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ABSTRACT. We consider the equation —e2Au+u = u? in Q C RY, where ) is open, smooth and bounded,

and we prove concentration of solutions along k-dimensional minimal submanifolds of 92, for N > 3 and

for k € {1,..., N —2}. We impose Neumann boundary conditions, assuming 1 < p < % ande — 07.

This result settles in full generality a phenomenon previously considered only in the particular case N = 3
and k = 1.
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1 Introduction
In this paper we study concentration phenomena for the problem

—2Au+u=uP inQ,

(P:) % =0 on 0f2,
u>0 in Q,

where Q is a smooth bounded domain of RY, p > 1, and where v denotes the unit normal to 9Q. Given
a smooth embedded non-degenerate minimal submanifold K of 952, of dimension k € {1,..., N — 2}, we
prove existence of solutions of concentrating along K. Since the solutions we find have a specific
asymptotic profile, which is described below, a natural restriction on p is imposed, depending on the

. . N—k+2
dimension N and k, namely p < N,kty

Problem or some of its variants (including the presence of non-homogeneous terms, different
boundary conditions, etc.) arise in several contexts, as the Nonlinear Schrodinger Equation or from
modeling reaction-diffusion systems, see for example [3], [22], [45] and references therein. A typical
phenomenon one observes is the existence of solutions which are sharply concentrated near some subsets
of their domain.

Concerning reaction-diffusion systems, this phenomenon is related to the so-called Turing’s instability,
[54]. According to this principle, reaction-diffusion systems whose reactants have very different diffusivi-
ties might generate stable non-trivial patterns. This is indeed more likely to happen when more reactants
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are present since, as shown in [12], [4I], scalar reaction-diffusion equations in a convex domain admit
only constant stable equilibria.
A well-know system is the following one

Uy =diAU—U+4 in Qx(0,+00),

(GM) Vi =doAV =V + Y in Qx (0, +00),
%:%:O on 990 x (0, +00),

introduced in [25] to describe some biological experiment. The functions U and V represent the densities
of some chemical substances, the numbers p, ¢, r, s are non-negative and such that 0 < % 5-7-1’ and
it is assumed that the diffusivities dy and ds satisfy d; < 1 < d3. In the stationary case of , as
explained in [45], [48], when d2 — +oo the function V is close to a constant (being nearly harmonic and
with zero normal derivative at the boundary), and therefore the equation satisfied by U is similar to ,

with 52 = dl.

The typical concentration behavior of solutions u. to (P.]) is via a scaling of the variables in the form

us () ~ ug (x_EQ>, where () is some point of Q, and where ug is a solution of the problem

(1) —Aug + ug = ub) in RY  (orin Rf:{(ml,...,xN)ERN :xy >0},

the domain depending on whether @ lies in the interior of 2 or at the boundary; in the latter case
Neumann conditions are imposed.

When p < % (and indeed only if this inequality is satisfied), problem admits positive radial
solutions which decay to zero at infinity. Solutions of with this profile are called spike-layers, since
they are highly concentrated near some point of . There is an extensive literature regarding this type
of solutions, beginning from the papers [35], [46], [47]. Indeed their structure is very rich, and there are
also solutions with multiple peaks, both at the boundary and at the interior of 2. We refer for example

to the papers [14], [19], 6], [271, 28], [29], 331, [34], [571.

In recent years, some new types of solutions have been constructed: they indeed concentrate at sets of
positive dimension and their profile consists of solutions of which do not decay to zero at infinity. In
[38], [39] it has been shown that given any smooth bounded domain Q@ C RY, N > 2, and any p > 1, there
exists a sequence ¢; — 0 such that (P.;) possesses solutions concentrating at 92 along this sequence.
Their profile is a solution of (1) (for NV = 1) on the half real line which tends to zero at infinity and which
satisfies the condition u((0) = 0. This function can also be trivially extended as a cylindrical solution to
(1) on the whole Rf .

Later in [37] it has been proved that, if Q is a smooth bounded set of R3, if p > 1 and if h is a closed,
simple non-degenerate geodesic on 05, then there exists again a sequence (g;); converging to zero such
that (P.;) admits solutions u.; concentrating along h as j tends to infinity. In this case the profile of u.;
is a decaying solution of in Rf_, again extended to a cylindrical solution in higher dimension.

These are examples of a phenomenon which has been conjectured to hold in more general cases: in
fact it is expected that, under generic assumptions, if @ C RN and if k is an integer between 1 and N —1,
there exist solutions of concentrating along k-dimensional sets when ¢ tends to zero. While the
case k = N — 1 has been tackled in [39], the goal of the present paper is to consider k¥ < N — 2, and to
prove this conjecture under rather mild assumptions on the limit set. Before stating our main theorem
we introduce some preliminary notation.

Given a smooth k-dimensional manifold K of 912, and given any g € K we can choose a system of
coordinates (7, ) in 2 orthonormal at ¢ and such that (7, 0) are coordinates on K, and with the property
that

0

(2) mh = v(q),

where we have set n = N — k — 1. Our main theorem is the following: we refer to Section [2| for the
geometric terminology.
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Theorem 1.1 Let Q C RN, N > 3, be a smooth and bounded domain, and let K C 0Q be a compact
embedded non-degenerate minimal submanifold of dimension k € {1,..., N—=2}. Then, ifp € (17 %) ,

there erists a sequence €; — 0 such that (P.;) admits positive solutions u.,; concentrating along K as
j — o00. Precisely there exists a positive constant C, depending on Q, K and p such that for any © € Q

ue,; (z) < Ce™ e ; moreover for any q € K, in a system of coordinates (g,() satisfying , for any

integer m one has u,(0,€;-) ZZC(—%H) wo(-), where wo : R — R s the unique radial solution of
—Au+u=1uP n IR{T'l,

(3) gu =0 on R,

u>0,u € HY R},

Remarks 1.2 (a) Differently from the previous papers concerning the case N =3 and k =1, or concen-
tration at the whole 0F), we require an upper bound on p depending on N and k. This condition is rather
natural, since 18 solvable if and only if p < %:ng, see [10], [50], [53] and in this case the solution is
radial and unique (up to a translation), see [23], [F1)]. In any case, our assumptions allow supercritical
exponents as well.

(b) As for the results in [37], [38] and [39], existence is proved only along a sequence ; — 0 (actually
with our proof it can be obtained for € in a sequence of intervals (aj;,b;) approaching zero, but not for
any small €). This is caused by a resonance phenomenon we are going to discuss below, explaining the
ideas of the proof. This resonance is peculiar of multidimensional spike-layers, see also [20], and other
geometric problems, see [36], [42]. In some cases, when some symmetry is present, it is possible to get
rid of this resonance phenomenon working in spaces of invariant functions. We refer for example to the
papers [3, 15, [7, 18, [15, [16, [40, [44).

We can describe the resonance phenomenon, which causes the main difficulty in proving Theorem [I.1} in
the following way. By the change of variables x +— ex, we are reduced to consider the problem

—Au+u=uP in Q,

(F.) du on 99,
u >0 in Q,,

where Q. = %Q As for , given ¢ € K, := %KZ we can choose scaled coordinates (y, () on 2. such
that 0y, |q € T4K., O¢,lq € T30Qc and O, ¢ = v(¢). Then, letting 4. denote the scaling of u. to ., we
have that, in a plane though ¢ normal to K, @, behaves like 4. (0, ) = u:(0,e¢) ~ wo(¢). This amounts
to the fact that a.(x) =~ wp (dist(z, K.)), © € €., and therefore . has a fixed profile in the directions
perpendicular to the expanding domain K.. Since the function wy (dist(x, K.)) can be considered as an
approximate solution to , it is natural to use local inversion arguments near this function in order to
find true solutions. For this purpose it is necessary to understand the spectrum of the linearization of
at approximate solutions.

For simplicity, let us assume for the moment that K is (N — 2)-dimensional, namely that its codimen-
sion in 0N is equal to 1, as in [37]. Then, letting 7 denote the normal to K in 02, we can parameterize
naturally a neighborhood of K. as a product of the form K. x (f g é), where § is a small positive number,

via the exponential map in 0€. °C
- )
(4) (y, ) — expl)™ (s7); (y,s) € Ko x (==, ) :

Similarly, if v(y, s) is the inner unit normal to 92, at the image of (y,s) under the above map, we can
parameterize a neighborhood of K. in €. with a product K. x (— , g X (0, g) by

(y, 5,t) — exp))™= (s) + tw(y, s); (y,s,t) € Kc x (—j i) X (0, i) .



When ¢ tends to zero, the standard Euclidean metric of Q. becomes closer and closer (on the above set)

to the product of the metric of K. and that of R? (parameterized by the variables s and t as cartesian

coordinates). Therefore, since the set (fg, g) X g) converges to Ri = {(s, t)eR? : t> O}, in a first
&PE

approximation we get that the linearization of (P.|) at u. is

5
(5) ou _ () onstaRi.

{—AKEU — 2 u—0u+u—pwy(Qu in K. xR%,
ov

The spectrum of this linear operator can be evaluated almost explicitly. Referring to Section [] for details
(see also [37], Proposition 2.9 for the case N = 3), here we just give some qualitative description of its
properties.

Given an arbitrary function u € H* (K. x Ri), we can decompose it in Fourier modes in the variables
Y as

uly, €)= 65(y)u;(€).

Here ¢; are the eigenfunctions of the Laplace-Beltrami operator on K, namely —Ag¢; = p;j¢;, j =
0,1,2,..., where the eigenvalues (p;); are counted with their multiplicities.

If u is an eigenfunction (with respect to the duality induced by the space H!(K. x R%)) of the linear
operator in with corresponding eigenvalue A, then it can be shown (see Section [4] for details) that the
functions u; satisfy the equation

(6)

{ (1= [~Auj + (1 + a)uy] — pwh~'u; =0  in RZ,
agtj = on OR? ,
where o = 52pj. It is known that when a = 0 the latter problem admits a negative eigenvalue 79 (with
eigenfunction wy), a zero eigenvalue og (with eigenfunction Oswp), while all the other eigenvalues are
positive. This structure is due to the fact that wg is a mountain-pass solution of (so its Morse index is
at most 1), and the presence of a kernel derives form the fact that this equation is invariant by translation
in the s variable. When « is positive instead, it turns out that the first eigenvalue 7, of @ and the
second one o, are strictly increasing functions of « with positive derivative, and tend to 1 as @ — +o0;
moreover, the eigenfunctions corresponding to 7, (resp. o,) are radial (resp. odd in s) for every value
of a. In particular, there exists @ > 0 such that nz = 0, so when Eij is close to @ we obtain some small
eigenvalues of the original linearized problem .

From the monotonicity in o and from the Weyl’s asymptotic formula for p;, it follows that the
eigenvalues of the operator in are, roughly, either of the form 79 + £2 jﬁ for some j € N, or of the
form e2]¥== for some [ € N, or have a uniform positive bound from below.

