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Abstract

In this article we study existence of boundary blow up solutions
for some fractional elliptic equations including

(−∆)αu+ up = f in Ω,
u = g on Ωc,

lim
x∈Ω,x→∂Ω

u(x) = ∞,

where Ω is a bounded domain of class C2, α ∈ (0, 1) and the functions
f : Ω → R and g : RN \ Ω̄ → R are continuous. We obtain existence
of a solution u when the boundary value g blows up at the boundary
and we get explosion rate for u under an additional assumption on the
rate of explosion of g. Our results are extended for an ample class of
elliptic fractional nonlinear operators of Isaacs type.
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1 Introduction

In the study of reaction diffusion equations, a well known problem is the
existence and asymptotic behavior of boundary blow up solutions. In its
simplest form, the problem is to find solutions of the equation

−∆u+ up = f in Ω, (1.1)

lim
x∈Ω,x→∂Ω

u(x) = ∞, (1.2)

where p > 1 and Ω is a smooth bounded domain. There is a vast literature
on this problem and its extensions in various directions, like more general
divergence form or even non-divergence form second order operators, gen-
eral non-linearities and the Keller-Osserman condition, and analysis of the
behavior of the solution near the boundary and uniqueness. Without being
exhaustive, we would like to mention the pioneering papers by Keller [16]
and Osserman [20] and the work by Bandle and Marcus [1], [2], Loewner and
Nirenberg [18], Kondrat’ev and V. Nikishkin [17], Diaz and Letelier [15], Diaz
and Diaz [12], Del Pino and Letelier [11], Marcus and Veron [19] and Esteban
Felmer and Quaas [10]. We refer the reader to the review by Rǎdulescu [21]
for a more complete account on the literature.

The simplest case presented in (1.1)-(1.2) has various interesting features,
like for example the existence of solutions regardless of the behavior of the
function f near the boundary. In fact, the strong absortion term represented
by the super-linear non-linearity allows to prove local estimates on the solu-
tion u that depend on the values of f locally, see for example [4], [15] and [10].
Another interesting characteristic is given by the fact that, even for f ≡ 0
boundary blow up solutions exists and they are unique. Finally we mention
that many questions on the existence, uniqueness and boundary behavior of
solutions may be addressed using appropriate super and sub-solutions and
the comparison principle.

During the last years there has been a renewed and increasing interest in
the study of linear and nonlinear integral operators, including the fractional
laplacian, motivated by many applications and by important advances on
the theory of nonlinear partial differential equations. In this line, one is
interested in understanding the structure of the solution set of equations
involving these fractional operators in some simple situations. This is the
case of the existence of boundary blow up solutions to (1.1) -(1.2) with the
fractional laplacian instead of the laplacian.

It is the purpose of this article to formulate and study existence and
asymptotic behavior of boundary blow up solutions, also called large solu-
tions, for equations involving the fractional laplacian and other more general
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integral operators. We consider the boundary value problem

(−∆)αu+ up = f in Ω, (1.3)

u = g on Ω̄c, (1.4)

lim
x∈Ω,x→∂Ω

u(x) = ∞, (1.5)

where we assume that Ω is a bounded domain of class C2, α ∈ (0, 1) and the
functions f : Ω → R and g : Ω̄c → R are continuous. We readily observe
that in this non-local setting, the prescribed values of the solution outside
the domain Ω will definitely play a role. Another simple observation at this
early stage is that the explosive solution, and the external values g, cannot
have an arbitrary behavior near the boundary if the fractional laplacian is
going to be well defined.

In order to state our main theorems in precise terms, we describe first our
assumptions on the functions f and g. On the external values or boundary
values g, we assume:

(G0) For each open set O containing Ω̄, the function g : Ω̄c → R has a global
modulus of continuity in Oc.

(G1) The function g explodes at the boundary:

lim
x 6∈Ω,x→∂Ω

g(x) =∞. (1.6)

(G2) The explosion of g at the boundary is controlled by:

lim sup
x6∈Ω,x→∂Ω

g(x) dist(x, ∂Ω)
2α
p−1 <∞. (1.7)

(G3) For certain R > 0 such that Ω̄ ⊂ B(0, R), we have∫
RN\B(0,R)

|g(y)|
|y|N+2α

dy <∞. (1.8)

On the function f , the forcing term, we assume:

(F0) f : Ω→ R is a continuous function.

(F1) The behavior of f near the boundary is controlled by

lim sup
x∈Ω,x→∂Ω

f(x)dist(x, ∂Ω)
2αp
p−1 <∞. (1.9)
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(F2) There is m ∈ R such that

f(x) ≥ m ∀x ∈ Ω.

Now we state our existence theorem:

Theorem 1.1 Assume that Ω is a bounded domain of class C2 and

0 < α < 1, p > 2α + 1. (1.10)

Further we assume that the functions f : Ω → R and g : Ω̄c → R satisfy
[G0]-[G3] and [F0]-[F2], respectively. Then there is at least one solution u of
equation (1.3)-(1.5) and there is a constant c > 0 such that u satisfies

u(x) dist(x, ∂Ω)
2α
p−1 ≤ c, ∀x ∈ Ω. (1.11)

We observe that the exponent p has to satisfy condition (1.10), which does
not appear in the second order case, where p > 1 is only required. This
condition in p is needed so that the solution is integrable near the boundary
and the fractional laplacian is well defined. Therefore, we believe that the
condition p > 2α + 1 is not optimal and to avoid it an other notion of
solution needs to be define since our notion of viscosity solution (see below)
needs integrability.

We notice that the explosion of the solution is driven by the boundary
values g, since the forcing term f is not necessarily explosive. One may expect
that blow up solution driven by f exists, when g is bounded for example,
however it is not obvious how to prove it.

We have preferred to state our main theorems for the fractional laplacian
since the results are new even in this case. In Section §4 and §5 we state
and prove more general versions of our theorems including more general non-
linear fractional operators, see Theorem 4.1 and Theorem 5.1.

