
CRITICAL EXPONENTS FOR
UNIFORMLY ELLIPTIC EXTREMAL OPERATORS

by
Patricio L. FELMERa

and
Alexander QUAASb

a Departamento de Ingenieŕıa Matemática,
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1 Introduction

A cornerstone in the study of nonlinear elliptic partial differential equations is

∆u + up = 0, u > 0 in IRN , (1.1)

for which a complete description of the solutions depending on the exponent p is
known. The main result is the existence of a number

p∗N = (N + 2)/(N − 2),

known as critical exponent, such that when 1 < p < p∗N no solution to equation
(1.1) exists, when p = p∗N then, up to scaling, equation (1.1) possesses exactly one
solution whose behavior at infinity is like |x|−(N−2) and when p > p∗N then equation
(1.1) admits radial solutions with behavior at infinity like |x|−α, for α = 2/(p− 1).

In the proof of these basic results various important tools has been devel-
oped, such as the celebrated Pohozaev identity, energy integrals, the moving planes
technique based on the maximum principle, the Kelvin transform and Harnack in-
equalities. In this respect the work by Pohozaev [29], Serrin [33], Gidas, Ni and
Nirenberg [18], Caffarelli, Gidas and Spruck in [5], Gidas and Spruck [20], Chen
and Li [6] and, Serrin and Zou [34] have been fundamental.

In the recent article [15], the authors considered a similar equation but replac-
ing the Laplacian by a Pucci’s extremal operator

M±
λ,Λ(D2u) + up = 0, u > 0 in IRN , (1.2)
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with parameters 0 < λ ≤ Λ and p > 1. While the Pucci’s extremal operators
share many properties with the Laplacian, like homogeneity, maximum principle
and others, they divert from it in a fundamental manner. In fact the Pucci’s
extremal operators do not have divergence form and they do not possesses the
equivalent of the Kelvin transform, preventing the use of many crucial tools in the
analysis of the equation. Using different techniques in [15] the authors considered
the problem restricted to the radially symmetric case and proved the existence of a
critical exponent p∗ playing the role of the critical exponent p∗N for the Laplacian.

In the case of the operator M+
λ,Λ, the dimension like number

Ñ+ =
λ

Λ
(N − 1) + 1 (1.3)

plays an important role. In fact, the authors prove in [15] that the critical exponent
p∗ satisfies

max{ Ñ+

Ñ+ − 2
, p∗N} < p∗ <

Ñ+ + 2
Ñ+ − 2

.

The Pucci’s extremal operators represent somehow the simplest version of a fully
non-linear, autonomous uniformly elliptic operators, and the techniques developed
in [15] are seemingly devised to treat this very particular operator.

It is the purpose of this article to present the analysis of critical exponents, in
the case of radially symmetric solutions, for a large class of extremal operators,
extending and deepening the understanding started in [15]. More precisely, let
D ⊂ IR2

+ be a nonempty, compact and convex set, then we define the operator M
acting on C2 radially symmetric functions as

M(D2u) = sup
(a1,a2)∈D

(N − 1)
r

u′a1 + u′′a2. (1.4)

We consider then the study of radially symmetric solutions of the nonlinear equa-
tion

M(D2u) + up = 0, u > 0 in IRN . (1.5)

We prove the existence of a critical exponent p∗ that determines the range of p > 1
for which we have existence or non-existence of radial solution to (1.5).

Given N ≥ 2 and D as above, in Section 3 we define two dimension-like
numbers N∞ and N0, that depend explicitly on N and D. These numbers satisfy
0 < N∞ ≤ N0 and play a crucial role in estimating the critical exponent. Now our
main theorem can be stated

Theorem 1.1 If we assume N ≥ 2 and N∞ > 2 then there is a critical exponent
p∗ with

max{ N∞
N∞ − 2

, p0} ≤ p∗ ≤ p∞, (1.6)
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where
p0 =

N0 + 2
N0 − 2

, p∞ =
N∞ + 2
N∞ − 2

, (1.7)

and the following statements hold:
i) If 1 < p < p∗ then there is no radial solution to (1.5).
ii) If p = p∗ then there is a unique radial solution of (1.5) whose behavior at

infinity is like r−(N∞−2).
iii) If p∗ < p then there is a unique radial solution to (1.5) whose behavior at

infinity is like r−α.
In ii) and iii) uniqueness is meant up to scaling.

Remark 1.1 We prove this theorem in Section 6. Actually we will further classify
the solutions behaving like r−α in some cases and give some examples.

Remark 1.2 The theorem we just stated deals with maximal operators. A com-
pletely analogous result can be obtained for minimal operators. See Section 6.

Remark 1.3 Our theorem answer partially a conjecture raised in [13]. If was
conjectured that for any uniformly elliptic operator F , with ellipticity constants
between 0 < λ < Λ such that

M−
λ,Λ(M) ≤ F (M) ≤M+

λ,Λ(M)

for all symmetric matrices, there exists a unique critical exponent pF such that

Ñ− + 2
Ñ− − 2

≤ pF ≤ Ñ+ + 2
Ñ+ − 2

where Ñ+ was defined above and Ñ− = (Λ/λ)(N − 1) + 1. In this article we prove
the conjecture is valid for all maximal and minimal operators as defined above, in
the radial case, with D ⊂ [λ, Λ]2. We notice that Ñ+ ≤ N∞ ≤ N0 ≤ Ñ−.

At this point we would like to put our class of radially symmetric operators in
perspective. Let 0 < λ ≤ Λ and ∆ ⊂ [λ, Λ]N be a symmetric set, that is a set
satisfying a = (a1, a2, ..., aN ) ∈ ∆ if and only if aπ = (aπ(1), aπ(2), ..., aπ(N)) ∈ ∆,
for all permutation π. If u is a C2 function, we let d = (d1, ..., dn) be the eigenvalues
of the Hessian matrix D2u(x) and define the maximal operator

M∆(D2u) = sup
a∈∆

a · d. (1.8)

This class of operators includes the Pucci’s operators. In fact, if we consider
∆ = [λ, Λ]N we recover the Pucci’s operators M+

λ,Λ. Alternatively, if we take
c ∈ [λ, Λ] and ∆c = {a ∈ [λ, Λ]N /

∑N
i=1 ai = cN}, we obtain the Pucci’s operators

P+ = M∆c , see [27] and [28]. In any case, if λ = Λ we recover the Laplacian. Thus,
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the operators M∆ define a large class of uniformly elliptic, nonlinear, autonomous
operators.

A major open problem is to understand the structure of the solutions to the
nonlinear equation

M∆(D2u) + up = 0, u > 0 in IRN , (1.9)

without further assumptions on u. At this point this problem seems extremely
hard, so we specialize to radial solutions. When u is radially symmetric, the
Hessian matrix D2u has u′′ and u′/r as eigenvalues, the first is simple and the
second has multiplicity N − 1. Thus, if we define D(∆) = {( 1

N−1

∑N−1
i=1 ai, aN ) ∈

IR2 / a ∈ ∆}, we are back to the radial maximal operators, to which Theorem 1.1
applies.

Remark 1.4 It can be easily proved that any convex nonlinear elliptic operator
F depending only on D2u, with ellipticity constants 0 < λ < Λ and which is
homogeneous of degree one, can be represented as a maximal operator M∆ for an
appropriate ∆.

Further discussion on the meaning of the non-existence results we are proving
comes into place. It is interesting to mention that the nonexistence of solutions
to (1.1) when 1 < p < p∗N holds even if we do not assume a given behavior at
infinity. This result is known as Liouville type theorem and it was proved by
Gidas and Spruck [20] and by Chen and Li [6]. When 1 < p ≤ N/(N − 2) then
a Liouville type theorem is known for super-solutions of (1.1), that is solutions of
the inequality

∆u + up ≤ 0, u ≥ 0 in IRN (1.10)

Moreover, it is known that this exponent is optimal, in the sense that solutions to
(1.1) exist if p > N/(N − 2). This number is called sometimes the second critical
exponent for (1.1). See [17].

In this direction we have the paper [10], where Cutri and Leoni extended this
result for the Pucci’s extremal operators. They consider the inequality

M±
λ,Λ(D2u) + up ≤ 0, u ≥ 0 in IRN (1.11)

and then they prove that for 1 < p ≤ Ñ+/(Ñ+ − 2) equation (1.11), with the
operator M+

λ,Λ, has no non-trivial solution. A similar statement holds for M−
λ,Λ.

Liouville type theorems are the basis of existence results in bounded domains
via degree theory. Actually, the success of this approach depends on a priori
bounds for the positive solutions of the equation, and this a priori bounds are
obtained by a blow-up technique from the Liouville type theorems.

Regarding existence results in the line discussed above we have the following
result
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Theorem 1.2 Assume N ≥ 2 and N∞ > 2. Let R > 0 and B = B(0, R) ⊂ IRN

be the ball of radius R centered at the origin, then the equation

M(D2u) + up = 0 in B,
u(x) = 0 x ∈ ∂B, u > 0 in B,

(1.12)

has a radial solution if and only if 1 < p < p∗. Moreover, if p > N0/(N0 − 2),
then the solution is unique.

