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1 Introduction

In this paper we study concentration phenomena for the problem

(Pε)


−ε2∆u+ u = up in Ω,
∂u
∂ν = 0 on ∂Ω,
u > 0 in Ω,

where Ω is a smooth bounded domain of RN , p > 1, and where ν denotes the unit normal to ∂Ω. Given
a smooth embedded non-degenerate minimal submanifold K of ∂Ω, of dimension k ∈ {1, . . . , N − 2}, we
prove existence of solutions of (Pε) concentrating along K. Since the solutions we find have a specific
asymptotic profile, which is described below, a natural restriction on p is imposed, depending on the
dimension N and k, namely p < N−k+2

N−k−2 .

Problem (Pε) or some of its variants (including the presence of non-homogeneous terms, different
boundary conditions, etc.) arise in several contexts, as the Nonlinear Schrödinger Equation or from
modeling reaction-diffusion systems, see for example [3], [22], [45] and references therein. A typical
phenomenon one observes is the existence of solutions which are sharply concentrated near some subsets
of their domain.

Concerning reaction-diffusion systems, this phenomenon is related to the so-called Turing’s instability,
[54]. According to this principle, reaction-diffusion systems whose reactants have very different diffusivi-
ties might generate stable non-trivial patterns. This is indeed more likely to happen when more reactants
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are present since, as shown in [12], [41], scalar reaction-diffusion equations in a convex domain admit
only constant stable equilibria.

A well-know system is the following one

(GM)


Ut = d1∆U − U + Up

Vq in Ω× (0,+∞),
Vt = d2∆V − V + Ur

Vs in Ω× (0,+∞),
∂U
∂ν = ∂V

∂ν = 0 on ∂Ω× (0,+∞),

introduced in [25] to describe some biological experiment. The functions U and V represent the densities
of some chemical substances, the numbers p, q, r, s are non-negative and such that 0 < p−1

q < r
s+1 , and

it is assumed that the diffusivities d1 and d2 satisfy d1 � 1 � d2. In the stationary case of (GM), as
explained in [45], [48], when d2 → +∞ the function V is close to a constant (being nearly harmonic and
with zero normal derivative at the boundary), and therefore the equation satisfied by U is similar to (Pε),
with ε2 = d1.

The typical concentration behavior of solutions uε to (Pε) is via a scaling of the variables in the form
uε(x) ∼ u0

(
x−Q

ε

)
, where Q is some point of Ω, and where u0 is a solution of the problem

(1) −∆u0 + u0 = up
0 in RN (or in RN

+ = {(x1, . . . , xN ) ∈ RN : xN > 0}),

the domain depending on whether Q lies in the interior of Ω or at the boundary; in the latter case
Neumann conditions are imposed.

When p < N+2
N−2 (and indeed only if this inequality is satisfied), problem (1) admits positive radial

solutions which decay to zero at infinity. Solutions of (Pε) with this profile are called spike-layers, since
they are highly concentrated near some point of Ω. There is an extensive literature regarding this type
of solutions, beginning from the papers [35], [46], [47]. Indeed their structure is very rich, and there are
also solutions with multiple peaks, both at the boundary and at the interior of Ω. We refer for example
to the papers [14], [19], [26], [27], [28], [29], [33], [34], [57].

In recent years, some new types of solutions have been constructed: they indeed concentrate at sets of
positive dimension and their profile consists of solutions of (1) which do not decay to zero at infinity. In
[38], [39] it has been shown that given any smooth bounded domain Ω ⊆ RN , N ≥ 2, and any p > 1, there
exists a sequence εj → 0 such that (Pεj ) possesses solutions concentrating at ∂Ω along this sequence.
Their profile is a solution of (1) (for N = 1) on the half real line which tends to zero at infinity and which
satisfies the condition u′0(0) = 0. This function can also be trivially extended as a cylindrical solution to
(1) on the whole RN

+ .
Later in [37] it has been proved that, if Ω is a smooth bounded set of R3, if p > 1 and if h is a closed,

simple non-degenerate geodesic on ∂Ω, then there exists again a sequence (εj)j converging to zero such
that (Pεj ) admits solutions uεj concentrating along h as j tends to infinity. In this case the profile of uεj

is a decaying solution of (1) in R2
+, again extended to a cylindrical solution in higher dimension.

These are examples of a phenomenon which has been conjectured to hold in more general cases: in
fact it is expected that, under generic assumptions, if Ω ⊆ RN and if k is an integer between 1 and N −1,
there exist solutions of (Pε) concentrating along k-dimensional sets when ε tends to zero. While the
case k = N − 1 has been tackled in [39], the goal of the present paper is to consider k ≤ N − 2, and to
prove this conjecture under rather mild assumptions on the limit set. Before stating our main theorem
we introduce some preliminary notation.

Given a smooth k-dimensional manifold K of ∂Ω, and given any q ∈ K we can choose a system of
coordinates (y, ζ) in Ω orthonormal at q and such that (y, 0) are coordinates on K, and with the property
that

(2)
∂

∂ya

|q ∈ TqK, a = 1, . . . , k;
∂

∂ζi
|q ∈ Tq∂Ω, i = 1, . . . , n;

∂

∂ζn+1
|q = ν(q),

where we have set n = N − k − 1. Our main theorem is the following: we refer to Section 2 for the
geometric terminology.
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Theorem 1.1 Let Ω ⊆ RN , N ≥ 3, be a smooth and bounded domain, and let K ⊆ ∂Ω be a compact
embedded non-degenerate minimal submanifold of dimension k ∈ {1, . . . , N−2}. Then, if p ∈

(
1, N−k+2

N−k−2

)
,

there exists a sequence εj → 0 such that (Pεj
) admits positive solutions uεj

concentrating along K as
j → ∞. Precisely there exists a positive constant C, depending on Ω,K and p such that for any x ∈ Ω
uεj

(x) ≤ Ce−
dist(x,K)

Cε ; moreover for any q ∈ K, in a system of coordinates (y, ζ) satisfying (2), for any

integer m one has uεj
(0, εj ·)

Cm
loc(R

n+1
+ )

−→ w0(·), where w0 : Rn+1
+ → R is the unique radial solution of

(3)


−∆u+ u = up in Rn+1

+ ,
∂u
∂ν = 0 on ∂Rn+1

+ ,

u > 0, u ∈ H1(Rn+1
+ ).

Remarks 1.2 (a) Differently from the previous papers concerning the case N = 3 and k = 1, or concen-
tration at the whole ∂Ω, we require an upper bound on p depending on N and k. This condition is rather
natural, since (3) is solvable if and only if p < N−k+2

N−k−2 , see [10], [50], [53] and in this case the solution is
radial and unique (up to a translation), see [23], [31]. In any case, our assumptions allow supercritical
exponents as well.

(b) As for the results in [37], [38] and [39], existence is proved only along a sequence εj → 0 (actually
with our proof it can be obtained for ε in a sequence of intervals (aj , bj) approaching zero, but not for
any small ε). This is caused by a resonance phenomenon we are going to discuss below, explaining the
ideas of the proof. This resonance is peculiar of multidimensional spike-layers, see also [20], and other
geometric problems, see [36], [42]. In some cases, when some symmetry is present, it is possible to get
rid of this resonance phenomenon working in spaces of invariant functions. We refer for example to the
papers [4, 5, 7, 8, 15, 16, 40, 44].

We can describe the resonance phenomenon, which causes the main difficulty in proving Theorem 1.1, in
the following way. By the change of variables x 7→ εx, we are reduced to consider the problem

(P̃ε)


−∆u+ u = up in Ωε,
∂u
∂ν = 0 on ∂Ωε,

u > 0 in Ωε,

where Ωε = 1
εΩ. As for (2), given q̂ ∈ Kε := 1

εK, we can choose scaled coordinates (y, ζ) on Ωε such
that ∂ya

|q̂ ∈ Tq̂Kε, ∂ζi
|q̂ ∈ Tq̂∂Ωε and ∂ζn+1 |q̂ = ν(q̂). Then, letting ũε denote the scaling of uε to Ωε, we

have that, in a plane though q̂ normal to Kε, ũε behaves like ũε(0, ζ) = uε(0, εζ) ' w0(ζ). This amounts
to the fact that ũε(x) ' w0 (dist(x,Kε)), x ∈ Ωε, and therefore ũε has a fixed profile in the directions
perpendicular to the expanding domain Kε. Since the function w0 (dist(x,Kε)) can be considered as an
approximate solution to (P̃ε), it is natural to use local inversion arguments near this function in order to
find true solutions. For this purpose it is necessary to understand the spectrum of the linearization of
(P̃ε) at approximate solutions.

For simplicity, let us assume for the moment that K is (N −2)-dimensional, namely that its codimen-
sion in ∂Ω is equal to 1, as in [37]. Then, letting ν̃ denote the normal to K in ∂Ω, we can parameterize
naturally a neighborhood of Kε as a product of the form Kε×

(
− δ

ε ,
δ
ε

)
, where δ is a small positive number,

via the exponential map in ∂Ωε

(4) (y, s) 7→ exp∂Ωε
y (sν̃); (y, s) ∈ Kε ×

(
−δ
ε
,
δ

ε

)
.

Similarly, if ν(y, s) is the inner unit normal to ∂Ωε at the image of (y, s) under the above map, we can
parameterize a neighborhood of Kε in Ωε with a product Kε ×

(
− δ

ε ,
δ
ε

)
×
(
0, δ

ε

)
by

(y, s, t) 7→ exp∂Ωε
y (sν̃) + tν(y, s); (y, s, t) ∈ Kε ×

(
−δ
ε
,
δ

ε

)
×
(

0,
δ

ε

)
.
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When ε tends to zero, the standard Euclidean metric of Ωε becomes closer and closer (on the above set)
to the product of the metric of Kε and that of R2 (parameterized by the variables s and t as cartesian
coordinates). Therefore, since the set

(
− δ

ε ,
δ
ε

)
×
(
0, δ

ε

)
converges to R2

+ =
{
(s, t) ∈ R2 : t > 0

}
, in a first

approximation we get that the linearization of (P̃ε) at ũε is

(5)

{
−∆Kεu− ∂2

ssu− ∂2
ttu+ u− pw0(ζ)u in Kε × R2

+,
∂u
∂ν = 0 on Kε × ∂R2

+.

The spectrum of this linear operator can be evaluated almost explicitly. Referring to Section 4 for details
(see also [37], Proposition 2.9 for the case N = 3), here we just give some qualitative description of its
properties.

Given an arbitrary function u ∈ H1(Kε×R2
+), we can decompose it in Fourier modes in the variables

y as
u(y, ζ) =

∑
j

φj(εy)uj(ζ).

Here φj are the eigenfunctions of the Laplace-Beltrami operator on K, namely −∆Kφj = ρjφj , j =
0, 1, 2, . . . , where the eigenvalues (ρj)j are counted with their multiplicities.

If u is an eigenfunction (with respect to the duality induced by the space H1(Kε ×R2
+)) of the linear

operator in (5) with corresponding eigenvalue λ, then it can be shown (see Section 4 for details) that the
functions uj satisfy the equation

(6)
{

(1− λ) [−∆uj + (1 + α)uj ]− pwp−1
0 uj = 0 in R2

+,
∂uj

∂t = 0 on ∂R2
+,

where α = ε2ρj . It is known that when α = 0 the latter problem admits a negative eigenvalue η0 (with
eigenfunction w0), a zero eigenvalue σ0 (with eigenfunction ∂sw0), while all the other eigenvalues are
positive. This structure is due to the fact that w0 is a mountain-pass solution of (3) (so its Morse index is
at most 1), and the presence of a kernel derives form the fact that this equation is invariant by translation
in the s variable. When α is positive instead, it turns out that the first eigenvalue ηα of (6) and the
second one σα are strictly increasing functions of α with positive derivative, and tend to 1 as α→ +∞;
moreover, the eigenfunctions corresponding to ηα (resp. σα) are radial (resp. odd in s) for every value
of α. In particular, there exists α > 0 such that ηα = 0, so when ε2ρj is close to α we obtain some small
eigenvalues of the original linearized problem (5).

From the monotonicity in α and from the Weyl’s asymptotic formula for ρj , it follows that the
eigenvalues of the operator in (5) are, roughly, either of the form η0 + ε2j

2
N−2 for some j ∈ N, or of the

form ε2l
2

N−2 for some l ∈ N, or have a uniform positive bound from below.
In the case of general codimension it is not possible to decompose a neighborhood of K (in ∂Ω) as

for (4), but instead one has to model it on the normal bundle of Kε in Ωε, see Subsection 4.2 for details.
Considering the corresponding approximate linearized operator, one can prove that its eigenvalues are
now, roughly either of the form ηε2ρj

' η0 + ε2j
2
k , or of the form σε2ωl

' ε2l
2
k , j, l ∈ N, or, again, have

a uniform positive bound from below. Here (ρj)j still represent the eigenvalues of the Laplace-Beltrami
operator onK, while the numbers (ωl)l stand for the eigenvalues of the normal Laplacian ofK (considered
as a submanifold of ∂Ω), see Section 2 for its definition and the corresponding Weyl’s asymptotic formula.
We are interested in particular in the following two features of the spectrum:

1) resonances: there are two kinds of eigenvalues which can approach zero. First of all, those of
the form ηα when α is close to α. This happens when ε2j

2
k ' α, namely when j ' ε−k; furthermore,

the average distance between two consecutive such eigenvalues is of order 2
kε

2j
2
k−1 ' j−1 ' εk. The

other resonant eigenvalues are of the form σα ' α for α close to zero, namely when α = ε2l
2
k and l

is sufficiently small (compared to, say, some negative power of ε). Hence the distance from zero of the
smallest eigenvalues of this type is of order ε2. Indeed, an accurate expansion in ε, see Subsection 5.2,
yields that this distance is bounded from below by a multiple of ε2 when K is a non-degenerate minimal
submanifold.
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2) eigenfunctions: as for the case of codimension 1, it turns out that the eigenfunctions correspond-
ing to the ηα’s are of the form φj(εy)uj(ζ), where uj is radial in the variable ζ (ζ represent here some
orthonormal coordinates in the normal bundle of Kε). The function φj instead oscillates faster and faster
as ε tends to zero, since j is of order ε−k. On the other hand it is possible to show, see Subsection 4.2,
that the eigenfunctions corresponding to the σα’s are products vl(|ζ|)〈ζ, ψl〉N , where 〈·, ·〉N is the scalar
product in NK, and where ψl is a section of the normal bundle NKε, and precisely an eigenfunction
(scaled in ε) of the normal Laplacian of K. Since the resonant modes correspond to low indices l, ψl does
not oscillate as fast as the resonant φj ’s.

So far we considered an approximate operator, because in (5) we assumed a splitting of the metric
into a product. Since we expect to deal with small eigenvalues, a careful analysis of the approximate
solutions is needed (to apply local inversion arguments), and also a refined understanding of the small
eigenvalues and the corresponding eigenfunctions.

Therefore we first try to obtain approximate solutions as accurate as possible. For doing this, as in
[37, 38, 39], one can introduce suitable coordinates on Ωε near Kε, expand formally (P̃ε) in powers of ε,
and solve it term by term using functions of the form

(7) uI,ε(y, ζ) =
[
w0 + εw1 + · · ·+ εIwI

]
(εy, ζ ′ + Φ0(εy) + · · ·+ εk−2ΦI−2(εy), ζn+1); ζ = (ζ ′, ζn+1).

Here Φ0, . . . ,ΦI−2 represent smooth section of the normal bundle NK, and the functions (wi)i are
determined implicitly via equations of the type

(8)

{
−∆wi + wi − pw0(ζ)wi = Fi(εy, w0, . . . , wi−1,Φ0, . . . ,Φi−2) in Rn+1

+ ,
∂wi

∂ν = 0 on ∂Rn+1
+ .

Notice that the operator acting on wi is nothing but the linearization of (3) at w0 (shifted in ζ ′ by
Φ0 + · · ·+ εk−2ΦI−2), which has an n-dimensional kernel due to the invariance by translation in ζ ′. The
functions Φi are chosen in order to obtain orthogonality of Fi to the kernel, and to guarantee solvability
in wi. In doing this, the non-degeneracy condition on K comes into play, since the Φi’s solve equations
of the form JΦi = Gi(y). J denotes the Jacobi operator of K, related to the second variation of the
volume functional, which is invertible by the non-degeneracy assumption on the minimal submanifold.
Notice also that we wrote the variable y with a factor ε on the front. This is in order to emphasize
the slow dependence in y of these functions. In fact, recalling that (in the model problem described
above) resonance occurs mostly when dealing with highly oscillating eigenfunctions, if we require slow
dependence in y then there is no obstruction in solving (P̃ε) up to an arbitrary order εI .

Next one linearizes (P̃ε) near the approximate solutions just found. Compared to the above model
problem, the eigenvalues will be perturbed by some amount, due to the presence of the corrections (wi)i

and to the geometry of the problem. In fact the amount will be in general of order ε, since this is the
size of the corrections (from the wi’s and the expansions of the metric coefficients, see Lemma 3.2). This
prevents a direct control of the small eigenvalues of the linearized operator (at uI,ε) since, as discussed
above, the characteristic size of the spectral gaps at resonance are of order ε2 or εk.

To overcome this problem, we look at the eigenvalues as functions of ε. The counterparts of the
numbers σε2ωl

can be again obtained via a Taylor’s expansion in ε, and they turn out to be constant
multiples of ε2 times the eigenvalues of J (up to an error of order o(ε2)), so they are never zero. On the
other hand, the counterparts of the ηε2ρj

’s could vanish for some values of ε but, recalling the expansion
ηε2ρj

' η0 + ε2j
2
k , one can hope that generically in ε none of these eigenvalues will be zero.

This is indeed shown using a classical theorem due to T. Kato, see [30], pag. 445, which allows us
to estimate the derivatives of the eigenvalues with respect to ε. To apply this result one needs some
control not only on the initial eigenvalues but also on the corresponding eigenfunctions, and this is what
basically the last sections are devoted to. There we prove that if λ = o(ε2) is an eigenvalue of the
linearized operator, the eigenfunctions (up to a small error) are linear combinations of products like
φj(εy)uj(ζ), for j ' ε−k and for suitable functions uj radial in ζ. Then we deduce that ∂λ

∂ε is close to a
number depending on ε,N, p and K only. As a consequence, the spectral gaps near zero will shift, as ε
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varies, almost without squeezing, yielding invertibility for suitable values of the parameter. This method
also provides estimates on the norm of the inverse operator, which blows-up with rate max{ε−k, ε−2}
when ε tends to zero, see Remark 6.8.

Finally, a straightforward application of the implicit function theorem gives the desired result. To fix
the ideas, when p ≤ N+2

N−2 , solutions of (P̃ε) can be found as critical points of the following functional

(9) Jε(u) =
1
2

∫
Ωε

(
|∇u|2 + u2

)
− 1
p+ 1

∫
Ωε

|u|p+1, u ∈ H1(Ωε).

One proves that ‖J ′ε(uI,ε)‖H1(Ωε) ≤ CI,kε
I+1− k

2 for ε small. Even if the norm of the inverse linear
operator blows-up when ε tends to zero, choosing I sufficiently large (depending only on k and p), one
can find a solution using the contraction mapping theorem near uI,ε.

The general strategy of this proof, and especially Kato’s theorem, has been used in [37], [38] and [39],
so throughout the paper we will be sketchy in the parts where simple adaptations apply. However the
present setting requires some new ingredients: we are going to explain next what are the differences with
respect to these and to some other related papers. First of all, compared to [38], [39], where the case
k = N − 1 was treated, here we need to characterize the limit set among all the possible ones, since the
codimension is higher, and this reflects in the fact that the limit problem (3) is degenerate. This requires
to introduce the normal sections Φ0, . . . ,ΦI−2 in (7), and to use the non-degeneracy condition on K.

The localization of the limit set has been indeed also faced in [37]. Here, apart from including
that result as a particular case, allowing higher dimensions and codimensions, we need a more geometric
approach. The main issue, as we already remarked, is that we cannot use parameterizations with product
sets as in (4), since the normal bundle of K is not trivial in general. At this point some interplay
between the analytic and geometric features of the problem is needed. In particular the first and second
eigenfunctions of the linearization of (3) (the profile of ũε at every point q of K) can be viewed of
scalar or vectorial nature. More precisely, the eigenfunction corresponding to the first eigenvalue is radial
and unique up to a scalar multiple. On the other hand the eigenfunctions corresponding to the second
eigenvalue have the symmetry of the first spherical harmonics in the unit sphere of NqK, and they are
in one-to-one correspondence with the vectors of NqK. The same holds true for the eigenfunctions of
problem (6) when α ≥ 0. When q varies over the limit set, these eigenfunctions (which are the resonant
ones), depending on their symmetry determine respectively a scalar function on K or a section of the
normal bundle NK, on which the Laplace-Beltrami operator or the normal Laplacian act naturally, see
in particular Section 4. Apart from these considerations some other difficulties arise, more technical
in nature, due to the more general character of the present result compared to that in [37]. Heavier
computations are involved, especially since the curvature tensors have more components, and some extra
terms appear. Anyway, some of the arguments have been simplified.