In the case of general codimension it is not possible to decompose a neighborhood of K (in 9Q) as
for , but instead one has to model it on the normal bundle of K. in €)., see Subsection for details.
Considering the corresponding approximate linearized operator, one can prove that its eigenvalues are
now, roughly either of the form 7.2, ~ 79 + 2j%, or of the form 0.2, ~ €2l%, j,1 € N, or, again, have
a uniform positive bound from below. Here (p;); still represent the eigenvalues of the Laplace-Beltrami
operator on K, while the numbers (w;); stand for the eigenvalues of the normal Laplacian of K (considered
as a submanifold of 9Q), see Section [2|for its definition and the corresponding Weyl’s asymptotic formula.
We are interested in particular in the following two features of the spectrum:

1) resonances: there are two kinds of eigenvalues which can approach zero. First of all, those of
the form 7, when « is close to @. This happens when ¢2 j% ~ @, namely when j ~ £~%; furthermore,
the average distance between two consecutive such eigenvalues is of order %52 J Pl j71 ~ ¥ The
other resonant eigenvalues are of the form o, ~ « for a close to zero, namely when a = 217 and [
is sufficiently small (compared to, say, some negative power of €). Hence the distance from zero of the
smallest eigenvalues of this type is of order 2. Indeed, an accurate expansion in e, see Subsection
yields that this distance is bounded from below by a multiple of €2 when K is a non-degenerate minimal
submanifold.



2) eigenfunctions: as for the case of codimension 1, it turns out that the eigenfunctions correspond-
ing to the n,’s are of the form ¢;(ey)u;(¢), where u; is radial in the variable ¢ (¢ represent here some
orthonormal coordinates in the normal bundle of K. ). The function ¢; instead oscillates faster and faster
as € tends to zero, since j is of order e7*. On the other hand it is possible to show, see Subsection
that the eigenfunctions corresponding to the o,’s are products v;(|¢]){C, 1) n, where (-, ) is the scalar
product in NK, and where 1; is a section of the normal bundle N K., and precisely an eigenfunction
(scaled in €) of the normal Laplacian of K. Since the resonant modes correspond to low indices I, ¢; does
not oscillate as fast as the resonant ¢;’s.

So far we considered an approximate operator, because in we assumed a splitting of the metric
into a product. Since we expect to deal with small eigenvalues, a careful analysis of the approximate
solutions is needed (to apply local inversion arguments), and also a refined understanding of the small
eigenvalues and the corresponding eigenfunctions.

Therefore we first try to obtain approximate solutions as accurate as possible. For doing this, as in
[37, 38, [39], one can introduce suitable coordinates on 2. near K., expand formally in powers of ¢,
and solve it term by term using functions of the form

(7) ure(y,¢) = [wo +ewy + -+ 81101] (ey, "+ Poley) + - + 5k72(1)[—2(5y),<n+1); ¢ = (¢, Cntr).

Here ®g,...,P;_o represent smooth section of the normal bundle NK, and the functions (w;); are

determined implicitly via equations of the type

(8) _sz+wz —Pwo(owz = F’i(ey7w0a'"awi—17¢)07"'7®i—2) in Ri+17
G =0 on IR’

Notice that the operator acting on w; is nothing but the linearization of at wo (shifted in ¢’ by
Oy + -+ eF¥2®;_5), which has an n-dimensional kernel due to the invariance by translation in ¢’. The
functions ®; are chosen in order to obtain orthogonality of F; to the kernel, and to guarantee solvability
in w;. In doing this, the non-degeneracy condition on K comes into play, since the ®;’s solve equations
of the form J®; = G;(y). J denotes the Jacobi operator of K, related to the second variation of the
volume functional, which is invertible by the non-degeneracy assumption on the minimal submanifold.
Notice also that we wrote the variable y with a factor € on the front. This is in order to emphasize
the slow dependence in y of these functions. In fact, recalling that (in the model problem described
above) resonance occurs mostly when dealing with highly oscillating eigenfunctions, if we require slow
dependence in y then there is no obstruction in solving up to an arbitrary order .

Next one linearizes near the approximate solutions just found. Compared to the above model
problem, the eigenvalues will be perturbed by some amount, due to the presence of the corrections (w;);
and to the geometry of the problem. In fact the amount will be in general of order ¢, since this is the
size of the corrections (from the w;’s and the expansions of the metric coeflicients, see Lemma. This
prevents a direct control of the small eigenvalues of the linearized operator (at uy ) since, as discussed
above, the characteristic size of the spectral gaps at resonance are of order €2 or €.

To overcome this problem, we look at the eigenvalues as functions of €. The counterparts of the
numbers o.2,, can be again obtained via a Taylor’s expansion in €, and they turn out to be constant
multiples of €2 times the eigenvalues of J (up to an error of order o(g?)), so they are never zero. On the
other hand, the counterparts of the 7.2,,’s could vanish for some values of € but, recalling the expansion

Nezp; = Mo + g? j%, one can hope that generically in € none of these eigenvalues will be zero.

This is indeed shown using a classical theorem due to T. Kato, see [30], pag. 445, which allows us
to estimate the derivatives of the eigenvalues with respect to €. To apply this result one needs some
control not only on the initial eigenvalues but also on the corresponding eigenfunctions, and this is what
basically the last sections are devoted to. There we prove that if X = o(g?) is an eigenvalue of the
linearized operator, the eigenfunctions (up to a small error) are linear combinations of products like
@i (ey)u;(¢), for j ~ e~% and for suitable functions u; radial in ¢. Then we deduce that % is close to a
number depending on €, N,p and K only. As a consequence, the spectral gaps near zero will shift, as €



varies, almost without squeezing, yielding invertibility for suitable values of the parameter. This method
also provides estimates on the norm of the inverse operator, which blows-up with rate max{e =%, =2}
when ¢ tends to zero, see Remark [6.8]

Finally, a straightforward application of the implicit function theorem gives the desired result. To fix

the ideas, when p < %7 solutions of can be found as critical points of the following functional
(9) Je(u) = 1/ (|VU|2 + u2) - JulP*, ue H'(Q).
2 Ja. p+1Jq,

One proves that ||J.(ure)|la1(o.) < C’I,kEIH*% for £ small. Even if the norm of the inverse linear
operator blows-up when ¢ tends to zero, choosing I sufficiently large (depending only on k and p), one
can find a solution using the contraction mapping theorem near uy ..

The general strategy of this proof, and especially Kato’s theorem, has been used in [37], [38] and [39],
so throughout the paper we will be sketchy in the parts where simple adaptations apply. However the
present setting requires some new ingredients: we are going to explain next what are the differences with
respect to these and to some other related papers. First of all, compared to [38], [39], where the case
k = N — 1 was treated, here we need to characterize the limit set among all the possible ones, since the
codimension is higher, and this reflects in the fact that the limit problem is degenerate. This requires
to introduce the normal sections ®q,...,P; 5 in , and to use the non-degeneracy condition on K.

The localization of the limit set has been indeed also faced in [37]. Here, apart from including
that result as a particular case, allowing higher dimensions and codimensions, we need a more geometric
approach. The main issue, as we already remarked, is that we cannot use parameterizations with product
sets as in , since the normal bundle of K is not trivial in general. At this point some interplay
between the analytic and geometric features of the problem is needed. In particular the first and second
eigenfunctions of the linearization of (the profile of @. at every point ¢ of K) can be viewed of
scalar or vectorial nature. More precisely, the eigenfunction corresponding to the first eigenvalue is radial
and unique up to a scalar multiple. On the other hand the eigenfunctions corresponding to the second
eigenvalue have the symmetry of the first spherical harmonics in the unit sphere of N,K, and they are
in one-to-one correspondence with the vectors of NyK. The same holds true for the eigenfunctions of
problem @ when a > 0. When ¢ varies over the limit set, these eigenfunctions (which are the resonant
ones), depending on their symmetry determine respectively a scalar function on K or a section of the
normal bundle N K, on which the Laplace-Beltrami operator or the normal Laplacian act naturally, see
in particular Section [d] Apart from these considerations some other difficulties arise, more technical
in nature, due to the more general character of the present result compared to that in [37]. Heavier
computations are involved, especially since the curvature tensors have more components, and some extra
terms appear. Anyway, some of the arguments have been simplified.

Finally, we should point out the differences with respect to the papers [20], [36], [42], where also
special solutions of the Nonlinear Schrodinger equation or constant mean curvature surfaces are found.
In [20] and [42] the spectral gaps are relatively big, and the eigenvalues can be located using direct
comparison arguments, so there is no need to invoke Kato’s theorem. In [36] arbitrarily small spectral
gaps are allowed, but while there one has to study a partial differential equation on a surface only, here
we need to analyze the equation on the whole space, which takes some extra work. Also, the Riemannian
manifold we consider here, 99, has an eztrinsic curvature as a subset of R, and therefore some error
terms turn out to be of order ¢, and not €2, see Remark (a). Nevertheless, we take great advantage of
the geometric construction in [36], especially in their choice of coordinates near the limit set. We believe
that our method could adapt to study concentration at general manifolds for the Nonlinear Schrodinger
equation as well, as conjectured in [4].

The paper is organized in the following way. We first introduce some notations and conventions. In
Section [2] we collect some notions in differential geometry, like the Fermi coordinates near a minimal
submanifold, the normal Laplacian, the Laplace-Beltrami and the Jacobi operators as well as the asymp-
totics of their eigenvalues. In Section We construct the approximate solution ur .. In Section we study



some spectral properties for the limit problem (with some extension) and we then derive a model for
the linearized operator at ur.. In Section [5| we turn then to the real linearized operator: we construct
some approximate eigenfunctions which allow us to split our functional space as direct sum of subspaces
for which the linearized operator is almost diagonal. In Section [6] using this splitting we characterize the
eigenfunctions corresponding to resonant eigenvalues. From these estimates we can obtain invertibility,
via Kato’s theorem, and prove our main result Theorem 1.1
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Notation and conventions

- Dealing with coordinates, Greek letters like «, 3, ..., will denote indices varying between 1 and N — 1,
while capital letters like A, B, ... will vary between 1 and N; Roman letters like a or b will run from 1
to k, while indices like 4, j,... will run between 1 and n:= N — k — 1.

- (155 Gy Cuyr will denote coordinates in R*T! = RN=* and they will also be written as ¢/ =

(gla .. '7§n)a C = (glaCn—Q—l)-

- The manifold K will be parameterized with coordinates ¥ = (gy,...,7;). Its dilation K, := éK will be
parameterized by coordinates (y, ..., yx) related to the ’s simply by 7 = ey.

- Derivatives with respect to the variables 7, y or ¢ will be denoted by Jy, 9y, O¢, and for brevity sometimes
we might use the symbols 05 and d; for 0y, and 9, respectively.

- In a local system of coordinates, (g,3)ap are the components of the metric on 992 naturally induced by
RN, Similarly, (g4p)ap are the entries of the metric on  in a neighborhood of the boundary. (Hag)ag
will denote the components of the mean curvature operator of 9 into R¥.

Below, for simplicity, the constant C is allowed to vary from one formula to another, also within the
same line, and will assume larger and lager values. Is is always understood that C' depends on 2, the
dimension N and the exponent p. It will be explicitly written Cj, Cy, ..., if the constant C' depends also
on other quantities, like an integer I, a parameter ¢, etc. Similarly, the positive constant « will assume
smaller and smaller values.