This theorem is a model for more general existence results that can be proven
once the Liouville type theorem, that is the critical exponent, is understood. We
do not pursue this line, but we mention existence results obtained in the case of
the Pucci’s extremal operators by Felmer and Quaas [16] and Quaas [30]. It is
of special interest the recent results by Quaas and Sirakov [31] on the existence
of first eigenvalues for a large class of elliptic operators, which could be combined
with the Liouville type theorem in order to obtain existence results for a larger
class of non-linearities.

Extremal operators appear in the context of stochastic control when the dif-
fusion coefficient is a control variable, see the book of Bensoussan and J.L. Lions
[1] or the papers of P.L. Lions [23], [24], [25] for the relation between a general
Hamilton-Jacobi-Bellman and stochastic control.

In the study of equation (1.1) a crucial role is played by the Pohozaev identity.
Since the extremal operators do not have a divergence form, this kind of identity
is no longer available, posing a special difficulty to the problem. However, since we
consider only radial solutions, these operators take a simpler form where we can
still take advantage of some techniques developed for equations with operators in
divergence form.

Our approach consists in a combination of the Emden-Fowler phase plane
analysis with the Coffman-Kolodner technique. We start considering the classical
Emden-Fowler transformation that allows us to view the problem in the phase
plane. Here is where the main differences with the work in [15] appears. In fact
here we cannot use any form of energy argument and the initial value problem poses
non-trivial difficulties. We rely more on linearized stability, the Dulac principle
and the Poincaré-Bendixon theorem to understand the asymptotic behavior. A
phase plane analysis has been used in related problems by Kajikiya [21] and Erbe
and Tang [12] among many others.

We continue with the use the Coffman-Kolodner technique. Originally intro-
duced by Kolodner [8] and later used by Coffman [7], this technique consists in
the study of the solution of an associated initial value problem, obtained differ-
entiating the solution with respect to the initial value. The function so obtained
possesses valuable information on the problem. This idea has been used by several
authors in dealing with uniqueness questions. We cite in particular the work of
Kwong [22], Kwong and Zhang [26] and Erbe and Tang [12]. In our case though we
do not differentiate with respect to the initial value, which is kept fixed, but with
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respect to the power p. Thus the variation function satisfies a non-homogeneous
equation, in contrast with the situations treated earlier.

Our article is organized as follows. In Section 2. we discuss preliminary prop-
erties of the operator M in terms of the set D and its analytical description. In
Section 3. we prove an existence and uniqueness result for the initial value problem
associated to (1.5). In order to prove the uniqueness we use the Emden-Fowler
transformation and a form of the stable-unstable manifold theorem. In Section
4. we further study the dynamical system obtained through the Emden-Fowler
transformation. We understand the asymptotic behavior of the solutions, espe-
cially when p is outside the range defined by p0 and p∞. In section 5. we analyze
the system from the point of view of the Coffman-Kolodner technique. We study
the variation of the solution with respect to the exponent p. This is a crucial step
in obtaining the uniqueness of the critical exponent. Here we use ideas coming
from [26] and [12]. Finally in Section 6. we prove Theorem 1.1 and Theorem 1.2.
We also provide some extensions and give examples.

Notation: IR− = (−∞, 0), IR+ = (0,∞).

2 Preliminaries

In this section we consider the class of radial maximal operators defined in the
introduction in terms of the set D. In order to describe the set D in a more
convenient way, and to avoid trivialization, we make a further assumption.

D) The set D ⊂ IR2
+ is compact, convex and its projection onto the y-axis is

not a singleton.

Without mentioning, we assume this condition D) along the paper up to Section
5.

Remark 2.1 Assuming D) we exclude the case when the projection of D onto the
y-axis is a singleton, which is equivalent to D = {(a1, a2)}. This particular case
can be analyzed as the radial Laplacian, just considering a constant dimension
Ñ = (N−1)a1/a2 +1. On the other hand, when D satisfies D), we may think that
the dimension varies along the solution in a nonlinear way, and it is this situation
what make the problem interesting.

Under the assumption D) we may describe ∂D by means of functions. Let
0 < θ− < θ+ be defined as θ− = min{θ / (x, θ) ∈ D} and θ+ = max{θ / (x, θ) ∈ D},
and define the functions S, S̃ : [θ−, θ+] → IR+ as

S(θ) = min{x / (x, θ) ∈ D} and S̃(θ) = max{x / (x, θ) ∈ D}.

With these definitions we see that S is convex, S̃ is concave and

D = {(x, θ) / θ ∈ [θ−, θ+], S(θ) ≤ x ≤ S̃(θ)}.
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In the study of positive solutions to (1.5) for the case of maximal operators, as
we will see later, we only need to look at the left hand side of D, which is de-
scribed by S. Being S convex, it has one-sided derivatives S′−(θ) and S′+(θ) and
consequently it is locally Lipschitz continuous in (θ−, θ+). The sub-differential of
S is then defined as ∂S(θ) = [S′−(θ), S′+(θ)], for θ ∈ (θ−, θ+), and we see that S is
differentiable at θ if and only if ∂S(θ) is a singleton. The cases θ = θ− and θ = θ+

are special. At θ+ we have two possibilities, either S′−(θ+) exists, and then we
define ∂S(θ+) = [S′−(θ+),+∞), or

lim
t→0−+

S(θ+ + t)− S(θ+)
t

= +∞.

An analogous situation occurs at θ−. We observe that with these definitions, for
every Q < 0 there is at least one solution θ ∈ [θ−, θ+] of the equation

∂S(θ)θ − S(θ) 3 Q. (2.1)

The case when this equation has multiple solutions is very important for our anal-
ysis and occurs when the function S coincide locally with an affine function. We
let I be a set of indices so that for every i ∈ I, the function S is affine in the
maximal interval [θ−i , θ+

i ], with θ−i < θ+
i . In each of these intervals we may write

S(θ) = diθ −Qi for all θ ∈ [θ−i , θ+
i ], (2.2)

for numbers di and Qi. We notice that, depending on the shape of D, the set I
may be empty, finite or countable.

Given equation (2.1) we define the function d : IR− → IR as d(Q) ∈ ∂S(θ) such
that

d(Q)θ − S(θ) = Q. (2.3)

We would also like to define θ as a function of Q, but we cannot do it in a unique
way because of the possible multiplicity of solutions to (2.1). We make a choice
considering Θ : IR− → IR as Θ(Qi) = θ+

i for i ∈ I and as the unique solution of
(2.1) otherwise. In the next lemma we state some basic properties of d and Θ

Lemma 2.1 The function Θ is strictly monotone increasing and it satisfies

lim
Q→Q±i

Θ(Q) = θ±i , for every i ∈ I.

The function d is Lipschitz continuous, strictly monotone increasing, with deriva-
tive

d′(Q) =
1
θ

for Q 6∈ {Qi / i ∈ I},

and one-sided derivatives

d′+(Qi) =
1
θ+
i

and d′−(Qi) =
1
θ−i

for i ∈ I. (2.4)
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Proof. We first observe that d and Θ are strictly monotone functions because
∂S(θ)θ − S(θ) is increasing (as a graph), by the convexity of S.

The limit properties of Θ are straight forward, so we only prove the differen-
tiability properties of d. We let Q > Q̄ and we consider the equations

d(Q)θ − S(θ) = Q and d(Q̄)θ̄+ − S(θ̄+) = Q̄, (2.5)

satisfied by θ ∈ [θ−, θ+] and θ̄ ∈ [θ̄−, θ̄+]. We notice that as Q approaches Q̄ we
have that θ approaches θ̄+, for all θ ∈ [θ−, θ+]. Next we use (2.5) to find

−θ̄+

[
d(Q)− d(Q̄)

Q− Q̄
− 1

θ̄+

]
= (θ − θ̄+)/

θ − θ̄+ + θ̄+{ d(Q)− d(Q̄)

d(Q)− S(θ̄+)−S(θ)

θ̄+−θ

}

 .

But, since S is convex we have

d(Q̄) ≤ S(θ̄+)− S(θ)
θ̄+ − θ

then

|d(Q)− d(Q̄)
Q− Q̄

− 1
θ̄+
| ≤ θ − θ̄+

θθ̄+
,

proving that d has a derivative from the right and d′+(Q̄) = 1
θ̄+ . A similar argument

can be used to prove that d has a derivative from the left, and that when θ̄+ = θ̄−

the function d is differentiable at Q̄. This completes the proof. �

Now we define the function g : IR× IR− → IR as

g(u, w) = −w(N − 1) d(
up

(N − 1)w
), (2.6)

which is locally Lipschitz continuous. This function can be written making θ
explicit as

g(u, w) = −S(θ)
θ

(N − 1)w − up

θ
, (2.7)

where θ is a any solution of (2.1), with Q = up/(N − 1)w. In particular we may
use θ = Θ(up/(N − 1)w), and in this case we write

Ñ = (N − 1)S(θ)/θ + 1. (2.8)

The regularity properties of g are determined by those of d, so we have the following

Proposition 2.1 The function g is Lipschitz continuous in IR×IR−. Outside the
curves

Qi =
up

(N − 1)w
, i ∈ I, (2.9)
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the function g is differentiable and its partial derivatives are given by

∂g

∂w
= −S(θ)

θ
(N − 1) and

∂g

∂u
= −pup−1

θ
.

