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Abstract

In this article we study the existence of fundamental solutions for a

class of Isaacs integral operators and we apply them to prove Liouville

type theorems. In proving these theorems we use the comparison

principle for non-local operators.

1 Introduction

In this article we study the existence of fundamental solutions for a class
of Isaacs integral operators, which includes extremal operators of Caffarelli-
Silvestre type [4], fractional Pucci operators and a class of non-convex (con-
cave) operators. Then we apply these simple power type solutions, together
with the Comparison Principle, to study (nonlinear) Liouville properties of
the corresponding operator. In precise terms, given an operator I in the class
we obtain results of existence/non-existence of solutions for the equation

Iu ≤ 0, u ≥ 0 in R
N , (1.1)
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and for the equation with a power nonlinearity

Iu + up ≤ 0, u ≥ 0 in R
N , (1.2)

for p > 1. Our results generalize our earlier work [12] to nonconvex operators
and simplify the proofs.

In what follows we describe in precise terms the class of operators to
which our results apply. Given N ≥ 2, α ∈ (0, 1) and Λ ≥ 1, we consider the
set

A = {a ∈ L∞(SN−1) / a(ω) ∈ [1, Λ], a.e. in SN−1}

and for a ∈ A we define the linear operator La(u) as

La(u)(x) =

∫

RN

δ(u, x, y)
a(ŷ) dy

|y|N+2α
, x ∈ R

N .

Here and in what follows we consider ŷ = y/|y|, for all y ∈ R
N \ {0} and

δ(u, x, y) = u(x + y) + u(x − y) − 2u(x), x, y ∈ R
N .

We remark that this integral makes sense if we assume that the function u
is such y → δ(u, x, y)|y|−N−2α is integrable in R

N \ B(0, ε) for all ε > 0 and
of class C1,1(x) in the sense defined by Caffarelli and Silvestre in [4], that is,
there exists v ∈ R

N and M > 0 so that

|u(x + y) − u(x) − v · y| ≤ M |y|2,

for y small. In particular, the linear operator La is well defined at x if u is
bounded, continuous and of class C1,1(x).

Given sets of indices I and J , we consider the family K = {ai,j ∈
A / (i, j) ∈ I×J} and we assume that K is ∗-weakly closed in L∞(SN−1) and
rotationally invariant, that is, if for a rotation matrix R in R

N and a ∈ K we
define aR(x) = a(Rx) then aR ∈ K for all a ∈ K. We define the operator

I(u)(x) = inf
I

sup
J

Lai,j
u(x), x ∈ R. (1.3)

One important feature of the operators defined in this way is that, for every
x ∈ R

N there is (i∗, j∗) ∈ I × J such that

I(u)(x) = Lai∗,j∗
u(x) =

∫

RN

δ(u, x, y)
ai∗,j∗(ŷ) dy

|y|N+2α
,

that is the infimum and supremum are achieved at every x ∈ R
N .
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Our first theorem is devoted to the existence of fundamental solutions
for the class of operators just defined. We define the radially symmetric
functions vσ as follows

vσ(r) =

{

rσ if −N < σ < 0
− log r if σ = 0
−rσ if 0 < σ < 2α,

(1.4)

our goal is to find the value of the parameter σ so that this function solves
the equation I(vσ) = 0. We prove the following

Theorem 1.1 Under the assumptions given above, for every operator I as
defined in (1.3), there is a unique σ ∈ (−N, min{2α, 1}) such that

I(vσ) = 0.

Such a σ is denoted by σ+
I . If we define wσ := −vσ, there is a unique

σ ∈ (−N, min{2α, 1}) such that

I(wσ) = 0.

Such a σ is denoted by σ−
I .

The function vσ+

I

and wσ−

I

are fundamental solutions associated to the non-
linear operators I. The function vσ+

I

is convex in r, corresponding to a
upwards-pointing fundamental solutions, as defined by Armstrong, Sirakov
and Smart in [1], for fully non-linear second order elliptic operators. Sim-
ilarly, the function wσ−

I

, is a concave function of r and it is a downwards-
pointing fundamental solutions.

Fundamental solutions for the extremal Pucci operator (α = 1) were first
defined by Labutin [15], [16] and were used for the study of removability of
singularities for these operators. They were used later by Cutri and Leoni [9]
for the study of Liouville type theorems and later for operators involving first
order terms by Capuzzo-Dolcetta and Cutri in [6]. The results in [9] and [15]
were generalized by the authors in [11] for a class of extremal operators with
radial symmetry. Recently in [2], Armstrong, Sirakov and Smart obtained
fundamental solutions for general, not necessarily radially invariant fully non-
linear differential operators, and they were used recently by Armstrong and
Sirakov [1] to prove Liouville type theorems for these differential operators.

In a recent paper, the authors consider in [12] similar results for the
Caffarelli-Silvestre operators (see (2.3) and (2.4)). These extremal operators
are convex and concave, depending if they are maximal or minimal. More-
over, they can be written in an explicit way, allowing the study of funda-
mental solutions in a very direct way. In this article we extend the results to
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a more general class of operators, including non-convex ones, using different
and simpler arguments.