Finally, we should point out the differences with respect to the papers [20], [36], [42], where also
special solutions of the Nonlinear Schrödinger equation or constant mean curvature surfaces are found.
In [20] and [42] the spectral gaps are relatively big, and the eigenvalues can be located using direct
comparison arguments, so there is no need to invoke Kato’s theorem. In [36] arbitrarily small spectral
gaps are allowed, but while there one has to study a partial differential equation on a surface only, here
we need to analyze the equation on the whole space, which takes some extra work. Also, the Riemannian
manifold we consider here, ∂Ω, has an extrinsic curvature as a subset of RN , and therefore some error
terms turn out to be of order ε, and not ε2, see Remark 3.4 (a). Nevertheless, we take great advantage of
the geometric construction in [36], especially in their choice of coordinates near the limit set. We believe
that our method could adapt to study concentration at general manifolds for the Nonlinear Schrödinger
equation as well, as conjectured in [4].

The paper is organized in the following way. We first introduce some notations and conventions. In
Section 2 we collect some notions in differential geometry, like the Fermi coordinates near a minimal
submanifold, the normal Laplacian, the Laplace-Beltrami and the Jacobi operators as well as the asymp-
totics of their eigenvalues. In Section 3 we construct the approximate solution uI,ε. In Section 4 we study
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some spectral properties for the limit problem (3) (with some extension) and we then derive a model for
the linearized operator at uI,ε. In Section 5 we turn then to the real linearized operator: we construct
some approximate eigenfunctions which allow us to split our functional space as direct sum of subspaces
for which the linearized operator is almost diagonal. In Section 6, using this splitting we characterize the
eigenfunctions corresponding to resonant eigenvalues. From these estimates we can obtain invertibility,
via Kato’s theorem, and prove our main result Theorem 1.1.
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Notation and conventions

- Dealing with coordinates, Greek letters like α, β, . . . , will denote indices varying between 1 and N − 1,
while capital letters like A,B, . . . will vary between 1 and N ; Roman letters like a or b will run from 1
to k, while indices like i, j, . . . will run between 1 and n := N − k − 1.

- ζ1, . . . , ζn, ζn+1 will denote coordinates in Rn+1 = RN−k, and they will also be written as ζ ′ =
(ζ1, . . . , ζn), ζ = (ζ ′, ζn+1).

- The manifold K will be parameterized with coordinates y = (y1, . . . , yk). Its dilation Kε := 1
εK will be

parameterized by coordinates (y1, . . . , yk) related to the y’s simply by y = εy.

- Derivatives with respect to the variables y, y or ζ will be denoted by ∂y, ∂y, ∂ζ , and for brevity sometimes
we might use the symbols ∂a and ∂i for ∂ya

and ∂ζi
respectively.

- In a local system of coordinates, (gαβ)αβ are the components of the metric on ∂Ω naturally induced by
RN . Similarly, (gAB)AB are the entries of the metric on Ω in a neighborhood of the boundary. (Hαβ)αβ

will denote the components of the mean curvature operator of ∂Ω into RN .

Below, for simplicity, the constant C is allowed to vary from one formula to another, also within the
same line, and will assume larger and lager values. Is is always understood that C depends on Ω, the
dimension N and the exponent p. It will be explicitly written Cl, Cδ, . . . , if the constant C depends also
on other quantities, like an integer l, a parameter δ, etc. Similarly, the positive constant γ will assume
smaller and smaller values.

For a real positive variable r and an integer m, O(rm) (resp. o(rm)) will denote a function for which∣∣∣O(r)
rm

∣∣∣ remains bounded (resp.
∣∣∣ o(r)

rm

∣∣∣ tends to zero) when r tends to zero. We might also write oε(1) for
a quantity which tends to zero as ε tends to zero. With O(rm) we denote functions which depend on the
above variables (y, ζ), which are of order rm, and whose partial derivatives of any order, with respect to
the vector fields ∂α, r ∂i, are bounded by a constant times rm.

Li will stand in general for a differential operator of order at most i in both the variables y and ζ
(unless differently specified), whose coefficients are assumed to be smooth in y.

For summations, we might use the notation
∑d

c to indicate that the sum is taken over an integer index
varying from [c] to [d] (the integer parts of c and d respectively). We might use the same convention
when we make an integer index vary between c and d. We also use the standard convention of summing
terms where repeated indices appear.

We will assume throughout the paper that the exponent p is at most critical, namely that p ≤ N+2
N−2 , so

that problem (Pε) is variational in H1(Ω). We will indicate at the end what are the arguments necessary
to deal with the general case.
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2 Geometric background

In this section we list some preliminary notions in differential geometry. First of all we introduce Fermi
coordinates near a submanifold of ∂Ω, recall the definition of minimal submanifold, and introduce the
Laplace-Beltrami and the Jacobi operators, together with some of their spectral properties. We refer for
example to [6] and [52] as basic references in differential geometry.

2.1 Fermi coordinates on ∂Ω near K

Let K be a k-dimensional submanifold of (∂Ω, g) (1 ≤ k ≤ N−1) and set n = N−k−1 (see our notation).
We choose along K a local orthonormal frame field ((Ea)a=1,···k, (Ei)i=1,··· ,n) which is oriented. At points
of K, T∂Ω splits naturally as TK ⊕NK, where TK is the tangent space to K and NK represents the
normal bundle, which are spanned respectively by (Ea)a and (Ej)j .

Denote by ∇ the connection induced by the metric g and by ∇N the corresponding normal connection
on the normal bundle. Given q ∈ K, we use some geodesic coordinates y centered at q. We also assume
that at q the normal vectors (Ei)i, i = 1, . . . , n, are transported parallely (with respect to ∇N ) through
geodesics from q, so in particular

(10) g (∇Ea
Ej , Ei) = 0 at q, i, j = 1, . . . , n, a = 1, . . . , k.

In a neighborhood of q, we choose Fermi coordinates (y, ζ) on ∂Ω defined by

(11) (y, ζ) −→ exp∂Ω
y (

n∑
i=1

ζiEi); (y, ζ) = ((ya)a, (ζi)i) ,

where exp∂Ω
y is the exponential map at y in ∂Ω.

By our choice of coordinates, on K the metric g splits in the following way

(12) g(q) = gab(q) dya ⊗ dyb + gij(q) dζi ⊗ dζj ; q ∈ K.

We denote by Γb
a(·) the 1-forms defined on the normal bundle of K by

(13) Γb
a(Ei) = g(∇Ea

Eb, Ei).

We will also denote by Rαβγδ the components of the curvature tensor with lowered indices, which are
obtained by means of the usual ones Rσ

βγδ by

Rαβγδ = gασ R
σ
βγδ.

When we consider the metric coefficients in a neighborhood of K, we obtain a deviation from formula
(12), which is expressed by the next lemma, see Proposition 2.1 in [36] for the proof. Denote by r the
distance function from K.

Lemma 2.1 In the above coordinates (y, ζ), for any a = 1, ..., k and any i, j = 1, ..., n, we have

gij(0, ζ) = δij + 1
3 Ristj ζs ζt + O(r3);

gaj(0, ζ) = O(r2);

gab(0, ζ) = δab − 2 Γb
a(Ei) ζi +

[
Rsabl + Γc

a(Es) Γb
c(El)

]
ζsζl +O(r3).

Here Ristj are computed at the point q of K parameterized by (0, 0).
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2.2 Normal Laplacian, Laplace-Beltrami and Jacobi operators

In this subsection we recall some basic definitions and spectral properties of differential operators asso-
ciated to minimal submanifolds. We first recall some notions about the Laplace-Beltrami operator, the
normal connection and the normal Laplacian.
If (M, g) is an m-dimensional Riemannian manifold, the Laplace-Beltrami operator on M is defined in
local coordinates by

(14) ∆g =
1√

det g
∂A(

√
det g gAB ∂B ),

where the indices A and B runs in 1, . . . ,m, and where gAB denote the components of the inverse of the
matrix gAB .

Let K ∈M be a k-dimensional submanifold, k ≤ m− 1. The normal connection ∇N on a normal vector
field V is defined as the projection of the connection ∇V onto NK. Moreover, one has the following
formula regarding the horizontal derivative of the product 〈·, ·〉N in the normal bundle (see [52], Volume
4, Chapter 7.C, for further details)

X〈V,W 〉N = 〈∇N
XV,W 〉+ 〈V,∇N

XW 〉,

for any smooth sections V and W in NK. If we choose an orthonormal frame (Ei)i for NK along K, we
can write

∇N
∂a
Ej = βl

j (∂a)El,

for some differential forms βl
j (we recall our notation ∂a = ∂

∂ya
). Since the normal fields (Ei)i are chosen

to be orthonormal, it follows that for any horizontal vector field X there holds X〈Ei, Ej〉N = 0, and
hence one has

(15) βl
j (∂a) = −βj

l (∂a) ∀ l, j = 1, . . . , n.

This holds true, in particular, if we choose Fermi coordinates. Since indeed the normal fields are extended
via (normal) parallel transport from q to some neighborhood through the exponential map, it follows that
βi

j(∂a)(0, 0, . . . , ya, 0, . . . , 0) = 0, and hence

(16) βl
j (∂a) = 0 at q ∀ a = 1, . . . , k, and ∀ l, j = 1, . . . , n;

(17) ∂a

(
βl

j (∂a)
)

= 0 at q ∀ a = 1, . . . , k, and ∀ l, j = 1, . . . , n.

Recalling these facts, we can derive the expression of the normal Laplacian in Fermi coordinates in the
following way: given a normal vector field V = V jEj , there holds

∇N
∂a
V = ∂aV

j Ej + V jβl
j (∂a)El.

For any two normal vector fields V and W we have, by the definition of ∆N
K∫

K

〈∇NV,∇NW 〉N dVg = −
∫

K

〈∆N
KV,W 〉N dVg.

We compute now the expression of ∆N
K evaluating the left-hand side and integrating by parts∫

K

〈∇NV,∇NW 〉NdVg =
∫

K

〈
∂aV

jEj + V jβl
j (∂a)El, ∂bW

iEi +W iβh
i

(
∂b

)〉
N
gab
√

det g

=
∫

K

[
∂aV

i ∂bW
i + ∂aV

jW iβj
i

(
∂b

)
+ V jβi

j (∂a) ∂bW
i

+ V jW iβl
j (∂a)βl

i

(
∂b

)]
gab
√

det g

9



This quantity, for any V and W , has to coincide with −
∫

K
(∆N

KV )iW i
√

det g, so we deduce that

(∆N
KV )i = ∆K(V i) +

1√
det g

∂b

(
V jβi

j (∂a) gab
√

det g
)

− gab
(
∂aV

jβj
i

(
∂b

)
+W jβl

j (∂a)βl
i

(
∂b

))√
det g.(18)

In Fermi coordinates at q, which is parameterized by (0, 0), we have that

(19) gab = δab, ∂cgab = 0 and ∂c

√
det g = 0,

and we also have (16)-(17). Hence the last formula simplifies in the following way

(20) (∆N
KV )i = ∆K(V i) at q.

Let C∞(NK) be the space of smooth normal vector fields on K. For Φ ∈ C∞(NK), we can define the
one-parameter family of submanifolds t 7→ Kt,Φ by

(21) Kt,Φ := {exp∂Ω
y (tΦ(y)) : y ∈ K}.

The first variation formula of the volume is the equation

(22)
d

dt

∣∣∣∣
t=0

Vol(Kt,Φ) =
∫

K

〈Φ,h〉N dVK ,

where h is the mean curvature (vector) of K in ∂Ω, 〈·, ·〉N denotes the restriction of g to NK, and dVK

the volume element of K.

The submanifold K is said to be minimal if it is a critical point for the volume functional, namely if

(23)
d

dt

∣∣∣∣
t=0

Vol(Kt,Φ) = 0 for any Φ ∈ C∞(NK)

or, equivalently by (22), if the mean curvature h is identically zero on K. It is possible to prove that, if
Γb

a(Ei) is as in (13), then

(24) K is minimal ⇔ Γa
a(Ei) = 0 for any i = 1, . . . n.

We point out that in the last formula we are summing over the index a, which is repeated.

The Jacobi operator J appears in the expression of the second variation of the volume functional for a
minimal submanifold K

(25)
d2

dt2

∣∣∣∣
t=0

Vol(Kt,Φ) = −
∫

K

〈JΦ,Φ〉N dVK ; Φ ∈ C∞(NK),

and is given by

(26) JΦ := −∆N
KΦ + RNΦ−BNΦ,

where RN ,BN : NK → NK are defined as

RNΦ = (R(Ea,Φ)Ea)N ; g(BΦ, nK) := Γa
b (Φ)Γb

a(nK),

for any unit normal vector nK to K. The operator ∆N
K is the normal Laplacian on K defined in (20).
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A submanifold K is said to be non-degenerate if the Jacobi operator J is invertible, or equivalently if the
equation JΦ = 0 has only the trivial solution among the sections in NK.

We recall now some Weyl asymptotic formulas, referring for example to [13], or to [32] and [43] for
further details. Let (M, g) be a compact closed Riemannian manifold of dimension m, and let ∆g be
the Laplace-Beltrami operator. Letting (ρi)i, i = 0, 1, . . . , denote the eigenvalues of −∆g (ordered to be
non-decreasing in i and counted with their multiplicity), we have that

(27) ρi ∼ Cm

(
i

V ol(M)

) 2
m

as i→∞,

where V ol(M) is the volume of (M, g) and Cm is a constant depending only on the dimension m (the
Weyl constant). A similar estimate, which can be proved using (18) and (27), holds for the normal
Laplacian ∆N

K on a k-dimensional submanifold K ⊆ M . In fact, letting (ωj)j , j = 0, 1, . . . , denote the
eigenvalues of −∆N

K (still chosen to be non-decreasing in j and counted with multiplicity), one has

(28) ωj ∼ Cm,k

(
j

V ol(K)

) 2
k

as j →∞,

where Cm,k depends on the dimensions m and k only.
Considering the Jacobi operator J for a minimal submanifold K, it is easy to see from (26) that, since

J differs from −∆N
K only by a bounded quantity, we have the same asymptotic formula for its eigenvalues

(µl)l, and thereby

(29) µl ∼ Cm,k

(
l

V ol(K)

) 2
k

as l→∞.

Finally, using the eigenvalues (ρj)j and (ωl)l, one can express the L2 norms, or the Sobolev norms of
linear combinations of the φj ’s and the ψl’s. In particular, if f =

∑
j αjφj , and if g =

∑
l βlψl are an L2

function and an L2 normal section of K, and if L1 =
∑

α cα(y)∂α
y , L2 =

∑
α c̃α(y)(∇N

y )α are differential
operators of order d with smooth coefficients acting on functions and normal sections respectively, then
one has

(30) ‖L1f‖L2(K) ≤ CL1

∑
j

(1 + ρd
j )α

2
j ; ‖L2g‖L2(K;NK) ≤ CL2

∑
l

(1 + |µl|d)β2
l .

3 Approximate solutions to (P̃ε)

In this section, given any positive integer I, we construct functions uI,ε which solve (P̃ε) up to an error
of order εI . We will find approximate solutions of (P̃ε) in the following form

(31) χε(|ζ|)
(
w0 (ζ ′ + Φ(εy), ζn+1) + εw1(εy, ζ ′ + Φ(εy), ζn+1) + · · ·+ εIwI(εy, ζ ′ + Φ(εy), ζn+1)

)
,

where Φ(εy) = Φ0(εy) + · · ·+ εI−2ΦI−2(εy) and where the cutoff function χε satisfies the properties

(32)


χε(t) = 1 for t ∈ [0, 1

2ε
−γ ],

χε(t) = 0 for t ∈ [ 34ε
−γ , ε−γ ],

|χ(l)
ε (t)| ≤ Cl ε

lγ , l ∈ N.

Here Φ0, . . . ,ΦI−2 are smooth vector fields from K into NK, while w1, . . . , wI are suitable functions
determined recursively by an iteration procedure. For doing this we choose a system of coordinates in a
neighborhood of ∂Ωε for which the new metric coefficients can be expanded in powers of ε, see Lemma
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3.2 below. In this way we can also expand (P̃ε) formally in powers of ε and solve it term by term.
The functions (wi)i will be obtained as solutions of an equation arising from the linearization of (3) at
w0, while the normal sections (Φi)i will be determined using the invertibility of the Jacobi operator.
Notice that, by the translation invariance of (3), the linearized operator possesses a non-trivial kernel,
which turns out to be spanned by {∂ζ1w0, . . . , ∂ζn

w0}. The role of Φ0, . . .ΦI−2 is to obtain at every step
orthogonality to this kernel and to solve the equation using Fredholm’s alternative.

The method here is similar in spirit to the one used in [37] except for the fact that, working in higher
dimensions and codimensions, more geometric tools are needed. Therefore, we will mainly focus on the
new and geometric aspects of the construction, omitting some details about the rigorous estimates on
the error terms, which can be handled as in [37].

3.1 Choice of coordinates near ∂Ωε and properties of approximate solutions

Let Υ0 : U → ∂Ω, where U = U1 × U2 ⊆ Rk × Rn is a neighborhood of 0 in RN−1, be a parametrization
of ∂Ω near some point q ∈ K through the Fermi coordinates (y, ζ) described before.

Let γ ∈ (0, 1) be a small number which, we recall, is allowed to assume smaller and smaller values
throughout the paper. Then for ε > 0 we set

Bε,γ =
{
x ∈ Rn+1

+ : |x| < ε−γ
}
.

Next we introduce a parametrization of a neighborhood (in Ωε) of q
ε ∈ ∂Ωε though the map Υε given by

(33) Υε(y, ζ ′, ζn+1) =
1
ε
Υ0(εy, εζ ′) + ζn+1ν(εy, εζ ′), x = (y, ζ ′, ζn+1) ∈

1
ε
U1 ×Bε,γ ,

where εy = y and where ν(εy, εζ ′) is the inner unit normal to ∂Ω at Υ0(εy, εζ ′). We have

∂Υε

∂ya
=
∂Υ0

∂ya
(εy, εζ ′) + εζn+1

∂ν

∂ya

(εy, εζ ′);
∂Υε

∂ζi
=
∂Υ0

∂ζi
(εy, εζ ′) + εζn+1

∂ν

∂ζi
(εy, εζ ′).

Using the equation

(34) dνx[v] = H(x)[v],

we find

(35)
∂Υε

∂ya
= [Id+ εζn+1H(εy, εζ ′)]

∂Υ0

∂ya

(εy, εζ ′);
∂Υε

∂ζi
= [Id+ εζn+1H(εy, εζ ′)]

∂Υ0

∂ζi
(εy, εζ ′).

Differentiating Υε with respect to ζn+1 we also get

(36)
∂Υε

∂ζn+1
= ν(εy, εζ ′).

Hence, letting gAB be the coefficients of the flat metric g = gε (we are emphasizing the role of the
parameter ε in the entries, which is due to the dependence in ε of the map Υε) of RN in the coordinates
(y, ζ ′, ζn+1), with easy computations we deduce that

(37) gαβ(ỹ, ζn+1) = gαβ(εỹ) + εζn+1

(
Hαδgδβ +Hβδgδα

)
(εỹ) + ε2ζn+1

2HαδHσβgδσ(εỹ), ỹ = (y, ζ ′);

gαN ≡ 0; gNN ≡ 1.(38)

Using the parametrization in (33), a solution u of (P̃ε) satisfies the equation

(39) − 1√
det g

[
∂B

(
gAB

√
det g

)]
∂Au− gAB∂2

ABu+ u− up = 0 in
1
ε
U1 ×Bε,γ

with Neumann boundary conditions on {ζn+1 = 0}. Looking at the term of order εi in this equation,
we will determine recursively the functions (wi)i and (Φi−2)i (defined in (31)) for i = 1, . . . , I. The
specific choice of the integer I, which will be determined later, will depend on the dimension N of Ω, the
dimension k of K, and the exponent p. For the moment we let it denote just an arbitrary integer. The
main result of this section is the following one.
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Proposition 3.1 Consider the Euler functional Jε defined in (9) and associated to problem (P̃ε) (for
p ≤ n+k+2

n+k−2). Then for any I ∈ N there exists a function uI,ε : Ωε → R with the following properties

(40) ‖J ′ε(uI,ε)‖H1(Ωε) ≤ CIε
I+1− k

2 ; uI,ε ≥ 0 in Ωε;
∂uI,ε

∂ν
= 0 on ∂Ωε,

where CI depends only on Ω, K, p and I. Moreover in the above coordinates there holds

(41)



∣∣∣∇(m)
y uI,ε(y, ζ)

∣∣∣ ≤ Cm,Iε
me−|ζ|PI(ζ),∥∥∥∇(m)

y ∇ζuI,ε(y, ζ)
∥∥∥ ≤ Cm,Iε

me−|ζ|PI(ζ),∥∥∥∇(m)
y ∇2

ζuI,ε(y, ζ)
∥∥∥ ≤ Cm,Iε

me−|ζ|PI(ζ),

y ∈ 1
ε
U1, ζ ∈ Bγ,ε,m = 0, 1, . . . ,

where ∇(m)
y (resp. ∇(i)

ζ ) is any derivative of order m with respect to the y variables (resp. of order i with
respect to the ζ variables), where Cm,I is a constant depending only on Ω, K, p and m, and where PI(ζ)
are suitable polynomials in ζ.