For a real positive variable r and an integer m, O(r™) (resp. o(r™)) will denote a function for which
O(r) o(r)

rm rm

remains bounded (resp. tends to zero) when r tends to zero. We might also write o.(1) for

a quantity which tends to zero as e tends to zero. With O(r™) we denote functions which depend on the
above variables (g, ¢), which are of order ", and whose partial derivatives of any order, with respect to
the vector fields O, r 9;, are bounded by a constant times ™.

L; will stand in general for a differential operator of order at most ¢ in both the variables 7 and (
(unless differently specified), whose coefficients are assumed to be smooth in .

For summations, we might use the notation Zg to indicate that the sum is taken over an integer index
varying from [c] to [d] (the integer parts of ¢ and d respectively). We might use the same convention
when we make an integer index vary between ¢ and d. We also use the standard convention of summing
terms where repeated indices appear.

We will assume throughout the paper that the exponent p is at most critical, namely that p < %, SO
that problem is variational in H'(£2). We will indicate at the end what are the arguments necessary
to deal with the general case.



2 Geometric background

In this section we list some preliminary notions in differential geometry. First of all we introduce Fermi
coordinates near a submanifold of 0f), recall the definition of minimal submanifold, and introduce the
Laplace-Beltrami and the Jacobi operators, together with some of their spectral properties. We refer for
example to [6] and [52] as basic references in differential geometry.

2.1 Fermi coordinates on 0f) near K

Let K be a k-dimensional submanifold of (9€2,7) (1 < k < N—1) and set n = N —k—1 (see our notation).
We choose along K a local orthonormal frame field ((Ey)a=1,.-k, (Ei)i=1,... ,n) Which is oriented. At points
of K, TOQ splits naturally as TK & NK, where TK is the tangent space to K and N K represents the
normal bundle, which are spanned respectively by (E,), and (E};);.

Denote by V the connection induced by the metric g and by V¥ the corresponding normal connection
on the normal bundle. Given ¢ € K, we use some geodesic coordinates 3 centered at g. We also assume
that at ¢ the normal vectors (E;);, i = 1,...,n, are transported parallely (with respect to VN) through
geodesics from ¢, so in particular

(10) 9(Ve,E; ,E;))=0 atgq, ,j=1,...,n,a=1,...,k.

In a neighborhood of ¢, we choose Fermi coordinates (g, () on 092 defined by
(11) (1,¢) — expd Z G Ey) @,¢) = (Fa)a> ()i) 5

where expgQ is the exponential map at g in 9.
By our choice of coordinates, on K the metric g splits in the following way

(12) 9(q) = Gap(q) Ay, ® dy, +G;;(q) dG; @ d(y; g€ K.
We denote by T'(-) the 1-forms defined on the normal bundle of K by
(13) Lo (Ei) = 9(Ve, By, Ei).

We will also denote by R,gys the components of the curvature tensor with lowered indices, which are
obtained by means of the usual ones R%vé by

Raﬁ’y& = gao ngé'

When we consider the metric coefficients in a neighborhood of K, we obtain a deviation from formula
, which is expressed by the next lemma, see Proposition 2.1 in [36] for the proof. Denote by r the
distance function from K.

Lemma 2.1 In the above coordinates (4,(), for any a=1,....k and any i,j =1,...,n, we have
gij(oa ¢) =di+ %Ristj GG+ Or?);
94;(0,¢) =0(?);
Ta(0,0) =00 — 2T%(E;) G + [Rsart + TE(E) TEY) ] GG + OF3).

Here R;q; are computed at the point ¢ of K parameterized by (0,0).



2.2 Normal Laplacian, Laplace-Beltrami and Jacobi operators

In this subsection we recall some basic definitions and spectral properties of differential operators asso-
ciated to minimal submanifolds. We first recall some notions about the Laplace-Beltrami operator, the
normal connection and the normal Laplacian.

If (M, g) is an m-dimensional Riemannian manifold, the Laplace-Beltrami operator on M is defined in
local coordinates by

1
14 A, = Vdet g g1 B
( ) g \/Mafl( €tgyg aB)a

where the indices A and B runs in 1,...,m, and where g% denote the components of the inverse of the
matrix gap.

Let K € M be a k-dimensional submanifold, k& < m — 1. The normal connection V¥ on a normal vector
field V is defined as the projection of the connection VV onto NK. Moreover, one has the following
formula regarding the horizontal derivative of the product (-,-)y in the normal bundle (see [52], Volume
4, Chapter 7.C, for further details)

X(V,W)n = (VRV,W) + (V. VZW),

for any smooth sections V and W in NK. If we choose an orthonormal frame (F;); for NK along K, we
can write

VILE; = 8 (9a) By,

for some differential forms ﬁ;- (we recall our notation 0z = %). Since the normal fields (E;); are chosen

to be orthonormal, it follows that for any horizontal vector field X there holds X (E;, E;)n = 0, and
hence one has

(15) B} (0a) = —b] (0a) Vij=1,...n
This holds true, in particular, if we choose Fermi coordinates. Since indeed the normal fields are extended
via (normal) parallel transport from ¢ to some neighborhood through the exponential map, it follows that

35(92)(0,0,...,7,,0,...,0) = 0, and hence

(16) B5(0z) =0 atgq Va=1,....k, andV1,j=1,...,n;

(17) 9z (B5(02)) =0 atgq Ya=1,....k andV1,j=1,...,n.

Recalling these facts, we can derive the expression of the normal Laplacian in Fermi coordinates in the
following way: given a normal vector field V = V7 Ej, there holds

VoV = 0zV? E; + VI, (85) Ei.
For any two normal vector fields V' and W we have, by the definition of A¥
/ (VNV, VW) y dVg = —/ (ARV, W) N dV5.
K K
We compute now the expression of AY evaluating the left-hand side and integrating by parts
[ OV Wnavy = [ (0VIE; VI8, 06) EL OV E: + WL (35)) 57/t
K K
= [ [oaviouw + on WS (35) + VI (0n) 0"
K

+ VIW' B (95) Bt (85)] g% /det g



This quantity, for any V' and W, has to coincide with — |, K(A%V)iWi\/det g, so we deduce that

(ARV) = Ag(V)+ V78, (95) 3" /detg)

1
v
(18) — g (0aVI8] (95) + WBL (9s) 6L (95) ) V/det.

In Fermi coordinates at ¢, which is parameterized by (0, 0), we have that

(19) Gab = Oab, 0cg, =0  and  9e/detg =0,

and we also have —. Hence the last formula simplifies in the following way

(20) (ANV) = Ag (V) at g

Let C*°(NK) be the space of smooth normal vector fields on K. For ® € C*°(NK), we can define the
one-parameter family of submanifolds ¢t — K; ¢ by

(21) Kio = {expf?(12(y)) : 7 € K}.

The first variation formula of the volume is the equation

(22) %

VO](K,:,q)) = / <‘1), h>N dVK,

t=0 K

where h is the mean curvature (vector) of K in 0%, (-,-)n denotes the restriction of g to NK, and dVk

the volume element of K.

The submanifold K is said to be minimal if it is a critical point for the volume functional, namely if

(23) % Vol(K;s) =0  for any ® € C®°(NK)

t=0

or, equivalently by , if the mean curvature h is identically zero on K. It is possible to prove that, if
I'b(E;) is as in (13), then

(24) K is minimal & I'e(E;) =0 foranyi=1,...n.
We point out that in the last formula we are summing over the index a, which is repeated.

The Jacobi operator J appears in the expression of the second variation of the volume functional for a
minimal submanifold K

2

d
(25) G| Volle) = - [ @vo)vdvii @€ Cx(NE),
t=0 K

and is given by
(26) 30 = —ARD + RVD - BV,
where RV, BY : NK — NK are defined as
RY® = (R(Eaq, ®)Ea)"; 9(B,n) = T3 (@) (),

for any unit normal vector ng to K. The operator A% is the normal Laplacian on K defined in .

10



A submanifold K is said to be non-degenerate if the Jacobi operator J is invertible, or equivalently if the
equation J® = 0 has only the trivial solution among the sections in N K.

We recall now some Weyl asymptotic formulas, referring for example to [13], or to [32] and [43] for
further details. Let (M,g) be a compact closed Riemannian manifold of dimension m, and let A, be
the Laplace-Beltrami operator. Letting (p;);, ¢ = 0,1,..., denote the eigenvalues of —A, (ordered to be
non-decreasing in ¢ and counted with their multiplicity), we have that

) 2

i
27 i ™ Cm ETIRTZV SN i )

where Vol(M) is the volume of (M, g) and C,, is a constant depending only on the dimension m (the
Weyl constant). A similar estimate, which can be proved using and , holds for the normal
Laplacian AY on a k-dimensional submanifold K C M. In fact, letting (wj)js 3 =0,1,..., denote the
eigenvalues of —A% (still chosen to be non-decreasing in j and counted with multiplicity), one has

i\ ,
(28) wj ~ Cm,k (VOZ(K)) as j — oo,

where C), ; depends on the dimensions m and k only.

Considering the Jacobi operator J for a minimal submanifold K, it is easy to see from that, since
3 differs from —AX only by a bounded quantity, we have the same asymptotic formula for its eigenvalues
(11)1, and thereby

l ®
(29) pr ~ Co e (Vol(K)) as [ — oo.

Finally, using the eigenvalues (p;); and (w;);, one can express the L? norms, or the Sobolev norms of
linear combinations of the ¢;’s and the v;’s. In particular, if f = Zj a;j¢j, and if g = >, By are an L?

function and an L? normal section of K, and if L1 = 3" ¢ ®)0g, La =3, ¢ (@)(ijv)a are differential
operators of order d with smooth coefficients acting on functions and normal sections respectively, then
one has

(30) L1 fllz2cx) < Cry Y1+ pf)a; I L2gllL2(reivie) < Cry Y (1 + |57
j ;

3 Approximate solutions to (P.)

In this section, given any positive integer I, we construct functions u; . which solve 1} up to an error
of order £/. We will find approximate solutions of (P.)) in the following form

(31) XE(KD <w0 (C/ + (I)(Ey)v Cn+1) + 5U)l(&:ya C/ + (D(€y), CnJrl) + e+ Elwl(gya C/ + (I)(Ey)v Cn+1)>7

where ®(cy) = ®g(ey) + -+ + el 72®;_5(ey) and where the cutoff function y. satisfies the properties

xe(t) =1 for t € [0, %5’”’},
(32) Xe(t) =0 fort e [%577,577],
@) < e, 1eN.
Here ®,...,®; 5 are smooth vector fields from K into NK, while wy,...,w; are suitable functions

determined recursively by an iteration procedure. For doing this we choose a system of coordinates in a
neighborhood of 02, for which the new metric coefficients can be expanded in powers of ¢, see Lemma
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below. In this way we can also expand formally in powers of ¢ and solve it term by term.
The functions (w;); will be obtained as solutions of an equation arising from the linearization of at
wg, while the normal sections (®;); will be determined using the invertibility of the Jacobi operator.
Notice that, by the translation invariance of , the linearized operator possesses a non-trivial kernel,
which turns out to be spanned by {J¢, wo, . ..,0¢, wo}. The role of ®¢,...P7_5 is to obtain at every step
orthogonality to this kernel and to solve the equation using Fredholm’s alternative.