In what follows we will only consider convex fundamental solutions so
that we will drop + from the notation. In order to state our main theorems
on entire solutions, it is convenient to define the dimension like numbers

NI = −σI + 2α. (1.5)

Theorem 1.2 (The Liouville Property) Assume that NI ≤ 2α and u is
a viscosity solution of

I(u) ≤ 0, and u ≥ 0, in R
N ,

then u is a constant.

In these theorems and in all the paper, by solution to an integral inequality
or equation we mean solution in the viscosity sense as defined in [4], see also
[12]. Our next result is a Liouville type theorem for the operator with a
power non-linearity. We have

Theorem 1.3 (Liouville type Theorem) Assume NI > 2α and that u is
a viscosity solution of

I(u) + up ≤ 0. (1.6)

If p ≤ NI

NI−2α
, then u ≡ 0. Reciprocally, if p > NI

NI−2α
then equation (1.6) has

a nontrivial viscosity solution.

At this point we observe that given the class of linear operators defined by
the functions {ai,j / (i, j) ∈ I ×J}, we can also define the nonlinear operator

J (u)(x) = sup
I

inf
J

Lai,j
u(x). (1.7)

These sup-inf operators satisfy the same results as the inf-sup operators. In
particular, Theorems 1.1, 1.2 and 1.3 hold.

It is important to say here that the non-existence Liouville type theorems
are closely related with existence of positive solutions of related equations in
bounded domains. In the case of second order differential operators, the well
known blow-up technique introduced by Gidas and Spruck [14] allows to find
a priori bounds for the positive solutions of the problem in a bounded domain,
as a consequence of the non-existence theorem. Then classical degree theory
is applicable to complete the existence arguments. Even though we do not
investigate this line of research in this article, we believe that results of this
sort are valid for non-local operators in the class considered here.
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Our results are related to the central problem of existence and uniqueness
of a positive solution for the semi-linear equation

∆αu + up = 0. (1.8)

In the Sobolev critical case p = (N + 2α)/(N − 2α) and in the sub-critical
case, this was studied by Li [17] and Chen, Li and Ou [8]. In the case
α = 1 and Λ = 1, that is for the Laplacian, Theorem 1.3 is an extension
of the classical result of Gidas [13]. Concerning results of classification of
solution and Liouville type result for equation (1.8) and α = 1 we mention the
fundamental papers by Gidas and Spruck [14], Caffarelli, Gidas and Spruck
[5] and Chen and Li [7].

The proofs of Theorems 1.2 and 1.3 are based on the fundamental solu-
tions for the operator I, found in Theorem 1.1, and the Comparison Principle.
Here we follow closely the arguments in [12]. The difficulty in the use of the
Comparison Principle is due to the fact that ’boundary values’ have to be
considered in all the complement of the domain, not only on the topologi-
cal boundary. Consequently, the usual arguments based on the Comparison
Principle through the Hadamard Three Spheres, need to be adapted weaking
the intermediate results.

2 Comments about our class of operators

The class of operators defined in (1.3) includes various subclasses that we
review in this section. Given any subset B ⊂ A, which is ∗-weakly closed
in L∞(SN−1) and rotationally invariant, we define maximal and minimal
operators as follows

M+
B (u)(x) = sup

a∈B
La(u)(x) (2.1)

and
M−

B (u)(x) = inf
a∈B

La(u)(x). (2.2)

The Caffarelli-Silvestre operators defined in [4], are obtained considering B =
A, and can be written as

M+
A(u)(x) =

∫

RN

S+(δ(u, x, y))
dy

|y|N+2α
(2.3)

and

M−
A(u)(x) =

∫

RN

S−(δ(u, x, y))
dy

|y|N+2α
, (2.4)
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where

S+(t) = Λt+ + λt− and S−(t) = λt+ + Λt−, t ∈ R.

These operators correspond to the overall maximal and minimal operators of
the class A and they serve as an upper and lower bound for general operators,
in the sense given below. If I is defined as in (1.3) then it satisfies the
inequality

M−
A(u − v) ≤ I(u) − I(v) ≤ M+

A(u − v) (2.5)

for all admissible functions u and v. It is important to notice that this
inequality holds for any domain of integration, that is, for any Ω ⊂ R

N , we
have
∫

Ω

S−(δ(u − v, x, y))
dy

|y|N+2α
≤

∫

Ω

{δ(u, x, y)a∗
x(ŷ) − δ(v, x, y)b∗x(ŷ)}

dy

|y|N+2α

≤

∫

Ω

S+δ(u − v, x, y))
dy

|y|N+2α
, (2.6)

where a∗
x, b

∗
x ∈ A are such that

I(u) =

∫

RN

δ(u, x, y)
a∗

x(ŷ) dy

|y|N+2α
and I(v) =

∫

RN

δ(u, x, y)
b∗x(ŷ) dy

|y|N+2α
.