In the next subsection we show how to construct the approximate solution uI,ε and we give some general
ideas for the derivation of the estimates in (41). We refer to [37] for rigorous and detailed proofs.

3.2 Proof of Proposition 3.1

This subsection is devoted to the explicit construction of uI,ε. First of all we expand the Laplace-Beltrami
operator (applied to an arbitrary function u) in Fermi coordinates, and then by means of this expansion
we define implicity and recursively the functions (wi)i and the normal sections (Φi)i.

3.2.1 Expansion of ∆gε
u in Fermi coordinates

We first provide a Taylor expansion of the coefficients of the metric g = gε. From Lemma 2.1 and formula
(37) we have immediately the following result.

Lemma 3.2 For the (Euclidean) metric gε in the above coordinates we have the expansion

gij = δij + 2εζn+1Hij +
1
3
ε2Ristj ζs ζt + ε2ζn+1

2(H2)ij + O(ε3|ζ|3);

gaj = 2εζn+1Haj +O(ε2|ζ|2);

gab = δab − 2εΓb
a(Ei)ζi + 2εζn+1Hab + ε2

[
Rsabl + Γc

a(Es)Γb
c(El)

]
ζsζl + ε2ζn+1

2(H2)ab +O(ε3|ζ|3);

gαN ≡ 0; gNN ≡ 1.

Using these formulas, we are interested in expanding ∆gεu in powers of ε for a function u of the form

u(y, ζ) = u(εy, ζ).

Such a function represents indeed an ansatz for each term of the sum in (31).
We recall that, when differentiating functions with respect to the variables y, ζ, we will mean that

∂a = ∂ya and ∂i = ∂ζi . When dealing with the scaled variables y we will write explicitly ∂ya
, so that, if

u is as above, we have ∂au(εy, ζ) = ε∂ya
u(y, ζ).
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Lemma 3.3 Given any positive integer I and a function u : 1
εU1 × Bε,γ → R of the form u(εy, ζ), we

have

∆gεu = ∂2
iiu+ ∂2

ζn+1ζn+1
u+ ε

[
Hα

α∂ζn+1u− 2ζn+1Hij∂
2
iju
]

+ ε2 [L2,1u+ L2,2u+ L2,3u] +
I∑

i=3

εiLiu+ εI+1L̃I+1u,(42)

where
L2,1u = ∂2

yaya
u− 4ζn+1Hia∂

2
ζiya

u;

L2,2u = 3ζn+1
2(H2)ij∂

2
ζiζj

u+ 2ζn+1HabΓa
b (Ei)∂iu− 2ζn+1tr(H2)∂ζn+1u;

L2,3u =
(
Riaal +

1
3
Rihhl

)
ζl∂iu−

1
3
Rmijlζmζl∂

2
ζiζj

u− 1
3
Rmijiζm∂ζju

− ζjΓb
a(Ei)Γa

b (Ej)∂ζiu+ 2ζiHabΓa
b (Ei)∂ζn+1u,

and where the Li’s are linear operators of order 1 and 2 acting on the variables y and ζ whose coefficients
are polynomials (of order at most i) in ζ uniformly bounded (and smooth) in y. The operator L̃I+1 is
still linear and satisfying the same properties of the Li’s, except that its coefficients are not polynomials
in ζ, although they are bounded by polynomials in ζ.

Proof. The proof is simply based on a Taylor expansion of the metric coefficients in terms of the
geometric properties of ∂Ω and K, as in Lemma 3.2. Recall that the Laplace-Beltrami operator is given
by

∆gε =
1√

det gε
∂A(

√
det gε gε

AB ∂B ) ,

where indices A and B run between 1 and N . We can write

∆gε
= gε

AB ∂2
AB +

(
∂A gε

AB
)
∂B +

1
2
∂A( log det gε ) gε

AB ∂B .

Using the expansions of Lemma 3.3, we easily see that

gε
AB ∂2

ABu = ∂2
ζiζi

u+ ∂2
ζn+1ζn+1

u− 2 εζn+1Hij∂
2
ζiζj

u

+ε2
{
∂2

yaya
+
(
3ζn+1

2(H2)ij − 1
3 Rmijlζmζl

)
∂2

ζiζi
u− 4 ζn+1Hia∂

2
ζiya

u
}

+O(ε3|ζ|3).

We can also prove√
det gε = 1 + εζn+1H

α
α +

1
6
ε2Rmiilζmζl +

1
2
ε2
(
Rmaal + Γc

a(Em)Γa
c (El)

)
ζmζl

+ ε2
{

1
2
ζn+1

2(Hα
α )2 − ζn+1tr(H2) + 2ζn+1ζiHabΓa

b (Ei)− ζiζjΓb
a(Ei)Γa

b (Ej)
}

+ O(ε3|ζ|3),

which gives

log
√

det gε = εζn+1H
α
α + ε2

{
2ζn+1ζiHabΓa

b (Ei)− ζn+1
2 tr(H2)− ζiζjΓb

a(Ei)Γa
b (Ej)

}
+ 1

6ε
2Rmiilζmζl + 1

2ε
2

(
Rmaal + Γc

a(Em)Γa
c (El)

)
ζmζl +O(ε3|ζ|3).
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Hence, we obtain

∂A

(
log

√
det gε

)
gAB∂B = ε2

{
2ζn+1HabΓa

b (Ei)− ζjΓb
a(Ei)Γa

b (Ej) + 1
3Rmhhlζl +Riaalζl

}
∂iu

+εHα
α∂ζn+1u+ ε2

{
2ζlHabΓa

b (El)− 2ζn+1tr(H2)
}
∂ζn+1u+O(ε3|ζ|3).

Collecting these formulas together, we obtain the desired result.

Remarks 3.4 (a) The term of order ε in the expansion of ∆gu in (42) depends on the fact that ∂Ω
has an extrinsic curvature in RN . Such a term does not appear in the analogous expansion for the mean
curvature of tubes condensing on minimal subvarieties of an abstract manifold, see Proposition 4.1 in [36]
(where the small parameter ρ is the counterpart of our parameter ε).

(b) For later purposes, see for example Lemma 6.1, it is convenient to analyze in further detail the
operator L3 in (42), and in particular the coefficients of the second derivatives in the y variables. It
follows from the above expansions that the coefficient of ∂2

yayb
in L3 is given by

2
(
ζiΓb

a(Ei)− ζn+1Hab

)
.

3.2.2 Construction of the approximate solution

We show now how to construct the approximate solutions of (P̃ε) via an iterative method. Given I − 2
smooth vector fields Φ0, . . . ,ΦI−2 we define first the following function ûI,ε on K × Rn+1, see (31)

ûI,ε(y, ζ) = w0(ζ ′ + Φ(y), ζn+1) + εw1(y, ζ ′ + Φ(y), ζn+1) + · · ·+ εIwI(y, ζ ′ + Φ(y), ζn+1),

where Φ = Φ0 + εΦ1 + · · ·+ εI−2ΦI−2. In the following, with an abuse of notation, we will consider ûI,ε

(and w0, . . . , wI) as functions of the variables y and ζ through the change of coordinates y = εy.
To define the functions (wj)j and (Φj)j we expand equation (39) formally in powers of ε for u = ûI,ε

(using mostly Lemma 3.3) and we analyze each term separately. Looking at the coefficient of ε in the
expansion we will determine w1, while looking at the coefficient of εj we will determine wj and Φj−2, for
j = 2, . . . , I. In this procedure we use crucially the invertibility of the Jacobi operator (recall that we are
assuming K to be non-degenerate) and the spectral properties of the linearization of (3) at w0.

• Step 1: Construction of w1

We begin by taking I = 1 and Φ = 0. From Lemma 3.3 we get formally

−∆gε
û1,ε + û1,ε − ûp

1,ε = −∆Rn+1w0 + w0 − wp
0 + ε

(
−∆Rn+1w1 + w1 − pwp−1

0 w1

)
− ε

[
Hα

α∂ζn+1w0 − 2ζn+1Hij∂
2
ijw0

]
+O(ε2).

The term of order 1 (in the power expansion in ε) vanishes trivially since w0 solves (3), and in order to
make the coefficient of ε vanish, w1 must satisfy the following equation

(43) L0w1 = Hα
α∂ζn+1w0 − 2ζn+1Hij∂

2
ijw0,

where L0 is the linearization of (3) at w0, namely{
−∆w1 + w1 − pwp−1

0 w1 = Hα
α∂ζn+1w0 − 2ζn+1Hij∂

2
ijw0, in Rn+1

+ ,
∂w1

∂ζn+1
= 0, on {ζn+1 = 0}.

Since L0 is self-adjoint and Fredholm on H1(Rn+1
+ ), the equation is solvable if and only if the right-hand

side is orthogonal to the kernel of L0, namely if and only if the L2 product of the right-hand side with
∂w0
∂ζi

vanishes for i = 1, . . . , n, see Proposition 4.1 below. This is clearly satisfied in our case since both
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∂ζn+1w0 and ∂2
ijw0 are even in ζ ′, while the ∂w0

∂ζi
’s are odd in ζ ′ for every i. Besides the existence of w1,

from elliptic regularity estimates we can prove its exponential decay in ζ and its smoothness in y (see for
example Lemma 3.4 in [37]). Precisely, there exists a positive constant C1 (depending only on Ω,K and
p) such that for any integer ` there holds

(44) |∇(`)
y w1(y, ζ)| ≤ C1Cl(1 + |ζ|)C1e−|ζ|; (y, ζ) ∈ K × Rn+1,

where Cl depends only on l, p, K and Ω.

• Step 2: Expansion at an arbitrary order

We consider next the coefficient of εĨ for an integer Ĩ between 2 and I, and we assume that the functions
w1, . . . , wĨ−1 and the vector fields Φ0, . . . ,ΦĨ−3 have been determined by induction in Ĩ. The couple
(wĨ ,ΦĨ−2) will be found reasoning as for w1: in particular an equation for ΦĨ−2 (solvable by the invert-
ibility of J) is obtained by imposing orthogonality of some expression to the kernel of L0, and then wĨ is
found again with Fredholm’s alternative.

Expanding (39) with u = ûI,ε, we easily see that (formally), in the coefficient of εĨ , the function wĨ

appears as solution of the equation

(45)

{
LΦwĨ = FĨ(y, ζ, w0, w1, . . . , wĨ−1,Φ0, . . . ,ΦĨ−2) in Rn+1

+ ;
∂wĨ

∂ζn+1
= 0 on {ζn+1 = 0},

where LΦ is defined by
LΦu = −∆u+ u− pwp−1

0 (ζ ′ + Φ(y), ζn+1)u,

and where FĨ is some smooth function of its arguments (which we are assuming determined by induction).
Our next goal is to understand the role of ΦĨ−2 in the orthogonality condition on FĨ (to the kernel of
LΦ). In order to do this, we notice that, using Lemma 3.3 for u = ûI,ε, the function Φ (precisely its
derivatives in y) appears through the chain rule when we differentiate u with respect to the y variables.
Moreover, for testing the orthogonality of the right-hand side in (45) to the kernel of LΦ, we have to
multiply it by the functions ∂w0

∂ζi
(ζ ′+Φ(y), ζn+1), i = 1, . . . , n, so this condition will yield an equation for

Φ (and in particular for ΦĨ−2) through a change of variables of the form ζ ′ 7→ ζ ′ + Φ(y).
Therefore, in the expansion of ∆gûI,ε, we focus only on the terms (of order εĨ) containing either

derivatives with respect to the y variables, which we collected in L2,1, or containing explicitly the variables
ζ ′, which are listed in L2,3. In particular, none of these terms appear in the first line of (42).

Denoting the components of Φ by (Φj)j (in the basis (Ej)j of NK), there holds

∂ya
(u(y, ζ ′ + Φ(y), ζn+1)) = ∂ya

u(y, ζ ′ + Φ, ζn+1) +
∂Φj

∂ya

∂u

∂ζj
(y, ζ ′ + Φ(y), ζn+1);

∂2
yaya

(u(y, ζ ′ + Φ(y), ζn+1)) = ∂2
yaya

u(y, ζ ′ + Φ, ζn+1) + 2
∂Φj

∂ya

∂2
yaζj

u(y, ζ ′ + Φ, ζn+1)

+
∂2Φj

∂yaya

∂u

∂ζj
(y, ζ ′ + Φ(y), ζn+1) +

∂Φj

∂ya

∂Φl

∂ya

∂2u

∂ζj∂ζl
(y, ζ ′ + Φ(y), ζn+1);

∂2

∂ζl∂ya

(u(y, ζ ′ + Φ(y), ζn+1)) = ∂2
∂ζl∂ya

u(y, ζ ′ + Φ, ζn+1) +
∂Φj

∂ya

∂2u

∂ζj∂ζl
(y, ζ ′ + Φ(y), ζn+1).
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Therefore, recalling the definition of ûI,ε, since ∂ya
w0 = 0 we find that

L2,1ûI,ε =
∂2Φj

∂2
yaya

∂w0

∂ζj
+
∂Φj

∂ya

∂Φl

∂ya

∂2w0

∂ζj∂ζl
− 4ζn+1Hla

∂Φj

∂ya

∂2w0

∂ζj∂ζl

+
Ĩ∑

i=1

εi

{
∂2

yaya
wi + 2

∂Φj

∂ya

∂2
yaζj

wi +
∂2Φj

∂2
yaya

∂wi

∂ζj
+
∂Φj

∂ya

∂Φl

∂ya

∂2wi

∂ζj∂ζl

− 4ζn+1Hla

(
∂2

ζlya
wi +

∂Φj

∂ya

∂2wi

∂ζj∂ζl

)}
.

• Step 3: Determining wĨ and ΦĨ−2 for Ĩ ≥ 2

When we look at the coefficient of εĨ in ε2L2,1ûI,ε, the terms containing ΦĨ−2 are given by

∂2Φj

∂2yaya

∂w0

∂ζj
− 4ζn+1Hla

∂Φj

∂ya

∂2w0

∂ζj∂ζl

(
+
∂Φj

∂ya

∂Φl

∂ya

∂2w0

∂ζj∂ζl
if Ĩ = 2

)
.

When we project ∆gε ûI,ε− ûI,ε + ûp
I,ε onto the kernel of LΦ, namely when we multiply this expression

by ∂w0
∂ζs

(ζ ′ + Φ(y), ζn+1), s = 1, . . . , n, considering the terms of order εĨ involving ΦĨ−2, we have no
contribution from the first line and from L2,2 in (42) (with u = ûI,ε), as explained in Step 2. Also, in
(42), the factors of εi for i ≥ 3, multiplied by εĨ−2ΦĨ−2 will give higher order terms. In conclusion, we
only need to pay attention to L2,1 and L2,3.

When we multiply ε2L2,3w0(ζ ′ + Φ, ζn+1) by ∂w0
∂ζs

(ζ ′ + Φ, ζn+1), s = 1, . . . , n, we can obtain the

coefficient of εĨΦh
Ĩ−2

in the following way.
Looking for example at the first term in ε2L2,3 we get

ε2
∫

Rn+1
+

(
Riaal +

1
3
Rihhl

)
ζl∂iw0(ζ ′ + Φ, ζn+1)∂sw0(ζ ′ + Φ, ζn+1)dζ

= ε2
∫

Rn+1
+

(
Riaal +

1
3
Rihhl

)
(ζl − Φl)∂iw0(ζ ′, ζn+1)∂sw0(ζ ′, ζn+1)dζ

= ε2
∫

Rn+1
+

(
Riaal +

1
3
Rihhl

)
ζl∂iw0(ζ ′, ζn+1)∂sw0(ζ ′, ζn+1)dζ

− ε2
I−2∑
j=0

εjΦl
j

∫
Rn+1

+

(
Riaal +

1
3
Rihhl

)
∂iw0(ζ ′, ζn+1)∂sw0(ζ ′, ζn+1)dζ.

Since w0 is even in ζ ′, it follows by symmetry that the term of order εĨ containing ΦĨ−2 in the last
expression is given by

(46) −C0

(
Rsaal +

1
3
Rshhl

)
Φl

Ĩ−2
,

where we have set

(47) C0 =
∫

Rn+1
+

(∂1w0)2.

From similar arguments, the third and the fourth terms in L2,3w0 give respectively

(48)
1
3
RlisiC0Φl

Ĩ−2
,
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and
C0Γb

a(Es)Γa
b (El)Φl

Ĩ−2
.

The last term in L2,3w0 gives no contribution since the coefficient of ΦĨ−2 vanishes by oddness, so it
remains to consider the second term. Integrating by parts we find

2
3
RmijlΦl

Ĩ−2

∫
Rn+1

+

ζm∂ζsw0∂
2
ζiζj

w0dζ

(
+∂2

ζiya
Φm

Ĩ−2
∂2

ζjya
Φl

Ĩ−2

∫
Rn+1

+

∂2
ζiζj

w0∂ζsw0dζ if Ĩ = 2

)
.

In case Ĩ = 2 the quantity within round brackets cancels by oddness, therefore in any case we only need
to estimate the first one. Still by oddness in ζ ′, the first integral is non-zero only if, either i = j and
m = s, or i = s and j = m, or i = m and j = s.

In the latter case we have vanishing by the antisymmetry of the curvature tensor in the first two
indices. Therefore the only terms left to consider are∑

i

2
3
RsiilΦl

Ĩ−2

∫
Rn+1

+

ζs∂ζs
w0∂

2
ζiζi

w0dζ +
∑

i

2
3
RisilΦl

Ĩ−2

∫
Rn+1

+

ζi∂ζs
w0∂

2
ζsζi

w0dζ.

Observe that, integrating by parts, when s 6= i there holds∫
Rn+1

+

ζs∂ζsw0∂
2
ζiζi

w0dζ = −
∫

Rn+1
+

ζi∂ζsw0∂
2
ζsζi

w0dζ.

Hence, still by the antisymmetry of the curvature tensor we are left with

−
∑

i

4
3
RsiilΦl

Ĩ−2

∫
Rn+1

+

ζi∂ζsw0∂
2
ζsζi

w0dζ.

The last integral can be computed with a further integration by parts and is equal to − 1
2C0, so we get

2
3
RsiilC0Φl

Ĩ−2
.

This quantity cancels exactly with the second term in (46) and with (48).
When we multiply ε2L2,1w0(ζ ′+Φ, ζn+1) by ∂w0

∂ζs
(ζ ′+Φ, ζn+1), s = 1, . . . , n, the terms containing εĨΦh

Ĩ−2

are given by ∫
Rn+1

+

∂2Φj

Ĩ−2

∂2yaya

∂ζjw0∂ζsw0dζ − 4
∫

Rn+1
+

ζn+1Hla

∂Φj

Ĩ−2

∂ya

∂2
ζjζl

w0∂ζsw0dζ(
+
∫

Rn+1
+

∂Φj

Ĩ−2

∂ya

∂Φl
Ĩ−2

∂ya

∂2
ζjζl

w0 ∂ζs
w0dζ if Ĩ = 2

)
,

which give by oddness

C0

∂2Φj

Ĩ−2

∂2yaya

.

Collecting the above computations, we conclude that FĨ(y, ζ, w0, w1, . . . , wĨ−1,Φ0, . . . ,ΦĨ−2), the right-
hand side of (45), is L2-orthogonal to the kernel of LΦ if and only if ΦĨ−2 satisfies an equation of the
form

C0

(
∂2Φs

Ĩ−2

∂yaya

−RsaalΦl
Ĩ−2

+ Γb
a(Es)Γa

b (El)Φl
Ĩ−2

)
= GĨ−2(y, ζ, w0, w1, . . . , wĨ−1,Φ0, . . . ,ΦĨ−3),
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for some expression GĨ−2. This equation can indeed be solved in ΦĨ−2. In fact, observe that the operator
acting on ΦĨ−2 in the left hand side is nothing but the Jacobi operator, which is invertible by the
non-degeneracy condition on K.
Having defined ΦĨ−2 in this way, we turn to the construction of wĨ which, we recall, satisfies equation
(45). Having imposed the orthogonality condition, we get again solvability and, as for w1, one can prove
the following estimates

(49) |∇(`)
y wĨ(y, ζ)| ≤ CĨCl(1 + |ζ|)CĨe−|ζ|; (y, ζ) ∈ K × Rn+1,

where Cl depends only on l, p, K and Ω.

As already mentioned, we limit ourselves to the formal construction of the functions uI,ε, omitting
the details about the rigorous estimates of the error terms, which can be obtained reasoning as in [37].
We only mention that the number γ has to be chosen sufficiently small to obtain the positivity of uI,ε,
after we multiply ûI,ε by the cutoff function χε, see (31) and (32).

4 A model linear problem

In this section we consider a model for the linearized equation at approximate solutions which, for p ≤ N+2
N−2

(as we are assuming until the last subsection), corresponds to J ′′ε (uI,ε). We first study a one-parameter
family of eigenvalue problems, which include the linearization at w0 of (3). Then we turn to the model
for J ′′ε (uI,ε), which can be studied, roughly, using separation of variables.