At points on the curve (2.9), in transversal directions, directional derivatives al-
ways exists. If ~d points into the region above the curve (2.9) then the directional
derivative is

D(g, ~d) = −(
S(θ+

i )
θ+
i

(N − 1),
pup−1

θ+
i

) · ~d.

If ~d points into the region below the curve (2.9) we replace θ+
i by θ−i .

Proof. Direct from previous lemma. �

3 Emden-Fowler Analysis: the initial value

problem

We devote this section to study the the initial value problem

M(D2u) + up = 0, r > 0, (3.1)
u(0) = γ, u′(0) = 0, (3.2)

for γ > 0, where M is a radial maximal operator associated to a set D satisfying
condition D). We want to understand the existence and uniqueness theory for this
equation. While existence of a solution can be obtained by standard arguments,
surprisingly uniqueness property requires extra arguments. We relay on the stable-
unstable manifold theorem, after we transform the problem into the phase space
using the Emden-Fowler transformation.

We start writing the equation in terms of the function S, solving the maxi-
mization problem. Let us assume we have a C2 radially symmetric solution u of
the equation (3.1). Then by definition of M and the description of D in terms of
the function S, while u′(r) < 0, we have that

M(D2u(r)) = u′′(r)θ + (N − 1)
u′(r)

r
S(θ),

where θ ∈ [θ−, θ+] is characterized by

∂S(θ)θ − S(θ) 3 up

(N − 1)(u′/r)
. (3.3)

We call this equation the optimality condition. Thus equation (3.1) can be written
as

u′′(r) = g(u(r),
u′(r)

r
),
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where g was defined in (2.6), or alternatively as

u′′(r) +
S(θ)

θ
(N − 1)

u′(r)
r

+
up(r)

θ
= 0. (3.4)

In this last form θ may be chosen as any solution of (3.3), however for our future
analysis it is convenient to have θ as a function of r, so we define

θ(r) = Θ(
up(r)r

(N − 1)u′(r)
) (3.5)

and then the variable dimension numbers Ñ(r) replacing θ(r) in (2.8). The func-
tions θ(r) and Ñ(r) are measurable functions, having discontinuities whenever r
is so that up(r)r/(N − 1)u′(r) = Qi, with i ∈ I. Moreover, both θ(r) and Ñ(r)
are bounded and bounded away from 0.

Remark 3.1 By the definition of the maximal operator, for a solution u of equa-
tion (3.4) we have that

u′′(r) +
S(θ̃)

θ̃
(N − 1)

u′(r)
r

+
up(r)

θ̃
≤ 0, (3.6)

for all θ̃ ∈ [θ−, θ+].

Remark 3.2 Assume u = u(r, p, γ) a solution to (3.1)-(3.2) then by rescaling we
obtain solutions for other initial values. In fact, we have the following relation
that can be proved by a straight forward computation.

u(r, p, γ0γ) = γu(γ1/αr, p, γ0),

for all γ0, γ > 0.

Our next goal is to obtain an existence result for the initial value problem
(3.1)-(3.2). The difficulty to solve this equation comes from the singularity at
r = 0 and the lack of control of the Lipschitz constant when u′(r)/r is small.

Lemma 3.1 There is an ε > 0, so that the initial value problem (3.1)-(3.2) pos-
sesses a C2 solution u : [0, ε] → IR.

Proof. We consider the space B of continuous functions u, v : [0, ε] → IR so that
u(0) = γ and v(0) = 0, satisfying additionally that

C1 ≤ −v(r)
r

≤ C2, ∀r ∈ (0, ε], (3.7)
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with constants C1 and C2 to be made precise later. Next we define the operator
T : B → B as

Tu(u, v)(r) = γ +
∫ r

0
v(s)ds, (3.8)

Tv(u, v)(r) = −
∫ r

0

up(s)
θ(s)

exp(−
∫ r

s

Ñ(τ)− 1
τ

dτ)ds, (3.9)

where θ(r) is defined in (3.5) and Ñ(r) obtained from (2.8), replacing θ by θ(r).
We see that given (u, v) ∈ B we obtain the following estimates, for all r ∈ (0, ε],

γ − C1
r2

2
≤ Tu(u, v) ≤ γ + C2

r2

2
,

and
(γ − C1r

2/2)p

θ+n+
≤ −Tv(u, v)

r
≤ (γ + C2r

2/2)p

θ−n−
,

where n+ and n− are such that n+ ≤ Ñ(r) ≤ n−. From here we choose ε > 0 small
enough and C1 and C2 so that (3.7) holds. Thus, we have that T is well defined.
Since T is compact, the Schauder fixed point theorem guarantees the existence
of a fixed point (u, v) of T . To complete the proof we see that by differentiating
v = Tv(u, v) we find that

v′ = g(u(r),
v(r)
r

), a. e. in (0, ε],

but actually the right hand side is continuous, so that u is C2. �

We notice that given a solution of the equation of (3.1)-(3.2) in [0, ε] we can
uniquely extend it beyond ε. Since Tv(u, v) is negative, when u is positive, we have

Lemma 3.2 The solutions of (3.1)-(3.2) are decreasing while they remain posi-
tive.

As we already mention, in order to prove that the solution we just found is
unique we should further argue through the Emden-Fowler transformation. We
will also use this transformation to obtain asymptotic behavior of the solutions in
the next section.

We consider the change of variables x(t) = rαu(r), r = et. With this transfor-
mation, if u is a solution of (3.1) then x satisfies

ẍ(t) = f(x(t), ẋ(t)), (3.10)

where the field f is given by

f(x, y) = (2α + 1)y − α(α + 1)x + g(x, y − αx).
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Displaying g as in (2.7), we may write f as

f(x, y) = −ãy + b̃x− xp

θ
,

with ã = Ñ − 2− 2α, b̃ = α(Ñ − 2− α) and

θ = Θ(
xp

(N − 1)(y − αx)
),

where Ñ is as in (2.8). If we have a solution of (3.10) we may think ã, b̃, θ and Ñ
as functions of t.

Thus, given a solution u of the initial value problem (3.1) we have the function
x(t) that satisfies (3.10) and associated to it we have the corresponding orbit
(x(t), ẋ(t)) in the phase plane. Moreover, if u satisfies the initial condition (3.2)
then

lim
t→−∞

(x(t), ẋ(t)) = (0, 0). (3.11)

In order to analyze the possible values of the dimension like numbers Ñ(t) and to
understand the asymptotic behavior of the solutions, at infinity and minus infinity
we define the extreme dimensions N0 and N∞. We consider the equation

∂S(θ0) 3 −
1

N − 1
.

If this equation has more than one solution, we take θ0 as the right extreme of the
interval of solutions. Then we define

N0 = (N − 1)
S(θ0)

θ0
+ 1 and Q0 = − θ0N0

(N − 1)
.

We also consider the equation

∂S(θ∞) 3 S(θ∞)
θ∞

and if this equation has more than one solution, we take θ∞ as the left extreme of
the interval of solutions. We define

N∞ = (N − 1)
S(θ∞)

θ∞
+ 1.

We observe that by hypotheses on the set D we have that N0 ≥ N∞. The following
preliminary lemma gives us the possible range of values for Ñ(t).

Lemma 3.3 Given a solution x of (3.10) with (3.11). Then, while x(t) > 0, we
have that

N0 ≥ Ñ(t) ≥ N∞.
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Proof. While the solution is positive, it is clear that

Q(t) =
xp(t)

(N − 1)(ẋ(t)− αx(t))
(3.12)

is negative and it never vanishes, so that Ñ(t) ≤ N∞. To prove the other inequality
it is enough to prove that any solution stays below the curve

y = αx +
xp

(N − 1)Q0
.

To do this we consider the maximality of the differential operator to find that

(rN0−1u′)′ ≤ −rN0−1 up

θ0
,

from where, integrating and using the fact that u is decreasing, we find

u′ ≤ − rup

N0θ0
.

The claim follows from here, doing the Emden-Fowler transformation. �

Remark 3.3 Depending on the dimension N and on the set D it may happen that
N0 = N∞. In this case the operator M becomes a constant coefficient operator,
and the study of critical exponents trivialize, see Remark 2.1.

A more precise behavior of Ñ(t) for t approaching −∞ is given in the following

Proposition 3.1 Given a solution u of the initial value problem (3.1)-(3.2), that
is a solution x of (3.10) with (3.11) we have

lim
t→−∞

Ñ(t) = N0 and lim
t→−∞

Q(t) = Q0.