Another interesting class of operators is obtained by considering the set

B1 = {a ∈ A / a(ω) = ωtAω, ω ∈ SN−1, A ∈ SΛ},

where SΛ denotes the set of all symmetric matrices, such that I ≤ A ≤ ΛI,
with I the identity matrix.

The class of fractional Pucci operators is obtained by considering the
maximal and minimal operators associated to the set P ⊂ A given by

P = {a ∈ A / a(ω) =
1

|detA
1

2 ||A− 1

2 ω|N+2α
, ω ∈ SN−1, A ∈ SΛ}. (2.7)

More generally, if C is a closed subset of SΛ, which is invariant under simi-
larity transformations, that is, it satisfies

A ∈ C then P tAP ∈ C, for all orthogonal metrix P,

we consider the set
PC = {a ∈ P / A ∈ C}.

The extremal operators defined with the set PC is related to the second order
operators studied by the authors in [10].
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3 Fundamental solutions for Isaacs type in-

tegral operators

In this section we study the fundamental solutions for the operators of Isaacs
type defined in (1.3), the main goal is to prove Theorem 1.1.

After some basic properties we concentrate in the analysis of sign of the
coefficient we get when plugging in these operators a power function. Let us
start observing the simple fact that if I is an operator of the form (1.3) then
I is radially invariant, that is and if v(x) is is radially symmetric then Iv(x)
is also radially symmetric.

We start describing the range of σ for which I(vσ) makes sense.

Lemma 3.1 For all −N < σ < 2α, I(vσ)(x) is well defined for x 6= 0.
Moreover, for every x ∈ R \ {0},

lim
σ→−N

I(vσ)(x) = ∞ and lim
σ→2α

I(vσ)(x) = −∞. (3.1)

Proof. Let x 6= 0 and σ ∈ (−N, 2α). By the properties of the class K
we know that there is (i∗, j∗) ∈ I × J such that I(vσ)(x) = Lai∗,j∗

(vσ)(x).
Then, analyzing the integral definig the last term, we see that it has three
singularities. Estimating the behavior of the integral at each of them we
obtain the results. See [12]. �

Remark 3.1 It is clear that this lemma holds also for maximal and minimal
operators, even for linear operators.

Next we obtain an explicit form for I(vσ).

Lemma 3.2 For any −N < σ < 2α, we have

Ivσ(x) = c(σ)|x|σ−2α, x ∈ R
N \ {0},

where

c(σ) =

∫

RN

δσ(y)
aσ(ŷ) dy

|y|N+2α
, (3.2)

aσ := ai,j for certain (i, j) ∈ I × J and

δσ(y) =







|e1 + y|σ + |e1 − y|σ − 2 if σ ∈ (−N, 0)
− log |e1 + y| − log |e1 − y| if σ = 0,
−|e1 + y|σ − |e1 − y|σ + 2 if σ ∈ (0, 2α).

(3.3)

Here, and in all what follows, e1 = (1, 0, ..., 0) ∈ R
N .
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Proof. Let us consider first σ ∈ (−N, 0)∪(0, 2α). We have that δ(vσ, x, y) =
|x|σδσ(y/|x|) thus, for a certain aσ = ai,j, depending only on σ,

Ivσ(x) =

∫

RN

|x|σδσ(y/|x|)aσ(ŷ)
dy

|y|N+2α
,

and then, by a change of variables, (3.2) follows. When σ = 0 we proceed
similarly, observing that using definition (3.3),

δ(vσ, x, y) = δ0(y/|x|). �

According to this lemma we need to analyze when the function c vanishes.

Lemma 3.3 The function c has at most one zero in (−N, 2α) \ {0}.

Proof. Given (i, j) ∈ I × J the function

ci,j(σ) =

∫

RN

δσ(y)
ai,j(ŷ) dy

|y|N+2α

is convex in (−N, 0) and concave in (0, 2α). Moreover, recalling (3.3),

lim
σ→0−

ci,j(σ) = 0 = lim
σ→0+

ci,j(σ)

and

c′i,j(0
−) = lim

σ→0−

ci,j(σ)

σ
= − lim

σ→0+

ci,j(σ)

σ
= −c′i,j(0

+).

We claim that the lemma holds for ci,j. In fact, if ci,j has a zero in (0, 2α), by
concavity of ci,j and (3.1) (see Remark 3.1), we find that c′i,j(0

+) ≥ 0. From
here c′i,j(0

−) ≤ 0 and then, by convexity, ci,j does not vanishes in (−N, 0).
If ci,j has a zero in (−N, 0), by a similar argument it has no other zero,
completing the proof of the claim.