In Theorem 1.1 we consider the equation is satisfied in the viscosity sense.
However, since f , g and the solution u itself are unbounded we need to
make some precisions in Section §2. Naturally, this linear problem could
be approached using other notions of solutions, but we prefer the viscosity
framework in order to include in our results more general elliptic fractional
operators. We do not discuss regularity properties of the solutions, but we
expect the known regularity results for bounded solutions with continuous
bounded data could be applied with small changes, see [5], [6] and [22]. In
particular when f is further assumed to be Hölder continuous, we expect the
solutions are of class C2α,γ for some γ > 0, see [7] and [22].

In our second theorem we consider the asymptotic behavior of the blow
up solutions of (1.3)-(1.5). For this purpose we need a new hypothesis on the
behavior of g near the boundary
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(G4) There are constants c > 0 and β ∈ [−2α/(p− 1), 0) such that

lim inf
x 6∈Ω,x→∂Ω

g(x) dist(x, ∂Ω)−β > c > 0. (1.12)

Then we have our second main result:

Theorem 1.2 Assuming u is a solution of the equation (1.3)-(1.5), that the
function g satisfies (G0), (G1) and (G4) and that f satisfies (F0) and (F1).
Then the solution u satisfies

u(x) ≥ cdist(x, ∂Ω)β, for all x ∈ Aδ, (1.13)

where c > 0 and δ > 0 are constants and Aδ = {y ∈ Ω / d(y, ∂Ω) < δ}.

Theorems 1.2 can also be proved for much more general fractional elliptic
operators as we see in Section §5. Regarding estimate (1.13), we observe
that if β = −2α/(p− 1) then the solution u satisfies

c ≤ u(x)dist(x, ∂Ω)2α/(p−1) ≤ C, for all x ∈ Aδ,

for some constant 0 < c ≤ C. Thus, we have found the exact rate of explosion
for the solution u, which is the first step in a more careful analysis of the
asymptotic behavior of u, where one would like to prove that c = C. In case
one can prove this, that is, that

lim
x→∂Ω

u(x)dist(x, ∂Ω)2α/(p−1)

exists, then the uniqueness question is in order, as in the second order case.
Even though we use the classical super and sub-solution approach to prove

our main theorems, the novelty resides on the estimates needed to find these
super and sub-solutions and the formulation of the problem itself. We use
different function involving powers of the distance function d(x) = d(x, ∂Ω) in
the construction of super and sub-solutions and barrier functions. The point
is that even though the computation may be difficult, near the boundary we
can obtain effective estimates. In this respect, regarding the nonlinearity we
recall that in the second order case, functions satisfying the Keller-Osserman
may replace the power function up in the limiting case p = 1. In our problem
a similar limiting case occurs at p = 2α+ 1 and certainly we would expect a
Keller-Osserman condition here, however it is not obvious how does it look
like and how super and sub-solutions could be obtained.

This article is organized as follows. In Section §2 we present some prelim-
inaries defining the class of operators to which our results apply, extending
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the notion of viscosity solutions, comparison and stability theorems to un-
bounded data on the boundary and blow up solutions. Section §3 is devoted
to the existence theorems for the non-linear problem with linear and power
first order term and bounded data. In Section §4 we state and prove a more
general version of Theorem 1.1 for more general fractional operators. For this
purpose we construct an appropriate super-solution and use the comparison
theorem. In Section §5 we state and prove a more general version of Theo-
rem 1.2. We construct an appropriate sub-solution and use the comparison
theorem.

2 Preliminaries

We start this section defining the class of operators we consider in our article.
Let K : RN → R be a positive even function satisfying

λ

|y|N+2α
≤ K(y) ≤ Λ

|y|N+2α
, (2.1)

where N ≥ 2, Λ ≥ λ > 0 and α ∈ (0, 1). For such a K and for a suitable
function u we define the linear operator LK(u) as

LK(u)(x) =

∫
RN
δL(u, x, y)K(y)dy, x ∈ RN ,

where δL(u, x, y) = u(x+ y) + u(x− y)− 2u(x). If we denote by L0 the class
of all these linear operators then we define the operators

M+u(x) = sup
L∈L0

L(u)(x) and M−u(x) = inf
L∈L0

L(u)(x),

the maximal and the minimal operator for the class L0, respectively. We
remark that L0,M+ andM+ depend on the parameters Λ, λ and α, but we
make that explicit to not overcharge the notation.

In this paper we consider more general operators defined as

F(u) = inf
a∈A

sup
b∈B

LKa,b(u),

where A, B are index sets and for each a ∈ A and b ∈ B the function Ka,b

satisfies (2.1). We denote by E the class of all these operators. In what follow
we briefly review some basic definitions and comparison theorems for integral
operators F ∈ E . Before doing that we have a preliminary lemma needed to
consider unbounded solutions in the viscosity sense.

We consider the function W (x) = cdβ(x, ∂Ω), for c > 0 and β > −1.

6



Lemma 2.1 When Ω is of class C2 and β > −1, the function W is integrable
in any open bounded set containing ∂Ω.

Proof. We introduce a parametrization of the region near the boundary
∂Ω. Since the boundary of Ω is of class C2, for every x̄ ∈ ∂Ω there is a
diffeomorphism

ϕ : [−1, 1]×B1 → B(x̄),

where B1 = {z ∈ RN−1 / |z| ≤ 1} and B(x̄) is such that ϕ((0, 1] × B1) :=
B+(x̄) ⊂ Ω, ϕ([0, 1] × B1) = Ω̄ ∩ B(x̄) and ϕ({0} × B1) = ∂Ω ∩ B(x̄). We
write ϕ([−1, 0) × B1) = B−(x̄) ⊂ RN \ Ω and B(x̄) = B̄+(x̄) ∪ B̄−(x̄). The
function ϕ further satisfies ϕ(0, 0) = x̄ and

s = sign(s) dist(ϕ(s, z), ∂Ω), ∀(s, z) ∈ [−1, 1]×B1,

where sign(s) = 1 if s ≥ 0 and sign(s) = −1 if s < 0. Moreover, there are
constants 0 < c ≤ C such that, for all (s, z) ∈ [−1, 0) ∪ (0, 1]×B1

c ≤ |Dϕ(s, z)| ≤ C, c ≤ |ϕ(s, z)|
|(s, z)|

≤ C (2.2)

and
|Dϕ(s, z)w| ≥ c|w|, ∀w ∈ RN . (2.3)

We observe that the diffeomorphism ϕ can be extended to an open set con-
taining [0, 1]×B1 and that, even though ϕ depends on x̄ ∈ ∂Ω the constants
c, C are independent of x̄, by compactness of the boundary of ∂Ω. Moreover,
there is δ > 0 so that the annulus {x ∈ RN / d(x, ∂Ω) < δ} ⊂

⋃
x̄∈∂Ω B(x̄).

