Given f ∈ LN
loc(R

N) we say that a continuous function
u ∈ C(RN) is a good solution of (5.1) if there is a sequence of functions
{fn} ⊂ C∞(RN) satisfying (6.4) and a sequence of domains Ωn such
that Bn ⊂ Ωn for all n, such that u is the locally uniform limit of the
sequence un of solutions of

{

−F (∇un, D
2un) + |un|

s−1 un = fn(x) in Ωn,
un = 0 in ∂Ωn.

(6.5)

7. Open Questions

We conclude this article with some open questions that are motivated
by the study of the various superlinear problems that we have presented
in the previous sections. Most of these question are related with the
notion of solution we can consider for the superlinear equations for right
hand side with less regularity. Notice that in the case of divergence form
operators it is possible to have a solution if the right hand side is in
L1

loc(R
N).

Question 1: Define a notion of solution for equation (1.2) such that
in the radially symmetric case it coincide with weak radial solutions.
This will allow for an extension of Theorem 1.1 to the non radial case.
Notice that if f ∈ Lp then viscosity solution is defined if p > N/2, see
[13]. However, for weak radial solutions we may consider f with less
regularity at the origin.

Question 2: Prove that the solution in Theorem 1.1 is an LN -viscosity
solution if f is radially symmetric and f ∈ LN (BR).



VISCOSITY SOLUTIONS 17

Question 3: Is it possible to define a notion of solution so that equation
(1.2) has a (unique) solution for f ∈ L1

loc(R
N), even in the radial case .

Question 4: Define a notion of solution for singular equation (1.4)
with right hand side in LN

loc(R
N) such that good solution satisfies the

equation in that sense, and the problem is well posed, that means:
existence, uniqueness and continuity with respect to the right hand
side holds. Does the coercivity (s > 1 + α) plays a role here?

Question 6: Is there a notion of solutions to equation (1.4) well posed?

Question 7: Is the notion of S-viscosity solution to equation (1.4) well
posed?
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