Our second step is to prove that for every i ∈ I, the function

ci(σ) = sup
j∈J

∫

RN

δσ(y)
ai,j(ŷ) dy

|y|N+2α
,

satisfies the lemma. For this purpose we first assume that ci has a zero
σi ∈ (0, 2α) and that σi is the rightest one, that is, for every other zero
σ0 ∈ (0, 2α) we have σ0 ≤ σi and let j∗ = j∗(σi) ∈ J be such that

ci(σi) = ci,j∗(σi) =

∫

RN

δσi
(y)

ai,j∗(ŷ) dy

|y|N+2α
.
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Since the function ci,j∗ satisfies the lemma, we have that ci,j∗(σ) > 0 for all
σ ∈ (0, σi) and then, by definition, ci(σ) ≥ ci,j∗(σ) > 0 for all σ ∈ (0, σi),
concluding that σi is the only zero of ci in (0, σi). But as ci,j∗ satisfies the
lemma, ci,j∗(σ) > 0, for all σ ∈ (−N, 0) and then, by definition, ci(σ) > 0,
for all σ ∈ (−N, 0), completing the proof in this case. Assume next that ci

has a zero σi in the interval (−N, 0) and that it is the rightest one, then we
choose j∗ as above and we conclude that ci has only one zero in (−N, 0).
To complete this second step, we just observe that ci does not have a zero
in (0, 2α), since then, by the argument given above, it should be positive in
(−N, 0).

Our final step is the general case. Assume that c has a zero σ0 ∈ (−N, 0)
and that it is the leftmost one. Let i∗ be such that 0 = c(σ0) = ci∗(σ0). Since
ci∗ satisfies the lemma, by definition of c, we conclude that c does not have
other zero in (−N, 0)∪ (0, 2α). Assume now that c has a zero in σ0 ∈ (0, 2α),
we assume it is the leftmost one and we reapeat the argument. �

Proof of Theorem 1.1. In view of Lemma 3.3, we just need to assume
that c does not have a zero in (−N, 2α) \ {0} and prove that I(v0) = 0.

We see that for every σ ∈ (−N, 0) we have c(σ) > 0 and then

I(
vσ − 1

−σ
) = rσ−2α c(σ)

−σ
≥ 0

and similarly,

I(
vσ + 1

σ
) = rσ−2α c(σ)

σ
≤ 0.

Thus u−
σ = (vσ − 1)/−σ is a subsolution for σ ∈ (−N, 0) and u+

σ = (vσ + 1)/σ
is a supersolution for σ ∈ (0, 2α). It is clear that

lim
σ→0−

u−
σ (r) = lim

σ→0+
u+

σ (r) = − log r,

uniformly on every compact subset of R
N \{0}. Then, by stability properties

(see remark below), we find that v0(r) = − log r, is simultaneously a super-
solution and a sub-solution of

I(u)(r) = 0.

We conclude that v0 is a solution of the equation.
To complete the proof we just need to prove that σI < 1, whenever

2α ≥ 1. In this case, we notice that c(1) ≤
∫

RN S+(δ1(y)) dy
|y|N+2α , since M+

A is
the maximal operator in the whole class. But then we just need to observe
that δ1(y) ≤ 0, by definition, so that c(1) < 0. �
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Remark 3.2 Caffarelli and Silvestre proved in [4] a stability result for inte-
gral operators, see Lemma 4.5. Eventhough this lemma does not apply directly
here, since the functions u+

σ and u−
σ are not bounded, a carefull look at its

proof allows to obtain what we need, slightly changing the arguments.

Remark 3.3 It is interesting to notice that rotationally invariant second
order elliptic operators have fundamental solutions that are power functions,
that is, they are like Φ(x) = rσ, r = |x|. This was proved by Armstrong,
Sirakov and Smart [2]. In contrast, for integral operators this is no loger
true, as the following example shows. We consider the kernel

K(y) =
1 + χ(y)

|y|N+2α
,

where χ is the characteristic function of B1(0), the ball of radius 1 and cen-
tered at the origin. Then, the operator

J(u)(x) =

∫

RN

δ(u, x, y)K(y)dy

is rotationally invariant. However J cannot have a power as a fundamental
solution, since

J(Φ)(x) = c(σ)rσ−2α +

∫

B1(0)

|x + y|σ + |x − y|σ − 2|x|σ

|y|N+2α
dy (3.4)

= rσ−2α

{

c(σ) −

∫

B1/r(0)

|e1 + y|σ + |e1 − y|σ − 2

|y|N+2α
dy

}

, (3.5)

is equal to zero for certain σ 6= 0, only if the integral above is constant, which
is not. Similar conclusion is reached when φ(x) = − log r.

In this article we are further assuming that the kernels are homogenous.

We conclude this section with a partial result on uniqueness of funda-
mental solutions. We start with a form of strong maximum principle

Lemma 3.4 If u is a solution of

I(u) ≤ 0, u ≥ 0, in R
N \ {0},

regular in R
N \ {0}. Then, either u ≡ 0 or u(x) > 0 for all x ∈ R

N \ {0}.