Now, for every x̄ ∈ ∂Ω, we use (2.2) to find that∫
B(x̄)

W (x)dx ≤ c

∫
[−1,1]×B1

sβdsdz <∞,

since β + 1 > 0. We may cover ∂Ω by a finite number of sets of the form
B(x̄) and then it is clear then, that for every bounded, open set O such that
∂Ω ⊂ O, we have ∫

O

W (x)dx <∞,

completing the proof. �

In what follows we recall and extend the definition of viscosity solution,
comparison theorem and stability properties for unbounded functions. We
first define the notion of solution for the equation

F(u) + h(u) = f(x) in Ω, (2.4)

u = g in Ω̄c, (2.5)
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when F ∈ E , h : R→ R, f : Ω→ R and g : Ω̄c → R are continuous, bounded
from below and g satisfies (G2)-(G3).

Definition 2.1 We say that a function u : (∂Ω)c → IR is W -admissible
if u is continuous, bounded from below, it satisfies (G3) and there exists a
bounded open set O containing ∂Ω such that

u(x) ≤ W (x) ∀x ∈ O.

We have the following corollary of Lemma 2.1

Corollary 2.1 If K satisfies (2.1) then, for every W -admissible function u,
x ∈ Ω and ε < d(x, ∂Ω), the integral∫

B(0,ε)c
(u(x+ y) + u(x− y)− 2u(x))K(y)dy

is well defined.

We define the notion of viscosity solution in this setting.

Definition 2.2 A W -admissible function u is a viscosity super-solution (sub-
solution) of (2.4)-(2.5) if

u ≥ g (resp. u ≤ g) in Ω̄c

and for every point x0 ∈ Ω and any neighborhood V of x0 with V̄ ⊂ Ω and
for any ϕ ∈ C2(V̄ ) such that u(x0) = ϕ(x0) and

u(x) > ϕ(x) (resp. u(x) < ϕ(x)) for all x ∈ V \ {x0}

the function v defined by

v(x) = u(x) if x ∈ RN \ V and v(x) = ϕ(x) if x ∈ V

satisfies

F(v)(x0) + h(v(x0)) ≤ f(x0) (resp. F(v)(x0) + h(v(x0)) ≥ f(x0)).

Remark 2.1 As in the usual definition, we may consider inequality instead
of strict inequality

u(x) ≥ ϕ(x) for all x ∈ V \ {x0},

and ’in some neighborhood V of x0’ instead of ’in all neighborhoods’.
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Next we prove a stability theorem that applies to unbounded solutions.

Theorem 2.1 Assume that {un} is a sequence of W -admissible functions,
bounded bellow, satisfying (G3) uniformly and such that un → u uniformly in
any open set O such that O ∩ ∂Ω = ∅. Assume further {fn} is a sequence of
continuous functions in Ω converging to the continuous function f uniformly
on every compact subset of Ω. Then, if all un are super-solutions (resp.
sub-solutions) of (2.4)-(2.5) with fn then u is a super-solutions (resp. sub-
solutions) of (2.4)-(2.5) with f .

Proof. The proof goes as in the usual case, just noticing that the integrals
used to evaluate the operator F in the test functions v are convergent (see
Definition 2.2). �

Next we prove a comparison theorem for unbounded solutions.

Theorem 2.2 Assume u and v are super-solution and sub-solutions of (2.4)-
(2.5) with an increasing h. Assume further that u is of class C2 in (∂Ω)c,
v can be extended continuously to RN . Then u ≥ v in Ω. In the case u is
bounded and not C2 in (∂Ω)c the result also holds.

Proof. Since u is of class C2 in (∂Ω)c, we only need to care on the fact that
u may be unbounded. We first see that from our hypotheses u− v satisfies

−M−(u− v) ≥ −(h(u)− h(v)) in Ω. (2.6)

Under our assumptions u− v has a global minimun in Ω achieved at x0 ∈ Ω.
Let Ω− = {x ∈ RN / u(x) − v(x) < 0} and observe that x0 ∈ Ω−, Ω̄− ⊂ Ω
and u(x)− v(x) ≥ 0 for all x ∈ Ωc

−. We see that then

−M−(u− v) ≥ 0 in Ω−

and we can argue as in Lemma 5.10 in [5] to conclude that in fact u(x) −
v(x) ≥ 0 in Ω−, providing a contradiction.

In the case u is only bounded by Lemma 5.8 of [5] we find (2.6). Then
we argue in the same way. �

Lemma 2.1 Let u1 and u2 be super-solutions of

−F(u) + h(u) = f, (2.7)

u1 in Aδ and u2 in Ω, respectively. Suppose further that u1(x) > u2(x) for
x ∈ ∂Aδ \ ∂Ω, then the function

W̄ (x) =

{
u2(x) if x ∈ Ω \ Aδ
min{u2(x), u1(x)} if x ∈ (Ω \ Aδ)c,

(2.8)

is a super-solution of (2.7) in Ω. The analogous results holds for sub-solution.
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Proof. Let ϕ be a test function for W̄ at x0 ∈ Ω, then ϕ(x0) = W̄ (x0) and
ϕ < W̄ in V \ {x0}. Suppose first that V̄ ⊂ Aδ and W̄ (x0) = u1(x0), then
ϕ < u1 in V \ {x0}. Thus, if we define

v1(x) = u1(x) if x ∈ RN \ V and v1(x) = ϕ(x) if x ∈ V

then, since u1 is a super-solution, v1 satisfies

−F(v1)(x0) + h(v1(x0)) ≥ f(x0).