The method here is similar in spirit to the one used in [37] except for the fact that, working in higher
dimensions and codimensions, more geometric tools are needed. Therefore, we will mainly focus on the
new and geometric aspects of the construction, omitting some details about the rigorous estimates on
the error terms, which can be handled as in [37].

3.1 Choice of coordinates near 0f). and properties of approximate solutions

Let Yo : U — 09, where U = U; x Uy C R* x R™ is a neighborhood of 0 in RY~!, be a parametrization
of 9 near some point ¢ € K through the Fermi coordinates (7, ¢) described before.

Let v € (0,1) be a small number which, we recall, is allowed to assume smaller and smaller values
throughout the paper. Then for £ > 0 we set

Bey={z Ry ¢ |z] <77},
Next we introduce a parametrization of a neighborhood (in €2.) of £ € 9Q. though the map Y. given by
1 1
(33) Tf(yv C/’ Cn-‘rl) = ETO(‘evaC/) + Cn-&-ll/(fyvgcl)) Tr = (ya C/a Cn-i—l) € gul X Ba,"m

where ey = 7 and where v(ey, e(’) is the inner unit normal to 9Q at To(ey,eC’). We have

dY. 9Ty , v ~ dY. 9T, , v ,

8ya - aya (531’5( ) + EC’rrf—l aga (Ey,eC )7 841 - aCz (€y75C ) + ECn-i—l p) i(EyaEC )
Using the equation
(34) dv[v] = H(z)[v],
we find

oY, AN oY, Y

—— = =7 H Ny 2 -4Y /Y. — I H / / )
(35) GE = d+ ooy, 2] G2 () S = 1+ G (e, 0] G2 (en. o0
Differentiating Y. with respect to (,+1 we also get

Y. ,

(36) 5= = vlew <)

Hence, letting gap be the coefficients of the flat metric ¢ = g. (we are emphasizing the role of the
parameter € in the entries, which is due to the dependence in ¢ of the map Y.) of RY in the coordinates
(y,¢’, Cnt1), with easy computations we deduce that

(37) gaﬂ(g» Cn+1) = ?aﬂ(@j) + €Cnt1 (Hazs?éﬁ + Hﬁégéa) (533) + 52C7:,+12Ha5Hoﬁ§50(5g)7 y= (ya C/)Q

(38) gaN = 0; gNN = 1.
Using the parametrization in , a solution u of G) satisfies the equation

\/dleitg [83 (gAB\/detg)} Jau — gABaiBu +u—u? =0 in éb{l X Be

with Neumann boundary conditions on {¢,4+1 = 0}. Looking at the term of order ¢’ in this equation,
we will determine recursively the functions (w;); and (®;_2); (defined in (31)) for ¢ = 1,...,I. The
specific choice of the integer I, which will be determined later, will depend on the dimension N of 2, the
dimension k of K, and the exponent p. For the moment we let it denote just an arbitrary integer. The
main result of this section is the following one.

(39) -
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Proposition 3.1 Consider the Euler functional J. defined in @D and associated to problem (for

p < %ﬁzf%) Then for any I € N there exists a function ur. : Qe — R with the following properties

GuLE

(40) T2 (ur )| i,y < Cre'*1%; upe >0 in o

=0 on 0.,

where Cy depends only on ), K, p and I. Moreover in the above coordinates there holds
951,24, Q)] < o reme K PLQ),

(41) V5V cure(w, Q)| < Craeme ¥ P(0), ye éul,g €Byem=0,1,...,

|95V 202050 < Conrzme 1 PLQ),

where Vg(,m) (resp. Véi)) is any derivative of order m with respect to the y variables (resp. of order i with
respect to the ¢ variables), where Cp, 1 is a constant depending only on Q, K, p and m, and where Pr({)
are suitable polynomials in (.

In the next subsection we show how to construct the approximate solution uy . and we give some general
ideas for the derivation of the estimates in (4I)). We refer to [37] for rigorous and detailed proofs.

3.2 Proof of Proposition |3.1

This subsection is devoted to the explicit construction of u; .. First of all we expand the Laplace-Beltrami
operator (applied to an arbitrary function ) in Fermi coordinates, and then by means of this expansion
we define implicity and recursively the functions (w;); and the normal sections (®;);.

3.2.1 Expansion of A, u in Fermi coordinates

We first provide a Taylor expansion of the coefficients of the metric g = g.. From Lemma and formula
we have immediately the following result.

Lemma 3.2 For the (Euclidean) metric g. in the above coordinates we have the expansion
Gij = 035 + 26Cny1 Hyj + %82 Ristj Cs G + €21 (H?)ij + O(E3|C*);
9aj = 26Cni1 Haj + O(E3(C]?);
Jab = Oab — 2674 (Ei)Gi + 26Cns1 Hap + € [Roant + T (E)TL(E)] C5G + €% Cuin® (H? )ap + O(°[]%);

gan = 05 gnn = 1.

Using these formulas, we are interested in expanding A, w in powers of ¢ for a function u of the form

u(y, ¢) = u(ey, ().

Such a function represents indeed an ansatz for each term of the sum in .

We recall that, when differentiating functions with respect to the variables y, (, we will mean that
04 = 0y, and 0; = O¢,;. When dealing with the scaled variables § we will write explicitly 0y , so that, if
u is as above, we have d,u(ey, () = €0y, u(y, ().

13



Lemma 3.3 Given any positive integer I and a function u : %Ul X Bey — R of the form u(ey, (), we

have
Aju = Pu+ 8?7L+1Cn+1u +e[HSO, ,u— 2Cn+1Hij8i2ju]
(42) + 2 [Lo,1u+ Lo ou + Lo su] + i e'Liu+e™ L qu,
i=3
where

2 2
L271U = aﬂagau — 4Cn+1Hia6C@au?

LQ’Q/LL = 3Cn+12(H2)ij8?iCju + 2Cn+1Hab1"§(Ei)8iu — 2§n+1tr(H2)84n+lu;

1 1 1
Lyzu = (Rmal + 3Rihhl) GO — ngilemClaagju - ngijiCﬂla{ju

= GTU(E)TH(E))d¢u+ 20 Ha T} (B, u,

and where the L;’s are linear operators of order 1 and 2 acting on the variables y and { whose coefficients
are polynomials (of order at most i) in ¢ uniformly bounded (and smooth) in j. The operator Ly, is
still linear and satisfying the same properties of the L;’s, except that its coefficients are not polynomials
in C, although they are bounded by polynomials in (.

PROOF. The proof is simply based on a Taylor expansion of the metric coefficients in terms of the
geometric properties of 90 and K, as in Lemma[3.2] Recall that the Laplace-Beltrami operator is given
by
1
Ay =
vdet ge

where indices A and B run between 1 and N. We can write

aA( det ge gsAB Op ) ,

1
Ay =g-P g+ (049-4P) 05 + 5 Oa(logdet gc ) 9-*P 0.
Using the expansions of Lemma we easily see that

gEAB 331371 = Bgz(iu + 82

n+1Cn+1

U — 25§n+1H¢j8§iQu
+e2 {8§aya + (3<n+12(H2)ij — %RmijICmCZ) agiciu — 4Cn+1Hm8§i§au} + O(g3|c|3)

We can also prove
« 1 2 1 2 c a
V detg. = 1+ €<n+1Ha + 65 RoniinCm G + 55 Raal + Fa(Em)Fc (El) Cm G

+ £ {;Cn-uz(Hs)g — Cnprtr(H?) 4 261G Hap g (B;) — CiCjFZ(Ei)Fg(Ej)}
+ O,
which gives
log/detg. = e(uHS + 52{2Cn+1CiHabF§(Ei) — Gnpa P tr(H?) — CiCjFZ(Ei)FEL(Ej)}

+%52Rmiilgmgl + %52 (Rmaal + Fg(Em)Fg(El)><mCl + O(€3|C|3)
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Hence, we obtain
04 (logv/detgc) g*P05 = 52{2<n+1Hang(Ei) = GLo(E)TY(E)) + g RmnmG + Rm&lcl}aiu
+eHS O, ,u+ 52{2C1HabF§(El) — 2(naatr(H?) }8<n+lu + O(E3¢?).
Collecting these formulas together, we obtain the desired result. B

Remarks 3.4 (a) The term of order € in the expansion of Aju in depends on the fact that OS2
has an extrinsic curvature in RYV. Such a term does not appear in the analogous expansion for the mean
curvature of tubes condensing on minimal subvarieties of an abstract manifold, see Proposition 4.1 in [36]
(where the small parameter p is the counterpart of our parameter €).

(b) For later purposes, see for example Lemma it is convenient to analyze in further detail the
operator Ls in , and in particular the coefficients of the second derivatives in the § variables. It
follows from the above expansions that the coefficient of 8%% in L3 is given by

2 (CZFZ(El) - <n+1Hab) .

3.2.2 Construction of the approximate solution

We show now how to construct the approximate solutions of |D via an iterative method. Given I — 2
smooth vector fields o, ..., P;_o we define first the following function 4; . on K x R"*!, see (31)

721,6(?7 C) = wO(CI + q)(y)’ Cn-‘rl) + Ewl(ya CI + q)(y)’ Cn-‘rl) R EIU)](?, C/ + @(?)7 Cn-l-l)a

where ® = &y + Py + -+ -+ 28;_5. In the following, with an abuse of notation, we will consider 1y .
(and wy, ..., w;) as functions of the variables y and ¢ through the change of coordinates 7 = ey.

To define the functions (w;); and (®;); we expand equation formally in powers of ¢ for u =ty .
(using mostly Lemma and we analyze each term separately. Looking at the coefficient of ¢ in the
expansion we will determine w1, while looking at the coefficient of £/ we will determine w; and ®;_, for
j=2,...,I. In this procedure we use crucially the invertibility of the Jacobi operator (recall that we are
assuming K to be non-degenerate) and the spectral properties of the linearization of at wg.

e Step 1: Construction of w;

We begin by taking 7 =1 and ® = 0. From Lemma [3.3] we get formally
_Agsﬂl,e + 721,5 - 1)71375 = —A]Rn+1w0 + wo — wg + € (_ARVL+11U1 + wq _pwg—lwl)
— e[Hgdc, w0 — 2u+1 Hij07wo] + O(€2).

The term of order 1 (in the power expansion in &) vanishes trivially since wq solves , and in order to
make the coefficient of € vanish, wy must satisfy the following equation

(43) Low, = Hgag,L+1w0 - QCnJrlHijainwO’

where Lg is the linearization of at wyp, namely

—Awl + wy —pwg_lwl = Hgaanrlwo — 2§n+1Hij8§jwo, in R1+1,
12}
3(:Lui1 =0, on {¢py1 = 0}.