In order to prove this proposition we will first prove a transversality lemma for all
solutions of the initial value problem. This lemma is interesting in itself.

Lemma 3.4 Let x be a solution of (3.10). Then for every Q ∈ (Q0, 0), if the orbit
(x(t), ẋ(t)) touches the curve

y = αx +
xp

(N − 1)Q
, (3.13)

then either:
a) it crosses the curve transversally or
b) it stays below the curve in a neighborhood of the touching point, if the cross-

ing occurs in the first quadrant or
c) it stays above the curve in a neighborhood of the touching point, if the

crossing occurs in the fourth quadrant.

13



Proof. Let us assume that there is t such that (x(t), ẋ(t)) crosses the curve (3.13).
Then, from the equation (3.10) we have

dy

dx
= (2α + 1− (N − 1)d(Q))− α(α + 1− (N − 1)d(Q))

x

y
.

On the other hand, the slope of the curve (3.13) at this point is given by

m = −2 +
α + 2

α

y

x
.

It is convenient to write z = y
x and ρ = 1 − (N − 1)d(Q), and notice that for all

Q ∈ (Q0, 0) we have ρ < 2. Now we see that the slopes will coincide at the point
of intersection if and only if

α + 2
α

z2 − (2α + 2 + ρ)z + α(α + ρ) = 0.

This equation has two roots

λ1 = α
α + ρ

α + 2
< λ2 = α.

Thus, if the crossing occurs with the same slope then it occurs at a point (x1, y1),
with

xp−1
1 = −αQ(N − 1)(

2− ρ

α + 2
) and y1 = x1α

α + ρ

α + 2
. (3.14)

Now we can reach our first conclusion. Let (x, y) be the point of intersection then:
a) If y > 0 we have x < x1 if and only if dy

dx > m and b) If y < 0 we have x < x1

if and only if dy
dx < m. This proves the transversality property.

Next we look at the case when dy
dx = m. Assume that y1 > 0, that is that the

crossing point is in the first quadrant. Then consider the case when, near (x1, y1),
the solution stays at one side of the curve, thus we can differentiate the equation
at (x1, y1) to obtain

d2y

dx2
y + (

dy

dx
)2 = (2α + ρ)

dy

dx
− α(α + ρ).

Evaluating the derivative at (x1, y1) we find that

dy

dx
= α(1 + p

ρ− 2
α + 2

),

and then we find that

d2y

dx2
=

p(ρ− 2)
x1(α + ρ)

(ρ− αp
ρ− 2
α + 2

).

On the other hand, a direct computation shows that on the curve we have

d2yc

dx2
=

2p

x1

ρ− 2
α + 2

.

14



Then using that ρ < 2 and α + ρ > 0 we find that

d2y

dx2
<

d2yc

dx2
. (3.15)

This implies that near the crossing point the orbit stays below the curve.
Finally we observe that the same argument can be given when y1 < 0, with

the only difference that the inequality in (3.15) is reversed, since α + ρ < 0. This
completes the proof of c). �

Remark 3.4 A consequence of this result is that given Q ∈ (Q0, 0), the orbit
cannot enter and leave the region below the curve (3.13). If this occurs, we can
decrease the value of Q up to reach one where the orbit stays above the curve and
touches it at a point. We saw above that this is impossible.

Proof of Proposition 3.1. In view of Lemma 3.4 we see that Q(t), as defined in
(3.12), is monotone in t, as t approaches −∞. Then, both Ñ(t) and θ(t) are also
monotone and consequently there exist N̄ and θ̄ such that

lim
t→−∞

Ñ(t) = N̄ and lim
t→−∞

θ̃(t) = θ̄.

Since the function v = u′(r) = Tv(u, v) as in (3.9), we find that

lim
r→0

u′(r)
r

= − γp

N̄ θ̄
.

Next, using the equation (3.1) satisfied by u, we find that

lim
r→0

u′′(r) = (N̄ − 1)
γp

N̄ θ̄
− γp

θ̄
= lim

r→0

u′(r)
r

.

Then, from the optimality condition (3.3) we finally obtain

∂S(θ̄) 3 − 1
N − 1

.

From here we conclude that limt→∞Q(t) = Q0 and then Q(t) has to be monotone
increasing, θ̄ = θ0 and N̄ = N0. �

As a consequence of Lemma 3.4 and the above proof we have the following
important

Corollary 3.1 Let u be a solution of the initial value problem (3.1)-(3.2) and x
its Endem-Fowler transformation. If the orbit (x(t), ẋ(t)) crosses the x-axis only
once, while x(t) remains positive, then Q(t) is strictly monotone increasing.

Now we are in a position to prove the uniqueness of solution for the initial
value problem (3.1)-(3.2).
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Proposition 3.2 Assuming that N0/(N0 − 2) < p, then (3.1)-(3.2) possesses only
one solution.

Proof. We define the field f0 as

f(x, y) = −a0y + b0x + f0(x, y),

where
a0 = lim

t→−∞
ã(t) and b0 = lim

t→−∞
b̃(t).

The linear system
ẋ = y, ẏ = −a0y + b0x,

has the origin as an hyperbolic critical point by our hypothesis on p. In the first
quadrant it has an unstable direction with eigenvalue λ1 = α and on the fourth
quadrant a stable direction with eigenvalue λ2 = −N0 + 2 + α.

The idea is to consider the field f as the linear system perturbed by f0 and
apply the stable-unstable manifold theorem as in Theorem 4.1 in [9]. However f0

is not differentiable, it is not even well defined in any neighborhood of the origin.
So we need to modify it, but we do away from all orbits coming out from the
origin, corresponding to all solutions of the initial value problem (3.1)-(3.2).

This modification, that we call f̃0, has to satisfy the following condition, in
order to apply the above cited result: for all ε > 0 there exists δ > 0 so that

|f̃0(x, y)− f̃0(x′, y′)| ≤ ε|(x, y)− (x′, y′)|, (3.16)

for all |(x, y)|, |(x′, y′)| ≤ δ. In other words, f̃0 should have vanishing Lipschitz
constants. We first modify the function f0 for all (x, y) such that

y ≥ αx− xp

(N − 1)Q0
,

simply defining

f̃0(x, y) = f0(x, αx− xp

(N − 1)Q0
).

Next we see that an orbit (x(t), ẋ(t)), associated to a solution of the initial value
problem (3.1)-(3.2), can be described as a function y = y(x), near the origin. We
then define

y0(x) = inf{y(x) / y(x) is a solution of (3.1)-(3.2)}.

It is clear that y0 also describe a solution of (3.1)-(3.2). Then, according to Lemma
3.3 and Proposition 3.1, we have that

q(x) =
xp

y0(x)− αx
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satisfies limx→0 q(x) = Q0. Let q̃(x) be a function such that q̃(x) < q(x) and
limx→0 q̃(x) = Q0. Then for every (x, y) such that y ≤ q̃(x) we define

f̃0(x, y) = f0(x, αx− xp

(N − 1)q̃(x)
).

The function f̃0(x, y) is completely defined in [0, x0) × IR for some x0 > 0. This
function is Lipschitz continuous and, by construction and the properties of f , it
satisfies (3.16). Uniqueness of solutions for the initial value problem (3.1)-(3.2)
follows now from the stable-unstable manifold theorem. �

Remark 3.5 For our purpose, the proof of Theorem 1.1 and Theorem 6.1 in
Section 6, we only need to have uniqueness in the range of p as in Proposition 3.2.
Outside of this range we do not know if uniqueness holds.

4 Emden-Fowler Analysis: Asymptotic be-

havior at infinity

In this section we study the asymptotic behavior of the solution of the initial
value problem (3.1)-(3.2), as r →∞. We do this by analyzing the Emden-Fowler
transformation in the phase plane.

Our next two lemmas give important information on the asymptotic behavior
of the orbits as t approaches infinity. In what follows it is convenient to define the
set

R = {(x, y) / x > 0, αx− y > 0},

that contains all orbits associated to solutions of our initial value problem.

Lemma 4.1 Assume that N∞ > 2 then we have:
1) The field f possesses exactly one critical point P = (x̄, 0) ∈ R if and only

if p > N∞/(N∞ − 2).
2) If p > N∞/(N∞ − 2) then (3.10) has an ingoing direction in the fourth

quadrant.

Proof. 1) The coefficient b̃ is always positive on the positive real axis, because
our hypothesis on p. Then the equation

f(x, 0) = b̃x− xp

θ
= 0 (4.1)

has at least one solution. Notice that both b̃ and θ are bounded away from zero
and infinity on the positive real axis.
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Even though the function f(x, 0) is not differentiable, it has one-sided deriva-
tives for all x > 0, which are given by

∂f±
∂x

(x, 0) = b̃±(1− p).

Both one-sided derivatives are positive so that (4.1) possesses exactly one solution.
2) We can do a perturbation analysis at the origin using Theorem 4.1 in [9].