4.1 Some spectral analysis in Rn+1
+

In this subsection we consider a class of eigenvalue problems, being mainly interested in the symmetries
of the corresponding eigenfunctions. We denote points of Rn+1 by (n + 1)-tuples ζ1, ζ2, . . . , ζn, ζn+1 =
(ζ ′, ζn+1), and we let

Rn+1
+ =

{
(ζ1, ζ2, . . . , ζn, ζn+1) ∈ Rn+1 : ζn+1 > 0

}
.

For p ∈
(
1, n+3

n−1

)
(n+3

n−1 is the critical exponent in Rn+1) we consider problem (3) which, we recall, is
−∆u+ u = up in Rn+1

+ ,
∂u
∂ν = 0 on ∂Rn+1

+ ,

u > 0, u ∈ H1(Rn+1
+ ).

It is well-known, see e.g. [31], that this problem possesses a radial solution w0(r), r2 =
∑n+1

i=1 ζ
2
i , which

satisfies the properties

(50)

{
w′0(r) < 0, for every r > 0,
limr→∞ err

n
2 w0(r) = αn,p > 0, limr→∞

w′
0(r)

w0(r)
= −1,

where αn,p is a positive constant depending only on n and p. Moreover, it turns out that all the solutions
of (3) coincide with w0 up to a translation in the ζ ′ variables, see [23], [24].

Solutions of (3) can be found as critical points of the functional J defined by

(51) J(u) =
1
2

∫
Rn+1

+

(
|∇u|2 + u2

)
− 1
p+ 1

∫
Rn+1

+

|u|p+1; u ∈ H1(Rn+1
+ ).

We have the following non-degeneracy result, see e.g. [49].
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Proposition 4.1 The kernel of J
′′
(w0) is generated by the functions ∂w0

∂ζ1
, . . . , ∂w0

∂ζn
. More precisely, there

holds
J
′′
(w0)[w0, w0] = −(p− 1)‖w0‖2H1(Rn+1

+ )
,

and
J
′′
(w0)[v, v] ≥ C−1‖v‖2

H1(Rn+1
+ )

, ∀v ∈ H1(Rn+1
+ ), v ⊥ w0, ∂ζ1w0, . . . , ∂ζn

w0

for some positive constant C. In particular, we have η < 0, σ = 0 and τ > 0, where η, σ and τ are
respectively the first, the second and the third eigenvalue of J

′′
(w0). Furthermore the eigenvalue η is

simple while σ has multiplicity n.

Notice that, writing the eigenvalue equation J
′′
(w0)[u] = λu in H1(Rn+1

+ ), taking the scalar product
with an arbitrary test function and integrating by parts one finds that u satisfies{

−∆u+ u− pwp−1
0 u = λ(−∆u+ u) in Rn+1

+ ,
∂u

∂ζn+1
= 0 on ∂Rn+1

+ .

The goal of this subsection (the motivation will become clear in the next one) is to study a more general
version of this eigenvalue problem, namely{

−∆u+ (1 + α)u− pwp−1
0 u = λ (−∆u+ (1 + α)u) in Rn+1

+ ,
∂u
∂ν = 0 on ∂Rn+1

+ ,
(52)

where α ≥ 0. It is convenient to introduce the Hilbert space (which coincides H1(Rn+1
+ ), but endowed

with an equivalent norm)

Hα =

{
u ∈ H1(Rn+1

+ ) : ‖u‖2α =
∫

Rn+1
+

(|∇u|2 + (1 + α)u2)

}
,

with corresponding scalar product (·, ·)α. We also let Tα : Hα → Hα be defined by duality in the following
way

(53) (Tαu, v)Hα
=
∫

Rn+1
+

((∇u · ∇v) + (1 + α)uv)− p

∫
Rn+1

+

wp−1
0 uv; u, v ∈ Hα.

When α = 0, the operator T0 is nothing but J
′′
(w0). For α ≥ 0, the eigenfunctions of Tα satisfy (52).

We want to study the first three eigenvalues of Tα depending on the parameter α.

Proposition 4.2 Let ηα, σα and τα denote the first three eigenvalues of Tα. Then ηα, σα and τα are
non-decreasing in α. For every value of α, ηα is simple and there holds

∂ηα

∂α
> 0; lim

α→+∞
ηα = 1.

The eigenvalue σα has multiplicity n and for α small it satisfies ∂σα

∂α > 0. The eigenfunction uα corre-
sponding to ηα is radial in ζ and radially decreasing, while the eigenfunctions corresponding to σα are
spanned by functions vα,i of the form vα,i(ζ) = v̂α(|ζ|) ζi

|ζ| , i = 1, . . . , n, for some radial function v̂α(|ζ|).
If uα and vα are normalized so that ‖uα‖α = ‖vα,i‖α = 1, then they depend smoothly on α. Moreover we
have

|∇(l)uα(x)|+ |∇(l)(vα,i)(x)| ≤ Cle
− |x|

Cl ,

provided α stays in a fixed bounded set of R.

Before proving the proposition we state a preliminary lemma.
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Lemma 4.3 Let τ denote the third eigenvalue of J
′′
(w0). Then, for α ≥ 0, every eigenfunction cor-

responding to an eigenvalue λ ≤ τ
2 of (52) is either radial and corresponds to the least eigenvalue, or

is a radial function times a first-order spherical harmonic (in the angular variable θ = ζ
|ζ|) with zero

coefficient in ζ ′, and correspond to the second eigenvalue.

Proof. First of all we notice that, extending evenly across ∂Rn+1
+ any function u ∈ H1(Rn+1

+ ) which is a
solution of (52), we obtain a smooth entire solution of −∆u+ (1 +α)u− pwp−1

0 u = λ (−∆u+ (1 + α)u).
Next, we decompose u in spherical harmonics in the angular variable θ (we are using only spherical
harmonics which are even in ζn+1)

u =
∞∑

i=0

ui(|ζ|)Yi,e(θ); ζ ∈ Rn+1, θ =
ζ

|ζ|
∈ Sn.

Here Yi,e is the j−th eigenfunction of −∆Sn (which is even in ζn+1), namely it satisfies ∆SnYi,e = λSn

i,eYi,e,
where we have denoted by λSn

i,e the i-th eigenvalue of −∆Sn on the space of even functions in ζn+1. In
particular, the function Y0,e is constant on Sn and correspond to λSn

1,e = 0, while λSn

2,e = n has multiplicity
n. The eigenfunctions corresponding to λSn

2,e are (up to a constant multiple) the restrictions, from Rn+1

to Sn, of the linear functions in ζ ′.
The laplace equation in polar coordinates writes as

∆Rn+1u = ∆ru+
1
r2

∆Snu,

where ∆r = d2

dr2 + n
r

d
dr . Therefore, if u =

∑∞
i=0 ui(|ζ|)Yi,e(θ) is a solution of (52), then every radial

component ui satisfies the equation

(54)

 (1− λ)
(
−v′′ − n

r v
′ +
(

1 + α+ λSn

i,e

r2

)
v

)
− pwp−1

0 v = 0 in R+;

v′(0) = 0.

We also notice that, since the space of functions {v(r)Yi,e(θ)} (for a fixed i) is sent into itself by the
Laplace operator, every Fourier component (in the angular variables) of an eigenfunction of (52) is still
an eigenfunction.

We call λα,i,j the j-th eigenvalue of (54). From Proposition 4.1 it follows that λ0,1,1 = −(p− 1) < 0
and that λ0,1,j > τ for j ≥ 2. In fact, a radial eigenfunction of J

′′
(w0) which is not (a multiple of) w0

itself must correspond to an eigenvalue greater or equal than τ , which is positive. On the other hand,
it follows from Proposition 4.1 that λ0,2,1 = 0, and also that λ0,2,j ≥ τ > 0 for j ≥ 2. Finally, since
λ0,i,1 ≥ τ > 0 for i ≥ 3, we have in addition λ0,i,j ≥ τ for every i ≥ 3 and for every j ≥ 1.

After these considerations, we turn to the case α > 0, for which similar arguments will apply. Solutions
of (54) can be found as extrema (minima, for example) of the Rayleigh quotient

(55)

∫
R+
rn

[
(v′)2 +

(
1 + α+ λSn

i,e

r2

)
v2

]
− p

∫
R+
rnwp−1

0 v2

∫
R+
rn
[
(v′)2 +

(
1 + α+

λSn
i,e

r2

)
v2
]

from a standard min-max procedure. Using elementary inequalities it is easy to see that the above
quotient is non-decreasing in α. Therefore it follows that λα,1,j > 0 for j ≥ 2, that λα,2,j ≥ τ > 0 for
j ≥ 2 and that λα,i,j ≥ τ for every i ≥ 3 and for every j ≥ 1. This concludes the proof.

Proof of Proposition 4.2 The simplicity of ηα can be proved as in [38], Section 3, using spherical
rearrangements and the maximum principle. The weak monotonicity in α of the eigenvalues can be easily
shown using the Rayleigh quotient in the space Hα, as for (55).
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The smoothness of α 7→ ηα and of α 7→ uα can be deduced in the following way. Since the two
spaces H1(Rn+1

+ ) and Hα coincide, and since the eigenvalues of an operator do not depend on the choice
of the (equivalent) norms, we can consider Tα acting on H1(Rn+1

+ ) endowed with its standard norm
(independent of α). Having fixed the space, we notice that the explicit expression of Tα is given by

(56) Tαu = [−∆ + 1]−1
(
−∆u+ (1 + α)u− pwp−1

0 u
)
.

In fact, letting Tαu = q ∈ H1(Rn+1
+ ), taking the scalar product with any v ∈ H1(Rn+1

+ ) and using (53)
we find ∫

Rn+1
+

[(∇q · ∇v) + qv] =
∫

Rn+1
+

[(∇u · ∇v) + (1 + α)uv]− p

∫
Rn+1

+

wp−1
0 uv,

which leads to (56) by the arbitrarity of v. It is clear that the operator in (56) depends smoothly on α
and therefore, being ηα simple, the smooth dependence on α of ηα and uα follows.

We now compute the derivative of ηα with respect to α. The function uα satisfies

(57)

{
(1− ηα) (−∆uα + (1 + α)uα) = pwp−1

0 uα in Rn+1
+ ,

∂uα

∂ν = 0 on ∂Rn+1
+ .

Differentiating with respect to α the equation ‖uα‖2α = 1, we find

(58)
d

dα
‖uα‖2α = 0 ⇒

(
duα

dα
, uα

)
α

= −
∫

Rn+1
+

u2
α.

On the other hand, differentiating (57), we obtain

(59)

{
−dηα

dα (−∆uα + (1 + α)uα) + (1− ηα)
(
−∆

(
duα

dα

)
+ (1 + α)duα

dα + uα

)
= pwp−1

0
duα

dα in Rn+1
+ ,

∂
∂ν

(
duα

dα

)
= 0 on ∂Rn+1

+ .

Multiplying (59) by uα, integrating by parts and using (58), one gets

(60)
dηα

dα
= (1− ηα)

∫
Rn+1

+

u2
α > 0.

Indeed, since Tα ≤ IdH1(Rn+1
+ ), every eigenvalue of Tα is strictly less than 1, and in particular (1−ηα) > 0.

We now consider the second eigenvalue σα. For any α ≥ 0 it is possible to make a separation of variables,
finding eigenfunctions of (52) of the form Yi,ev̂α,i, where Yi,e = ζi

|ζ| , i = 1, . . . , n, correspond to λSn

2,e.
Also, from Lemma 4.3 we know that for α close to 0 (indeed, as long as σα < τ) every eigenfunction
corresponding to σα is of this form, for some i ∈ {1, . . . , n}. Therefore, if we restrict ourselves to the
space of functions of the form v̂(|ζ|) ζi

|z| for a fixed i ∈ {1, . . . , n}, the first eigenvalue for (52) becomes
simple, so we can reason as before, obtaining smoothness in α and the strict monotonicity of σα.

We prove next that the eigenvalue ηα converges to 1 as α→ +∞. There holds

ηα = inf
u∈Hα

∫
Rn+1

+

[
|∇u|2 + (1 + α)u2 − pwp−1

0 u2
]

∫
Rn+1

+
[|∇u|2 + (1 + α)u2]

.

Fixing any δ > 0, it is sufficient to notice that

|∇u|2 +
(
(1 + α)− pwp−1

0

)
u2 ≥ (1− δ)

[
|∇u|2 + (1 + α)u2

]
for every u,

provided α is sufficiently large. This concludes the proof of the claim.
The decay on uα, vα,i and their derivatives is standard and can be shown as in [38], so we do not give

details here.
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Remark 4.4 Proposition 4.2 implies in particular that there is a unique α > 0 such that ηα = 0.
Moreover, we have also

u0 = C̃0w0; vh
0 = C0∂hw0,

for some positive constants C̃0 and C0.

We also need to introduce a variant of the eigenvalue problem (52), for which we impose vanishing of the
eigenfunctions outside a certain set. For ε > 0 and for γ ∈ (0, 1) we define

(61) Bε,γ =
{
x ∈ Rn+1

+ : |x| < ε−γ
}
,

and let
H1

ε =
{
u ∈ H1(Bε,γ) : u(x) = 0 for |x| = ε−γ

}
.

We let Hα,ε denote the space H1
ε endowed with the norm

‖u‖2α,ε =
∫

Bε,γ

[
|∇u|2 + (1 + α)u2

]
; u ∈ H1

ε ,

and the corresponding scalar product (·, ·)α,ε. Similarly, we define Tα,ε by

(Tα,εu, v)α,ε =
∫

Bε,γ

[
(∇u · ∇v) + (1 + α)uv − pwp−1

0 uv
]
; u, v ∈ Hα,ε.

The operator Tα,ε satisfies properties analogous to Tα. We list them in the next Proposition, which also
gives a comparison between the first eigenvalues and eigenfunctions of Tα and Tα,ε.

Proposition 4.5 There exists ε0 > 0 such that for ε ∈ (0, ε0) the following properties hold true. Let ηα,ε,
σα,ε and τα,ε denote the first three eigenvalues of Tα,ε. Then ηα,ε, σα,ε and τα,ε are non-decreasing in α.
For every value of α, ηα,ε is simple and ∂ηα,ε

∂α > 0. For α sufficiently small, σα,ε has multiplicity n and
∂σα,ε

∂α > 0. The eigenfunction uα,ε corresponding to ηα,ε is radial in ζ and radially decreasing, while the
eigenfunctions corresponding to σα,ε are spanned by functions vα,ε,i of the form vα,ε,i(ζ) = v̂α,ε(|ζ|) ζi

|ζ| ,
i = 1, . . . , n, for some radial function v̂α,ε(|ζ|). The eigenvector uα,ε (resp. vα,ε,i), normalized with
‖uα,ε‖Hα,ε

= 1 (resp. ‖vα,ε,i‖Hα,ε,i
= 1) corresponding to ηα,ε (resp. σα,ε for α small) depend smoothly

on α. Moreover for some fixed C > 0 there holds

|∇(l)uα,ε(ζ)|+ |∇(l)vα,ε,i(ζ)| ≤ Cle
− |ζ|

Cl , for i = 0, . . . , n;(62)

(63) |ηα − ηα,ε|+ ‖uα − uα,ε‖H1(Rn+1
+ ) + |σα − σα,ε|+ ‖vα,i − vα,ε,i‖H1(Rn+1

+ ) ≤ Ce−
ε−γ

C ,

provided α stays in a fixed bounded set of R. The functions ua,ε and vα,ε,i in this formula have been set
identically 0 outside Bε,γ . Furthermore, τα,ε ≥ τα ≥ τ for every value of α and ε.

The proof follows that of Proposition 2.3 in [39], and hence we omit it here. It is still based on some
elementary inequalities and on the Rayleigh quotient. The quantitative estimates in (63) can be deduced
using cutoff functions and the Green’s representation formula for the operator −∆ + (1 + α) in Rn+1

+ .
As a consequence of this proposition (taking α = 0) we obtain that, if (for ε small) u ∈ H1

ε has no
Fourier components (in θ) with indices less or equal to n, then (T0,εu, u)0,ε ≥ τ

2 (u, u)0,ε. Equivalently,
there holds
(64)

p

∫
Bε,γ

wp−1
0 (|ζ|)u2 ≤

(
1− τ

2

)∫
Bε,γ

(−∆u+ u)udζ for any u =
∞∑

i=n+1

uj(|ζ|)Yi,e(θ), u ∈ H1
ε .
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4.2 A model for J ′′
ε (uI,ε)

In this subsection, using the analysis of the previous one, we construct a model operator which, up to
some extent, mimics the properties of J ′′ε (uI,ε), and for which we can give an explicit description of the
spectrum. Although the related construction in [37] is a particular case of the one made here, the general
spirit is quite different, and is more geometric in nature.

First of all, we choose an orthonormal frame (Ei)i as before, and we define a metric ĝ on NK as follows.
For v ∈ NK, a tangent vector V ∈ TvNK can be identified with the velocity of a curve v(t) in NK
which is equal to v at time t = 0. The same holds true for another tangent vector W ∈ TvNK. Then the
metric ĝ on NK is defined on the couple (V,W ) in the following way (see [21], pag. 79)

ĝ(V,W ) = g (π∗V, π∗W ) +
〈
DNv

dt
|t=0,

DNw

dt
|t=0

〉
N

.

In this formula π denotes the natural projection from NK onto K, and DN v
dt denotes the (normal)

covariant derivative of the vector field v(t) along the curve π v(t). In the notation of Subsection 2.2 we
have that, if v(t) = vj(t)Ej(t), then

DNv

dt
=
dvj(t)
dt

Ej(t) + vj(t)βl
j

(
π∗
dv(t)
dt

)
El.

Therefore, if we choose a system of coordinates y on K and then a system of coordinates on NK defined
by

(y, ζ) ∈ Rk × Rn 7→ ζ
j
Ej(y),

we get that

ĝab(y, ζ) = gab(y) + ζ
i
ζ

j
〈
∇N

∂a
Ei,∇N

∂b
Ej

〉
N

= gab(y) + ζ
i
ζ

j
βl

i (∂a)βl
j

(
∂b

)
,

and
ĝai(y, ζ) = ζ

j
βi

j (∂a) ; ĝij(y, ζ) = δij ,

where we have set ∂i = ∂
∂ζi

. We notice also that the following co-area type formula holds, for any smooth
compactly supported function f : NK → R

(65)
∫

NK

fdVĝ =
∫

K

(∫
NyK

f(ζ)dζ

)
dVg(y).

This follows immediately from the fact that det ĝ = det g, which in turn can be verified by expressing ĝ
as a product of three matrices like(

Id ζβ
0 Id

)(
g 0
0 Id

)(
Id 0
ζβ Id

)
,

the first and the third having determinant equal to 1.
Having defined the metric ĝ, we express the Laplacian of a function u defined on NK with respect to

this metric. In Fermi coordinates centered at some point q ∈ K, using (16), (17) and (19), it turns out
that (for y = 0)

(66) ∆ĝu = ∂2
aau+ ∂2

ii
u.

Next we define the set Sε as

Sε =
{

(v, ζn+1) ∈ NKε × R+ :
(
|v|2 + ζn+1

2
) 1

2 ≤ ε−γ
}
, R+ = {ζn+1 : ζn+1 > 0} ,
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where NKε stands for the normal bundle of Kε (in Ωε). We next endow Sε with a natural metric,
inherited by ĝ through a scaling. If Rε denotes the dilation x 7→ εx in RN (extended naturally to its
subsets), we define a metric g̃ε on Sε by

g̃ε =
1
ε2

[(Rε)∗ĝ]⊗ dζn+1
2.

In particular, choosing coordinates (y, ζ ′) on NKε via the scaling (y, ζ) = ε(y, ζ ′), one easily checks that
the components of g̃ε are given by

(g̃ε)ab(y, v) = (g)ab(εy) + ε2vivjβl
i (∂a) (εy)βl

j

(
∂b

)
(εy),

(g̃ε)ai(y, v) = εvjβi
j (∂a) (εy); (g̃ε)ij(y, v) = δij ,

and also
(g̃ε)NN ≡ 1; (g̃ε)Nα ≡ 0.

Therefore, if u is a smooth function in Sε, it follows that in the above coordinates (y, ζ ′, ζn+1) (at y = 0)

(67) ∆g̃ε
u = ∂2

aau+ ∂2
iiu+ ∂2

ζn+1ζn+1
u.

In the following, to emphasize a slow dependence of a function u in the variables y, we will often write
u(y, ζ) = u(εy, ζ) (where, we recall, ζ = (ζ ′, ζn+1)), identifying with an abuse of notation the variable
y parameterizing Kε with y, parameterizing K. In this case we have that (at the origin of the Fermi
coordinates)

(68) ∆g̃ε
u = ε2∂2

aau+ ∂2
iiu+ ∂2

ζn+1ζn+1
u.

For later purposes, we evaluate ∆g̃ε
on functions with a special structure. In particular, if we deal

with a function u of the form u(y, ζ) = φ(y)v(|ζ|), we have that

(69) ∆g̃εu = ε2(∆Kφ(y))v(|ζ|) + φ(y)∆ζv,

and if instead u(y, ζ) = v(|ζ|)ψh(y) ζh

|ζ| for some smooth normal section ψ = ψhEh, then we find

(70) ∆g̃εu = ε2(∆N
Kψ)h(y)

ζh
|ζ|
v(|ζ|) + ψh(y)∆ζ

(
v(|ζ|) ζh

|ζ|

)
.