Proof. If u has a global minimum at x0 6= 0 and u is not constant, then
I(u)(x0) > 0, getting a contradiction. �
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Theorem 3.1 Assume that I is an operator as in (1.3). Then the funda-
mental solution vσI

is unique in the class of σI-homogeneous regular func-
tions.

Proof. First assume that σI < 0 and suppose that that v(x) = |x|σIφ(x̂) is
a fundamental solution and define ws = |x|σI(s− φ(x̂)). Then for s large ws

is positive and by (2.5)
M−

A(ws) ≤ 0.

Let
s0 := inf{s > 0 : ws > 0 in IRN \ {0} },

then there exists x0 ∈ R
N \ {0} such that ws0

(x0) = 0 and ws0
≥ 0, getting

a contradiction, unless ws0
≡ 0, which implies v̂ ≡ 1 that means uniqueness.

If σI < 0, the proof is similar. Finally, in the case σI = 0, we consider
a fundamental solution of the form v(x) = −φ(x̂) − log|x| and then we use
as above w(x) = v̂(x̂) which has his maximum achieved on rays of R

N so we
have a contradiction, except if it is constant. �

4 Some remarks about limits

In this section we briefly consider the dependence of σI on α and, in par-
ticular, we discuss the limit as α approaches one, and the integral operator
becomes a second order differential operator.

Given a fixed family of kernels and α ∈ (0, 1), we define by Iα the integral
operator given in (1.3). We have

lim
α→1

(1 − α)Iα(u)(x) = lim
α→1

inf
I

sup
J

(1 − α)

∫

RN

δ(u, x, y)
ai,j(ŷ) dy

|y|N+2α

= C inf
I

sup
J

∫

SN−1

ωtD2u(x)ω ai,j(ω)dω, (4.1)

where C depends on N and the operator I. It is well known that any
fully nonlinear second order elliptic operator depending only on the second
derivative can be recovered with operators of the form (4.1). In fact, it is
sufficient to consider kernels of the form given by (2.7), as proved in [4].
Notice that given a ∈ P then

∫

SN−1

ωtD2u(x)ω a(ω)dω = CNtr(AD2u(x)) = CN

∑

i,j

ai,jui,j,

where A is the matrix defining a.
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Given the operator Iα we may use Theorem 1.1 to get fundamental solu-
tions, that is, σI := σI(α). We have

Iα(vσI(α))(x) = 0, for all x ∈ R
N \ {0}, α ∈ (0, 1).

Next we prove the following continuity result.

Proposition 4.1 σI(α) is a continuous function of α ∈ (0, 1).

Proof. Let αn be a sequence such that αn → α0 ∈ (0, 1), then up to a
subsequence, σ(αn) → σ0. We assume that σ0 6= 0, then we obviously have
that vn := vσI(αn) → vσ0

uniformly on every compact set. This information,
together with the stability properties of the operators, implies

0 = lim
n→∞

Iαn(vn)(x) = Iα0
(vσ0

)(x), x ∈ R
N \ {0}.

Thus, vσ0
is a fundamental solution of Iα0

. By the uniqueness property of
σI(α0), we conclude that σI(α0) = σ0, completing the proof of the continuity
if σ0 6= 0. In case σ0 = 0 we sligthly modify the arguments. �

Remark 4.1 Similarly, if σI(αn) ≥ σ0 > −N , for all n ∈ N and αn → 1 then
we can argue that σI(αn) converges to the unique exponent of the differential
operator I, that was proved to exists in Theorem 3 in [2].

We observe that, in case the dimension like number NI is larger than N ,
then NI cannot be achieved as limit of the numbers NIn, nor the correspond-
ing fundamental solutions. However, it would be interesting to understand
the limit case NI = N .

5 Proof of Liouville type theorems

In this section we prove Theorems 1.2 and 1.3 basing our arguments on the
fundamental solutions found in Section §3 and the Comparison Principle for
integral operators. Since most of the arguments were already given in the
simpler, but quite similar case of Caffarelli-Silvestre operators in [12], we will
be sketchy at certain points.

For integral operators we have a Comparison Principle that in some sense
works as in the case of a second order elliptic differential operator, however
it has an important difference. The boundary condition for a bounded set
Ω does not make really sense for integral operators when considered only on
∂Ω since sets with vanishing measure are negligible, instead we have to give
boundary conditions in the whole complement of the domain Ω. We recall
the comparison principle proved in [4] (Theorem 5.2), that we use later in
the section.
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Theorem 5.1 Assume u and v are super-solution and sub-solutions of the
equation

I(u) = g,

in Ω̄, where Ω is a bounded open subset of R
N and g is a continuous function

in Ω̄. Moreover, assume that u ≤ v in R
N \ Ω. Then u ≤ v in Ω.

Next we apply the Comparison Principle together with the fundamental
solutions found in Section §3 to prove the Liouville Property, that is Theorem
1.2. The idea is to use the fundamental solution vσI

that satisfies I(vσI
) = 0

in R \ {0}, properly compared with the supersolution u, in order to prove
that u possesses a global minimun, which is impossible according to Lemma
3.4.