In fact, if we write
f(x, y) = −a∞y + b∞x + f∞(x, y),

then the function f∞ satisfies (3.16) in the fourth quadrant. The hypothesis on p
implies that the linear system has a negative eigenvalue associated with direction
(1,−(N∞ − 2)). From here we obtain that the origin has an ingoing direction in
the fourth quadrant. �

Remark 4.1 Using similar arguments as in the lemma we can prove that the
origin is unstable on the fourth quadrant if p < N∞/(N∞ − 2).

Lemma 4.2 Assume that N∞ > 2 and p > N∞/(N∞−2). If x(t) is a solution of
(3.10) with (3.11), such that, as t goes to ∞, (x(t), ẋ(t)) approaches (0, 0) through
the fourth quadrant, then the associated solution u satisfies

lim
r→∞

rN∞−2u(r) = C and lim
r→∞

rN∞−1u′(r) = −(N∞ − 2)C,

for certain constant C > 0. Moreover,

lim
r→∞

r−(N∞−1)e
R r

r0

Ñ−1
s

ds = l, (4.2)

where r0 > 0 is an appropriate constant and l > 0.

Proof. From the hypothesis we see that limt→∞ θ(t) = θ∞ and limt→∞ Ñ(t) =
N∞. Moreover, by the previous lemma, the orbit approaches the origin in the
direction (1,−(N∞ − 2)), with an eigenvalue λ1 = −(N∞ − 2 − α). This implies
that, for a certain constant C > 0,

lim
t→∞

x(t)e(N∞−2−α)t = C and lim
t→∞

ẋ(t)e(N∞−2−α)t = −C(N∞ − 2).

From here we obtain the desired behavior for u and u′. Next we use the Lipschitz
continuity of d to obtain a constant c > 0 such that

|Ñ(r)−N∞| ≤ c|u
pr

u′
|.

Then, using the asymptotic behavior of u and u′, together with the fact that
p > N∞/(N∞ − 2), we find an exponent a > 0 such that

|Ñ(r)−N∞| ≤ cr−a,
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from where (4.2) follows. �

At this point we introduce some terminology to describe possible behavior that
the solutions of the initial value problem (3.1)-(3.2) may have, as r approaches
infinity. We say that:

i) u is a crossing solution if there exists r̄ such that u(r̄) = 0 and u(r) > 0 for all
r ∈ (0, r̄).
ii) u is a slow decaying solution if there is a constant c∗ such that

lim
r→∞

rαu(r) = c∗.

iii) u is a pseudo slow decaying solution if there are constants C1, C2 > 0 such that

C1 = lim inf
r→∞

rαu(r) < lim sup
r→∞

rαu(r) = C2.

iv) u is a fast decaying solution if there is a constant C > 0 such that

lim
r→∞

rN∞−2u(r) = C.

With these definitions we consider the following subsets of (1,∞), according
to the behavior of the solutions of (3.1)-(3.2). We define:

C = {p | p > 1, u(r, p, γ) has a finite zero}.
P = {p | p > 1, u(r, p, γ) is positive and is pseudo-slow decaying}
S = {p | p > 1, u(r, p, γ) is positive and is slow decaying}
F = {p | p > 1, u(r, p, γ) is positive is and fast decaying}.

In view of Remark 3.2, we notice that these sets do not depend on the particular
value of γ > 0. Our goal is to prove that (1,∞) = C ∪ P ∪ S ∪ F and that F is a
singleton. Now we have our first main step.

Proposition 4.1 Assuming that N∞ > 2 and p0 < p∞ (that is N0 > N∞, see
(1.7)) then we have:

1) If p ≥ p∞ then p ∈ S.
2) If p ≤ max{N∞/(N∞ − 2), p0} then p ∈ C.

Proof. Let u be a solution of (3.1)-(3.2) and x its Emden-Fowler transformation.
We first claim that in both cases the solution x(t) is bounded. In fact, by the
analysis in Lemma 3.3 we know that x(t) and ẋ(t) are bounded above. To see
that ẋ(t) is bounded below, we notice that if this is not the case then there is a
constant M > 0 so that ẋ(t) ≤ −M for all t ≥ t0 and then x eventually become
zero.

1) First assume that (x, ẋ) is a homoclinic orbit. Then, denoting by C the
corresponding closed curve and by n the outward normal, we have

I =
∫

C
(y, f(x, y)) · nds = 0.
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But, if Ω is the region surrounded by C, by the divergence Theorem we find that

I =
∫

Ω

∂f

∂y
dxdy =

∫
Ω
−ãdxdy.

By hypothesis on p we have ã > 0, reaching a contradiction. We notice that f is
differentiable a.e. by Proposition 2.1. This argument is known as Dulac’s criterion
in dynamical systems.

Assume now that u is a crossing solution. Since p > N∞/(N∞−2), by Lemma
4.1 the origin has an ingoing direction and there is a unique critical point P =
(x̄, 0) ∈ R. Then, by the Poincaré-Bendixon Theorem, following the ingoing orbit
backwards, we find a point Ô = (x̂, 0) ∈ R, x̂ ≤ x̄, so that this orbit connects Ô
with the origin O. Let call C the closed curve obtained by joining this orbit and
the line OÔ. Since f(x, 0) is positive on the line OÔ we find

I =
∫

C
(y, f(x, y)) · nds > 0,

from where a contradiction follows, using the divergence Theorem again.
Since u is not crossing and not fast decaying, the orbit associated to u has to

approach either a periodic orbit or the critical point P as a consequence of the
Poincaré-Bendixon theorem. However, the former cannot occur by the argument
given above. We conclude then that p ∈ S.

2) We first observe that when p ≤ N∞/(N∞−2) then f(x, 0) < 0 for all x > 0.
In case p < N∞/(N∞− 2), this observation together with Remark 4.1 implies u is
a crossing solution. If p = N∞/(N∞ − 2) then we can prove that f(x, y) < 0 in a
small neighborhood of (0, 0) in the fourth quadrant. Thus, the solution must also
leave the fourth quadrant, crossing the negative y-axis.

If N∞/(N∞ − 2) < p ≤ p0 the we can use again the Dulac’s criterion we get a
contradiction if the solution x returns to the x-axis from below . �

Corollary 4.1 There is p∗ ∈ F such that if p0 = p∞ then p∗ = p∞ and if p0 < p∞,
then

p∗ ∈ (max{N∞/(N∞ − 2), p0}, p∞).

Proof. We first see that, using the Poincaré-Bendixon theorem, we have (1,∞) =
C ∪P ∪S ∪F . On the other hand, the sets C and P ∪S are open, so that F cannot
be empty. The rest follows from Proposition 4.1. �

5 Coffman-Kolodner Analysis

In this section we study the solutions obtained near a fast decaying solution, the
idea is to vary p in order to classify them. We differentiate the solution of (3.1)-
(3.2) with respect to p, keeping the initial condition fixed. The resulting function
ϕ has valuable information on the solutions near the fast decaying one.
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This idea was introduced by Coffman and Kolodner in studying uniqueness
questions for semi-linear equations. They rather differentiate with respect to the
initial condition though.

The idea of differentiate the solution of (3.1)-(3.2) with respect to p was used
in [15], to establish the uniqueness of the critical exponent for M+

λ,Λ and M−
λ,Λ.

By analyzing the function ϕ we will prove in this section the following two
propositions, that are crucial in the proof of our main results.

Proposition 5.1 If p∗ ∈ F , then for p < p∗ close to p∗ we have p ∈ C.

Proposition 5.2 If p∗ ∈ F , then for p > p∗ close to p∗ we have p ∈ S ∪ P.

For the proof of these propositions we need some preliminary lemmas. Since
in our analysis γ is kept fixed, so we do not make explicit mention of it. Its value
will be chosen later.

Let p∗ ∈ F and let u(r, p∗) be the solution of (3.1)-(3.2). In view of Proposition
4.1, in order to prove our results we may assume that p > N∞/(N∞ − 2). Our
first goal is to study the differentiability of u with respect to p.

Lemma 5.1 The function p → u(r, p) is differentiable with respect to p at p = p∗.
Moreover if we define ϕ(r, p) = ∂u(r, p)/∂p, then ϕ is of class C1 and it satisfies

ϕ′′ +
Ñ − 1

r
ϕ′ + p∗

up∗−1

θ
ϕ +

up∗

θ
log u = 0 in (0,+∞) a.e., (5.1)

with initial conditions ϕ(0) = 0 and ϕ′(0) = 0. Here u(r) = u(r, p∗), θ(r) and
Ñ(r) are associated to u(r, p∗).

Proof. It is easy to see that equation (5.1), with initial conditions ϕ(0) = 0 and
ϕ′(0) = 0, has a unique C1 solution for all r > 0. In fact, we need to consider the
following integral equation

ϕ′(r) = −
∫ r

0
e−

R r
s

Ñ(τ)−1
τ

dτ

[
p
up−1

θ
ϕ +

up

θ
log u

]
ds.

We just notice that the functions Ñ and θ are fixed bounded measurable func-
tions, thus the contraction mapping principle can be used to obtain existence and
uniqueness of solution for small r.