Now we introduce the function space HSε
defined as the family of functions in H1(Sε) which vanish on

{|v|2 + ζn+1
2 = ε−2γ}, endowed with the scalar product

(71) (u, v)HSε
=
∫

Sε

(∇g̃εu · ∇g̃εv + uv) dVg̃ε .

We consider next the operator TSε
: HSε

→ HSε
defined by duality as

(72) (TSε
u, v)HSε

=
∫

Sε

(
∇g̃ε

u · ∇g̃ε
v + uv − pwp−1

0 (|ζ|)uv
)
dVg̃ε

,

for arbitrary u, v ∈ HSε . Our goal is to characterize some of the eigenvalues of TSε , with the corresponding
eigenfunctions.

For simplicity, if uα,ε, vα,ε,i, ηα,ε and σα,ε are given by Proposition 4.5, recalling our notation from
Subsection 2.2, we also set

(73) uj,ε = uε2ρj ,ε; vl,ε,i = vε2ωl,ε,i; ηj,ε = ηε2ρj ,ε; σl,ε = σε2ωl,ε.

We also assume that these functions are normalized so that

(74)

{
‖uj,ε‖ε2ρj ,ε =

∫
Bγ,ε

(
|∇uj,ε|2 + (1 + ε2ρj)u2

j,ε

)
= 1;

‖vl,ε,i‖ε2ωl,ε =
∫

Bγ,ε

(
|∇vl,ε,i|2 + (1 + ε2ωl)v2

l,ε,i

)
= 1.

After these preliminaries, we can state our result.
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Proposition 4.6 Let ε0, ε be as in Proposition 4.5. Let λ < τ
4 be an eigenvalue of TSε . Then either

λ = ηj,ε for some j, or λ = σl,ε for some index l. The corresponding eigenfunctions u are of the form

(75) u(y, ζ) =
∑

{j : ηj,ε=λ}

αjφj(εy)uj,ε(ζ) +
∑

{l : σl,ε=λ}

βlϕ
i
l(εy)vl,ε,i(ζ),

where (y, ζ) denote the above coordinates on Sε, and where (αj)j, (βl)l are arbitrary constants. Viceversa,
every function of the form (75) is an eigenfunction of TSε

with eigenvalue λ. In particular the eigenvalues
of TSε

which are smaller than τ
4 coincide with the numbers (ηj,ε)j or (σl,ε)l which are smaller than τ

4 .

Proof. The proof is based on separation of variables and the spectral analysis of Proposition 4.5.
Integrating by parts, one can check that the eigenfunction u of TSε satisfies the following equation

(76)

{
(1− λ) (−∆g̃ε

u+ u)− pwp−1
0 (ζ)u = 0 in Sε,

∂u
∂ζn+1

= 0 on {ζn+1 = 0}.

As before, we can extend u evenly in ζn+1, to obtain a smooth solution of the differential equation in
(76) in the set {(v, ζn+1) ∈ NKε×R : (|v|2 + ζn+1

2)
1
2 ≤ ε−γ}. Hence, fixing y ∈ Kε, we can use Fourier

decomposition in the angular variable of ζ, and we can write

u(y, ζ) =
∞∑

l=0

ul(y, |ζ|)Yl,e(θ),

where θ = ζ
|ζ| ∈ Sn, and where Yl,e is the l-th spherical harmonic function which is even in ζn+1. We

now decompose u further in a convenient way as

(77) u = u0 + u1 + u2,

where

u0 =
1√
|Sn|

u0(y, |ζ|); u1 =
∑

l=1,...,n

ul(y, |ζ|)Yl,e(θ); u2 =
∑

l≥n+1

ul(y, |ζ|)Yl,e(θ).

Integrating by parts, the last formula, together with (65), (69) and (70) (recall that Yl,e for l = 1, . . . , n
are linear combinations of ζh

|ζ| on Sn, h = 1, . . . , n) easily imply that (ui, uj)HSε
= 0 for i 6= j and that

(TSε
ui, uj)HSε

= 0 for i 6= j, namely that TSε
diagonalizes with respect to the above decomposition (77).

We begin by considering the action of TSε
on u0. Using a Fourier decomposition of u0(y, |ζ|) through

the eigenfunctions (φj)j of the Laplace-Beltrami operator on Kε we set

u0(y, |ζ|) =
∞∑

j=0

φj(εy)ũj(|ζ|).

By (69) we get immediately that for any j

∆g̃ε
(φj(εy)ũj(|ζ|)) = (ε2∆g + ∆ζ)(φj(εy)ũj(|ζ|)) = (∆ζ − ε2ρj)φj(εy)ũj(|ζ|).

As a consequence we find that u0 ∈ H1
ε satisfies the following partial differential equation in Bε,γ , with

Neumann boundary conditions on {ζn+1 = 0}

−∆g̃ε
u0 + u0 − pwp−1

0 (|ζ|)u0 =
∞∑

j=0

φj(εy)
(
−∆ζ ũj(|ζ|) + (1 + ε2ρj)ũj(|ζ|)− pwp−1

0 (|ζ|)ũj(|ζ|)
)
.

From this formula it follows that if TSε
u = λu for some λ, then by the orthogonality to u1, u2 we have

also TSεu0 = λu0, and each of the components ũj (which are radial in ζ) satisfies the eigenvalue equation
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Tε2ρj ,εũj = λũj in Hε2ρj ,ε with the same value of λ, where we are using the notation of Subsection 4.1.
Using the same terminology, we can further decompose ũj as

ũj(|ζ|) = αjuj,ε + uj,ε with αj ∈ R and with (uj,ε, uj,ε)ε2ρj ,ε = 0.

From the spectral analysis carried out in the previous subsection it follows that if λ < τ
4 (and ε is

sufficiently small), then uj,ε = 0 for every j, and λ = ηj,ε for some set of indices j.

We now turn to the evaluation of TSε
on u1. Similarly as before, expanding with respect to the eigen-

functions of the normal Laplacian we can decompose u1 in the following way

u1(y, ζ) =
∑
l≥0

n∑
i=1

ṽl(|ζ|)ϕl,i(εy)
ζi
|ζ|
,

and from (70) we deduce that

∆g̃ε

(
n∑

i=1

ṽl(|ζ|)ϕl,i(εy)
ζi
|ζ|

)
=

n∑
i=1

(ε2∆N
Kϕl)i ζi

|ζ|
vl(|ζ|) +

n∑
i=1

ϕl,i(εy)∆ζ

(
ṽl(|ζ|)

ζi
|ζ|

)

= (∆ζ − ε2ωl)

(
n∑

i=1

ṽl(|ζ|)ϕl,i(εy)
ζi
|ζ|

)
.

As a consequence we find that also

−∆g̃ε
u1 + u1 − pwp−1

0 (|ζ|)u1

=
∑
l≥0

n∑
i=1

ϕl,i(εy)
[
−∆ζ

(
ṽl(|ζ|)

ζi
|ζ|

)
+ (1 + ε2ωl)ṽl(|ζ|)

ζi
|ζ|

− pwp−1
0 (|ζ|)ṽl(|ζ|)

ζi
|ζ|

]
.

Hence, by the spectral analysis of the previous subsection, reasoning as for u0 we deduce that if u1

satisfies TSe
u1 = λu1 with λ < τ

4 , then ṽl(|ζ|) ζi

|ζ| = vl,ε,i, and hence it follows that λ = σl,ε for some set
of indices l.

Finally, we turn to u2. Proceeding as for the definition of the metric ĝ (and using the same notation),
we can introduce a bilinear form g (semi-positive definite) on T NK defined by

g(V,W ) =
〈
DNv

dt
|t=0,

DNw

dt
|t=0

〉
N

.

Using again a scaling in ε, we can also introduce the following bilinear form on Sε

gε =
1
ε2

(Rε)∗g⊗ dζn+1
2.

The components of this form in the above coordinates (y, ζ) are given by

(gε)ab(y, v) = ε2vivjβl
i (∂a) (εy)βl

j

(
∂b

)
(εy); (gε)ai(y, v) = εvjβi

j (∂a) (εy);

(gε)ij(y, v) = δij ; (gε)NN ≡ 1; (gε)Nα ≡ 0.

We then define by duality the operator Tε through the formula

(Tεu, u)HSε
:=
∫

Sε

[
gε(∇g̃εu,∇g̃εu) + u2 − pwp−1

0 (|ζ|)u2
]
dVg̃ε .

Moreover, computing the pointwise action of Tε integrating by parts, reasoning as for the derivation of
(68), and using (65), one finds that

(78) (Tεu, u)HSε
=
∫

Kε

[∫
Sy,ε

(
−u∆ζu+ u2 − pw0(|ζ|)p−1

)
dζ

]
dVgε

(y), u ∈ HSε ,
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where we have set gε = 1
ε2 (Rε)∗g and Sy,ε =

{
(v, ζn+1) ∈ NyKε × R+ :

(
|v|2 + ζn+1

2
) 1

2 ≤ ε−γ
}

.
Hence, using (65) (with the scaled metric g̃ε), (64) with u = u2 and (78) we find

p

∫
Sε

wp−1
0 u2

2dVg̃ε
= p

∫
Kε

(∫
Sy,ε

wp−1
0 u2

2

)
dVgε

(y) ≤
(
1− τ

2

)∫
Kε

[∫
Sy,ε

(
−u2 ∆ζu2 + u2

2

)]
dVgε

(y).

Since τ < 1 (being an eigenvalue of J
′′
(w0) ≤ IdH1(Rn+1

+ )), we deduce that

(TSεu, u)HSε
= (Tεu, u)HSε

+
∫

Sε

[
(ĝε − gε)(∇g̃εu,∇g̃εu) + u2

]
dVg̃ε

≥ τ

2

∫
Sε

[
gε(∇g̃ε

u,∇g̃ε
u) + u2

]
dVg̃ε

+
∫

Sε

[
(ĝε − gε)(∇g̃ε

u,∇g̃ε
u) + u2

]
dVg̃ε

≥ τ

2
‖u‖HSε

.

If follows that there are no eigenvectors of the form u2 corresponding to eigenvalues smaller than τ
2 . This

concludes the proof.

Remark 4.7 For later purposes, it is convenient to consider a splitting of the functions in HSε
which is

slightly different from the one in (77). If u0, u1 and u2 are as above, with

u0 =
∑
j≥0

φj(εy)ũj(|ζ|); u1 =
∑
l≥0

n∑
i=1

ṽl(|ζ|)ϕl,i(εy)
ζi
|ζ|
,

for some real sequences (αj)j, (βl)l, we can write

ũj(|ζ|) = αjuj,ε(|ζ|) + uj,ε(|ζ|), with (uj,ε, uj,ε)ε2ρj ,ε = 0;

ṽl(|ζ|)
ζi
|ζ|

= βlvl,ε,i(ζ) + vl,ε(|ζ|)
ζi
|ζ|

:= βlvl,ε,i(ζ) + vl,ε,i(ζ), with (vl,ε,i, vl,ε,i)ε2ωl,ε = 0.

Now we set u = u0 + u1 + u2, where

u0 =
∞∑

j=0

αjuj,ε(|ζ|)φj(εy); u1 =
∞∑

l=0

βlvl,ε,i(ζ)ϕi
l(εy);

u2 =
∞∑

j=0

uj,ε(|ζ|)φj(εy) +
∞∑

l=0

vl,ε,i(ζ)ϕi
l(εy) + u2.

Then by (74) one can check that (ui, uj)HSε
= 0 for i 6= j, and that

(79) ‖u‖2HSε
= ‖u0‖2HSε

+ ‖u1‖2HSε
+ ‖u2‖2HSε

=
1
εk

∞∑
j=0

α2
j +

1
εk

∞∑
l=0

β2
l + ‖u2‖2HSε

;

(80) (TSεu, u)HSε
=

∞∑
j=0

ηj,εα
2
j +

∞∑
l=0

σl,εβ
2
l + (TSεu2, u2)HSε

; (TSεu2, u2)HSε
≥ C‖u2‖2HSε

,

for some fixed positive constant C.

From the last proposition we deduce the following corollary, regarding the Morse index of TSε .
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Corollary 4.8 Let γ ∈ (0, 1), and let TSε : HSε → HSε be defined as before. Then, as ε tends to zero,
the Morse index of TSε

satisfies the estimate

M.I.(TSε
) '

(
α

Ck

) k
2

V ol(K)ε−k,

where α is the unique real number for which ηα = 0 (see Remark 4.4).

Proof. From Proposition 4.6 we have that the Morse index of TSε
is equal to the number of negative

ηj,ε’s. By the estimate in (63), this number is asymptotic to the number of j’s for which ηε2ρj
is negative.

Therefore it is sufficient to count the number of eigenvalues ρj for which ε2ρj is less than α. By the Weyl’s

asymptotic formula, see [32], we have that ρj ' Ck

(
j

V ol(K)

) k
2

so the conclusion follows immediately.

5 Accurate analysis of the linearized operator

In this section we first compare J ′′ε (uI,ε) to the model operator introduced in the previous one. A naive
direct comparison will give errors of order ε, see Lemma 5.1 and Corollary 5.3, but sometimes we will
need estimates of order ε2. Therefore we will expand at a higher order the eigenvalues (of the linearized
operator at uI,ε) close to zero with the corresponding eigenfunctions, to get sufficient control on the
errors. Finally, using these expansions, we will define a suitable decomposition of the functional space
for which the linearized operator is almost diagonal.

5.1 Comparison of J ′′
ε (uI,ε) and TSε

We define first a bijection Υ̃ε from Sε into a neighborhood of Kε in Ωε in the following way. Given the
section Φ = Φ0 +εΦ1 + · · ·+εI−2ΦI−2 in NK constructed in Section 3, for any (v, ζn+1) ∈ Sε, v ∈ NyKε,
ζn+1 ∈ R+, we set

Υ̃ε(v, ζn+1) = exp∂Ωε
y (v + Φ(εy)) + ζn+1ν

(
exp∂Ωε

y (v + Φ(εy))
)
.

Then we define the set Σε ⊆ Ωε to be
Σε = Υ̃ε(Sε),

endowed with the standard Euclidean metric induced from RN . For u ∈ HSε , we define the function
ũ : Σε → R by

ũ(z) = u
(
Υ̃−1

ε (z)
)
, z ∈ Σε,

and letting Λε to be the map u 7→ ũ, we define

HΣε = Λε(HSε).

HΣε
has a natural structure of Hilbert (Sobolev) space inherited by H1(Ωε), and we denote by (·, ·)HΣε

,
‖ · ‖HΣε

the corresponding scalar product and norm. More precisely, we can identify the space HΣε with
the family of functions in H1(Ωε) which vanish identically in Ωε \ Σε.

We introduce next the operator TΣε
: HΣε

→ HΣε
defined as the restriction to HΣε

of J ′′ε (uI,ε) which,
using the duality in HΣε

, has the following expression

(81) (TΣε
u, v)HΣε

=
∫

Σε

(∇u · ∇v + uv)− p

∫
Σε

up−1
I,ε uv = (u, v)HΣε

− p

∫
Σε

up−1
I,ε uv.

Fixing these notations and definitions, following the arguments at the beginning of Section 4 in [37]
one can easily prove the following result.
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Lemma 5.1 Identifying the functions in HSε with the corresponding ones in HΣε via the map Λε, for ε
sufficiently small one has

(u, v)HΣε
= (u, v)HSε

+O(ε1−γ)‖u‖HSε
‖v‖HSε

;

(TΣεu, v)HΣε
= (TSεu, v)HSε

+O(ε1−γ)‖u‖HSε
‖v‖HSε

.

with error O(ε1−γ) independent of u, v ∈ HΣε
.

We introduced the operator TΣε because it represents an accurate model for J ′′ε (uI,ε). In fact, since
most of the functions we consider have an exponential decay away from Kε, it is reasonable to expect
that the spectrum of J ′′ε (uI,ε) will be affected only by negligible quantities if we work in HΣε

instead
of H1(Ωε). More precisely, one has the following result (we recall the definition of τ from the previous
section).

Lemma 5.2 There exists a fixed constant C, depending on Ω, K and p such that the eigenvalues of
J ′′ε (uI,ε) and TΣε

satisfy

|λj(J ′′ε (uI,ε))− λj(TΣε
)| ≤ Ce−

1
Cε−γ , provided λj(J ′′ε (uI,ε)) ≤

τ

2
.

Here we are indexing the eigenvalues in non-decreasing order, counted with multiplicity.

We omit the proof of this result because it is very similar in spirit to that of Lemma 5.5 in [38]. This
is based on the fact that the number of the eigenvalues of TSε

which are less or equal than 3
4τ is bounded

by ε−D for some D > 0 (see Proposition 4.6 and the Weyl’s asymptotic formulas in Subsection 2.2),
together with the exponential decay of the eigenfunctions of J ′′ε (uI,ε), which can be shown as in [38],
Lemma 5.1.

As a consequence of Lemmas 5.1 and 5.2 we obtain the following result.

Corollary 5.3 In the above notation, for ε small one has that

(82) |λj(J ′′ε (uI,ε))− λj(TSε
)| ≤ Cε1−γ , provided λj(J ′′ε (uI,ε)) ≤

τ

2
.

Using Proposition 4.6 and Corollary 5.3, it is possible to obtain some qualitative information about
the spectrum of the linearized operator J ′′ε (uI,ε). However, this kind of estimate is not sufficiently precise
by the following considerations. First of all, since the eigenvalues of TSε

can approach zero at a rate
min{ε2, εk}, the estimate (82) need to be improved if we want to guarantee the invertibility of J ′′ε (uI,ε).
Furthermore, it would be natural to expect that the Jacobi operator (and its invertibility) plays some
role in the expansion of the eigenvalues, and this is not apparent here.

On the other hand, Lemma 5.2 gives an accurate estimate on the eigenvalues of J ′′ε (uI,ε) in terms of
those of TΣε

, so it will be convenient to analyze TΣε
directly.

5.2 Approximate eigenfunctions of TΣε

In this subsection we construct approximate eigenfunctions to the linearized operator at the approximate
solutions uI,ε. By the reasons explained at the end of the previous subsection, we need a refined expansion
of the small eigenvalues of TΣε

, and in particular here we want to understand how the σl,ε’s change when
we pass from TSε

to TΣε
.

It is sufficient here to take I = 2, because the terms of order higher than ε2 do not affect the expansions
below. As for the construction of the approximate solutions uI,ε, we proceed by expanding the eigenvalue
equation formally in powers of ε. By the construction of u2,ε, formally the following equation holds

−∆gε
u2,ε + u2,ε − up

2,ε = O(ε3).

Using Fermi coordinates as in Section 3 and differentiating with respect to ζh, we get

(83) −∂h(∆gε
u2,ε) + ∂hu2,ε − pup−1

2,ε ∂hu2,ε = O(ε3).
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From the general expression of the Laplace-Beltrami operator, see formula (14), we can easily see that

∂h(∆gεu) = ∆gε(∂hu) + ∂hg
AB
ε ∂ABu+ ∂h(∂Ag

AB
ε )∂Bu

+
1
2
gAB

ε ∂2
hA (log(det gε)) ∂Bu+

1
2
∂A (log(det gε)) (∂hg

AB
ε )∂Bu.(84)

Let us now consider the second term on the right-hand side of (84): dividing the indices this is equivalent
to

∂hg
ij
ε ∂

2
iju+ 2∂hg

ib
ε ∂

2
ibu+ ∂hg

ab
ε ∂abu+ 2∂hg

AN
ε ∂A∂ζn+1u.

From Lemma 3.2, and using the fact that we get an ε factor each time we differentiate u with respect to
ya, yb, . . . , we find that

∂hg
AB
ε ∂2

ABu = −2
3
ε2Rihtjζt∂

2
iju+O(ε3).

Similarly we get

∂h∂Ag
AB
ε ∂Bu =

1
3
ε2Rhiij∂ju+O(ε3);

1
2
gAB

ε ∂2
hA (log(det gε)) ∂Bu = ε2

(
1
3
Rillh +Riaah − Γb

a(Ei)Γa
b (Eh)

)
∂iu

+ 2HabΓb
a(Eh)∂ζn+1u+O(ε3),

and
1
2
∂A (log(det gε)) (∂hg

AB
ε )∂Bu = O(ε3).

Putting together all these terms we deduce that

(85) ∂h(∆gεu) = ∆gε(∂hu)−
2
3
ε2Rihtjζt∂iju+ ε2

(
2
3
Rillh +Riaah − Γb

a(Ei)Γa
b (Eh)

)
∂iu+O(ε3).

To construct the approximate eigenfunctions vε and the approximate eigenvalues µ, we make an ansatz
of the type

vε =
(
ψh(y)∂hu2,ε(y, ζ ′ + Φ(y), ζn+1) + ε2z2(y, ζ)

)
+O(ε3); µ = ε2µ+O(ε3),

where the normal section ψ = (ψh)h, the function z2 and the real number µ have to be determined.