Since Ly is self-adjoint and Fredholm on H 1(Ri+1), the equation is solvable if and only if the right-hand
side is orthogonal to the kernel of Ly, namely if and only if the L? product of the right-hand side with

% vanishes for i = 1,...,n, see Proposition H below. This is clearly satisfied in our case since both

i
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8812’9 ’s are odd in ¢’ for every i. Besides the existence of w1,

D¢, wo and 02 “wo are even in (', while the
from elliptic regularlty estimates we can prove its exponential decay in ¢ and its smoothness in 7 (see for
example Lemma 3.4 in [37]). Precisely, there exists a positive constant C; (depending only on Q, K and
p) such that for any integer ¢ there holds

(44) IVOu, (g, ¢)| < C1Ci (1 + [¢) el (7.¢) € K x R™,

where C; depends only on [, p, K and 2.

e Step 2: Expansion at an arbitrary order

We consider next the coefficient of £’ for an integer I between 2 and I, and we assume that the functions
wi,...,wj_; and the vector fields ®¢,...,®;_, have been determined by induction in I. The couple
(wj, ®;_,) will be found reasoning as for w;: in particular an equation for ®;_, (solvable by the invert-
ibility of J) is obtained by imposing orthogonality of some expression to the kernel of Lo, and then wy; is
found again with Fredholm’s alternative. i

Expanding with u = 4., we easily see that (formally), in the coefficient of &/, the function w;
appears as solution of the equation

(45)

E;wi = F;(y,(,wo, wi, ..., wi_q,Po,...,P7_5) in RT‘l;
w7
BC'rHI»I =0 on {Cn+1 = 0}7

where Lg is defined by
Lou=—Au+u—puwf (' + (), Cur1)u,

and where F; is some smooth function of its arguments (which we are assuming determined by induction).
Our next goal is to understand the role of ®;_, in the orthogonality condition on F; (to the kernel of
Lg). In order to do this, we notice that, using Lemma for w = 4y, the function ® (precisely its
derivatives in ) appears through the chain rule when we differentiate u with respect to the 3 variables.
Moreover, for testing the orthogonality of the right-hand side in ) to the kernel of Lg, we have to
multiply it by the functions 8“’0 0"+ @), Cnt1)s 1 =1,...,n, 50 thlb condltlon will yield an equation for
® (and in particular for ® 1_2) through a change of Variables of the form ¢’ — (' + ®(7).

Therefore, in the expansion of Agir ., we focus only on the terms (of order ) containing either
derivatives with respect to the 7 variables, which we collected in L 1, or containing explicitly the variables
¢’, which are listed in Lq 3. In particular, none of these terms appear in the first line of .

Denoting the components of ® by (®7); (in the basis (E;); of NK), there holds

_ _ . OdI Ou
By, (7. + 90),Crn)) = B, uT.C + @ Go) + 5o S TC D). o)
J
2 — ! — 2 — ! 6(I)j 2 — !
aﬂaﬂa (u(ya C + (I)(y)acn-‘rl)) = 8§a§au(ya C + (I)a Cn—i—l) + 2@%’1@’“(:@/,( + (I)7€n+l)
62<I>3 Ju 0PI 90! 9%u
+ + N n + a, a0, 77 ! + Oy s Sn 5
. 8(]( C ( ) g +1) 8ya aya 8@8@ (y C (y) C +1)
0? 0d7 0%

(@, ¢’ + (@), at1)) = 03¢0, wF ¢+ @, Cos1) + =5 (7, ¢ + @), Cur1)-

0G0y, Y, 0G0G
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Therefore, recalling the definition of 4y ., since 95 wo = 0 we find that

I B PR Y % Lo OBI 9P 92wy A 0PI 9wy
e T2 g oy, 09, 0606 Hia gy 9G;0¢,
T . .
, 0<I> azqﬂ ow; 0PI 9! 92w
+ ’ 812 Y, a« : e a—_ u
; { als %aya ¢ 0y, 9y, 0¢;0G

aqu 0?w;
— ACu+1Hia <8glya (9y 3@‘9@) }

e Step 3: Determining w; and ®;_, for I > 2

When we look at the coefficient of e in 52L27112176, the terms containing ®;_, are given by

82(I)J a’LUQ 8(I)J (9211)0 8(1)] 8(131 8211)0 ~
oy — Cn-i—l la 57— ifI=2
8 yaya 8C] aia aCJaCZ aya aya BCJGCI

When we project Ag Uy —Ur e+ ﬁ’I” . onto the kernel of Lg, namely when we multiply this expression
by 3 8“’0 (¢ 4+ ®(¥),Cut1), s = 1,...,n, considering the terms of order el involving ®;_,, we have no
contrlbutlon from the first line and from Ly o in (with w = 47 ), as explained in Step 2. Also, in
([42), the factors of €* for i > 3, multiplied by 29 7_o will give higher order terms. In conclusion, we

only need to pay attention to Lo ; and Lo 3.
When we multiply e2Ls 3wo(¢’ + ®,(nt1) by

I %’gf (¢ + ®,(nt41), s = 1,...,n, we can obtain the
coefficient of ! <I>'Il_2 in the following way.

Looking for example at the first term in e2 Lo 5 we get
1
62/ o (Riaal + 3Rihhl) GOwo(¢" + @, Cry1)0swo (¢ + P, Crpr)dC
R’V‘L

B 52/ (Rmaz M Zl’)Rihhl) (G = ®"dwo (¢, Gnr1)Bswo (¢, Gnra)dC
R

1
62/ . (Riaal + 3Rihhl> GOwo (¢, Cng1)Oswo (¢, Cpr )dC
Ry

=
) 1
52§ gj(bé./ N (Riaal + SRihhl> Diwo (¢’ Gur1)dswo (¢, Cny1)dC.
j R

Since wyg is even in (', it follows by symmetry that the term of order el containing ®;_, in the last
expression is given by

1
(46) _CO (Rsaal + SRshhl) (I)lf_Qv
where we have set
(47) Co= [, (Oun)®
+
From similar arguments, the third and the fourth terms in L swg give respectively

(48) RlzszCO -2

3
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and
Colly (E)T3 (E)®,_,.

The last term in Ly 3wg gives no contribution since the coefficient of ®;_, vanishes by oddness, so it
remains to consider the second term. Integrating by parts we find

2 l 2 2 m 2 l 2 e T
ngijlq)f_Q /]Rn+1 anacsuk)acicjuk)dc <+8an¢'l~_2a€jya (I)I:—Q et 8<1<]w03<5w0d< lf I = 2 .
+ +

In case I = 2 the quantity within round brackets cancels by oddness, therefore in any case we only need
to estimate the first one. Still by oddness in (’, the first integral is non-zero only if, either i = j and
m=s,ori=sand j =m, ori=m and j = s.

In the latter case we have vanishing by the antisymmetry of the curvature tensor in the first two
indices. Therefore the only terms left to consider are

2 ! 2 2 ! 2
zj: gRsiiz‘bf,2 /R:“ Cs0¢, woOF, ¢, wodC + z; gRisilq’f,z /Ri“ GiOc, woOF, ¢, wod(.

Observe that, integrating by parts, when s # ¢ there holds

/

Hence, still by the antisymmetry of the curvature tensor we are left with

) (0, wo0Z, ¢, wod( = —/ . (i0c, woOZ ¢, wodC.
1 Ri 1

n
+

4 l 2
_ Z gRSiil(I)f72 /]R — Qagswoacsciwod(.

i
The last integral can be computed with a further integration by parts and is equal to —%Co, so we get

2
gRsiilCO‘blI;?

This quantity cancels exactly with the second term in and with . i
When we multiply €2 Lo 1wo (¢’ +®, (,11) by %—"Zf((’—k@, Cn+1), s =1,...,n, the terms containing 6I<I)’13
are given by

—2

i Ji 2 (9 a d - H 7‘2 2 82 3 d
i 4 n—+ a 9 ;
/ " 92? y C] wO C; wO C / 1 C 1 l y C] Cl ’U)() Cs wO C

8(1)]1;—2 8q)lf—2 2 L=
* /Rwrl ﬁ 0y 8(j€1w0 aCstdC iflI=2],
+ a a

which give by oddness
2HJ
; 0°P 7o
Yala
Collecting the above computations, we conclude that F(y, ¢, wo,w1,...,wi_q,Po,...,P;_,), the right-

hand side of , is L?-orthogonal to the kernel of Lg if and only if ®;_, satisfies an equation of the
form

0= —

YaYa

foRkis
Co < =2 _ Rsaal(I)lI"_Q + FZ(ES)Fg(El)q)lf_2> = Gf—Q(ya va()vwl, ce, Wi, (I)Oa R (I)f_3)7
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for some expression G;_,. This equation can indeed be solved in ®;_,. In fact, observe that the operator
acting on ®;_, in the left hand side is nothing but the Jacobi operator, which is invertible by the
non-degeneracy condition on K.

Having defined ®;_, in this way, we turn to the construction of w; which, we recall, satisfies equation
(45). Having imposed the orthogonality condition, we get again solvability and, as for wy, one can prove
the following estimates

(49) Vi, Q) < CO+IC)Te (7,0 e K xR,
where C; depends only on [, p, K and €.

As already mentioned, we limit ourselves to the formal construction of the functions uy ., omitting
the details about the rigorous estimates of the error terms, which can be obtained reasoning as in [37].
We only mention that the number 7 has to be chosen sufficiently small to obtain the positivity of ur .,
after we multiply 4y . by the cutoff function x., see and .

4 A model linear problem

In this section we consider a model for the linearized equation at approximate solutions which, for p < %

(as we are assuming until the last subsection), corresponds to JZ (uy ). We first study a one-parameter
family of eigenvalue problems, which include the linearization at wg of . Then we turn to the model
for J/(uy ), which can be studied, roughly, using separation of variables.

4.1 Some spectral analysis in RTI

In this subsection we consider a class of eigenvalue problems, being mainly interested in the symmetries
of the corresponding eigenfunctions. We denote points of R™*! by (n + 1)-tuples (1, (o, ..., Cny Cni1 =
(g/’ Cn-‘rl)? and we let

Ri+l = {(ClaCQw . -,<n7<n+l) € RnJrl : C”Jrl > 0} :

For p € (1 "—*3) (243 is the critical exponent in R™*1) we consider problem (3 which, we recall, is

T n—1 n—1

—Au+u=uP in R+,
ou __ n+1
5 =0 on ORY™™,

u>0,ue HYR}M).

It is well-known, see e.g. [31], that this problem possesses a radial solution wg(r), r? = Z?jll 2 which

70
satisfies the properties

wg(r) <0, for every r > 0,
(50) . ron _ : wo(r) _
lim, o0 €"r2wo(r) = anp >0, lim, o ) = b

where o, p is a positive constant depending only on n and p. Moreover, it turns out that all the solutions
of coincide with wo up to a translation in the ¢’ variables, see [23], [24].
Solutions of can be found as critical points of the functional J defined by

1

— 1
1 == 2 2\ _ p+1. HY(RHY.
(51) T(u) 2/M+1 (Val? +%) = g [ bl we @

We have the following non-degeneracy result, see e.g. [49].
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Proposition 4.1 The kernel ofjﬂ(wo) s generated by the functions %Z’f ey g?“ . More precisely, there
holds _,

J (wo)[wo, wo] = —(p — DHMOHZI(M“)’
and

j”(wo)[v,v] >C 7w Yo € HY (R, v L wo, d¢, wo, - - -, O, wo

2
‘|H1(R7+L+l)’
for some positive constant C. In particular, we have n < 0, ¢ = 0 and 7 > 0, where n, o and T are

respectively the first, the second and the third eigenvalue of 7”(100), Furthermore the eigenvalue 7 is
simple while o has multiplicity n.