A difficulty arises in the use of the Comparison Principle when σI ≤
0, since the function vσI

is unbounded, actually vσI
(r) → ∞ as r → 0.

Consequently, it is impossible to have it below u in any set including a
neighborhood of the origin. Even if σI > 0, case where it is bounded at
the origin, the fundamental solution vσI

is not a solution at the origin, not
even a sub-solution. In order to overcome these difficulties we consider this
fundamental solution slightly perturbed taking σ near σI and we truncate it
near the origin.

It will be convenient to consider the following definitions. Given r0 > 0
and a radially symmetric function v defined in R\{0} we define the truncation
of v near the origin as

T (v, r0, r) =

{

v(r0) if 0 ≤ r ≤ r0,
v(r) if r0 ≤ r.

(5.1)

Upon this function and for R > r0 we define its normalized version

NT (v, r0, R, r) =

{

T (v,r0,r)−v(R)
v(r0)−v(R)

if 0 ≤ r ≤ R,
0 if R ≤ r.

(5.2)

We observe that NT (v) takes the value 1 in the ball Br0
and the value 0 on

the exterior of the ball BR. We also define

m(r) = min
|x|≤r

u(x),

where u is a non-negative function.
Now we prove the Liouville property.

Proof of Theorem 1.2. By Lemma 3.4, we may assume that u(x) > 0
for all x. Let us consider first the case NI < 2α, that is, σI ∈ (0, 2α), and
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consider the function w(r) = T (−rσ, ε, r), where ε > 0 and σ ∈ (0, σI). Then
we have that

Iw(x) ≥ 0 for all r1 < |x|, (5.3)

if r1 ≥ 1 and ε are chosen large and small enough, respectively. In fact, by
the choice of σ and Lemma 3.2 we have

Iw(r) ≥ rσ−2α (c(σ) − I(r, ε)) ,

where

I(r, ε) = r−σ+2α

∫

B̂ε(x)

S+(δ(rσ − w, x, y))
dy

|y|N+2α
.

Here c(σ) > 0, r = |x| and B̂ε(x) = Bε(x) ∪ Bε(−x). Finally, using the
definition of w and estimating the corresponding integrals we find, as in
Theorem 1.2 of [12], that for ε > 0 small enough I(r, ε) < c(σ), for all
r ≥ r1, proving (5.3). We define now the function φ(x) = NT (w, ε, R, r),
with R > r1 and we see that

Iφ ≥ 0, for all r1 < |x| < R,

and u(x) ≥ φ(x) for all r1 ≤ |x| or |x| ≥ r2. Then we use comparison
Theorem 5.1 to obtain that u(x) ≥ φ(x) for R ≥ |x| ≥ r1. If we take limit
when R → ∞, noticing that w(R) → −∞, we obtain that

u(x) ≥ m(r1) for all r1 < |x|. (5.4)

But then u has a global minimum point in B(0, r1). Unless u is a constant
function, we get a contradicting since Iu ≤ 0 in all R

N .
To conclude we analyze the case σI = −NI + 2α = 0. Here we consider

the minimal operator M−
A and the corresponding fundamental solution rσ−

,
with −N < σ− < 0. Then M−

A(rσ) = c−(σ)rσ−2α, with c−(σ) > 0.
Notice that by (2.5) we have

I(rσ − log r) ≥ I(− log r) + M−
A(rσ) = c−(σ)rσ−2α.

We define now the truncated function w(r) = T (rσ − log r, ε, r) and we
observe that w(r) → −∞ when r → ∞. From here, we can proceed as above
and find ε and r1 appropriates so that

Iw ≥ 0, for all |x| ≥ r1

and from here we conclude as before. �
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In order to prove the Liouville type theorems for nonlinear equations,
Hadamard Three Spheres Theorem is usually applied. However, such a the-
orem does not seem to be true, since the boundary values need to be taken
in the complement of the given annulus. Fortunately we can prove a weaker
version of Hadamard Three Sphere Theorem which is enough for our pur-
poses.

We prove three preliminary lemmas, whose proof are based on the funda-
mental solution vσI

that satisfies I(vσI
) = 0 in R \ {0}, properly compared

with the supersolution u.

Lemma 5.1 Assume that NI > 2α. Then, for all σ ∈ (−N, σI) and r1 ≥ 1,
there exists c > 0 such that for every non-negative viscosity solution of u 6= 0
of

Iu(x) ≤ 0 in R
N (5.5)

we have
m(r) ≥ cm(r1)r

σ, for all r ≥ r1. (5.6)

Proof. We recall that NI = 2α − σI . Let R > r1, ε > 0 and σ ∈ (−N, σI).
Then we define the comparison function φ(x) = m(r1) NT (w, ε, R, r), where
w(r) = T (rσ, ε, r) is the truncated perturbed fundamental solution. If we
proceed as in the proof of Theorem 1.2 we can prove that

Iφ ≥ 0, for all r1 < |x| < R

and u(x) ≥ φ(|x|) in Br1
∪ Bc

R. Here we use the fact that σ < σI , allowing
to control the truncated part. From here we may use Theorem 5.1 to obtain
u(x) ≥ φ(|x|), for all r1 ≤ |x| ≤ R, that is

u(x) ≥ m(r1)
rσ − Rσ

εσ − Rσ
.