We notice that the eigenvalue equation J ′′ε (u2,ε)v = λv in H1(Ωε), with an integration by parts becomes

−∆gεv + v − p (u2,ε)
p−1

v = λ (−∆gεv + v) ,

see also the derivation of (57).
For v = vε and λ = µ, we have the following expansion

− ∆gε

(
ψh(y)∂hu2,ε + ε2z2(y, ζ)

)
+ ψh(y)∂hu2,ε + ε2z2(y, ζ)− p (u2,ε)

p−1 (
ψh(y)∂hu2,ε + ε2z2(y, ζ)

)
= ε2µ

[
−∆gε

(
ψh(y)∂hu2,ε + ε2z2(y, ζ)

)
+
(
ψh(y)∂hu2,ε + ε2z2(y, ζ)

)]
= ε2µ

[
ψh(y) (−∆gε∂hw0 + ∂hw0)

]
+O(ε3)

= ε2µpψh(y)wp−1
0 ∂hw0 +O(ε3).
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From (85) we can expand the Laplacian in the last formula as

−∆gε

(
ψh(y)∂hu2,ε

)
= −ε2∂2

yaya
ψh∂hw0 − 2ε2∂aψ

h∂2
jhw0∂ya

Φj
0 − ψh∆gε(∂hu2,ε)

+ 4ε2ζn+1Haj∂ya
ψh∂2

jhw0 +O(ε3)

= −ε2∂2
yaya

ψh∂hw0 − 2ε2∂aψ
h∂2

jhw0∂ya
Φj

0 − ψh∂h(∆gεu2,ε)

+ 4ε2ζn+1Haj∂ya
ψh∂2

jhw0 +
2
3
ε2ψhRihtjζt∂ijw0

− ε2ψh

(
2
3
Rillh +Riaah − Γb

a(Ei)Γa
b (Eh)

)
∂iw0 +O(ε3).

Using (83) jointly with the last equality, and recalling our previous notation (from Section 3)

LΦu = −∆u+ u− pwp−1
0 (ζ ′ + Φ(εy), ζn+1),

we obtain the following condition on z2

LΦz2 = ∂2
yaya

ψh∂hw0 + 2∂ya
ψh∂2

jhw0∂ya
Φj

0 −
2
3
ψhRihtjζt∂

2
ijw0

+ ψh

(
2
3
Rillh +Riaah − Γb

a(Ei)Γa
b (Eh)

)
∂iw0 + pµψhwp−1

0 ∂hw0(86)

− 2HabΓb
a(Eh)∂ζn+1w0 − 4ζn+1Haj∂ya

ψm∂2
jmw0 +O(ε).

In order to get solvability of this equation (in z2), we need to impose that the right-hand side is orthogonal
to the kernel of LΦ namely that, multiplying it by ∂sw0 and integrating in ζ, s = 1, . . . , n, we must get
zero. If we do this, reasoning as at the end of Subsection 3.2.1, we obtain the following condition on ψ

C0Jψ = C1µψ, where C1 = p

∫
Rn+1

+

wp−1
0 (∂1w0)2dζ,

and where C0 is given in (47). With the choices

µ =
C0

C1
µl; ψ = ψl,

where µl is an eigenvalues of J with eigenfunction ψl, the right-hand side of (86) is perpendicular to the
kernel of LΦ, and we get solvability in z2. Using the eigenvalue equation for ψl, (86) can be simplified as

LΦz2 = µlψ
h
l ∂hw0

(
p
C0

C1
wp−1

0 − 1
)

+ 2∂ya
ψh

l

(
∂ya

Φj
0 − 2ζn+1Haj

)
∂2

jhw0

+
2
3
ψh

l

(
Rijjh∂iw0 −Rihtjζt∂

2
ijw0 − 3HabΓb

a(Eh)∂ζn+1w0

)
.

Next, we set

gh
0 (y, ζ) = L−1

Φ

[
∂hw0

(
p
C0

C1
wp−1

0 − 1
)]

; gh
1 (y, ζ) = 2L−1

Φ

[(
∂ya

Φj
0 − 2ζn+1Haj

)
∂2

jhw0

]
;

gh
2 (y, ζ) =

2
3
L−1

Φ

[(
Rillh∂iw0 −Rihtjζt∂

2
ijw0 − 3HabΓb

a(Eh)∂ζn+1w0

)]
+ ∂hw2(y, ζ ′ + Φ(y), ζn+1),

and
gh
3 (y, ζ) = ∂hw1(y, ζ ′ + Φ(y), ζn+1).

We notice that, by the definitions of C0, C1, the computations in Subsection 3.2.2 and by oddness, the
arguments of L−1

Φ in the definitions of gh
0 , gh

1 and gh
2 are all perpendicular to the kernel of LΦ, and

therefore g0, g1 and g2 are well defined.
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Finally, with this notation, we define the approximate eigenfunction Ψl as vε times a suitable cut-off
function of ζ, namely
(87)

Ψl(y, ζ) = χε(|ζ|)
{
ψh

l (y)
[
∂hw0 + εgh

3 (y, ζ) + ε2gh
2 (y, ζ)

]
+ ε2µlψ

h
l (y)gh

0 (y, ζ) + ε2∂ya
ψh

l (y)gh
1 (y, ζ)

}
,

where χε is as in (32), and, as usual, y = εy.
A more accurate analysis, which we omit, shows that the above error terms not only are of order ε3,

but they decay exponentially to zero as |ζ| tends to infinity. Moreover, as we already remarked, in the
above estimates one can replace u2,ε with uI,ε. Precisely, one can prove the following result.

Lemma 5.4 If Ψl is given in (87), then there exist a polynomial P (ζ) and a sequence of positive constants
(Cl)l, depending on Ω, K, p and I such that∣∣∣∣−∆gεΨl + Ψl − pup−1

I,ε Ψl − ε2
C0

C1
µl(−∆gεΨl + Ψl)

∣∣∣∣ ≤ Clε
3P (ζ)e−|ζ|.

5.3 A splitting of the functional space

In the previous subsection we expanded in ε some of the eigenvalues of TΣε
, precisely those which are the

counterparts of the σl,ε’s for TSε
. Actually, TSε

possesses another type of resonant eigenvalues, namely
the ηj,ε’s for suitable values of j, which in principle could approach zero even faster. One of the differences
between these two families of eigenvalues is that the eigenfunctions corresponding to the resonant σl,ε’s
oscillate slowly along ∂Ωε, and this allowed us to perform the above expansion. On the contrary, the
eigenfunctions related to the ηj,ε’s possess only high Fourier modes, and therefore such an expansion
is not possible anymore. Nevertheless, we can deal with the counterparts of these eigenvalues applying
Kato’s theorem, which on the other hand requires to characterize the corresponding eigenfunctions up to
some extent.

The purpose of the present subsection is to identify appropriate subspaces of HΣε with respect to
which TΣε is approximately in block form. Recalling the definitions in Proposition 4.5, in (73) and in
(87) (and also our convention about the range of an integer index), for δ ∈ (0, k), C ∈ (0, 1), we define
the following subspaces

(88) H1 = span {φi(εy)ui,ε(ζ), i = 0, . . . ,∞} ;

(89) Ĥ2 = span
{
Ψl, l = 0, . . . , ε−δ

}
; H̃2 = span

{
ψm

j (εy)v̂j,ε(|ζ|)
ζm
|ζ|
, j = ε−δ + 1, . . . , Cε−k

}
;

(90) H2 = Ĥ2 ⊕ H̃2; H3 = (H1 ⊕H2)
⊥
,

where X⊥ denotes the orthogonal complement to the subspace X with respect to the scalar product in
HΣε

. We have the following result, which is the counterpart of Proposition 4.2 in [37]. The proof follows
the same arguments, but for the reader’s convenience we prefer to give details since the notation and the
estimates are affected by the different dimensions and codimensions we are dealing with.

Proposition 5.5 There exists a small value of the constant C > 0 in (89), depending on Ω, K and p,
such that the following property holds. For ε sufficiently small and choosing δ ∈

(
k
2 , k
)

in (89), every
function u ∈ HΣε

decomposes uniquely as

u = u1 + u2 + u3, with u1 ∈ H1, u2 ∈ H2, u3 ∈ H3.

Moreover there exists a positive constant C, also depending on Ω, K and p such that

(TΣε
u3, u3) ≥

1

CC
2
k

‖u3‖2HΣε
.
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The proof requires some preliminary Lemmas. Before stating them, we recall our convention about the
symbol

∑d
c , for two positive real values c and d.

Lemma 5.6 Let ũ2 =
∑Cε−k

j=ε−δ+1 βjψ
m
j (εy)v̂j,ε(|ζ|) ζm

|ζ| ∈ H̃2. Then

(91) ‖ũ2‖2HΣε
= (1 +O(ε1−γ))

1
εk

Cε−k∑
j=ε−δ

β2
j .

Proof. By Lemma 5.1, it is sufficient to estimate ‖ũ2‖2HSε
. We notice that by (26) there holds

−∆N
Kψj = Jψj + (B−R)ψj = µlψj + ((B−R)ψ)j .

Integrating by parts, using (70) and the last formula one finds that ‖ũ2‖2HSε
becomes

−
∫

Sε

Cε−k∑
j,l=ε−δ+1

∆g̃ε

( n∑
m=1

βjψ
m
j (εy)v̂j,ε(|ζ|)

ζm
|ζ|

)
·
( n∑

h=1

βlψ
h
l (εy)v̂l,ε(|ζ|)

ζh
|ζ|

)

+
∫

Sε

Cε−k∑
j,l=ε−δ+1

( n∑
m=1

βjψ
m
j (εy)v̂j,ε(|ζ|)

ζm
|ζ|

)
·
( n∑

h=1

βlψ
h
l (εy)v̂j,ε(|ζ|)

ζh
|ζ|

)
= A1 +A2,(92)

where

A1 =
∫

Sε

Cε−k∑
j,l=ε−δ+1

[(
−∆ζ + (1 + ε2µj)

)( n∑
m=1

βjψ
m
j (εy)v̂j,ε(|ζ|)

ζm
|ζ|

)]
·
( n∑

h=1

βlψ
h
l (εy)v̂j,ε(|ζ|)

ζh
|ζ|

)
;

A2 = ε2
∫

Sε

Cε−k∑
j,l=ε−δ+1

( n∑
m=1

βj ((B−R)ψj)
m (εy)v̂j,ε(|ζ|)

ζm
|ζ|

)
·
( n∑

h=1

βlψ
h
l (εy)v̂j,ε(|ζ|)

ζh
|ζ|

)
.

Looking at A1, the integral over any fiber NyKε is non zero if and only if m = h (and by symmetry,
when computing the integral we can assume both the indices to be 1). Then, from (65) and from the
orthogonality among different ψl’s (which now are scaled in ε), recalling that v̂j,ε(|ζ|) ζm

|ζ| = vj,ε,m, A1

becomes

1
εk

Cε−k∑
j=ε−δ+1

β2
j ‖vj,ε,1‖2ε2ηj ,ε =

1
εk

Cε−k∑
j=ε−δ+1

β2
j

[∫
Rn+1

+

(
|∇vj,ε,1|2 + (1 + ε2µj)v2

j,ε,1

)]
.

Recalling the normalization (74) and the fact that ηj = ωj + O(1) (independently of j), see Subsection
2.2, we obtain that

(93) A1 =
1
εk

Cε−k∑
j=ε−δ+1

(1 +O(ε2))β2
j .

We turn now to the estimate of A2. By the orthogonality of the ψl’s, using again (65) and (74) one finds∫
Sε

ũ2
2dVg̃ε

=
1
εk

Cε−k∑
j=ε−δ+1

β2
j ‖vj,ε,1‖2L2(Rn+1

+ )
≤ 1
εk

Cε−k∑
j=ε−δ+1

β2
j .

Working in a local system of coordinates (y, z) as in Subsection 4.2, it is also convenient to write ũ2 as

ũ2(y, ζ) =
n∑

m=1

fm(y, |ζ|)ζm, where fm(y, |ζ|) =
Cε−k∑

j=ε−δ+1

βjψ
m
j (εy)

v̂j,ε(|ζ|)
|ζ|

.
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If U is a neighborhood of some point q in K, where the coordinates y are defined, letting Uε = 1
εU , one

has ∫
NUε

ũ2
2dVg̃ε

=
n∑

m=1

∫
Uε

(∫
Rn+1

+

f2
m(y, |ζ|)ζ2

1dζ

)
dVgε

(y),

so it follows that

(94)
m∑

m=1

∫
Uε

(∫
Rn+1

+

f2
m(y, |ζ|)ζ2

1dζ

)
dVgε

(y) ≤
∫

Sε

ũ2
2dVg̃ε

≤ 1
εk

Cε−k∑
j=ε−δ+1

β2
j .

Now, we can write

A2 = ε2
∫

Sε

ũ2ũ2dVg̃ε
, where ũ2 =

Cε−k∑
j=ε−δ+1

βj ((B−R)ψj)
m (εy)v̂j,ε(|ζ|)

ζm
|ζ|
.

As for ũ2, we can write ũ2 =
∑n

m=1 fm(y, |ζ|)ζm, where fm =
∑Cε−k

j=ε−δ+1(B−R)mjfj(y, |ζ|), and compute∫
NUε

ũ2
2dVg̃ε

=
n∑

m=1

∫
Uε

(∫
Rn+1

+

f2m(y, |ζ|)ζ2
1dζ

)
dVgε

(y).

In conclusion, from the Hölder inequality, from (94), covering Kε with finitely-many Uε’s we derive

(95) |A2| ≤ ε2
(∫

Sε

ũ2
2dVg̃ε

) 1
2
(∫

Sε

ũ2
2dVg̃ε

) 1
2

≤ Cε2
1
εk
‖B−R‖L∞

Cε−k∑
j=ε−δ+1

β2
j .

Then the conclusion follows from (93) and (95).

In order to estimate the norm ‖û2‖HΣε
, it is convenient to introduce an abstract result.

Lemma 5.7 For j ∈ {0, . . . , ε−δ}, and for a sequence (βj)j, let us consider a function u : Sε → R of the
form

u(y, ζ) =
ε−δ∑
j=0

n∑
m=1

βj(Ld,yψ
m
j )(y)gm(ζ),

where y = εy, where Ld,y is a linear differential operator of order d with smooth coefficients in y, and
where the functions gm(ζ) are also smooth and have an exponential decay at infinity.

Then there exists a positive constant C, independent of ε, δ and (βj)j such that

‖u‖2L2(Sε) ≤ C
1
εk

ε−δ∑
j=0

(
1 + ε2d|µj |d

)
β2

j .

Proof. The proof is similar in spirit to that of Lemma 5.6, but here we take advantage of the fact that
the profile gm(ζ) is independent of the index j (this lemma applies in particular to each of the summands
in the definition of Ψl, see (87)).

Using local coordinates, (65) and the exponential decay of the gm’s, after integration in ζ we find

‖u‖2L2(Sε) =
ε−δ∑

j,l=0

n∑
m,h=1

βjβlcmh

∫
Uε

(Ld,yψ
m
j )(y)(Ld,yψ

h
l )(y)dVg,

for some bounded coefficients (cmh). As for (95) then we find ‖u‖L2(Sε) ≤ C‖ψ‖Hd(Kε,NKε) and the last

quantity, with a change of variables and by (30), can be estimated with C
εk

∑ε−δ

j=0(1 + ε2d|µj |d)β2
j . This

concludes the proof.
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Lemma 5.8 Let u2 = û2 + ũ2 =
ε−δ∑
j=0

βjΨj(εy, ζ) +
Cε−k∑

j=ε−δ+1

βjψ
m
j (εy)v̂j,ε(|ζ|) ζm

|ζ| ∈ H2. Then, choosing

δ ∈
(

k
2 , k
)

in (89), one has

(96) ‖u2‖2HΣε
=

1
εk

(1 +O(ε1−γ + ε2−
2δ
k ))

ε−δ∑
j=0

β2
j ‖∂1w0‖H1(Rn+1

+ ) +
Cε−k∑

j=ε−δ+1

β2
j

 .
Proof. We first claim that the following formula holds

(97) ‖û2‖2HSε
=

1
εk

ε−δ∑
j=0

β2
j

(
1 +O(ε2−2γ + ε2−

2δ
k )
)
‖∂1w0‖2H1(Rn+1

+ )
.

Proof of (97). We write

û2 = û2,1 + û2,2 :=
ε−δ∑
j=0

βjψ
m
j (εy)∂mw0(ζ)χε(|ζ|) +

ε−δ∑
j=0

βjΨj(εy, ζ).

where Ψj is the term of order ε (and higher) in Ψj . Reasoning as in the proof of Lemma 5.6 we get

‖û2,1‖2HSε
=

1
εk

ε−δ∑
j=0

β2
j (1 + ε2µj +O(ε2))‖∂mw0χε‖2H1(Rn+1

+ )

=
1
εk

ε−δ∑
j=0

β2
j

(
1 +O(ε2−

2δ
k )
)
‖∂1w0‖2H1(Rn+1

+ )
,(98)

where the last equality follows from the Weyl’s asymptotic formula (29).
On the other hand, using Lemma 5.7, the Weyl’s formula and some computations, one also finds

εk‖û2,2‖2HSε
≤ Cε2

ε−δ∑
j=0

β2
j

(
1 + ε2|µj |

)
+ Cε4

ε−δ∑
j=0

β2
jµ

2
j

(
1 + ε2|µj |

)
+ Cε4

ε−δ∑
j=0

β2
j

(
1 + |µj |+ ε2|µj |3

)
≤ C

(
ε2 + ε4−

4δ
k + ε6−

6δ
k

) ε−δ∑
j=0

β2
j .

By our choice of δ, the last formula reads

(99) ‖û2,2‖2HSε
≤ C

εk
ε4−

4δ
k

ε−δ∑
j=0

β2
j .

Finally, from (98) and (99) we also obtain

(û2,1, û2,2)HSε
≤ C

εk

ε−δ∑
j=0

β2
j

(
ε+O(ε2−

2δ
k )
)
,

which concludes the proof of (97).

Proof of (96). We write again û2 = û2,1 + û2,2. Then, by the orthogonality relations among the ψj ’s,
reasoning as in the proof of Lemma 5.6, we get that (ũ2, û2,1)HSε

becomes

ε2
Cε−k∑

j=ε−δ+1

ε−δ∑
l=0

∫
Sε

( n∑
m=1

βj ((B−R)ψj)
m (εy)v̂j,ε(|ζ|)

ζm
|ζ|

)
·
(
χε(|ζ|)

n∑
h=1

βlψ
h
l (εy)∂hw0

)
.
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As above, with some computations we find

(ũ2, û2,1)HSε
= O(ε2)‖ũ2‖HSε

‖û2,1‖HSε
= O(ε2)

1
εk

Cε−k∑
j=0

β2
j .

From Lemma 5.6 and (99) we also find

(ũ2, û2,1)HSε
≤ C

1
εk

Cε−k∑
j=0

(1 +O(ε1−γ)β2
j )

 1
2

ε2−
2δ
k (

Cε−k∑
j=0

β2
j )

1
2 .

The result follows from the last two formulas.

Remark 5.9 From the proof of (96) it also follows that every function u2 ∈ H2 can be written uniquely
as u2 = û2 + ũ2, with û2 ∈ Ĥ2 and ũ2 ∈ H̃2.

Proof of Proposition 5.5. In order to prove the uniqueness of the decomposition it is sufficient to
show that, for ε small

(100) (u1, u2)HΣε
= oε(1)‖u1‖HΣε

‖u2‖HΣε
, u1 ∈ H1, u2 ∈ H2,

where oε(1) → 0 as ε→ 0. Indeed, by Lemma 5.1 we have

(u1, u2)HΣε
= (u1, u2)HSε

+O(ε1−γ)‖u1‖HΣε
‖u2‖HΣε

,

and since the functions ∂hw0, gh
0 , gh

3 and vl,ε,i are odd in ζ ′ (and so also ũ2 and û2,1), we get

(u1, u2)HSε
= (u1, û2,2)HSε

,

where we have used the notation in the proof of Lemma 5.8. Hence from the last three formulas, (99)
and form (96) we deduce

(101) (u1, u2)HΣε
≤ C(ε1−γ + ε2−2 δ

k )‖u1‖HΣε
‖u2‖HΣε

,

which implies (100), since δ ∈ (k
2 , k).

To prove the second statement, it is sufficient to show that

(102) (u3, v)HSε
≤ 1

2
‖u3‖HSε

‖v‖HSε
; as ε→ 0,

for all u3 ∈ H3 and for all the functions v of the form

v =

1
2 Cε−k∑

l=0

β̃lϕ
m
l (εy)vl,ε,m(ζ).

In fact, if we write u3 = u3,0 + u3,1 + u3,2 as in Remark 4.7 (with an obvious change of notation),

u3,0 =
∞∑

j=0

αjuj,ε(|ζ|)φj(εy); u3,1 =
∞∑

l=0

βlvl,ε,i(ζ)ϕi
l(εy),

from (79) we find

(103) ‖u3‖2Sε
=

1
εk

∞∑
l=0

(
α2

l + β2
l

)
+ ‖u3,2‖2HSε

.
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From (79), from Lemma 5.1 and from the fact that u3 is perpendicular in HΣε to u3,0 ∈ H1, we deduce

1
εk

∞∑
l=0

α2
l = (u3,0, u3,0)HSε

= (u3,0, u3)HSε
= O(ε1−γ)‖u3‖HSε

‖u3,0‖HSε
≤ Cε1−γ‖u3‖2HSε

.