Then we conclude that v defined as

v(x) = W̄ (x) if x ∈ RN \ V and v(x) = ϕ(x) if x ∈ V

satisfies
−F(v)(x0) + h(v(x0)) ≥ f(x0),

that is W̄ is a super-solution. In case W̄ (x0) = u2(x0), the same argument
proves that W̄ is a super-solution. We are only left with the case x0 ∈ Ω\Aδ.
Using u1 > u2 in ∂Aδ \ ∂Ω we find W̄ (x0) = u2(x0), then we can use the
same argument again to get that W̄ is a super-solution.�

3 The Dirichlet problem.

In this section we study the existence of solutions for the Dirichlet problem for
equations involving F ∈ E , both in the homogeneous and nonlinear case. In
the homogeneous case, including a linear zero order term, an existence result
is proved by Barles, Chasseigne and Imbert in [3] using and indirect method
based on an existence result in RN . Here we provide a direct approach that
relies on Perron’s method together with appropriate barrier functions similar
to those used in the case of local operators (see, for example, Section 3 in
[9]).

In this section we consider bounded external values g. We assume

(G̃0) g : Ωc → RN is bounded and has a global modulus of continuity in Ωc.

Our first theorem of this section is

Theorem 3.1 Suppose g satisfies (G̃0), f is continuous in Ω̄ and C ≥ 0.
Then there exists a viscosity solution of

−F(u) + Cu = f in Ω,

u = g on Ωc.
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Before the proof we give some preliminary lemmas.

Lemma 3.1 Under the hypothesis of Theorem 3.1 there exist a super and
sub-solution of

−F(w) + Cw = f in Ω, (3.1)

with w = 0 in Ωc.

From now on we denote by d(x) the distance of x to ∂Ω, that is,

d(x) := dist(x, ∂Ω), x ∈ Ω.

Here we will always assume that δ > 0 is small enough so that d(x) is well
defined and C2 in Aδ. Then we define our barrier function as follows

ξ(x) =

 d(x)β if x ∈ Aδ
`(x) if x ∈ Ω \ Aδ
0 if x ∈ Ωc,

(3.2)

for β > 0 and a function ` such that ξ is positive and C2 in Ω. We prove:

Lemma 3.2 There exist δ > 0, β ∈ (0, 2α) and C > 0 such that

M+(ξ) ≤ −Cd(x)β−2α in Aδ.

Proof. We first prove the result for linear operators. In all the proof we
assume x ∈ Aδ. We first see that there is a constant cδ such that

LBcξ(x) =

∫
Bc(0,δ)

|ξ(x+ y) + ξ(x− y)− 2ξ(x))|K(y)dy ≤ cδ. (3.3)

Then we need to estimate the integral over B(0, δ). We write

LBξ(x) =

∫
B(0,δ)

(ξ(x+ y) + ξ(x− y)− 2ξ(x))K(y)dy

= A(x) +B+(x) +B−(x) + I(x), (3.4)

where

A(x) =

∫
DA

− 2dβ(x)K(y)dy < 0, (3.5)

B±(x) =

∫
DB

(dβ(x± y)− 2dβ(x))K(y)dy (3.6)

and

I(x) =

∫
DI

(dβ(x+ y) + dβ(x− y)− 2dβ(x))K(y)dy (3.7)
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with the domains of integration given by

DA = {y ∈ B(0, δ) / x+ y 6∈ Ω and x− y 6∈ Ω}, (3.8)

DB± = {y ∈ B(0, δ) / x± y ∈ Ω and x∓ y 6∈ Ω} and (3.9)

DI = {y ∈ B(0, δ) / x+ y ∈ Ω and x− y ∈ Ω}. (3.10)

For notational convenience we write d = d(x), whenever no confusion arises.
We observe that for µ > 0

µdist(x, ∂Ω) = dist(µx, µ∂Ω). (3.11)

We estimate B+(x) (B−(x) is analogous). With a change of variable we find

B+(x) = dβ−2α

∫
d−1DB+

(dist(d−1x+ y, d−1∂Ω)β − 2)Kd(y)dy = dβ−2αC(x),

where Kd = dN+2αK(yd). Now we write

d−1DB+ = (d−1DB+ ∩B(0, R)) ∪ (d−1DB+ ∩B(0, R)c) := B1,R ∪B2,R

and find that there exists a positive constant C0 such that, for all R large∫
B1,R

Kd(y)dy ≥ C0.

On the other hand, we find that for < β ≤ β0 < 2α we have

dist(d−1x+ y, d−1∂Ω)β − 2 ≤ |y|β0 .

Therefore if R is large∫
B2,R

(dist(d−1x+ y, d−1∂Ω)β − 2)Kd(y)dy ≤ C0

2

independent of β. To conclude, we see that for fixed R we have

lim
β→0

∫
B1,R

(dist(d−1x+ y, d−1∂Ω)β − 2)Kd(y)dy = −
∫
B1,R

Kd(y)dy ≤ −C0,

from where we see that C(x) ≤ −C0

4
for all β small.

Now we estimate I(x). For that purpose we observe that

δL(ξ, x, y) =

∫ 1

0

∫ 1

−1

N∑
i,j=1

∂2ξ

∂xi∂xj
(x+ sty)tyiyjdsdt, (3.12)
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Using the definition of ξ we find that

∂2ξ

∂xi∂xj
(w) = β(β − 1)d(w)β−2Aij(w), (3.13)

where

Aij(w) =
∂d

∂xi
(w)

∂d

∂xj
(w) +

d(w)

β − 1

∂2d

∂xi∂xj
(w). (3.14)

We observe that for δ small we have δL(ξ, x, y) ≤ 0 in DI . Moreover, for
y ∈ B(0, d/2), s ∈ [0, 1], t ∈ [−1, 1] and w = x + sty we have that Aij(w) is
bounded and d/2 ≤ d(w) ≤ 3d/2. Thus, from (3.12)-(3.14), we find that

δL(ξ, x, y) ≤ −cd(x)β−2|y|2. (3.15)

From here we obtain

I(x) ≤
∫
B(0,d/2)

δL(ξ, x, y)K(y)dy ≤ −cdβ−2

∫
B(0,d/2)

|y|2

|y|N+2α
dy

≤ −cdβ−2α

∫
B(0,1/2)

|y|−N−2α+2dy

≤ −Cdβ−2α. (3.16)

We finally conclude that there exists C1 > 0 such that

Lξ(x) ≤ d(x)β−2α(−C + d(x)2α+βcδ) ≤ −C1d(x)β−2α in Aδ.