Then we consider, for notational convenience, u(r) = u(r, p∗), v(r) = u(r, p)
and

φ(r, p) =
v(r)− u(r)

p− p∗
− ϕ(r).

Thus, considering the equations satisfied for u, v we obtain

(v − u)′′ +
(N − 1)

r
(v − u)′d(Q∗) +

(N − 1)
r

v′(o1(p) +
1
θ
)(Q−Q∗) = 0,
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where

Q(r) =
vp

(N − 1)(v′/r)
, Q∗(r) =

up∗

(N − 1)(u′/r)

and
o1(p) =

d(Q)− d(Q∗)
Q−Q∗

− 1
θ
.

Since Q∗(r) is a strictly increasing function, we have that Q∗(r) 6∈ {Qi / i ∈ I}
a.e., thus limp→p∗ o1(p) = 0 a.e. We also see that

Q(r)−Q∗(r) =
1

(N − 1)(v′/r)
(vp − up∗)− Q∗

v′
(v − u)′.

Thus, using the equation for ϕ and the optimality condition d(Q∗)θ − S(θ) = Q∗,
which holds a.e., we obtain

φ′′ +

[
Ñ − 1 + (N − 1)o1(p)

r

]
φ′ +

[
p∗up∗−1

θ
+ o2(p)

]
φ + o3(p) = 0,

with boundary condition φ(0) = φ′(0) = 0. Here oi(p), i = 2, 3 denotes a bounded
function of (r, p) such that oi(p) → 0 as p → p∗, a.e. in r.

We can rewrite this equation in the form of an integral equation

φ′(r) = −
∫ r

0
e−

R r
s

Ñ(τ)−1+(N−1)o1(p)
τ

dτ

[
p∗

up∗−1

θ
+ o2(p)

]
φ + o3(p)ds.

Here we can use the Gronwall inequality, recalling the convergence properties of
the functions oi, as p approaches p∗, to conclude that

lim
p→p∗

φ(r) = lim
p→p∗

φ′(r) = 0,

for all r > 0. This proves the differentiability of u(r, p) and u′(r, p) and that

∂u

∂p
= ϕ and

∂u′

∂p
= ϕ′ ∀r > 0.�

In the discussion to follow we will keep p = p∗ fixed. Then, for notational
convenience, we will write p instead of p∗. In the proof of Proposition 5.1 we will
come back to the regular notation.

Now we fix the constant γ > 0, the initial condition in (3.1)-(3.2), in such a
way that ẋ(T ) = 0 implies u(eT ) = 1. This is possible since a change in γ implies
time translation in the dynamical system. The next lemma provides two identities
that are very important in the sequel. These type of identities where introduced
in [26], for a related problem.
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Lemma 5.2 Let u(r, p) and ϕ(r) as above and r0 > 0. Then the following iden-
tities hold:

{e
R r

r0

Ñ−1
s

ds[(ru)′′ϕ− (ru)′ϕ′]}′ = e
R r

r0

Ñ−1
s

ds

θ
[(p− 3)upϕ + ru′up log u + up+1 log u],

(5.2)

{e
R r

r0

Ñ−1
s

ds(u′ϕ− uϕ′)}′ = e
R r

r0

Ñ−1
s

ds

θ
[(p− 1)upϕ + up+1 log u], (5.3)

for all r ∈ (0,∞) a.e.

Proof. The proof is obtained by a routine calculation, starting from the equations
satisfied by ϕ and u. We omit the details.�

The next lemma is a key step in our arguments.

Lemma 5.3 It is not possible to have simultaneously that

lim
r→∞

ϕ(r) = c1 ≤ 0 and lim
r→∞

rϕ′(r) = 0.

Proof. Since u is a fast decaying solution, using Lemma 4.2 we find that

lim
r→∞

e
R r

r0

Ñ−1
s

ds(u′ϕ− uϕ′) = (2−N∞)Cc1l, (5.4)

for C and l as in the lemma. On the other hand, using the equation for u we find

e
R r

r0

Ñ−1
s

ds[(ru)′′ϕ− (ru)′ϕ′] = e
R r

r0

Ñ−1
s

ds[((3− Ñ)u′ − rup

θ
)ϕ− (u + ru′)ϕ′].

Since we are assuming p > N∞/(N∞ − 2), from here and Lemma 4.2, we obtain

lim
r→∞

e
R r

r0

Ñ−1
s

ds[(ru)′′ϕ− (ru)′ϕ′] = (2−N∞)(3−N∞)Cc1l. (5.5)

Now we integrate identities (5.3) and (5.2) and use (5.4) and (5.5) to find

∫ ∞

0

e
R r

r0

Ñ−1
s

ds

θ
[(p− 1)upϕ + up+1 log u] = (2−N∞)Cc1l

and∫ ∞

0

e
R r

r0

Ñ−1
s

ds

θ
[(p− 3)upϕ + ru′up log u + up+1 log u] = (2−N∞)(3−N∞)Cc1l

We multiply the first integral by (p− 3)/(p− 1) and subtract the second get-
ting ∫ ∞

0

e
R r

r0

Ñ−1
s

ds

θ
[(αu + ru′)up log u] = (3−N∞ − p− 3

p− 1
)(2−N∞)Cc1l.(5.6)
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We notice that ẋ(t) = rα(αu + ru′), then αu + ru′ change the sign when
ẋ does. But we have chosen γ so that log u change sign when ẋ does. Thus
(αu+ru′)up log u > 0, for all r ≥ 0. On the other hand, since p > N∞/(N∞−2) we
have that the right-hand side in (5.6) is negative or zero, providing a contradiction.
�

Continuing with our analysis we define the function

w = wη(r) = rηu(r, p),

for η > 0 chosen so that η = (N∞ − 1)/2 if N∞ > 3 and η = (N∞ − 2)/2 if
2 < N∞ ≤ 3. This function was introduced by Erbe and Tang in [12], for a related
problem. The function w satisfies the equation

w′′ +
(Ñ − 1− 2η)

r
w′ +

η(η + 2− Ñ)
r2

w + rη up

θ
= 0. (5.7)

Next we define
y(r) = rηϕ.

When N∞ > 3, the function y satisfies the equation

y′′+
(Ñ −N∞)

2r
y′+(

(N∞ − 1)(3 + N∞ − 2Ñ)
4r2

+
pup−1

θ
)y + rη up

θ
log u = 0. (5.8)

Since u is a fast decaying solution we can use Lemma 4.2 to find that

lim
r→∞

r(N∞−2)(p−1)up−1(r) = Cp−1. (5.9)

But, since p > N∞/(N∞ − 2), we have that (N∞ − 2)(p − 1) > 2. Thus the
coefficient in the third term of (5.8) is negative for r large.

When 2 < N∞ ≤ 3, then y satisfies the equation

y′′+(Ñ−N∞+1)
y′

r
+(

(N∞ − 2)(N∞ + 2− 2Ñ)
4r2

+
pup−1

θ
)y+rη up

θ
log u = 0 (5.10)

Since, again we have (5.9), the coefficient of the third term in (5.10) is also negative
for r large.

Now we can prove the following lemma on the asymptotic behavior of y.

Lemma 5.4 The function y defined above satisfies y(r) > 0 for r large.

Proof. Suppose, for contradiction, that there exists a r̄ large such that y(r̄) < 0,
then we have the following two possibilities:

a) y(r) ≤ 0 for all r > r̄ or b) there exists r∗ > r̄ such that y(r∗) > 0.
In case a) we have that ϕ(r) < 0 for all r > r̄. From 5.1 and (5.3) we have

then that for r large, a.e.,

{e
R r

r0

Ñ−1
s

ds(u′ϕ− uϕ′)}′ < 0 and {e
R r

r0

Ñ−1
s

ds
ϕ′}′ > 0. (5.11)
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Again there are two possibilities:
i) There exists r̃ > r̄ such that u′(r̃)ϕ(r̃)− u(r̃)ϕ′(r̃) ≤ 0 or
ii) u′(r)ϕ(r)− u(r)ϕ′(r) > 0 for all r ≥ r̄.
If i) is true, from (5.11) we have u′(r)ϕ(r)− u(r)ϕ′(r) < 0 for all r > r̃, from

where it follows that the function u/ϕ is strictly decreasing for all r > r̃. Thus
there is a number c∞, possibly −∞, such that

lim
r→∞

u(r)rN∞−2

ϕ(r)rN∞−2
= c∞,

and then limr→∞ ϕrN∞−2 = C/c∞ ≤ 0, where C is given in Lemma 4.2. From

the fact that {e
R r

r0

Ñ−1
s

ds
ϕ′}′ > 0 for r large, then there is a positive constant c1,

possibly +∞, so that
lim

r→∞
ϕ′rN∞−1 = c1.

Hence by the L’Hopital’s rule we get

lim
r→∞

ϕ′rN∞−1 = (2−N∞) lim
r→∞

ϕrN∞−2 = (2−N∞)
C

c∞
.