Moreover from (102), choosing v =
∑ 1

2 Cε−k

l=0 βlϕ
m
l (εy)vl,ε,m(ζ), and using (103) we get

1
εk

∑
l≤ 1

2 Cε−k

β2
l = (u3, v)HSε

≤ 1
2
‖u3‖2Sε

.

The last two formulas and (103) then imply

(104) ‖u3‖2HSε
≤ C

 ∑
l> 1

2 Cε−k

β2
l + ‖u3,2‖2HSε

 ,

for some fixed constant C.
On the other hand, by (80) we also have

(TSεu3, u3)Sε ≥
1
εk

∑
l> 1

2 Cε−k+1

σl,εβ
2
l +

1
C
‖u3,2‖2HSε

.

Using the fact that σi,ε ∼ σε2wi,ε ∼ ε2i
2
k by Proposition 4.5, from (104) and the last formula it follows

that
(TSε

u3, u3)Sε
≥ 1
εk

1

CC
2
k

∑
i> 1

2 Cε−k+1

β2
l +

1
C
‖u3,2‖2HSε

≥ 1

CC
2
k

‖u3‖2HSε
.

This yields our conclusion, hence we are reduced to prove (102).

Proof of (102). By the form of v and by (79), we have

(105) ‖v‖2HSε
=

1
εk

1
2 Cε−k∑

l=0

β̃2
l .

Using the L2 basis (ψl)l of eigenfunctions of J, we define the function ϕ and the coefficients {βl}l=1,...,∞
as

ϕ(y) =

1
2 Cε−k∑

l=0

β̃lϕl(y) =
∞∑

l=0

βlψl(y) :=
∞∑

l=0

βlψ
h
l (y)Eh(y),

so we have

(106) ‖ϕ‖2L2(K;NK) =

1
2 Cε−k∑

l=0

β̃2
l =

∞∑
l=0

β2
l .

Using these new coefficients βj , we set (see (73))

ṽ(y, ζ) = C0

ε−δ∑
j=0

βjΨj(εy, ζ) +
Cε−k∑

j=ε−δ+1

βjψ
h
j (εy)v̂j,ε(|ζ|)

ζh
|ζ|

∈ H2.

where C0 is given in Remark 4.4. Hence we can write

v − ṽ = A1 +A2 +A3 +A4 +A5,
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with

A1 =

1
2 Cε−k∑

l=0

β̃lϕ
m
l (εy) [vl,ε,m(ζ)− v0,ε,m(ζ)] ; A2 =

∞∑
l=Cε−k+1

βlψ
h
l (εy)v0,ε,h(ζ);

A3 = −C0

ε−δ∑
j=0

βjΨj(εy, ζ); A4 =
Cε−k∑

l=ε−δ+1

βlψ
h
l (εy) (v0,ε,h − vl,ε,h) ;

A5 =
ε−δ∑
l=0

βlψ
h
l

(
v0,ε,h − C0χε(|ζ|)∂hw0

)
,

and where Ψj is defined in the proof of Lemma 5.8. Since u3 is orthogonal to H2, we get (u2, ṽ)HΣε
= 0,

and so

(107) (u3, v)HΣε
= (u3, A1)HΣε

+ (u3, A2)HΣε
+ (u3, A3)HΣε

+ (u3, A4)HΣε
+ (u3, A5)HΣε

.

We prove now that ‖Ai‖HSε
is small for every i = 1, . . . , 5. From (65), the proof of Proposition 4.6,

Proposition 4.5 and (105) there holds

‖A1‖2HSε
=

1
εk

1
2 Cε−k∑

l=0

β̃2
l ‖vl,ε,1 − v0,ε,1‖2l,ε ≤ CC

2
(1 + C

2
)‖v‖2HSε

<
1
16
‖v‖2HSε

,

provided C is sufficiently small.
To estimate A2 we can use Lemma 5.7 and some computations to find

(108) ‖A2‖HSε
≤ C

1
εk

∞∑
l=Cε−k+1

β2
l (1 + ε2|µl|).

We now set ϕ̃ =
∑∞

l=Cε−k+1 βlψl. Since J = −∆N
K +O(1), for any integer m one finds

(Jmϕ̃, ϕ̃)L2(K;NK) ≤ (Jmϕ,ϕ)L2(K)

≤ ((−∆N
K)mϕ,ϕ)L2(K;NK) + Cm

[
((−∆N

K)m−1ϕ,ϕ)L2(K;NK) + (ϕ,ϕ)L2(K;NK)

]
.

Since ϕ =
∑ 1

2 Cε−k

l=0 β̃lϕl, from (106) we deduce that

(Jmϕ̃, ϕ̃)L2(K;NK) ≤
(
C

2

) 2m
k

ε−2m‖ϕ‖2L2(K;NK) +O(ε−2(m−1))‖ϕ‖2L2(K;NK)

≤

[(
C

2

) 2m
k

ε−2m +O(ε−2(m−1))

] 1
2 Cε−k∑

l=0

β̃2
l

 .(109)

On the other hand, since in the basis (ψl)l, the function ϕ̃ has non zero components only when l ≥ Cε−k,
by the Weyl’s asymptotic formula we have also that

(110) (Jmϕ̃, ϕ̃)L2(K;NK) ≥


∑∞

l=Cε−k+1 µ
m
l β

2
l ;

CC
2m
k ε−2m

∑∞
l=Cε−k+1 β

2
l .

Using (109) and the first inequality in (110) with m = 1 we get

ε2
∞∑

l=Cε−k+1

µlβ
2
l ≤

(
CC

2
k + oε(1)

) 1
2 Cε−k∑

l=0

β̃2
l .
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Moreover, using (109) and the second inequality in (110) with m arbitrary one also finds

∞∑
l=Cε−k+1

β2
l ≤

((
1
2

) 2m
k

+ oε(1)

) 1
2 Cε−k∑

l=0

β̃2
l .

Using (105), (108) and the last two inequalities (for the second one we take m large enough), for
sufficiently small C we find ‖A2‖HSε

< 1
16‖v‖HSε

.
Now we estimate ‖A3‖HSε

. Reasoning as for (99), from (105) and (106) we get

‖A3‖2HSε
≤ C

1
εk
ε4−4 δ

k

ε−δ∑
0

β2
j ≤ Cε4−4 δ

k ‖v‖2HSε
.

Next, similarly to the estimate of A1, for small C we find

‖A4‖2HSε
≤ 1
εk
C

Cε−k∑
l=ε−δ+1

β2
l ‖v̂0,ε,1 − vl,ε,1‖2l,ε ≤ CC

2
(1 + C

2
)‖v‖2HSε

<
1
16
‖v‖2HSε

.

Finally, from Proposition 4.5 and reasoning as for A2, we obtain also

‖A5‖2HSε
≤ 1
εk
Ce−C−1ε−γ

ε−δ∑
l=0

β2
l (1 + ε2ωl)Cε−kl−

2l
k ≤ Cε−ke−C−1ε−γ

‖v‖2HSε
.

Taking (107) into account, this concludes the proof of (102), provided we choose C and ε sufficiently
small.

6 Diagonalization of TΣε
and applications

In this section we study how the operator TΣε
behaves with respect to the above splitting of HΣε

in the
three subspaces H1,H2 and H3. We prove that its form is almost diagonal and we apply this analysis to
study its invertibility for suitable values of ε.

6.1 Diagonalization

Integrating by parts, we can evaluate the operator TΣε
multiplying a test function by the following

quantity

(111) Sε(u) =
√

det g
(
−∆gu+ u− pup−1

I,ε u
)

and integrating in the variables y and ζ (using (65)). In Lemma 5.4 we studied Sε acting on the functions
Ψl, for any l fixed. In that lemma, our estimates depend on the value of the index l, and in general one
can expect that they become worse and worse as l increases. The goal of this subsection is to derive
estimates in terms of both ε and l and, evaluating Sε(u) on the functions û2 ∈ Ĥ2, we will keep track
also of the terms of order ε3 and higher.

In the following, we will sometimes omit the factor χε appearing in (87) since this will only produce
error terms exponentially small in ε, which are negligible for our purposes.

Lemma 6.1 There exist linear differential operators L1, L2, L3 (acting on the variables y) of order 1, 2
and 3 respectively, whose coefficients (independent of l) are smooth and satisfy the bounds

(112) cα(Li) ≤ C(1 + |ζ|C)e−
|ζ|
C ,
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and such that in local coordinates we have the following expression for Sε(Ψl)

Sε(Ψl) = ε2
C0

C1
µlw

p−1
0 ∂hw0ψ

h
l

− 2ε3
(
ζiΓb

a(Ei)− ζn+1Hab + ζn+1H
α
αδab

)
(∂2

yayb
ψh

l )∂hw0 − ε3(∂2
yaya

ψh
l )∂hw1

+ ε3ζn+1H
α
αµlψ

h
l g

h
0 (1− pwp−1

0 )− ε3p(p− 1)wp−2
0 w1µlψ

h
l g

h
0 − ε4µl(∂2

yaya
ψh

l )gh
0(113)

+ ε3L1ψl + ε4L3ψl + ε4µlL1ψl + ε5µlL2ψl,

where C0, C1 are as in Subsection 5.2.

Proof. As for the construction of the approximate solutions uI,ε, we can expand formally Sε(Ψl) in
powers of ε and check carefully all the error terms, paying particular attention to the ones involving
derivatives in the variables ya, which produce larger and larger terms (as l increases) in the Fourier
modes. When we differentiate with respect to the variables ζ, the quantities appearing will be considered
as coefficients (depending smoothly on ζ, with exponential decay) of the functions ψl or their derivatives
in y.

We recall that the functions w0 and (gi)i in (87) are shifted in the ζ ′ variable by the (smooth) normal
section Φ(y). Hence, when differentiating with respect to y, the derivatives of Φ might appear through
the chain rule, see also Subsection 3.2. This fact will be assumed understood, and it will not be mentioned
anymore since it does not create any serious difficulty, or any difference in the estimates.

By our construction of Ψl, all the terms multiplying powers of ε less or equal than 2 reduce to
ε2 C0

C1
µl

(
−∆ζ(ψh

l ∂hw0) + ψh
l ∂hw0

)
= ε2pC0

C1
µlw

p−1
0 ∂hw0ψ

h
l , so we are left to consider the powers (of ε)

of order 3 and higher. In the remainder of the proof, we use the symbol A2(ε) to denote terms of order
1, ε or ε2: since they all generate a single term, we do not need to compute them separately.

We begin by considering the terms where derivatives in y appear. Since Sε is linear in u, we can deal
with each summand in Ψl separately. Looking at −

√
det g∆g(ψh

l (y)∂hw0), second derivatives in y appear
only in the expression −

√
det ggabuab, so from Lemma 3.3 and Remark 3.4 (b) we find that

−
√

det g ∆g(ψh
l (y)∂hw0) = A2(ε)− 2ε3

(
ζiΓb

a(Ei)− ζn+1Hab + ζn+1H
α
α

)
(∂2

yayb
ψh

l )∂hw0

+ ε3L1ψl + ε4L2ψl,

where L1, L2 are as in the statement of the lemma.
Similarly one finds

−
√

det g ∆g(εψh
l (y)gh

3 (y, ζ)) = A2(ε)− ε3∂2
yaya

ψh
l ∂hw1 + ε3L1ψl + ε4L2ψl;

−
√

det g ∆g(ε2ψh
l (y)gh

2 (y, ζ)) = A2(ε) + ε4L2ψl + ε3L1ψl;

−
√

det g ∆g(ε2µlψ
h
l (y)gh

0 (y, ζ)) = A2(ε)− ε4(∂2
yaya

ψh
l )g0 + ε4µlL1ψl + ε5µlL2ψl.

−
√

det g ∆g(ε2(∂ya
ψh

l (y))gh
1 (y, ζ)) = A2(ε) + ε4L3ψl.

At this point we are left with the terms (of order ε3 and higher) which do not involve derivatives of
ψl in y: these will appear as multiplicators of the summands in the expression of Ψl. The ones involving
∂hw0, g1, g2 and g3 are included in the expression ε3L1ψl, so it remains to consider ε2µlψ

h
l g

h
0 . Recalling

that
√

det g = 1 + εζnH
α
α +O(ε2) (see the proof of Lemma 3.3), and expanding −pup−1

I,ε as

− p

[
wp−1

0 + ε(p− 1)wp−2
0 w1 + ε2(p− 1)wp−2

0 w2 +
1
2
ε2(p− 1)(p− 2)wp−3

0 w2
1

]
+O(ε3),
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we obtain √
det g(1− pup−1

I,ε )ε2µlψ
h
l g

h
0 = A2(ε) + ε3ζn+1H

α
αµlψ

h
l g

h
0 (1− pwp−1

0 )

− ε3p(p− 1)wp−2
0 w1µlψ

h
l g

h
0 + ε4µlL0ψl,

where L0 is a multiplication operator with coefficients also satisfy (112). This concludes the proof of the
lemma.

Next, using the above characterization, if û2 is a suitable linear combination of the Ψl’s, we can
estimate the scalar products of TΣε û2 (in HΣε) with some other elements belonging to the subspaces H1,
Ĥ2, H̃2 and H3, see (88)-(90).

Lemma 6.2 For some arbitrary real coefficients (αl)l and (βl)l, we consider functions u1 ∈ H1, û2 ∈ Ĥ2

and ũ2 ∈ H̃2 of the form

u1 =
∞∑

j=0

αjφj(εy)uj,ε(|ζ|); û2 =
ε−δ∑
l=0

βlΨl; ũ2 =
Cε−k∑
ε−δ+1

βlψ
m
l (εy)v̂l,ε,m(ζ).

We also let u3 ∈ H3. Then, for δ ∈
(

k
2 + γ, 2

3k − γ
)

and γ sufficiently small, we have the following
relations

(114) (TΣε
û2, u1)HΣε

= o(ε2)

 1
εk

ε−δ∑
l=0

|µl|β2
l

 1
2

‖u1‖HΣε
;

(115) (TΣε
û2, û2)HΣε

= C0(1 + oε(1))
1
εk

ε−δ∑
l=0

ε2µlβ
2
l ;

(116) (TΣε
û2, ũ2)HΣε

= O(ε3)
1
εk

ε−δ∑
l=0

(µ2
l + ε2µ4

l )β
2
l

 1
2
 Cε−k∑

l=ε−δ+1

β2
l

 1
2

= o(ε
4
3 )‖û2‖HΣε

‖ũ2‖HΣε
;

(117) (TΣε û2, u3)HΣε
= O(1)‖u3‖HΣε

 1
εk

ε−δ∑
l=0

(
ε6µ2

l + ε8µ4
l

)
β2

l

 1
2

.

Proof. We recall that, by Lemma 5.1, (79), (91) and (97) there holds

‖u1‖2HΣε
=

1 + oε(1)
εk

∞∑
j=0

α2
j ; ‖û2‖2HSε

=
1 + oε(1)

εk
‖∂1w0‖2H1(Rn+1

+ )

ε−δ∑
l=0

β2
l ;

(118)

‖ũ2‖2HSε
=

1 + oε(1)
εk

Cε−k∑
l=ε−δ+1

β2
l .

We show first (114). Since u1 is even in ζ ′, when we use the expression of Sε(Ψl) in (113) we have
to consider only −2ε3ζiΓb

a(Ei)∂2
yayb

ψh
l ∂jw0 = ε3L2ψl and the errors εsLtψl, since the products of all the

others terms with u1 will vanish by oddness. Therefore we leave this term as it is, and we estimate the
error terms only. So we get

(TΣε û2, u1)HΣε
=

1
εk

∑
j,l

αjβl

∫
K

∫
Rn+1

+

uj,ε(|ζ|)φj(y)
(
ε3L2ψl + ε4L3ψl + ε4µlL1ψl + ε5µlL2ψl

)
dydζ.
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Reasoning as in Lemma 5.7 (avoiding the scaling in ε, which has been already taken care of) one can
show that, for any integer m

(119)
∫

K

∫
Rn+1

+

ε−δ∑
l=0

βlLmψl

2

≤ C
ε−δ∑
l=0

(1 + |µl|mβ2
l ).

From the Hölder inequality and the last three formulas we deduce that

(TΣε
û2, u1)HΣε

≤ C‖u1‖HΣε

 1
εk

ε−δ∑
l=0

(
ε6(1 + |µl|2) + ε8|µl|3 + ε10|µl|4

)
β2

l

 1
2

.

Now, from the Weyl’s asymptotic formula and from the fact that δ ∈
(

k
2 + γ, 2

3k − γ
)
, one finds that for

l ≤ ε−δ there holds ε2|µl|2 = oε(1)|µl|, that ε4|µl|3 = oε(1) and that ε6|µl|4 = oε(1), so (114) follows.
We turn now to (115). It is convenient first to evaluate some L2 norms. Writing Sε(Ψl) =

ε2pC0
C1
µlw

p−1
0 ∂hw0ψ

h
l + S̃ε(Ψl), and Ψl = χε(|ζ|)ψh

l ∂hw0 + Ψl, from (119) we find (l runs between 0
and ε−δ)

(120)
∥∥∥∑βlΨl

∥∥∥2

L2
,
∥∥∥∑βlψ

h
l ∂hw0

∥∥∥2

L2
≤ C

εk

∑
l

(
1 + ε2 + ε4|µl|2

)
β2

l ≤
C

εk

∑
l

β2
l ;

(121)
∥∥∥∑βlΨl

∥∥∥2

L2
≤ C

εk

∑
l

(
ε2 + ε4|µl|2

)
β2

l ≤
C

εk
ε2
∑

l

(1 + ε2µ2
l )β

2
l ;

(122)
∥∥∥∑βlSε(Ψl)

∥∥∥2

L2
≤ C

εk

∑
l

(
ε4|µl|2 + ε6|µl|2 + ε8|µl|4 + ε10|µl|4

)
β2

l ≤
C

εk
ε4
∑

l

µ2
l β

2
l ;

(123)
∥∥∥∑βlS̃ε(Ψl)

∥∥∥2

L2
≤ C

εk

∑
l

(
ε6|µl|2 + ε8|µl|4 + ε10|µl|4

)
β2

l ≤
C

εk
ε6
∑

l

(|µl|2 + ε2|µl|4)β2
l .

Using the orthogonality of the ψl’s, (65) and recalling the definition of C1 in Subsection (5.2), we find

(124) (TΣε(Ψl),Ψj)HΣε
= ε2C0µlδlj + (S̃ε(Ψl), ψh

j ∂hw0)L2 + (Sε(Ψl),Ψj)L2 .

Multiplying by the coefficients β’s, using the Hölder inequality and (120)-(123) we get

(TΣε û2, û2)HΣε
= C0

∑
l

ε2µlβ
2
l +

1
εk
O(ε3)

(∑
l

(µ2
l + ε2µ4

l )β
2
l

) 1
2
(∑

l

β2
l

) 1
2

+

(∑
l

µ2
l β

2
l

) 1
2
(∑

l

(1 + ε2µ2
l )β

2
l

) 1
2
 .

Recalling the Weyl’s asymptotic formula and the fact that δ ∈
(

k
2 + γ, 2

3k − γ
)
, we obtain ε2µ2

l = o(µl),
ε4µ4

l = o(µl) for l ≤ ε−δ, so the last formula implies (115).
To prove (116) we notice that, by the orthogonality of the ψl’s, the term of order ε2 in Sε(Ψl), once

multiplied by ũ2 and integrated, vanishes identically. Therefore, from the Hölder inequality, (118) and
(123) we find

(TΣε û2, ũ2)HΣε
= O(ε3)

1
εk

ε−δ∑
l=0

(µ2
l + ε2µ4

l )β
2
l

 1
2
 Cε−k∑

l=ε−δ+1

β2
l

 1
2

,
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which is precisely (116).
It remains to prove (117). Using (42), the formulas in the proof of Lemma 3.3 and the fact that

(linearizing (3) at w0) −∆ζ(∂hw0) + ∂hw0 = pwp−1
0 ∂hw0, one finds√

det gε(−∆gεΨl + Ψl) = pwp−1
0 ψh

l ∂hw0 + εL0ψl + ε2(L2ψl + µlL0ψl) + ε3L2ψl

+ ε4(µlL2ψl + L3ψl).(125)

Hence from (113) it follows that

Sε(Ψl) = ε2
C0

C1

µl

p

√
det gε(−∆gεΨl + Ψl) + ε3µlL0ψl + ε4µl(L2ψl + µlL0ψl)

+ ε5µlL2ψl + ε6µl(µlL2ψl + L3ψl) + S̃ε(Ψl).

Since u3 is orthogonal to Ĥ2 in HΣε
, integrating by parts we have

∫
Σε
u3(−∆gε

Ψl + Ψl)
√

det gεdydζ = 0
for l = 0, . . . , ε−δ. Hence from (119) and (123) we get

(TΣε û2, u3)HΣε
= O(1)‖u3‖HΣε

 1
εk

ε−δ∑
l=0

(
ε6µ2

l + ε8µ4
l + ε12µ6

l

)
β2

l

 1
2

.

As shown before, ε2µ2
l = oε(1) for l ≤ ε−δ, so we have ε12µ6

l = o(ε8µ4
l ), and the conclusion holds.