Then, taking the limit as R → ∞ we obtain (5.6) with c = ε−σ. �

Lemma 5.2 Assume that NI > 2α. Then, there is r1 > 0 and a constant c
such that for every non-negative viscosity solution of (5.5) we have

m(R/2) ≤ cm(R), for all R ≥ r1. (5.7)

Proof. Here we use the fundamental solution truncated near the origin and
we compensate it with a truncation near infinity. The balance is obtained
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since we apply the Comparison Principle away from the annulus R < |x| <
R/2, which has comparable radia. Given ε > 0 and R > 0, we define

R0 = R

[

ε

1 + ε2σI

]−1/σI

and assume that ε is such that R0 < R/2. We consider the functions w(r) =
T (rσI , R0, r) and

φ(r) = m(R/2)TN(rσI , R0, 2R, r).

We observe that u(x) ≥ φ(|x|) for all |x| ≤ R/2 or |x| ≥ 2R. Next we claim
that

Iφ(|x|) ≥ 0 for all R/2 < |x| < 2R. (5.8)

Assuming the claim for the moment, we may apply the comparison principle,
Theorem 5.1, to obtain that u(x) ≥ φ(|x|) for all R/2 < |x| < 2R, from where
we obtain, by taking the minimum of u in 0 < |x| ≤ R, that

m(R) ≥ εm(R/2)(1 − 2σI ).

The result follows taking c = ε(1 − 2σI). Next we show that the claim
(5.8) holds if we choose ε > 0 small enough. For this purpose we define
the doubly truncated fundamental solution wR(r) = rσI if R0 < |x| < 2R
with wR(r) = RσI

0 if 0 ≤ |x| ≤ R0 and wR(r) = (2R)σI if |x| ≥ 2R. We
see that in order to prove (5.8) we just need to check that IwR(|x|) ≥ 0 if
R/2 < |x| < 2R. By definition of σI we have that

0 = I(rσI ) ≥ Iw(r) + I(ε, r), (5.9)

where r = |x| and

I(ε, r) =

∫

B̂R0
(x)

S+(δ(rσI − w(r), x, y))
dy

|y|N+2α
.

Estimating this integral, as in Lemma 4.2 of [12], we find

I(ε, r) ≤ CR−NIε−(σI+N)/σI ,

where we notice that σI + N > 0 and the constant C does not depend on ε
nor R. On the other hand we have Iw ≥ IwR − E(ε, r), where

E(ε, r) =

∫

RN

S−(wR(r) − w(r), x, y))
dy

|y|N+2α
.
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We estimate the value of E(ε, r) from below, using the estimates in Lemma
4.2 of [12], and we get

E(ε, r) ≥ CR−NI .

Since
IwR ≥ E(ε, r) − I(ε, r),

for all R/2 ≤ r ≤ 2R, from the above estimates the result follows if we choose
ε small enough. �

We still need to prove another lemma that will be used in the critical
case, that is when p = NI

NI−2α
. We define the function Γ(x) = η(x)h(x) for

x 6= 0, where

η(x) = log(1 + |x|) and h(x) = |x|−NI+2α,

then the following lemma allows to use Γ as a comparison function:

Lemma 5.3 There exists a constant C > such that

I(Γ)(x) ≥ −C|x|−NI , x 6= 0. (5.10)

Proof. Since Ih = 0 we have by (2.5)

I(Γ)(x) = I(ηh)(x) − η(x)I(h−)(x)

≥ M−
A(ηh− − η(x)h−)(x), (5.11)

where η(x) is considered constant regarding the integral defining M−
A.

From here, we use exactly the same argument as in Lemma 6.1 of [12] to
find

M−
A(ηh − η(x)h)(x) ≥ −C|x|−NI ,

for x large. �

Now we start with the proof of the nonlinear Liouville type theorem.

Proof of Theorem 1.3 (The sub-critical and critical case). The proof
of this theorem follows the lines of the proof of Theorem 1.3 in [12]. The
idea is to use the equation and the lemmas just proved in order to analyze
the asymptotic behavior of m(r). In the sub-critical case, the first step is to
use a proper test function and the scaling property of the equation to obtain

m(R) ≤
C

R
2α

p−1

, (5.12)

for large R. Then, using Lemma 5.1 we get another estimate for m(R), which
is incompatible with (5.12), if the function u is not constant. See [12].
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This analysis cannot longer be done in the critical case, since no contra-
diction arises in the behavior of m. In what follows we provide the details in
this case, which is more interesting. The starting point for the study of the
critical case is the following inequality that recover an estimate obtained in
the second order differential case directly from the Hadamard Three Spheres
Theorem. We claim that for certain r1 > 0 and c > 0 we have

u(x) ≥ cm(r1)r
σI , for r ≥ r1. (5.13)