Notice that, writing the eigenvalue equation 7’l(w0)[u] =Auin H 1(RT'1), taking the scalar product
with an arbitrary test function and integrating by parts one finds that u satisfies

—Au+u—pwd 'u=A-Au+u) in R
du_ — on OR" T,
i +

The goal of this subsection (the motivation will become clear in the next one) is to study a more general
version of this eigenvalue problem, namely

(52) {—Au +(1+a)u —pwgflu =A(-Au+ (1+a)u) in R7+L+1a

ou __ n+1
5 =0 on IR,

where a > 0. It is convenient to introduce the Hilbert space (which coincides H!(R'}™), but endowed
with an equivalent norm)

Ho = {u e H'RY™) sl = [ (e + <1+a>u2>},
Ry

with corresponding scalar product (-, ). We also let Ty, : H, — H, be defined by duality in the following
way

(53) (Tou,v) g, = / ((Vu - Vo) + (1 + a)uv) —p/ wh ™ uw; u,v € Hy.
Ry

n+1
]R+

When a = 0, the operator Ty is nothing but 7”(w0). For a > 0, the eigenfunctions of T, satisfy .
We want to study the first three eigenvalues of T, depending on the parameter «.

Proposition 4.2 Let 1,0, and 7, denote the first three eigenvalues of T,,. Then ny,0, and 7, are
non-decreasing in «. For every value of a, 1, is stimple and there holds

ONa )
—_ ; 1 o = 1.
90 " L

The eigenvalue o, has multiplicity n and for o small it satisfies aa"; > 0. The eigenfunction uy corre-

sponding to 1. is radial in  and radially decreasing, while the eigenfunctions corresponding to o, are
g ton Yy g g g

spanned by functions v, ; of the form v,;(¢) = @a(m)l%l, 1 =1,...,n, for some radial function 0,(|C]).
If uq and v, are normalized so that ||ugl|a = ||Va.illa = 1, then they depend smoothly on . Moreover we
have

|z
VO ua (@) + [V (0a,0) ()| < Cre™ <,
provided o stays in a fived bounded set of R.

Before proving the proposition we state a preliminary lemma.
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Lemma 4.3 Let 7 denote the third eigenvalue of j”(wo). Then, for a > 0, every eigenfunction cor-
responding to an eigenvalue X < 5 of is either radial and corresponds to the least eigenvalue, or
is a radial function times a first-order spherical harmonic (in the angular variable 6 = Tg\) with zero

coefficient in (', and correspond to the second eigenvalue.

PROOF. First of all we notice that, extending evenly across 8RT‘1 any function v € H! (]R’r“l) which is a
solution of (52)), we obtain a smooth entire solution of —Au+ (14 a)u —pwl'u = A (—Au+ (1 + a)u).
Next, we decompose u in spherical harmonics in the angular variable 6 (we are using only spherical
harmonics which are even in (1)

=Y w0 CeRTLO- Lesn
=0

Here Y . is the j—th eigenfunction of —Agn (which is even in (,,4+1), namely it satisfies AgnY; . = )‘EZYLG’
where we have denoted by )\fz the i-th eigenvalue of —Agn on the space of even functions in (,41. In
particular, the function Yy . is constant on S™ and correspond to A{, = 0, while A5, = n has multiplicity
n. The eigenfunctions corresponding to ,\25’; are (up to a constant multiple) the restrictions, from R™*1

to S™, of the linear functions in (’.
The laplace equation in polar coordinates writes as

1
Apntiu = Apu + —QASnm
r

where A, = ddf; + 24 Therefore, if u = 77 u;(|(])Y;e(0) is a solution of (52), then every radial

rdr®
component u; satisfies the equation

on
(54) (1-2X) <—v”—’;v’+ <1+O‘+>\;;) v) —pwh v =0 inRy;

v'(0) = 0.

We also notice that, since the space of functions {v(r)Y;.(0)} (for a fixed ¢) is sent into itself by the
Laplace operator, every Fourier component (in the angular variables) of an eigenfunction of is still
an eigenfunction.

We call A, ; ; the j-th eigenvalue of . From Proposition it follows that A\g11=—(p—1) <0
and that Ao, > 7 for j > 2. In fact, a radial eigenfunction of J  (wp) which is not (a multiple of) wy
itself must correspond to an eigenvalue greater or equal than 7, which is positive. On the other hand,
it follows from Proposition that Ag2,1 = 0, and also that A\g2; > 7 > 0 for j > 2. Finally, since
Ao,i,1 = 7 > 0 for 7 > 3, we have in addition g ;; > 7 for every ¢ > 3 and for every j > 1.

After these considerations, we turn to the case a > 0, for which similar arguments will apply. Solutions
of can be found as extrema (minima, for example) of the Rayleigh quotient

A sn

fR+ rm [(v’)2 + (1 +a+ =5 > UZ] fpfﬂh r"w871v2

AS™
fR+ rn {(v’)2 + (1 +a+ ;—;) ’UQ}

(55)

from a standard min-max procedure. Using elementary inequalities it is easy to see that the above
quotient is non-decreasing in «. Therefore it follows that A1 ; > 0 for j > 2, that Ay 2; > 7 > 0 for
j > 2 and that A\, ;; > 7 for every ¢ > 3 and for every j > 1. This concludes the proof. ®

PROOF OF PROPOSITION The simplicity of 7, can be proved as in [38], Section 3, using spherical
rearrangements and the maximum principle. The weak monotonicity in « of the eigenvalues can be easily
shown using the Rayleigh quotient in the space H,, as for .
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The smoothness of a — 7, and of o — wu, can be deduced in the following way. Since the two
spaces H 1(]1%1“) and H, coincide, and since the eigenvalues of an operator do not depend on the choice
of the (equivalent) norms, we can consider T, acting on H*(R’™") endowed with its standard norm
(independent of «). Having fixed the space, we notice that the explicit expression of Ty, is given by

(56) Tou=[-A+1]"" (fAu + (14 a)u — pwgflu) .

In fact, letting T,u = q € Hl(Rf‘ﬁl), taking the scalar product with any v € H' (Riﬂ) and using
we find

/Rn+1 (Vg - Vo) + qv] = /}Rn+1 [(Vu - Vo) 4 (1 + a)uv)] _p/ wh Y,

Ry
which leads to by the arbitrarity of v. It is clear that the operator in depends smoothly on «

and therefore, being 7, simple, the smooth dependence on « of 1, and u, follows.
We now compute the derivative of 7, with respect to a. The function u,, satisfies

(57) {(1 —Na) (—Auy + (1 + a)uy) = pw(’]’flua in R,

G =0 on IR’
Differentiating with respect to o the equation ||u,||% = 1, we find

d 9 dug, 9
(59) L g2 =0 > <da“> ——/RT 2.

On the other hand, differentiating , we obtain

— Pl (CAug + (14 a)ug) + (1 —na) (A (L) 4 (1 + o) Do 4 y,) = pwf ' B jn RTT,
59 2t = g on ORI
ov \ da / +
Multiplying by u,, integrating by parts and using , one gets

dna

i:(1—7704)/ u? > 0.

da ]Rrrl

Indeed, since T,, < Id (R-H1); EVery eigenvalue of T, is strictly less than 1, and in particular (1—7,) > 0.
+

(60)

We now consider the second eigenvalue o,. For any a > 0 it is possible to make a separation of variables,
finding eigenfunctions of of the form Y (04,, where Y; . = ‘%7 i =1,...,n, correspond to )\*291
Also, from Lemma we know that for « close to 0 (indeed, as long as o, < 7T) every eigenfunction
corresponding to o, is of this form, for some i € {1,...,n}. Therefore, if we restrict ourselves to the
space of functions of the form (| D\%\ for a fixed i € {1,...,n}, the first eigenvalue for becomes
simple, so we can reason as before, obtaining smoothness in o and the strict monotonicity of .

We prove next that the eigenvalue 7, converges to 1 as a — 400. There holds

e —
oo = inf — Jere: VP + (04 @]
Fixing any 6 > 0, it is sufficient to notice that
|Vul? + ((1 +a)— pwg_l) u? > (1—10) [|Vu\2 +(1+ a)uz] for every u,
provided « is sufficiently large. This concludes the proof of the claim.

The decay on uq, Va,; and their derivatives is standard and can be shown as in [38], so we do not give
details here. B
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Remark 4.4 Proposition [{.4 implies in particular that there is a unique @ > 0 such that ng = 0.
Moreover, we have also B -
ug = Cowo; vy = Codpwo,

for some positive constants Cy and C.

We also need to introduce a variant of the eigenvalue problem , for which we impose vanishing of the
eigenfunctions outside a certain set. For ¢ > 0 and for v € (0,1) we define

(61) B.,={z e R} : [z| <7},
and let

H! ={ue H'(B.,) : u(z) =0for |z|=¢77}.
We let H, . denote the space H! endowed with the norm

fule= [ (VuP+ 0+ we

et

and the corresponding scalar product (-, -)q.. Similarly, we define Ty, . by

(To,ct, V)ge = / [(Vu Vo) + (14 a)uw —pwg_luv} ; u,v € Hy (.
B. 4
The operator Ty, . satisfies properties analogous to 7T,. We list them in the next Proposition, which also
gives a comparison between the first eigenvalues and eigenfunctions of T, and T, .

Proposition 4.5 There exists eg > 0 such that fore € (0,eq) the following properties hold true. Let 1o,
Oa,e and Ty . denote the first three eigenvalues of To . Then Ng e, Oa,e and Ty are non-decreasing in o.

For every value of o, 0o ts simple and % > 0. For a sufficiently small, 0, has multiplicity n and

ag‘;‘s > 0. The eigenfunction u, . corresponding to nq. is radial in ¢ and radially decreasing, while the

eigenfunctions corresponding to o4 are spanned by functions va e of the form va ¢ i(¢) = @""E(KDI%I’
i = 1,...,n, for some radial function Va.(|C]). The eigenvector uge (Tesp. Vae,i), normalized with
vaellm.. =1 (resp. ||vac,ill. ., = 1) corresponding to 1. (resp. oq.c for o small) depend smoothly
on «. Moreover for some fixred C' > 0 there holds

(62) IVOug (O] + [VBOvaci(C)] < Cre™ e, fori=0,...,n;

e Y

(63) |77a — Nae| + Hua - ua,aHHl(RiJrl) + Ia'a - 0'04,5| + ||Ua,i - Ua,s,i”Hl(RTrl) <Ce T,

provided o stays in o fized bounded set of R. The functions uq. and vy c; tn this formula have been set
identically 0 outside B, . Furthermore, To e > To 2> T for every value of a and €.

The proof follows that of Proposition 2.3 in [39], and hence we omit it here. It is still based on some
elementary inequalities and on the Rayleigh quotient. The quantitative estimates in can be deduced
using cutoff functions and the Green’s representation formula for the operator —A + (1 + ) in R

As a consequence of this proposition (taking o = 0) we obtain that, if (for € small) v € H! has no
Fourier components (in #) with indices less or equal to n, then (Tp . u,u)o > 5 (u,u)o,.. Equivalently,
there holds

(64)
P/Bm w871(|<|)u2 < (1 — %) /Bm (—Au + u) ud¢ for any u = i:;rluj(KDY;,e(@),u € H;
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4.2 A model for J(u;.)