We have now the counterpart of Lemma 6.2 with ũ2 replacing û2.

Lemma 6.3 For some arbitrary real coefficients (αl)l and (βl)l, we consider functions u1 ∈ H1, û2 ∈ Ĥ2

and ũ2 ∈ H̃2 of the form

u1 =
∞∑

j=0

αjφj(εy)uj,ε(|ζ|); û2 =
ε−δ∑
l=0

βlΨl; ũ2 =
Cε−k∑

l=ε−δ+1

βlψ
m
l (εy)v̂l,ε,m(ζ).

Suppose also that u3 ∈ H3. Then, for δ ∈
(

k
2 + γ, 2

3k − γ
)

and γ sufficiently small, we have the following
relations

(126) (TΣε
ũ2, u1)HΣε

= O(ε1−γ)‖u1‖HΣε

 1
εk

Cε−k∑
l=ε−δ+1

β2
l

 1
2

;

(127) (TΣε
ũ2, ũ2)HΣε

≥ C−1

εk

Cε−k∑
l=ε−δ+1

ε2µlβ
2
l ;

(128) (TΣε
ũ2, u3)HΣε

= O(ε1−γ)‖u3‖HΣε

 1
εk

Cε−k∑
l=ε−δ+1

β2
l

 1
2

.

Proof. We show first (126). Since u1 and ũ2, for any fixed y are linear combinations of spherical
harmonics (in ζ

|ζ| ) of different type, from the arguments of Subsection 4.2 it follows that

(u1, ũ2)HSε
= 0;

∫
Sε

wp−1
0 (|ζ|)u1ũ2dVg̃ε = 0,
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so we clearly have that (TSεu1, ũ2)HSε
= 0. Then (126) follows immediately from Lemma 5.1.

To prove (127), we reason as for the proof of Lemma 5.6 to find

(129) (TSε
ũ2, w)HSε

= Ã1 + Ã2 + Ã3,

where w ∈ HSε
is arbitrary, and where

Ã1(w) =
∫

Sε

Cε−k∑
l=ε−δ+1

[(
−∆ζ + (1 + ε2ωl)− pwp−1

0

)( n∑
m=1

βlψ
m
l (εy)v̂l,ε(|ζ|)

ζm
|ζ|

)]
w;

Ã2(w) = ε2
∫

Sε

Cε−k∑
l=ε−δ+1

( n∑
m=1

βl ((B−R)ψl)
m (εy)v̂l,ε(|ζ|)

ζm
|ζ|

)
w;

Ã3(w) = ε2
∫

Sε

Cε−k∑
l=ε−δ+1

( n∑
m=1

βl(µl − ωl)ψm
l (εy)v̂l,ε(|ζ|)

ζm
|ζ|

)
w;

As for (95), since |µl − ωl| is uniformly bounded one finds

(130) |Ã2(w)|+ |Ã3(w)| ≤ Cε2‖ũ2‖HSε
‖w‖HSε

for a fixed positive constant C. Taking w = ũ2, by the orthogonality of the ψl’s, by the fact that
Tε2ωl

vl,ε,m = σε2ωl,εvl,ε,m (see Proposition 4.5) and by (74), with an integration by parts we have

Ã1(ũ2) =
1
εk

Cε−k∑
l=ε−δ+1

σε2ωl,εβ
2
l ‖vl,ε,1‖ε2ωl,ε =

1
εk

Cε−k∑
l=ε−δ+1

σε2ωl,εβ
2
l .

From (28), Proposition 4.2 and Proposition 4.5, which provide estimates on σε2ωl,ε, we obtain

(131) Ã1(ũ2) ≥
C−1

εk

Cε−k∑
l=ε−δ+1

ε2µlβ
2
l

for some fixed C > 0. Then (127) follows from (130), (131), Lemma 5.6 and Lemma 5.1 (since ε2µl � ε1−γ

for l > ε−δ and for γ sufficiently small).
We turn now to (128). By (130), taking w = u3, it is sufficient to estimate Ã1(u3) + Ã3(u3). From

Tε2ωl
vl,ε,m = σε2ωl,εvl,ε,m in Hε2ωl,ε, with an integration by parts we find

Ã1(u3) + Ã3(u3) =
∫

Sε

Cε−k∑
l=ε−δ+1

σε2ωl

[(
−∆ζ + (1 + ε2µl)− pwp−1

0

)( n∑
m=1

βlψ
m
l (εy)v̂l,ε(|ζ|)

ζm
|ζ|

)]
u3.

From (67) and from the fact that −∆N
Kψl = µlψl + (R−B)ψl, one finds

ε2µlψ
m
l v̂l,ε(|ζ|)

ζm
|ζ|

= −ε2∆N
Kψ

m
l v̂l,ε(|ζ|)

ζm
|ζ|

+ ε2((R−B)ψl)mv̂l,ε(|ζ|)
ζm
|ζ|
.

Therefore, integrating by parts we obtain

(132) Ã1(u3) + Ã3(u3) = (Ũ2, u3)HSε
+ Ã4(u3),

where

Ã4(u3) = ε2
∫

Sε

Cε−k∑
l=ε−δ+1

( n∑
m=1

σε2ωl,εβl ((B−R)ψl)
m (εy)v̂l,ε(|ζ|)

ζm
|ζ|

)
u3,
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and where Ũ2 =
∑Cε−k

ε−δ+1 σε2ωl,εβlψ
m
l (εy)v̂l,ε,m(ζ) ∈ H2. Now, as for ũ2 it is possible to prove that there

exists a fixed C > 0 such that

‖Ũ2‖2HSε
≤ C

εk

Cε−k∑
l=ε−δ+1

σ2
ε2ωl,ε

β2
l ≤

C

εk

Cε−k∑
l=ε−δ+1

β2
l ,

where we used the fact that σε2ωl,ε is uniformly bounded for l ≤ Cε−k. Since u3 is orthogonal in HΣε
to

H2, from Lemma 5.1, these observations and the last two formulas it follows that

(Ũ2, u3)HSε
= O(ε1−γ)‖Ũ2‖HSε

‖u3‖HSε
≤ Cε1−γ

 Cε−k∑
l=ε−δ+1

β2
l

 1
2

‖u3‖HSε
.

The arguments of the proof of Lemma 5.6 yield Ã4(u3) ≤ Cε4
(∑Cε−k

l=ε−δ+1 β
2
l

) 1
2 ‖u3‖HSε

. Hence from
(129), (132) and Lemma 5.1 we find that

(TΣε ũ2, u3)HΣε
= (Ũ2, u3)HSε

+O(ε1−γ)

 Cε−k∑
l=ε−δ+1

β2
l

 1
2

‖u3‖HSε
,

which concludes the proof.

6.2 Applications

In this subsection we apply the estimates in Lemmas 5.1, 6.2 and 6.3 to estimate the morse index of TΣε

as ε tends to zero, and to characterize the eigenfunctions of TΣε
corresponding to resonant eigenvalues.

From Proposition 4.2 we know that there exists a unique positive number α such that ηα = 0. If Ck

is the constant given in (27), we also let

(133) Θ =
(
α

Ck

) k
2

V ol(K).

Then we have the following result.

Proposition 6.4 Let Θ be the constant given in (133), and let TΣε
be the operator given in (81). Then,

as ε tends to zero, the Morse index of TΣε
is asymptotic to Θε−k.

Proof. For any m ∈ N, the m-th eigenvalue λm of TΣε
, and the m-th eigenvalue λ̃m of TSε

can be
evaluated via the classical Rayleigh quotients

(134) λm = inf
dimMm=m

sup
u∈Mm

(TΣεu, u)HΣε

(u, u)HΣε

; λ̃m = inf
dimMm=m

sup
u∈Mm

(TSε
u, u)HSε

(u, u)HSε

where Mm is a vector subspace of HΣε . Choosing Mm = M̃m to be the span of the first m eigenfunctions
of TSε , from the above formula for λm and from Lemma 5.1 we get

λm ≤ sup
u∈M̃m

(TΣεu, u)HΣε

(u, u)HΣε

= sup
u∈M̃m

(TSε
u, u)HSε

+O(ε1−γ)(u, u)HSε

(1 +O(ε1−γ))(u, u)HSε

≤ λ̃m +O(ε1−γ).

Reasoning in the same way we also find λ̃m ≤ λm +O(ε1−γ), and hence it follows that

(135) |λm − λ̃m| ≤ Cε1−γ for all m ∈ N and for ε small,
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where C > 0 is a fixed constant.
Now we let N1(ε) denote the number of eigenvalues λ̃m less or equal than −ε

1−γ
2 , and by N2(ε) the

number of eigenvalues λ̃m less or equal than ε
1−γ

2 . From Proposition 4.6 it follows that N1(ε) is the
number of the ηl,ε’s which are smaller than −ε

1−γ
2 . Reasoning as in Corollary 4.8 one finds that, as ε

tends to zero

N1(ε) '
(
α

Ck

) k
2

V ol(K)ε−k.

On the other hand, still by Proposition 4.6 we have that N2(ε) = N2,1(ε) +N2,2(ε), where N2,1(ε) is the
number of ηl,ε’s which are smaller than ε

1−γ
2 , and N2,ε the number of σl,ε’s which are smaller than ε

1−γ
2 .

From (27), (28) and Proposition 4.5 we obtain, for ε small

N2,1(ε) '
(
α

Ck

) k
2

V ol(K)ε−k; N2,2(ε) '
(

1
CN−1,k

) k
2

V ol(K)ε
k(1−γ)

4 −k = o(ε−k).

From the last formula we deduce that also

N2(ε) '
(
α

Ck

) k
2

V ol(K)ε−k.

Since by (135) the Morse index of TΣε is between N1(ε) and N2(ε), the conclusion follows.

We can now characterize the eigenfunctions of TΣε corresponding to eigenvalues close to zero.

Proposition 6.5 For ε sufficiently small, let λ be an eigenvalue of TΣε such that |λ| ≤ ες , for some
ς > 2, and let u ∈ HΣε be an eigenfunction of TΣε corresponding to λ with ‖u‖HΣε

= 1. In the above
notation, let u = u1 + u2 + u3, with ui ∈ Hi, i = 1, 2, 3. Then, if u1 =

∑∞
j=0 αjφj(εy)uj,ε(|ζ|), one has

(136)

∥∥∥∥∥∥∥∥∥u−
∑


j:|ηj,ε|≤ε

1−γ
2

ffαjφjuj,ε

∥∥∥∥∥∥∥∥∥
HΣε

→ 0 as ε→ 0.

Proof. We show that u2, u3 tend to zero as ε tends to zero. This clearly implies ‖u − u1‖HΣε
→ 0.

Once this verified, (136) can be proved as in [39] Proposition 4.1.
To prove that u3 tends to zero as ε → 0, we take the scalar product of the eigenvalue equation

TΣε
u = λu with u3. Using the above arguments (in particular Lemma 5.1) we easily find

1

CC
2
k

‖u3‖2HΣε
+O(ε1−γ)‖u‖HΣε

‖u3‖HΣε
≤ (TΣε

u, u3)HΣε
= λ(u, u3)HΣε

= λ‖u3‖2HΣε
.

This implies ‖u3‖2HΣε
= O(ε1−γ)‖u‖HΣε

‖u3‖HΣε
, and hence ‖u3‖HΣε

≤ Cε1−γ‖u‖HΣε
≤ Cε1−γ .

Next we take the scalar product of the eigenvalue equation with u2. From Lemmas 6.2 and 6.3 we
find

(TΣεu2, u2)HΣε
≥ C0(1 + oε(1))

εk

ε−δ∑
l=0

ε2µlβ
2
l +

O(1)
εk

ε5 ε−δ∑
l=0

(µ2
l + ε2µ4

l )β
2
l

 1
2
ε Cε−k∑

l=ε−δ+1

β2
l

 1
2

+
C−1

εk

Cε−k∑
l=ε−δ+1

ε2µlβ
2
l .
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Since ε5µ2
l + ε7µ4

l = oε(1)|µl| for l ≤ ε−δ and ε = o(ε2µl) for l > ε−δ (recall that δ ∈
(

k
2 + γ, k − γ

)
), it

follows that

(137) (TΣε
u2, u2)HΣε

≥ C−1 1
εk

Cε−k∑
l=0

ε2µlβ
2
l

for a fixed positive constant C. Finally, still from Lemmas 6.2-6.3, from the fact that ε4|µl| + ε6|µl|3 =
oε(1) for l ≤ ε−δ and ε2−2γ = o(ε2µl) � 1 for l > ε−δ (taking γ sufficiently small) we have also that

(138) (TΣε
u2, u1 + u3)HΣε

= oε(1)(‖u1‖HΣε
+ ‖u3‖HΣε

)

 1
εk

Cε−k∑
l=0

ε2|µl|β2
l

 1
2

.

From (137) and (138) and the fact that TΣε
is self-adjoint we deduce that

C−1

εk

Cε−k∑
l=0

ε2µlβ
2
l + oε(1)

Cε−k∑
l=0

ε2|µl|β2
l

 1
2

(‖u1‖HΣε
+ ‖u3‖HΣε

) ≤ (TΣεu, u2)HΣε
= λ(u, u2)HΣε

≤ Cες‖u‖HΣε
‖u2‖HΣε

.

Also, from Lemma 5.4, testing the eigenvalue equation on
∑

l≤l0
βlΨl, where l0 is the biggest integer such

that µl0 < 0, one finds
1
εk
ε2
∑
l≤l0

β2
l |µl| = O(ε3)‖u‖HΣε

.

The last two formulas imply that 1
εk

∑Cε−k

l=0 β2
l = oε(1), namely that ‖u2‖HΣε

tends to zero as ε tends to
zero. This concludes the proof.

6.3 Proof of Theorem 1.1

Once Propositions 6.4 and 6.5 have been established, the proof goes as in [38], Section 8 (see also [37]
Section 5) and therefore we will limit ourselves to sketch the main steps.

First of all, using Kato’s theorem, see [30], pag. 445, one can prove that the eigenvalues of TΣε
are

differentiable with respect to ε, and if λ is such an eigenvalue, then there holds

(139)
∂λ

∂ε
= {eigenvalues of Qλ} ,

where Qλ : Hλ ×Hλ → R is the quadratic form given by

Qλ(u, v) = (1− λ)
2
ε

∫
Σε

∇u · ∇v − p(p− 1)
∫

Σε

uvup−2
I,ε

(
∂uI,ε

∂ε

)
(ε ·) .(140)

Here Hλ ⊆ HΣε
stands for the eigenspace of TΣε

corresponding to λ and the function uI,ε : Ω → R is
defined by the scaling uI,ε(x) = uI,ε(εx), where uI,ε is as in Section 3. Notice that, since λ might have
multiplicity bigger than 1, when we vary ε this eigenvalue can split into a multiplet, which is allowed by
formula (139).

Taking λ as in Proposition 6.5, we can apply (139), and evaluate the quadratic form in (140) on the
couples of eigenfunctions in Hλ, which are characterized by (136). Reasoning as in [37], Proposition 5.1
one can prove the following result.

Proposition 6.6 Let λ be as in Proposition 6.5. Then for ε small one has

∂λ

∂ε
=

1
ε
(F + oε(1)),

where F is a positive constant depending on N, k and p.
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Now we are in position to prove the following proposition, which states the invertibility of TΣε for suitable
values of ε.

Proposition 6.7 For a suitable sequence εj → 0, the operator J ′′ε (uI,ε) : H1(Ωε) → H1(Ωε) is invertible

and the inverse operator satisfies
∥∥∥J ′′εj

(uI,εj)−1
∥∥∥

H1(Ωεj
)
≤ C

min{εk
j ,ες

j}
, for all j ∈ N.

Proof. From Proposition 6.4 we have that, letting Nε denote the Morse index of TΣε , there holds

Nε '
(

α
Ck

) k
2
V ol(K)ε−k. For l ∈ N, let εl = 2−l. Then we have

(141) Nεl+1 −Nεl
'
(
α

Ck

) k
2

V ol(K)(2k(l+1) − 2kl) '
(
α

Ck

) k
2

V ol(K)(2k − 1)ε−k
l .

By Proposition 6.6, the eigenvalues λ of TΣε
with |λ| ≤ ες are strictly monotone functions of ε so by the

last equation the number of eigenvalues which cross 0, when ε decreases from εl to εl+1, is of order ε−k
l .

Now we define
Al = {ε ∈ (εl+1, εl) : kerTΣε 6= ∅} ; Bl = (εl+1, εl) \Al.

By Proposition 6.6 and (141) we deduce that card(Al) < Cε−k
l , and hence there exists an interval (al, bl)

such that

(142) (al, bl) ⊆ Bl; |bl − al| ≥ C−1 meas(Bl)
card(Al)

≥ C−1εk+1
l .

From Proposition 6.6, then it follows that every eigenvalue of TΣ al+bl
2

in absolute value is bigger than

C−1 min{εk, ες} for some C > 0. By Lemma 5.2 then the same is true for the eigenvalues of J ′′ε (uI,ε) so
the conclusion follows taking εj = aj+bj

2 .

Remark 6.8 The arguments in the proof of Proposition 6.5 can be easily adapted to the case in which
|λ| ≤ C−1ε2 with C is sufficiently large. Therefore the result of Proposition 6.7 can be improved to∥∥∥J ′′εj

(uI,εj
)−1
∥∥∥

H1(Ωεj
)
≤ C

min{εk
j ,ε2

j}
, for all j ∈ N.

Below, ‖ · ‖ denotes the standard norm of H1(Ωε). For the values of ε such that J ′′ε (uI,ε) is invertible,
it is sufficient to apply the contraction mapping theorem. Writing ε = εj , we find a solution ũε of (P̃ε)
in the form ũε = uI,ε + w, with w ∈ H1(Ωε) small in norm. Since J ′′ε (uI,ε) is invertible we have that
J ′ε(u) = 0 if and only if w = − (J ′′ε (uI,ε))

−1 [J ′ε(uI,ε) +G(w)], where

G(w) = J ′ε(uI,ε + w)− J ′ε(uI,ε)− J ′′ε (uI,ε)[w].

Note that
G(w)[v] = −

∫
Ωε

[
(uI,ε + w)p − up

I,ε − pup−1
I,ε w

]
v; v ∈ H1(Ωε).

Reasoning as in the last section of [39], we find the following estimates, which are based on elementary
inequalities

(143) ‖G(w)‖ ≤

{
C‖w‖p for p ≤ 2,
C‖w‖2 for p > 2;

‖w‖ ≤ 1;

(144) ‖G(w1)−G(w2)‖ ≤

{
C
(
‖w1‖p−1 + ‖w2‖p−1

)
‖w1 − w2‖ p ≤ 2,

C (‖w1‖+ ‖w2‖) ‖w1 − w2‖ p > 2;
‖w1‖, ‖w2‖ ≤ 1.
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Defining Fε : H1(Ωε) → H1(Ωε) as

Fε(w) = − (J ′′ε (uI,ε))
−1 [J ′ε(uI,ε) +G(w)] , w ∈ H1(Ωε),

we will show that Fε is a contraction in some closed ball of H1(Ωε). From (40), Proposition 6.7 (with
Remark 6.8) and (143)-(144) we get

(145) ‖Fε(w)‖ ≤

Cε
−(k+1)

(
εI+1− k

2 + ‖w‖p
)

for p ≤ 2,

Cε−(k+1)
(
εI+1− k

2 + ‖w‖2
)

for p > 2;
‖w‖ ≤ 1;

(146) ‖Fε(w1)− Fε(w2)‖ ≤

{
Cε−(k+1)

(
‖w1‖p−1 + ‖w2‖p−1

)
‖w1 − w2‖ p ≤ 2,

Cε−(k+1) (‖w1‖+ ‖w2‖) ‖w1 − w2‖ p > 2;
‖w1‖, ‖w2‖ ≤ 1.

Now we choose integers d and k such that

(147) d >

{
k+1
p−1 for p ≤ 2,
k + 1 for p > 2;

I > d− 1 +
3
2
k,

and we set
B =

{
w ∈ H1(Ωε) : ‖w‖ ≤ εd

}
.

From (145)-(146) we deduce that Fε is a contraction in B for ε small, so the existence of a critical
point ũε of Jε near uI,ε follows. All the properties listed in Theorem 1.1, including the positivity of the
solutions, follow from the construction of uI,ε and standard arguments. As in [39], when p is supercritical
one can use truncations and L∞ estimates to apply the above argument working in the function space
H1(Ωε) ∩ L∞(Ωε).

Remark 6.9 With the arguments given in Section 5 we could obtain sharp estimates on the Morse index
of TΣε and on the eigenfunctions corresponding to resonant eigenvalues. In particular about the latter
we showed that the components in H2,H3 are small, and that in H1 the Fourier modes are localized near
some precise frequencies. This allowed us to prove Proposition 6.7 using Kato’s theorem.

Even if we did not work the computations out, it seems it should be possible to give a more rough
characterization of these eigenfunctions (in particular on the H2 component) and to prove a (non sharp)
estimate on the derivatives of the eigenvalues, still obtaining invertibility. This might slightly simplify the
proof of existence, although most of the delicate estimates will be shifted from the analysis of TΣε to that
of the quadratic form Qλ defined in (140).
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