To finish the proof we observe that C1 depends on K only through λ and Λ,
so we can take the supremum over all linear operators in L0 to conclude.�

Proof of Lemma 3.1. Choose a point x0 ∈ Ωc such that 1 < d(x0) and
take r1 and R such that 1 < r1 < d(x0) < R and Ω̄ ⊂ {r1 < |x − x0| < R}
Let ε > 0 and σ ∈ (−N,−N + η), with η small, and define the function

w(r) =

{
εσ if 0 < r ≤ ε,
rσ if ε ≤ r.

We see from the proof of Lemma 4.1 in [13] that for ε small there exists c > 0
such that M−(w(|x − x0|)) ≥ c|x − x0|σ−2α for all r1 < |x − x0| < R. Next
we define G(x) = rσ0 − w(|x − x0|) and observe that if r0 is small G > 0 in
Ω̄ and using that M+(−w) = −M−(w) we find M−(G(x)) ≤ −c in Ω, for
some other positive constant c. From here, defining u2 = aG and taking a
large, we find

−F(u2) + Cu2 ≥ f in Ω.
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On the other hand, defining u1 = bξ and taking b large, we find from Lemma
3.2 that

−F(u1) + Cu1 ≥ f in Aδ,

and u1 > u2 in ∂Aδ \ ∂Ω. Thus, from Lemma 2.1 we get that W̄ defined
in (2.8) is a super-solution of (3.1). The sub-solution can be constructed
similarly by changing the sing of u1 and u2.

Proof of Theorem 3.1. Let {gn} be a sequence of smooth functions, with
a common modulus of continuity with g in Ωc and so that gn → g uniformly
in Ωc. Since Ω is of class C2 we may assume that gn is of class C2(RN).
Using the sub and super-solution given in Lemma 3.1 and Theorem 2.2 we
can apply Perron’s Method (see [14]) to find v1 and v2 satisfying

−M+(v1) + Cv1 = f +M+(gn)− Cgn in Ω, (3.17)

v1 = 0 on Ωc (3.18)

and

−M−(v2) + Cv2 = f +M−(gn)− Cgn in Ω, (3.19)

v2 = 0 on Ωc. (3.20)

Now we define ūn = v1 + gn, un = v2 + gn and we use that

F(ūn) ≤M+(ūn) ≤M+(v1) +M+(gn)

and
F(un) ≥M−(un) ≥M−(v2) +M−(gn)

to find that un and ūn are sub and super-solution of (3.1) with u = gn on Ωc,
respectively. Therefore using again Perron’s Method we find a solution un of
(3.1) with u = gn on Ωc.

Using the regularity results of [6] (see Theorem 3.3), which also holds for a
C2 domain, we obtain uniform Hölder regularity for un, hence equicontinuity.
Thus, the Arzela-Ascoli Theorem provides a subsequence such that un → u
in Cγ(Ω̄), γ > 0. Finally, by stability property (Corollary 4.7 in [5]), we get
that u is a solution of (3.1) with u = 0 on Ωc.�

We conclude this section studying the existence of a solution to{
−F(u) + up = f in Ω,

u = g on Ωc,
(3.21)

for p > 1. We have
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Theorem 3.2 Suppose g satisfies (G̃0) and f is a bounded continuous func-
tion defined on Ω. Then there exists a viscosity solution of (3.21).

Proof. We observe first that there exist a large constant M > 0 such that
−Mp ≤ f(x) ≤Mp for all x ∈ Ω and −M ≤ g(x) ≤M for all x ∈ Ωc. Hence,
−M and M are sub-solution and a super-solution of (3.21), respectively.

Then we define v0 = −M and we use Theorem 3.1 to define iteratively
the sequence of functions vn so that{

−F(vn+1) + Cvn+1 = f + Cvn − vpn in Ω,
vn+1 = g on Ωc.

(3.22)

Here C is a positive constant so that the function r(t) = Ct− tp is increasing
in the interval [−M,M ]. FromTheorem 2.2 we see that

−M ≤ vn ≤ vn+1 ≤M in Ω ∀n ∈ N.

Now we use the regularity results of [6] to get equicontinuity of vn in Ω̄. Then
by the Arzela-Ascoli Theorem there exists a subsequence such that vn → v
in Cγ(Ω̄). Finally, by stability properties (see Corollary 4.7 in [5]) we get
that v is a solution of (3.21).�

4 Construction of a super-solution and proof

of Theorem 1.1 and generalization.

In this section we prove our main Theorem 1.1 on the existence of solutions for
our equation (1.3)-(1.5). Actually, our method of proof allows the treatment
of a large class of problems including some Isaacs type integral operators.
Let F ∈ E and consider the equation

−F(u) + up = f in Ω, (4.1)

u = g on RN \ Ω, (4.2)

lim
x∈Ω,x→∂Ω

u(x) = ∞. (4.3)

We will prove the following theorem

Theorem 4.1 Assume that Ω is a bounded domain of class C2 and α sat-
isfies (1.10). Further assume that the functions f : Ω → R and g : Ω̄c → R
satisfy [G0]-[G3] and [F0]-[F2], respectively. Then there is at least one solu-
tion u of equation (4.1)-(4.3) that satisfies

u(x) dist(x, ∂Ω)
2α
p−1 ≤ c, ∀x ∈ Ω, (4.4)

for certain constant c > 0.
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The idea of the proof is to solve the corresponding equation with bounded
data. Then, by using an appropriate super-solution, the solution is obtained
as a limit. The super-solution we consider is just a power of the distance to
the boundary of Ω. Given β < 0 and δ > 0 small, we define the function

ξ(x) =

 d(x)β if x ∈ Aδ
`(x) if x ∈ Ω \ Aδ
g(x) if x ∈ Ωc,

(4.5)

where ` is such that ξ is of class C2 and positive in Ω. In this section we are
only interested in the case β = − 2α

(p−1)
, but we prefer to consider a general

β < 0 in order to use pieces of the proof in the following section. We start
analyzing ξ in the case of linear operators.