In this subsection, using the analysis of the previous one, we construct a model operator which, up to
some extent, mimics the properties of J/(u;s ), and for which we can give an explicit description of the
spectrum. Although the related construction in [37] is a particular case of the one made here, the general
spirit is quite different, and is more geometric in nature.

First of all, we choose an orthonormal frame (E;); as before, and we define a metric § on NK as follows.
For v € NK, a tangent vector V € T, NK can be identified with the velocity of a curve v(t) in NK
which is equal to v at time ¢ = 0. The same holds true for another tangent vector W € T,, NK. Then the
metric § on NK is defined on the couple (V, W) in the following way (see [2I], pag. 79)

. DNy DNw
g(V7 W) = g(’”*‘/a '/T*W) + <dt|t_07 dt |t—0>N

In this formula 7 denotes the natural projection from NK onto K, and D(Z” denotes the (normal)
covariant derivative of the vector field v(t) along the curve 7 v(t). In the notation of Subsection [2.2] we

have that, if v(t) = v’ (t)E;(t), then

DNy dvi(t)
e dt

By (o) + 0035 (= 5 ) 5.

Therefore, if we choose a system of coordinates 3 on K and then a system of coordinates on VK defined
by
@O R xR"  —  (E@),
we get that
35(0:0) = G + T (VLB VLB ) = 9 + T Tl (0n) 5} (05)
and o )
95U, ¢) = ¢ B35 (0a) ; 33,0 = 65,

-9 We notice also that the following co-area type formula holds, for any smooth

o¢;
compactly supported function f: NK — R

(65) favy = | ( <<>d<> avy(@).
NEK K \JNyK

This follows immediately from the fact that det § = detg, which in turn can be verified by expressing §
as a product of three matrices like

Id ¢B 3 0 Id 0
0 Id 0 Id 3 Id )

the first and the third having determinant equal to 1.

Having defined the metric g, we express the Laplacian of a function u defined on N K with respect to
this metric. In Fermi coordinates centered at some point ¢ € K, using (16)), and (19), it turns out
that (for 7 = 0)

where we have set 0; =

(66) Agyu = 0Z.u+ 8127u

Next we define the set S, as

Se = {(07<n+1) ENK. xRy : (W +¢upa®)” < 677}, Ry = {Gut1 t Cny1 >0},
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where NK. stands for the normal bundle of K. (in £.). We next endow S. with a natural metric,
inherited by ¢ through a scaling. If R. denotes the dilation 2 +— ez in R (extended naturally to its
subsets), we define a metric g. on S by

- 1 .
Je = ?[(Rs)*g] ® an+12~

In particular, choosing coordinates (y, (") on NK. via the scaling (7, () = &(y, ('), one easily checks that
the components of g. are given by

(F)ab(y,v) = (@)z5(ey) + 0" B (0z) (ey) B (85) (ey),

(9<)ai(y, v) = ev’ 3 (9a) (ey); (9)i; (¥, v) = bij,
and also
(ge)nN =1 (Ge)Na = 0.
Therefore, if u is a smooth function in S, it follows that in the above coordinates (y, (', (n+1) (at y = 0)
(67) Aj.u = 82 u+ 82 u+ aC 16 ¥

In the following, to emphasize a slow dependence of a function u in the variables y, we will often write
u(y, ) = uley, ) (where, we recall, ¢ = ({’,(nt1)), identifying with an abuse of notation the variable
y parameterizing K. with g, parameterizing K. In this case we have that (at the origin of the Fermi
coordinates)

(68) A U= 8282 u+ 82 u+ 8C7L+1Cn+1

For later purposes, we evaluate Aj_ on functions with a special structure. In particular, if we deal
with a function u of the form w(y, ) = ¢(¥)v(|(]), we have that

(69) Ag.u=e*(Axd(@)v((C]) + o@)Acv,
and if instead u(7,¢) = v(|¢|)y" (¥ )ICI for some smooth normal section ¢ = " Ej,, then we find

(10) Agu = (AN @) Lo(C]) + " @)A ( (ch; <>

<l

Now we introduce the function space Hg, defined as the family of functions in H'(S.) which vanish on
{|v]? + Cos1? = 727}, endowed with the scalar product

(71) (w 0y, = [ (Vo.u Va0t w)dv.
Se
We consider next the operator Ts, : Hg, — Hg_ defined by duality as
(72) (Ts.u0ms, = [ (Vau Ta.ou— pof (c)uv) V..
SE

for arbitrary u,v € Hg_. Our goal is to characterize some of the eigenvalues of T’s_, with the corresponding
eigenfunctions.

For simplicity, if %a.c, Va,c,i, Na,e and 04 are given by Proposition @ recalling our notation from
Subsection [2.2] we also set

(73) Uje = Ue2p; &5 Vle,i = Ve2w;,e,is Nje = Ne2pj,es Ole = O0g2y; e-
We also assume that these functions are normalized so that

{ Huj,sna?pj,s :fB (|VUj75|2 (1+¢? IOJ) )

74
™ 00 lletonc = i, (100042 + (1 4+ eP2) vm)

After these preliminaries, we can state our result.
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Proposition 4.6 Let €p,e be as in Proposition . Let X < 7 be an eigenvalue of Ts_. Then either
A =1njc for some j, or A = 0y, for some index l. The corresponding eigenfunctions u are of the form

(75) u(y,C) = Z a;j¢j(ey)use(C) + Z Bipi(ey)orei(C),
{7 :mj,e=A} {l:0,,.=)\}

where (y, () denote the above coordinates on S., and where («;);, (B1)1 are arbitrary constants. Viceversa,
every function of the form is an eigenfunction of T's_ with eigenvalue \. In particular the eigenvalues
of Ts, which are smaller than 7 coincide with the numbers (1;.c); or (01.c); which are smaller than 7.

PROOF. The proof is based on separation of variables and the spectral analysis of Proposition
Integrating by parts, one can check that the eigenfunction u of T's, satisfies the following equation

(76) (1 =X (=Agu+u) —pw ' (Qu=0 inS.,
8311 =0 on {Cn+1 - 0}

As before, we can extend u evenly in (,4+1, to obtain a smooth solution of the differential equation in

. 1 . .
(76) in the set {(v,Cpy1) € NKo xR = ([o2 + Cug1?)? < &7}, Hence, fixing y € K., we can use Fourier
decomposition in the angular variable of ¢, and we can write

u(y,¢) =Y ui(y, [C))Yi.e(6),
=0

where 0 = I%\ € 8™, and where Y] . is the [-th spherical harmonic function which is even in (,41. We
now decompose u further in a convenient way as

(77) U= Ug + Uy + Uy,

where

\/|]:S'7n|u0(y’ |C|)7 u; = l:;m Ul(?/, ‘C|)Y2,P(0)7 Uy = lz;rl Ul(y, |<|)He(a)

Integrating by parts, the last formula, together with (65)), and (recall that Y. for i =1,...,n
are linear combinations of |% on 8", h =1,...,n) easily imply that (u;,u;)ns._ = 0 for i # j and that
(Ts.u,;, gj) Hs, = 0 for i # j, namely that T, diagonalizes with respect to the above decomposition .

We begin by considering the action of T, on wu,. Using a Fourier decomposition of u,(y, |¢|) through

the eigenfunctions (¢;); of the Laplace-Beltrami operator on K, we set

Uy =

oo

ug(y, [¢) = D diey)a; (IC))-

j=0
By we get immediately that for any j

Az (6(ey)a; (IC) = (€2 Ag + A)(¢5(ey)a; (1) = (A¢ — €%p5) b (ey)i; (<))

As a consequence we find that u, € H} satisfies the following partial differential equation in B, ., with
Neumann boundary conditions on {(,+1 = 0}

~Agay + g — pud~ (CDg = D 65 () (e (1) + (1 + €20, (1) — pub ™ (1CD (1<) -
j=0

From this formula it follows that if Ts_u = Au for some A, then by the orthogonality to u,, u, we have
also Ts,uy, = Aug, and each of the components @; (which are radial in ¢) satisfies the eigenvalue equation
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T2, cuj = Auj in He2,, o with the same value of A, where we are using the notation of Subsection
Using the same terminology, we can further decompose @; as

11](|C|) = QjlUj e+ Uje with Qaj € R and with (uj,Eyﬂj,E)E2pj,E =0.

From the spectral analysis carried out in the previous subsection it follows that if A < Z (and € is

1
sufficiently small), then @;. = 0 for every j, and A = n; . for some set of indices j.

We now turn to the evaluation of Ts. on u;. Similarly as before, expanding with respect to the eigen-
functions of the normal Laplacian we can decompose u; in the following way

u, (y,¢) = szz (ICheriey) \CI

>0 i=1

and from we deduce that

Ag. (sz(ICI)wzz(sy)K) = Z( Ak’ mvz (I<h +Z<ﬂzz ey)A¢ (vz(lél)q)

i=1 i=1
= (AC —52(.01) (Zvl(ml)@ll(gy)q)
i=1
As a consequence we find that also

—Aj.uy +uy —pwgfl(KDul
; 0] w0 wP ™1
lZE_Zwy)[ Ac(luc)m) (1+ tan)in(ch & — ol (oo <<|>|<J

Hence, by the spectral analysis of the previous subsection, reasoning as for u, we deduce that if u,
satisfies T's,u; = Aw; with A < 7, then 171(|C|)% = v, ¢, and hence it follows that A = oy . for some set
of indices .

Finally, we turn to u,. Proceeding as for the definition of the metric § (and using the same notation),
we can introduce a bilinear form g (semi-positive definite) on T'NK defined by

DNy DNw
(Vo) = { 2o 2 )

Using again a scaling in €, we can also introduce the following bilinear form on S,

5 = 5 (Re)g ® G
The components of this form in the above coordinates (y, () are given by
(ge)ab(y, v) = 20"’ B} (3a) ()35 (35) (ew); (8e)ai(y, v) = €0’ 5} (9a) (ey);
(0)ij (U, 0) = 0i5; (ge)vn =1 (ge)Na =0
We then define by duality the operator €. through the formula

(Tew, W mg, = /S {gs(vgsu, Vg.u) +u® — Pwé’*l(lCl)“ﬂ dVs..

Moreover, computing the pointwise action of ¥, integrating by parts, reasoning as for the derivation of

, and using , one finds that

1) (Ewwn, = [ [/S (—u Acu+u? — puo(IC)P 1) de | V. (), we Hs.,

Y€
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1
where we have set . = E%(RE)*E and Sy . = {(U,Cn+1) € NyK. xRy : (|v|2 + Cn+12) < 5_“’}.
Hence, using (with the scaled metric g.), with u = u, and we find

_ _ T
p/ wh~ updVy, =p/ </ wg 11@) Vg, (y) < (1 - 5)/ V (—up Agu, + u3)
SE Ks S. KE Swa

Since 7 < 1 (being an eigenvalue of j//(wo) < IdHl(Ri+1)), we deduce that

dvg,_ (y).