In fact, from equation (1.6) and Lemma 5.1 we have that, for any σ < σI ,

Iu(x) = −up ≤ c(m(r1))
prpσ, for r ≥ r1. (5.14)

On the other hand we consider the function w(r) = T (rσ+

, ε, r) where 0 <
ε < r1/2. Since rσI is a fundamental solution for I and using (2.6) we have

Iw(r) ≥

∫

B̂ε(x)

S+(δ(w − rσI , x, y))
dy

|y|N+2α

and then, estimating this integral, we obtain

Iw(r) ≥ −c
εσI+N

|x|N+2α
. (5.15)

If we define φ(r) = m(r1) NT (rσI , ε, r2, r) and we use (5.15) we get

Iφ(r) ≥
m(r1)

w(ε) − w(r2)
Iw(r) ≥ −

c

|x|N+2α
, (5.16)

for all r ≥ r1. On the other hand, we recall that σI + N > 0 and we choose
σ < σI such that −σp < N + 2α. Then, using (5.14), (5.16) and taking r1

large enough, by the choice of σ, we find that

Iu ≤ −
c

|x|−pσ
≤ −

c

|x|−N+2α
≤ Iφ

and u(x) ≥ φ(x) for all r = |x| such that 0 ≤ r ≤ r1 or r ≥ r2. Thus,
by Comparison Principle Theorem 5.1 we have that u(x) ≥ φ(r) for all
r1 ≤ r = |x| ≤ r2. Taking the limit as r2 → ∞, we find (5.13).

At this point we have to distinguish two cases, depending on the value
of σI . The first case corresponds to σI ∈ (−N,−1]. Here we observe that
the function Γ is decreasing for all r > 0, with a singularity at the origin if
σI ∈ (−N,−1) and bounded if σI = −1. We consider ε > 0 and define the
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function w(r) = T (Γ, ε, r). Using Lemma 5.3 and proper estimates we find
that

Iw(x) ≥ −
c

|x|NI

−
o(1)

|x|N+2α
≥ −

c

|x|NI

, for all |x| ≥ r1, (5.17)

where we used the fact that NI < N + 2α. Then we define the comparison
function φ(x) = m(r1) NT (Γ, ε, r2, r). We observe that φ(x) ≤ u(x) for all x
such that |x| ≤ r1 or |x| ≥ r2. Moreover

Iφ(x) ≥ −
c

|x|NI

for all r1 ≤ |x| ≤ r2.

Then, from here, the equation for u and (5.13) we can use the Comparison
Principle Theorem 5.1 to obtain u(x) ≥ φ(x) for all r1 < |x| < r2. Taking
limit as r2 → ∞ we find that

u(x) ≥ c
log(1 + |x|)

|x|NI−2α
for all r1 < |x|.

From here and estimate (5.12) we find that

C

|x|NI−2α
≥ m(r) ≥ c

log(1 + |x|)

|x|NI−2α

for all |x| large, a contradiction.
The case σI ∈ (−1, 0) still needs some work, but it follows similar lines.

See [12]. �

In order to complete the proof of Theorem 1.3 we will use the following
inequality proved in [12].

Lemma 5.4 Let α ∈ (0, 1) and q > 0, then for all s ∈ [0, 1), t ≥ 0 and
u ≥ 0 the following inequality holds

(

1 − s + ((s + t)2 + u2)1/2
)−2αq

+
(

1 − s + ((s − t)2 + u2)1/2
)−2αq

≤
(

(1 + t)2 + u2
)−αq

+
(

(1 − t)2 + u2
)−αq

.

Proof of Theorem 1.3 (The super-critical case). We define the function

v(x) =
1

(1 + |x|)2αq
, with

1

p − 1
< q <

NI − 2α

2α
,

and we prove next that v satisfies (1.6). As a direct consequence of Lemma
5.4 we have

δ(v, x, y) ≤
1

(1 + |x|)2αq

{

1

|e1 + ỹ|2αq
+

1

|e1 − ỹ|2αq
− 2

}

,
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where ỹ = Ry/(1+ r), with R an appropriate rotation matrix. Recalling the
definition of δσ in (3.3), from here we get

I(v) ≤
1

(1 + |x|)2αq
inf
I

sup
J

∫

RN

ai,i(δ2αq(ỹ))dy

|y|N+2α

=
1

(1 + |x|)2α(q+1)
c(−2αq) =

−C

(1 + |x|)2α(q+1)
.

From the inequalities satisfied by q we see that −C = c(−2αq) < 0. Then
we have that

I(cv) + (cv)p ≤
−cC

(1 + |x|)2α(q+1)
+

cp

(1 + |x|)2αqp
,

and we choose c small enough to finally obtain

I(cv) + (cv)p ≤ 0,

completing the proof.�
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