Proposition 4.1 Assume that β < 0, g satisfies (G0)-(G3) and L ∈ L0,
then the function G : Ω→ R defined as

G(x) = ξ−β+2α(x)Lξ(x), x ∈ Ω, (4.6)

is bounded above, that is, the exists C ∈ R such that G(x) ≤ C for all x ∈ Ω.
Notice that when β = − 2α

(p−1)
we have p = β − 2α.

Proof. We notice that Lξ(x) is a bounded function in Ω \ Aδ, so we only
need to consider x ∈ Aδ. Next we observe that for certain constant cδ > 0

LBcξ(x) =

∫
B(0,δ)c

(ξ(x+ y) + ξ(x− y)− 2ξ(x))K(y)dy ≤ cδd(x)β, (4.7)

so we only need to analyze LBξ(x), the integral over B(0, δ). We see that

LBξ(x) = A+(x) + A−(x) +B+(x) +B−(x) + I(x), x ∈ Aδ, (4.8)

where

A±(x) =

∫
DA±

(g(x± y)− ξ(x))K(y)dy, (4.9)

B±(x) =

∫
DB±

(ξ(x± y)− ξ(x))K(y)dy (4.10)

and

I(x) =

∫
DI

(ξ(x+ y) + ξ(x− y)− 2ξ(x))K(y)dy, (4.11)

where DB± , DI are defined in (3.9) and (3.10) and

DA± = {y ∈ B(0, δ) / x± y 6∈ Ω}.
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In what follows we study each of these integrals in detail, starting the analysis
with A+(x) (A−(x) is similar). Since DA− ∩B(0) = ∅ we obtain that∫

DA−

K(y)dy ≤ Λ

∫
B(0,d)c

dy

|y|N+2α

≤ Λd−2α

∫
B(0,1)c

dy

|y|N+2α
≤ cd−2α, (4.12)

where we used that d−1DA− ⊂ B(0, 1)c. To continue we use hypothesis (G2)
and decrease δ > 0, if necessary, to have

g(w) ≤ cdist(w, ∂Ω)β, w ∈ B(x, δ), x ∈ Aδ. (4.13)

Since d = dist(x, ∂Ω) ≤ dist(x + y, ∂Ω) for all y ∈ DA− , using (4.12) and
(4.13), we find that ∫

DA−

g(x+ y)K(y)dy ≤ cΛdβ−2α. (4.14)

From (4.12) and (4.14) we get the desired inequality for A+(x).
We continue with the analysis of B+(x) (B−(x) is similar). We first

observe that if x− y 6∈ Ω then |y| > d > d/2 and we have

|B+(x)| ≤ Λ

∫
δ>|w−x|≥d/2

|ξ(w)− ξ(x)|
|w − x|N+2α

dw. (4.15)

Since x ∈ Aδ there is a unique x̄ ∈ ∂Ω such that d = |x − x̄| and we can
use the change of variable ϕ defined in Section §2. We may assume that
B(x, δ) ⊂ B(x̄) and then, for (s, z) ∈ [0, 1] × B1 such that w = ϕ(s, z) we
have

d/2 ≤ |w − x| ≤ c|(s− d, z)|.

Consequently, using (2.2), (2.3) and changing variables with ϕ we obtain

|B+(x)| ≤ cΛ

∫
[0,1]×B1∩

{|(s−d,z)|≥d/2c}

|sβ − dβ|
|(s− d, z)|N+2α

dsdz

≤ cΛdβ−2α

∫
[0,d−1]×B

d−1∩
{|(s−1,z)|≥1/2c}

|sβ − 1|
|(s− 1, z)|N+2α

dsdz

≤ Cdβ−2α, (4.16)

where the last integral is bounded, since the singularity has been removed
and p > 2α + 1. From here we obtain the desired inequality for B+(x).
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We finally study the integral I(x). We will consider separately the integral
over B(0, d/2) and DI \B(0, d/2). We first see that

|
∫
DI∩B(0,d/2)c

(ξ(x+ y)− ξ(x))K(y)dy|

= |
∫
DI∩B(0,d/2)c

(ξ(x− y)− ξ(x))K(y)dy| (4.17)

≤ Λ

∫
δ>|w−x|≥d/2

|ξ(w)− ξ(x)|
|w − x|N+2α

dw,

where this last integral was estimated above in (4.15) and (4.16). Next we
look at the integral over B(0, d/2). Recalling (3.12)-(3.14) we see that, for
y ∈ B(0, d/2), s ∈ [0, 1], t ∈ [−1, 1] and w = x+ sty

d/2 ≤ d(w) ≤ 3d/2 and Aij(w) ≤ C,

for some constant C. Thus, from (3.12)-(3.14), we find that

|δL(ξ, x, y)| ≤ cd(x)β−2|y|2 (4.18)

and we conclude as in (3.16) that

|
∫
B(0,d/2)

δ(ξ, x, y)K(y)dy| ≤ Cdβ−2α, (4.19)

completing the estimate of I(x) as required. �

As a direct consequence we have

Corollary 4.1 Under the hypothesis of Proposition 4.1, assuming that β =
−2α/(p− 1) and F ∈ E we have

F(ξ(x)) = ξp(x)G(x), x ∈ Ω,

with the function G bounded from above over Ω.