From here we obtain that ϕ(r) → 0 and rϕ′(r) → 0 as r → ∞, contradicting
Lemma 5.3.

If ii) is true, we have

u′(r)ϕ(r)− u(r)ϕ′(r) > 0 for all r ≥ r̃. (5.12)

From (5.11) there exists c2 ∈ (−∞,+∞] such that limr→∞ ϕ′(r)rN∞−1 = c2.
In case c2 ≤ 0 we have ϕ′(r) < 0 for all r large, consequently there exists

c1 ∈ [−∞, 0) such that limr→∞ ϕ(r) = c1. We claim that c1 is finite. In fact, we
first observe that, since ϕ′(r)rN∞−1 = rN∞−2(rϕ′(r)) converges to a finite limit,
we have necessarily that limr→∞ rϕ′(r) = 0. Then from (5.11) and (5.12) we find
a finite constant c ≥ 0 such that

lim
r→∞

rN∞−1(u′(r)ϕ(r)− u(r)ϕ′(r)) = c, (5.13)

from where it follows that c1 is finite. Thus we get a contradiction with Lemma
5.3.

In case c2 > 0 then ϕ′(r) > 0 for all r large, so that there exists a constant
c1 ∈ (−∞, 0] such that limr→∞ ϕ(r) = c1.

Again we have (5.13) from where we find a non-negative constant c3 such that
limr→∞ rϕ′(r) = c3. If c3 > 0 then integrating this last limit we conclude that ϕ
is unbounded, which is impossible. Thus we again contradict Lemma 5.3.

In case b), we claim that y(r) > 0 for all r > r∗. In fact, the contrary would
imply that y has a local maximum point in r2 ∈ (r∗,∞). But from (5.8) or from
(5.10) we see that

(e
R r

r0

Ñ−N∞
2s

ds
y′)′ > 0 or (e

R r
r0

Ñ−N∞+1
2s

ds
y′)′ > 0,
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for all r near r2 a.e., respectively. But integrating these conditions, we see they
are incompatible with the fact that r2 is a local maximum point. �

Corollary 5.1 The function y defined above, satisfies y′(r) > 0 for r large.

Proof. From Lemma 4.5 we have y(r) > 0 for r large, so in the case N∞ > 3, by

(5.8) we see that {e
R r

r0

Ñ−N∞
2s

ds
y′}′(r) > 0.

Consequently e
R r

r0

Ñ−N∞
2s

ds
y′ is increasing, and then there exists L ∈ (−∞,+∞]

such that
lim

r→∞
y′(r) = L.

If L < ∞ we have

lim
r→∞

(
N∞ − 1

2
)r

N∞−3
2 ϕ(r) + r

N∞−1
2 ϕ′(r) = L.

Then ϕ(r) → 0 and rϕ′(r) → 0 as r →∞, but this contradicts Lemma 5.3. Hence
L = ∞ and then y′(r) > 0 for r large.

In the case 2 < N∞ ≤ 3, by (5.10) we have {e
R r

r0

Ñ−N∞+1
s

ds
y′}′(r) > 0. So a

similar argument as the before case can be use to get the conclusion. �

Now we are prepared for proving Proposition 5.1. From now on we come back
to our notation p∗ ∈ F .
Proof of Proposition 5.1. Let p∗ ∈ F and p < p∗ sufficiently close to p∗. Here,
and in what follows, we assume that u(0, p) = u(0, p∗) = γ, where γ was chosen
before. Suppose first that N∞ > 3. Let us define

w(r) = r(N∞−1)/2u(r, p), w∗(r) = r(N∞−1)/2u(r, p∗)

and v = w∗ − w. By the extremal condition u = u(r, p) satisfies

θ∗u
′′ + S(θ∗)

N − 1
r

u′ + up ≤ 0,

where θ∗ is the function associated to u(., p∗). Therefore v satisfies

v′′(r) +
(Ñ∗ −N∞)

2r
v′ + (

(N∞ − 1)(3 + N∞ − 2Ñ∗)
4r2

)v

+ r(N∞−1)/2 (u(r, p∗)p∗ − u(r, p)p)
θ∗

≥ 0. (5.14)

By the mean value theorem we have

u(r, p∗)p∗ − u(r, p)p = p∗(ξ(r))p∗−1(u(r, p∗)− u(r, p)) + u(r, p)p∗ − u(r, p)p, (5.15)

where
ξ(r) ∈ (min{(u(r, p∗), u(r, p)},max{(u(r, p∗), u(r, p)}).
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Next we use continuity of the solution of (3.1)-(3.2) with respect to the parameter
p and the fact that u′(r, p) < 0 for all r > 0, to find r̄ and ε > 0 such that
u(r, p) < 1, for all r ≥ r̄ and for all p ∈ (p∗ − ε, p∗). Then v satisfies

v′′ +
(Ñ∗ −N∞)

2r
v′ +

(
(N∞ − 1)(3 + N∞ − 2Ñ∗)

4r2
+

p∗(ξ(r))p∗−1

θ∗

)
v ≥ 0 (5.16)

Using (5.9) and that p > N∞/(N∞ − 2) we conclude the existence of r∗ such that

(N∞ − 1)(3 + N∞ − 2Ñ∗)
4r2

+
p∗(u(r, p∗))p∗−1

θ∗
< 0 for all r ≥ r∗. (5.17)

On the other hand, by Lemma 5.4 and Corollary 5.1, there exists r̃ such that
y(r̃) > 0 and y′(r̃) > 0, for r̃ > max{r∗, r̄}. Thus v(r̃) > 0 and v′(r̃) > 0 for a fix
p ∈ (p∗−ε, p∗) close to p∗. Suppose now by contradiction that p ∈ F ∪P ∪S, then
v(r) → 0 as r →∞ or v < 0 negative for r large. Thus v has a positive maximum,
let us say in r̂. Since v(r̂) > 0, we get u(r̂, p) < u(r̂, p∗), hence u(r̂, p∗) > ξ(r̂).
Thus, from (5.17) and (5.16) and the fact that r̂ is a maximum of v we get a
contradiction.

In case 2 < N∞ ≤ 3 we proceed slightly different. Define

w(r) = r(N∞−2)/2u(r, p), w∗(r) = r(N∞−2)/2u(r, p∗)

and v = w∗ − w. Then we use a similar argument and we get a contradiction
again.�
Proof of Proposition 5.2. Let us assume that p ∈ C ∪ F and p > p∗. We
will proceed similar to the previous proposition. This time v satisfies the reverse
inequality in (5.16) with Ñ and θ related to u(., p) in stead of Ñ∗ θ∗, for N∞ > 3.
Moreover, there exists r̃ large such that v(r̃) < 0 and v′(r̃) < 0. Then, the con-
tradiction comes from the fact that v must have a minimum. A similar argument
work for 2 < N∞ ≤ 3 .�

6 Proof of Main Theorems and examples

In this concluding section we prove Theorem 1.1 on the existence of a critical
exponent for maximal operators in the radial case. We will further discuss the
existence of pseudo-slow decaying solutions and a class of singular solutions for p
near the critical exponents. We give examples where these situations occurr. We
end the section with results for the equation associated to minimal operators, that
are in analogy with maximal operators.

Proof of Theorem 1.1 By Corollary 4.1 we only need to prove that F is a
singleton, which a consequence of Proposition 5.1 and 5.2. �
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Remark 6.1 If we further assume in Theorem 1.1 that p0 < p∞ then the critical
exponent p∗ satisfies the strict inequalities

max{ N∞
N∞ − 2

, p0} < p∗ < p∞. (6.1)

Proof of Theorem 1.2 . The proof is a direct consequence of our analysis for
the crossing solution. �

Remark 6.2 If the operator M in equation (1.12) is given by (1.8) then all so-
lutions of (1.12) are radially symmetric, as proved by Da Lio and Sirakov in [11],
using the moving planes technique, as developed in Serrin [32], Gidas, Ni and
Nirenberg [19] and, Berestycki and Nirenberg [2].

Next we discuss possible solutions of equation (1.5), for p near the critical ex-
ponent p∗. Besides the classification of solutions given in Section 4. that considers
only regular solutions, here we also allow singular solutions:

We say that a positive solution u of (1.5) is singular if

lim
r→∞

u(r) = 0 and lim
r→0

u(r) = ∞.

We may further classify the singular solutions according to a more precise
asymptotic behavior as seen in the statement of the following theorem. In order
to state this theorem let us consider the Emden-Fowler transformation of (1.5)
when p = p∗, the critical exponent. In our analysis, a crucial role is played by the
coefficient ã in equation (3.10), which is obtained as ã = Ñ − 2− 2α, where Ñ is
defined in (2.8). We are interested in the values that ã may take in a neighborhood
of the unique critical point (x∗, 0) = (x(p∗), 0) of (3.10), which is characterized by

f(x(p∗), 0) = 0.