Corollary 4.2 Under the hypothesis of Proposition 4.1, β = −2α/(p − 1),
F ∈ E and f satisfying (F0)-(F2) there is ρ > 0 so that the function W (x) =
ρξ(x) is a super-solution of (4.1)-(4.2), that is, it satisfies

−F(W ) +W p ≥ f, in Ω

W ≥ g in Ω̄c.
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Proof. By Corollary 4.1 we have

−F(ρξ(x)) + (ρξ(x))p = −ρξp(x)G(x) + ρpξp(x) ≥ ξp(x)ρ(−C + ρp−1).

We complete the proof using assumption (F1) to find ρ large enough, so that

ξp(x)ρ(−C + ρp−1) ≥ f(x) in Ω.�

Now we are ready to prove Theorem 4.1.
Proof of Theorem 4.1. Using Theorem 3.2 we find a solution un of (3.21)
with gn = min{n, g} in Ωc and fn = min{n, f} in Ω. By Theorem 2.2 we
have un ≤ un+1. Now we define wn = min{n + 1, w}, were w is the super-
solution found Corollary 4.2 and we notice that wn is still a super-solution
by Lemma 2.1. Then, we use again Theorem 2.2 to obtain un ≤ wn ≤ w in
Ω. Using a diagonal argument and the Cγ interior estimate of [5], we find
a subsequence that converges to a function u uniformly over compact sets.
By the stability Theorem 2.1 u is a solution of our problem. Moreover, since
u ≥ un in Ω, for all n, u satisfies (4.4).�

5 Construction of a sub-solution and proof of

Theorem 1.2 and generalization.

In this section we prove Theorem 1.2 on the behavior of the blow up solutions
to our problem. Since our method is based on sub-solutions and comparison
theorems, our result can be extended to a more general class of fractional
operators. Here is the statement:

Theorem 5.1 Assume F ∈ E and u is a solution of (4.1)-(4.3). Assume
further that that the function g satisfies (G0), (G1) and (G4) and that f
satisfies (F0) and (F1). Then the solution u satisfies

u(x) ≥ cdβ(x, ∂Ω), for all x ∈ Aδ, (5.1)

where c > 0 and δ > 0 are constants. Here and in all what follows β is the
constant appearing in (G4).

In order to prove this theorem we construct a sub-solution based on the
distance function to a set slightly larger than Ω. We consider ε > 0, σ > 0
and the set Ωε = {y ∈ RN / d(y,Ω) < ε}. We define the function ηε as follows

ηε(x) =


min{σdβ(x, ∂Ωε), g(x)} if x ∈ Ωε \ Ω
σdβ(x, ∂Ωε) if x ∈ Aδ
σ`ε(x) if x ∈ Ω \ Aδ
g(x) if x ∈ Ωc

ε,

(5.2)
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where the function `ε is chosen so ηε is of class C2 in Ω and the constant
σ > 0 will be chosen later. We state the following proposition

Proposition 5.1 Assume that β ∈ [− 2α
(p−1)

, 0), g satisfies (G4) and L ∈ L0.
Let Gε : Ω→ R be defined as

Gε(x) = dist(x, ∂Ωε)
−β+2αLηε(x), x ∈ Ω. (5.3)

Then the function Gε is bounded in Ω \ Aδ and there exist c > 0 and δ > 0
such that

Gε(x) ≥ c for all x ∈ Aδ and for all ε > 0. (5.4)

The constants c and δ can be chosen independent of L ∈ L0 and ε.

Proof. We let δ > 0 so that the distance function d(·, ∂Ω) is well defined in
A2δ and in all the proof assume that x ∈ Aδ. We see that there is a constant
cδ independent of ε ∈ (0, ε0) and σ ∈ (0, σ0), such that

|LBcηε(x)| = |
∫
Bc(0,δ)

ηε(x+y)+ηε(x−y)−2ηε(x))K(y)dy| ≤ cδd
β(x). (5.5)

Our goal is to get a lower estimate for LBηε(x), the integral over B(0, δ). For
that purpose we consider the hypothesis (G4) and decrease the value of δ if
necessary so we have

g(z) ≥ cdist(z, ∂Ω)β, z 6∈ Ω, d(z, ∂Ω) < 2δ. (5.6)

Next we define the function η̄ε by

η̄ε(z) =


min{σdist(z, ∂Ωε)

β, cdist(z, ∂Ω)β} if z ∈ Ωε \ Ω
σdist(z, ∂Ωε)

β if z ∈ Aδ
σ`ε(z) if z ∈ Ω \ Aδ
cdist(z, ∂Ω)β if z ∈ Ωc

ε,

(5.7)

and we easily see that ηε(z) ≥ η̄ε(z) if z ∈ B(x, δ) ∩ Ωc and ηε(z) = η̄ε(z) if
z ∈ B(x, δ) ∩ Ω. Next we define

Ω̃ε = Ω ∪ {z ∈ Ωε / cdist(z, ∂Ω)β ≥ σdist(z, ∂Ωε)
β}.

We see that Ω̃ε = Ωε̃, where 0 < ε̃ = ε/(1 + (c/σ)1/β) < ε. Now we have

LBηε(x) =

∫
B(0,δ)

(ηε(x+ y) + ηε(x− y)− 2ηε(x))K(y)dy

≥ B(x) + σ(A(x) + I(x)), (5.8)
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where

A(x) = −2

∫
B(0,δ)\B(0,dε)

dβεK(y)dy, (5.9)

B(x) =

∫
DεB

cdist(x− y,Ω)βK(y)dy (5.10)

and

I(x) =

∫
B(0,dε)

(dist(x+ y,Ωε)
β + dist(x− y,Ωε)

β − 2dε)K(y)dy. (5.11)

Here and in what follows we have considered

Dε
B = {y ∈ B(0, δ) / x+ y ∈ Ω̃ε and x− y 6∈ Ω̃ε}.

and dε = dist(x,Ωε).
Using the same estimates as in (4.12) and (4.19) we directly find that

|A(x)| ≤ Cdβ−2α
ε and |I(x)| ≤ Cdβ−2α

ε , (5.12)

where the constant C above is independent of ε. Next we analyze B(x).

Lemma 5.1 Under the hypothesis of Proposition 5.1, there exists a constant
c > 0, so that

B(x) ≥ cdβ−2α
ε , for all x ∈ Aδ. (5.13)

Proof. We start using (3.11) and changing variables to get

B(x) ≥ cλdβ−2α
ε b(ε, x), (5.14)

where

b(ε, x) =

∫
d−1
ε DεB

dist(y, d−1
ε (x− Ω))β

dy

|y|N+2α
. (5.15)

It is clear that b(ε, x) > 0 for all (ε, x) ∈ (0, ε0) × Aδ. If x ∈ Aδ is fixed, we
have that dε → d = d(x, ∂Ω) and the domains Ω ⊂ Ω̃ε ⊂ Ωε all converge to
Ω as ε→ 0 so that

lim
ε→0

b(ε, x) =

∫
d−1DB

dist(y, d−1(x− Ω))β
dy

|y|N+2α
,

where DB = {y ∈ B(0, δ) / x + y ∈ Ω and x − y 6∈ Ω}. If d < δ/2, this last
integral is positive for all x, since DB has a positive measure. On the other
hand, if we assume ε > 0 is fixed, then dε ≥ ε = limx→∂Ω dε for all x ∈ Aδ so

lim
x→∂Ω

b(ε, x) =

∫
ε−1DεB

dist(y, ε−1(x− Ω))β
dy

|y|N+2α
.
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Again this integral is positive since Dε
B has positive measure. Finally, we

notice that (ε, x) → {0} × ∂Ω is equivalent to dε → 0. In this situation we
see that d−1

ε (−x+ Ω) ⊂ d−1
ε (−x+ Ω̃ε) ⊂ d−1

ε (−x+ Ωε) and all these domains
converge to a semi-space S and the set d−1

ε Dε
B converges to Sc. The semi-

space S contains the origin, which is at a distance 1 from the boundary of
S. Clearly we get

lim
dε→0

b(ε, x) =

∫
Sc

dist(y, S)β
dy

|y|N+2α
,

which is clearly positive. This completes the proof. �

Proof of Proposition 5.1 continued. From (5.5), (5.8), (5.12) and the
result of Lemma 5.1 we can find σ small enough so that (5.4) is achieved.�

Proposition 5.1 readily extends for all nonlinear operator in the class E .

Corollary 5.1 Under the hypothesis of Proposition 5.1, assuming that β ∈
[−2α/(p− 1), 0) and F ∈ E, the function Gε : Ω→ R defined as

Gε(x) = η−β+2α
ε (x)F(ηε(x)), x ∈ Ω,

is bounded in Ω \ Aδ and there exist c > 0 and δ > 0 such that

Gε(x) ≥ c for all x ∈ Aδ and for all ε > 0. (5.16)

Now we can construct a sub-solution for our equation. We have

Proposition 5.2 Assume the hypothesis of Proposition 5.1, β ∈ [−2α/(p−
1), 0), F ∈ E and f satisfies (F1) and (F2). Then, for all ε > 0 there is a
function wε : RN → R that is a sub-solution of (4.1)-(4.2), that is, it satisfies

−F(wε(x)) + wpε(x) ≤ f(x), x ∈ Ω

wε(x) ≤ g(x) x ∈ Ωc.

Moreover wε satisfies

wε(x) ≥ cdist(x, ∂Ωε)
β for all x ∈ Aδ, (5.17)

for certain c > 0, independent of ε > 0.

Proof. We proceed as in Lemma 3.1 choosing a point x0 ∈ Ωc such that
d(x0, ∂Ω) > 1 and let ε > 0 and R > 0 such that d(x0, ∂Ω) − ε > 1 and
Ω̄ ⊂ {1 < |x−x0| < R}. For σ ∈ (−N,−N +γ), with γ > 0 small, we define
the function

w(r) =

{
εσ if 0 < r ≤ ε,
rσ if ε ≤ r.
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We see from the proof of Lemma 4.1 in [13] that for ε small there exists c > 0
such that M−(w(|x− x0|)) ≥ c|x− x0|σ−2α for all 1 < |x− x0| < R. Define
now G = w(|x − x0|) − εσ and notice that G < 0 in Ω̄. Then we define
wε = λ1ηε + λ2G, for λ1 > 0, λ2 > 0 and we obtain

−M−(wε) + (wε)
p ≤ λ1Gεd

β−2α
ε − λ2c|x− x0|σ−2α + (λ1ηε)

p

≤ −λ1d
β−2α
ε (Gε − λp−1

1 dpβ−β+2α
ε )− λ2c|x− x0|σ−2α.

By Corollary 5.1, Gε is bounded away from 0 in Aδ and by hypothesis pβ −
β + 2α ≥ 0. Then, choosing λ1 small enough we make the first term above
negative and then making λ2 large enough we obtain that

−λ1d
β−2α
ε (Gε − λp−1

1 dpβ−β+2α
ε )− λ2c|x− x0|σ−2α ≤ f in Aδ. (5.18)

We recall that f is bounded from below by hypothesis (F2). To complete the
proof we just need to make λ2 larger, if necessary, to get

−λ1d
β−2α
ε (Gε−λp−1

1 dpβ−β+2α
ε )−λ2c|x−x0|σ−2α ≤ f in Ω \Aδ. (5.19)

From (5.18) and (5.19) we obtain finally that

−F(wε(x)) + wpε(x) ≤ −M−(wε) + (wε)
p ≤ f(x), x ∈ Ω.

On the other hand, since G ≤ 0 in RN we have that

wε ≤ g in Ωc.

Finally we observe that (5.17) is also satisfied for ε and δ small enough. �

Now we are in a position to prove our general Theorem 5.1.
Proof of Theorem 5.1. By Theorem 2.2 we simply have that, for every
ε > 0,

u(x) ≥ wε(x) ≥ cdist(x, ∂Ωε)
β for all x ∈ Aδ.

Since the inequality holds for every ε > 0, the result follows. �
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