If we consider the curve

xp∗

(N − 1)(y − α∗x)
= − (x∗)p∗−1

α∗(N − 1)
, (6.2)

where α∗ = 2/(p∗ − 1). We define

a∗− = lim
(x,y)→(x∗,0)−

ã(x, y) and a∗+ = lim
(x,y)→(x∗,0)+

ã(x, y),

where the first limit is taken from left of the curve (6.2) and the second limit is
taken from the right of curve (6.2). In general we have a∗− ≤ a∗+ and, depending
on the geometry of D we may have a strict inequality. Now we state our second
main theorem

28



Theorem 6.1 Assume N ≥ 2 and D satisfies condition D). Further assume that
N∞ > 2 and p0 < p∗ < p∞, where p∗ is given by Theorem 1.1.

Then we have the following two possibilities:
a) If a∗− > 0, then for p < p∗, p close to p∗, equation (1.5) possesses at least

four singular solutions ui, i = 1, ..., 4, such that u1(r) = cr−α,

c12 = lim inf
r→0,∞

rαu2(r) < lim sup
r→0,∞

rαu2(r) = c22,

lim
r→∞

rN∞−2u3(r) = cf and lim
r→∞

rαu4(r) = cs,

and, for i=3,4
c1i = lim inf

r→0
rαui(r) < lim sup

r→0
rαui(r) = c2i,

for certain positive constants c, cf , cs, c1i and c2i, where i = 2, 3, 4.
b) If a∗+ < 0 then for p > p∗, p close to p∗, equation (1.5) possesses at least

three singular solutions ui, i = 1, 2, 3, such that u1(r) = cr−α,

c12 = lim inf
r→0,∞

rαu2(r) < lim sup
r→0,∞

rαu2(r) = c22,

lim
r→0

rαu3(r) = cs and c13 = lim inf
r→∞

rαu3(r) < lim sup
r→∞

rαu3(r) = c23,

for certain positive constants c, cs, c1i and c2i, i = 2, 3. Moreover, the regular
solution u, whose behavior at infinity is like r−α has a pseudo-slow decay, that is

c1 = lim inf
r→∞

rαu(r) < lim sup
r→∞

rαu(r) = c2,

in other words p ∈ P.

Proof of Theorem 6.1 . a) Under the given hypothesis we claim that the critical
point P = (x(p), 0), characterized as f(x(p), 0) = 0, is stable. Let us assume the
claim for the moment. Since p < p∗ and p is close to p∗, we have that the solution
x0 such that

lim
t→−∞

(x0(t), ẋ0(t)) = (0, 0)

is a crossing solution. This implies that the orbit of the solution x∞ such that

lim
t→+∞

(x∞(t), ẋ∞(t)) = (0, 0), (6.3)

stays in the first and fourth quadrant bounded by the orbit of x0. Then, by the
stability of P and the Poincaré-Bendixon theorem, this orbit approaches a periodic
orbit. On the other hand, the orbit coming into P must wrap around a periodic
orbit (possibly different), as t → −∞. Using the Emden-Fowler back we obtain
the asymptotic behavior.
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Next we prove the claim. Under the assumption, there is a neighborhood V of
the critical point P such that ã > 0 in V , as follows by continuity (semi-continuity
of ã.)

Suppose by contradiction that P is not stable. Then there is an orbit leaving
the neighborhood V and we have several cases:

i) If the orbit spirals out, then there is x1 < x2 < x(p) such that the orbit goes
from (x2, 0) to (x1, 0) as t increases, staying all time in V . The orbit, together
with the segment from (x1, 0) to (x2, 0), describes a closed curve on which we may
use the integral argument as in Proposition 4.1, having in mind that ã is positive.
This case is so impossible.

ii) If the orbit goes out of P through the first quadrant, then at some t̄ the
orbit crosses the x-axis at a point (x̄, 0). We see then that for every x1 such
that x(p) < x1 < x̄ the orbit passing through (x1, 0) approaches P as t → −∞.
Choosing x1 close enough we see that the corresponding orbit stays inside V . The
orbit, together with the segment from (x1, 0) to P defines a closed curve where the
integral argument again can be applied.

iii) If the orbit leaves P through the fourth quadrant. Then it may happen that
it crosses the x-axis at a point (x̄, 0), x̄ ≥ 0. Then we may repeat the arguments
given above to get again an impossible. It may still happen that the orbit leave
the fourth quadrant through the negative y-axis. Then we see that the orbit of
x∞ must approach P as t → −∞. We repeat the argument given above again.

These three cases exhaust the possibilities, so that the claim is proved.
b) In this situation we argue similarly, but here the critical point is unstable.

�

In what follows we provide two examples where the situation described in the
theorem takes place.

Example 1. Suppose the set D is such that, for a certain e > 0, ∂S(θ0) =
(−∞, e] and N0/2 ≤ e(N −1) < N∞−1. Then condition a) of Theorem 6.1 holds.
Moreover, in this case the coefficient ã is positive in a neighborhood of the critical
point P = (x(p), 0) for all p such that max{N∞/(N∞ − 2), p0} < p < p∗ and
consequently the conclusions of Theorem 6.1 part a) holds for all such a p. This
follows by the fact that for all in such a range we have (p + 1)/((p− 1)(N − 1)) ∈
∂S(θ0), so the critical point P is always in the region where ã = a0. Notice that
when p = p0 then P is locally a center.

Example 2. Suppose that D is such that, for a certain e > 0, ∂S(θ∞) =
[e,+∞) and N∞/2 ≥ e(N−1). Then condition b) of Theorem 6.1 holds. Moreover,
in this case the coefficient ã is negative in a neighborhood of the critical point P
for all p such that p∗ < p < p∞ and consequently the conclusions of Theorem 6.1
part b) holds for all these p. This follows by the fact that for all p∗ < p < p∞
we have (p + 1)/((p − 1)(N − 1)) ∈ ∂S(θ∞), so the critical point is always in the
region where ã = a∞. Notice that when p = p∞. then P is locally a center.

In this case we also have that P is a center.
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Remark 6.3 In Theorem 6.1, it may occur that 0 ∈ [a∗−, a∗+]. In this situation
we do not know what behavior we have near the critical exponent.

We end this article by briefly discussing the case of a minimal operator. Given
a set D satisfying D) and a C2 radially symmetric function we define a minimal
operator on D2u as

M−(D2u) = inf
(a1,a2)∈D

(N − 1)
r

u′a1 + u′′a2. (6.4)

We are interested in the study of the nonlinear equation

M−(D2u) + up = 0, u > 0 in IRN . (6.5)

We proceed in analogy with the case of maximal operators. Here we are interested
in the right half of the set D, which is described by the function S̃, as mentioned
in Section 2. We define the extreme dimension numbers, which in this case appear
in reverse order. We consider the equations

∂S̃(θ−0 ) 3 − 1
N − 1

and ∂S̃(θ−∞) 3 S̃(θ−∞)
θ−∞

,

If the first equation has more than one solution, we consider θ−0 as the rightist one,
and if the second equation has more than one solution, we consider leftist one.
Then we define as usual

N−
0 = (N − 1)

S̃(θ−0 )
θ−0

+ 1 and N−
∞ = (N − 1)

S̃(θ−∞)
θ−∞

+ 1.

We notice that it this case N−
∞ ≥ N−

0 . For equation (6.5) we have the following

Theorem 6.2 Assume N ≥ 2 and D satisfies condition D). Then there are two
dimension like numbers 0 < N−

0 ≤ N−
∞, depending only on D and N , such that if

N−
∞ > 2 then there is a critical exponent p∗− such that

p−∞ ≤ p∗− ≤ p−0 , (6.6)

where

p−0 =
N−

0 + 2
N−

0 − 2
if N−

0 > 2, p−0 = ∞ if 0 < N−
0 ≤ 2, p−∞ =

N−
∞ + 2

N−
∞ − 2

,

and such that:
i) If 1 < p < p∗− then there is no radial solution to (6.5).
ii) If p = p∗− then there is a unique radial solution of (6.5) whose behavior at

infinity is like r−(N−∞−2).
iii) If p∗− < p then there is a unique radial solution to (6.5) whose behavior at

infinity is like r−α. In ii) and iii) uniqueness is meant up to scaling.

Remark 6.4 The proof of this theorem follows the lines of that of Theorem 1.1,
with some minor changes. In addition to this theorem, we may also state and
prove a result analogous to Theorem 6.1, for which we do not give details.

31



References

[1] A. Bensoussan, J.L. Lions. Applications of variational inequalities in stochas-
tic control. Translated from the French. Studies in Mathematics and its Ap-
plications, 12. North-Holland Publishing Co., Amsterdam-New York, 1982.

[2] H. Berestycki, L. Nirenberg. On the method of moving planes and the sliding
method, Boll. Soc. Brasil Mat. Nova ser. 22 (1991), 237-275.

[3] J. Busca, M. Esteban, A. Quaas. Nonlinear Eigenvalues and Bifurcation Prob-
lems for Pucci’s Operator. Ann. Inst. H. Poincaré Anal. Non Linéaire 22
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