Y,€

(Ts,u,w)ms, = (Feu,u)ms, +/ [(9= — 9)(Vg.u, Vg u) + u®] dVj,

=

T

> 5/ [9:(Vg.u, Vg u) + u®] dVj, +/ [(g: — 9:)(Vg.u, Vg u) +u] dVy,
s. s.
i
> §||UHHSE'

If follows that there are no eigenvectors of the form u, corresponding to eigenvalues smaller than 7. This
concludes the proof.

Remark 4.7 For later purposes, it is convenient to consider a splitting of the functions in Hs_ which is
slightly different from the one in . If uy, uy and uy are as above, with

uy =Y &i(ey)i; (IC)); szz [EHEN) | ‘

7=>0 1>0 i=1

for some real sequences (o) ;, (B1)1, we can write

0 (|¢]) = aju;e(I€]) + w56 (C]), with (Wjer Uje)e2p,e = 05
(‘CD K‘ ﬁlvl,é‘ l( ) (|C|) |C| ﬁl’Ul € Z(C) + 61,671'(()7 with (’Ul,Eﬂ;aEl,EJ)EQwL,E =0.
Now we set u = ug + 1y + us, where
wo = Y aju; (1) (ey); Zﬁzvm )#i(ey);
=0

Zuja 1< é;(ey) +Zvlaz Oiley) + us.

Then by one can check that (ui,uj)HSE =0 fori+# j, and that

1 o0 oo
(79) lullfrs, = luollzrs, + llwlFr, + w2l = o > ai+ Z + [Juall i, 5
=0 1=0
(80) (Ts.u,u)ms, = Zm aj + ZJl B+ (Ts.uz,u2) g3 (Ts.uz,u2)ms, > C||U2H%{SE,

for some fixed positive constant C.

From the last proposition we deduce the following corollary, regarding the Morse index of Tg._.
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Corollary 4.8 Let v € (0,1), and let Ts. : Hg. — Hg. be defined as before. Then, as € tends to zero,
the Morse index of T, satisfies the estimate

[NE

M.I.(Ts.) =~ ((i) Vol(K)e™*,

where @ is the unique real number for which ng = 0 (see Remark .

PRrROOF. From Proposition [4.6| we have that the Morse index of T, is equal to the number of negative
nj.e’s. By the estimate in (63)), this number is asymptotic to the number of j’s for which 7.2, is negative.

Therefore it is sufficient to count the number of eigenvalues p; for which g2 pj is less than @&. By the Weyl's
k

asymptotic formula, see [32], we have that p; >~ Cy, (#(K)) * 50 the conclusion follows immediately. B

5 Accurate analysis of the linearized operator

In this section we first compare JZ (us ) to the model operator introduced in the previous one. A naive
direct comparison will give errors of order €, see Lemma [5.1f and Corollary but sometimes we will
need estimates of order €2. Therefore we will expand at a higher order the eigenvalues (of the linearized
operator at uj.) close to zero with the corresponding eigenfunctions, to get sufficient control on the
errors. Finally, using these expansions, we will define a suitable decomposition of the functional space
for which the linearized operator is almost diagonal.

5.1 Comparison of J/(u;.) and T§,

We define first a bijection T. from S. into a neighborhood of K. in Q. in the following way. Given the
section ® = By 4Py +---+e!2®;_5 in NK constructed in Section for any (v, (p41) € Se, v € Ny K,
Cnt1 € Ry, we set

Te (v, Gui1) = expy™ (v + @(ey)) + Cuyav (expy™ (v + @ (ey))) -

Then we define the set X, C €, to be }
ZE = Te(Ss)v

endowed with the standard Euclidean metric induced from RY. For u € Hg,_, we define the function
u: Y. — R by
a(z) = u (T;l(z>) , ze .,

and letting A, to be the map u — @, we define

Hy_. = A (Hg.).
Hy,_ has a natural structure of Hilbert (Sobolev) space inherited by H'(Q.), and we denote by (-,-)rsy_,
|| - | s, the corresponding scalar product and norm. More precisely, we can identify the space Hyx, with
the family of functions in H'(Q.) which vanish identically in Q. \ X..

We introduce next the operator Ts_ : Hy,, — Hs,_ defined as the restriction to Hs,_ of J! (ur ) which,
using the duality in Hy_, has the following expression

(81) (Ts.u, ) Hy, = /2 (Vu - Vv + uv) —10/2 uII),_Eluv = (u,v) By, —p/ u?_aluv.

€

Fixing these notations and definitions, following the arguments at the beginning of Section 4 in [37]
one can easily prove the following result.
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Lemma 5.1 Identifying the functions in Hg, with the corresponding ones in Hyx,_ via the map A., for e
sufficiently small one has

(u,0) 5. = (u,0) s, + O )l s, 0llas. ;

(TZEU7U)HEE = (Tssuvv)Hss +O(€1_’y)”uHHsE ||U||HSE'

with error O(e'=7) independent of u,v € Hy,_.

We introduced the operator T, because it represents an accurate model for J”(us.). In fact, since
most of the functions we consider have an exponential decay away from K., it is reasonable to expect
that the spectrum of JZ(us.) will be affected only by negligible quantities if we work in Hy,_ instead
of H'(Q.). More precisely, one has the following result (we recall the definition of 7 from the previous
section).

Lemma 5.2 There exists a fized constant C, depending on 2, K and p such that the eigenvalues of
J!(ure) and Tx_ satisfy

I\ (T (ure)) = A (Ts,)| < Ce™ =, provided A;(J! (ur.)) <

(A

Here we are indezing the eigenvalues in non-decreasing order, counted with multiplicity.

We omit the proof of this result because it is very similar in spirit to that of Lemma 5.5 in [38]. This
is based on the fact that the number of the eigenvalues of T'g_ which are less or equal than %T is bounded
by e~ P for some D > 0 (see Proposition and the Weyl’s asymptotic formulas in Subsection 7
together with the exponential decay of the eigenfunctions of J!(ur.), which can be shown as in [3§],
Lemma 5.1.

As a consequence of Lemmas [5.1] and [5.2] we obtain the following result.

Corollary 5.3 In the above notation, for € small one has that

(82) I\ (T (ur.e)) = Aj(Ts,)| < Ce'77, provided A;(J! (ur.c)) <

NV

Using Proposition and Corollary it is possible to obtain some qualitative information about
the spectrum of the linearized operator J/ (uy ). However, this kind of estimate is not sufficiently precise
by the following considerations. First of all, since the eigenvalues of Ts, can approach zero at a rate
min{e2, ¥}, the estimate need to be improved if we want to guarantee the invertibility of J/ (uz).
Furthermore, it would be natural to expect that the Jacobi operator (and its invertibility) plays some
role in the expansion of the eigenvalues, and this is not apparent here.

On the other hand, Lemma gives an accurate estimate on the eigenvalues of J/(us ) in terms of
those of T,_, so it will be convenient to analyze T_ directly.

5.2 Approximate eigenfunctions of 7Ty

In this subsection we construct approximate eigenfunctions to the linearized operator at the approximate
solutions uy .. By the reasons explained at the end of the previous subsection, we need a refined expansion
of the small eigenvalues of Tx,_, and in particular here we want to understand how the o;.’s change when
we pass from Tg, to Tx,.

It is sufficient here to take I = 2, because the terms of order higher than 2 do not affect the expansions
below. As for the construction of the approximate solutions u; ., we proceed by expanding the eigenvalue
equation formally in powers of . By the construction of us ¢, formally the following equation holds

—Ag use+use — ug)s =0(e%).
Using Fermi coordinates as in Section |3| and differentiating with respect to (3, we get

(83) —O0n(Ag uze) + Opug e — pug’;lahu% = 0(e?).
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From the general expression of the Laplace-Beltrami operator, see formula , we can easily see that
Om(Ag.u) = Ay (Opu) + Ong2PO0apu + 0n(0492P)0pu

1 1
5927074 (log(det g.)) Opu + 504 (log(det ge)) (Ong??)Dpu.

(84) + 3

Let us now consider the second term on the right-hand side of : dividing the indices this is equivalent
to
g O%u + 20,92 0% u + On g2 Oapu + 20,92 N 0a0,, ., u-

From Lemma [3.2] and using the fact that we get an € factor each time we differentiate v with respect to
Ya, Yo, - - -, we find that

2
g PO pu = —§E2Rihtj§}3i2ju +0(e%).

Similarly we get
1
n0agiPopu = §52Rhiij8ju + O(e%);

1 1
Eg;‘Ba;iA (log(det g.)) Opu = &2 <3Rum + Rigah — FZ(EJI‘Z(E;J) diu
+ 2HuTY(ER)e, , u+ O(3),

and ]
58,4 (log(det g )) (8hg;43)83u = 0(63).

Putting together all these terms we deduce that
2 2
(85) 8h(AgEU) = Ags (8hu) — gszRihttha,-ju + &2 (3Rillh + Rigan — FZ(Ei)FZ(Eh)> o;u + 0(63).

To construct the approximate eigenfunctions v, and the approximate eigenvalues p, we make an ansatz
of the type

b = (V" @)0hu2,(7, ¢+ (@), Coy1) +€722(7,C)) + O(%); p=c"fi+ 0,
where the normal section 1) = (¢"),, the function z; and the real number 7 have to be determined.

We notice that the eigenvalue equation J! (uz,c)v = Av in H'(€2.), with an integration by parts becomes
—Agv4v—pug)’ o= A=Ay v+0),

see also the derivation of .
For v = v, and A = u, we have the following expansion

— Ay (V" @)Ohuze +222(7,C))
+ wh(?)ahule + 5222 (?7 C) —-p (u2,6)p71 (djh (y)ahuls + 5222 (57 C))

= -0y (" @huse +°227,0) + (" G)huse + 227, Q)]
= 0 [¥"(7) (= Ay Onwo + Dpwo)] + O(°)

= 2apy" (@) wh  hwo + O(2).
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From we can expand the Laplacian in the last formula as

_Agg (wh @)ahUQ,e)

—528§agawahwo — 2526a¢h8]2hw0837a‘1% - ¢hAgs (Onus,e)
+ 452C7L+1Hajaga7/1h3]2hwo + O(e?)
—%02 5 W Opwo — 26%0,0" 03, wedy, Y — " On(Ag,ua )

2
+ 4€2<n+1Hajag7a¢h6]2‘th + gEQthihtthaijwo
2
— EQQ/Jh (BRillh + Riqah — FZ(EZ')FZL(E;L)> O;wo + O(ES).
Using jointly with the last equality, and recalling our previous notation (from Section

Lou=—Au+u—pwh (' + ®(ey), Cura),

we obtain the following condition on 25

;2
Lozg = 02 5 " Opwo + 205, V" 03, wody, Bf — gmeHgaﬁjwo
2 _
(86) + ot <3Rillh + Rigah — FZ(Ei)F?(Eh)) dywo + pp"wh ™ B wo

—  2Hu Y (En)Oc, , wo — 4Cnt1 HajOg, 002, w0 + O(€).

In order to get solvability of this equation (in z2), we need to impose that the right-hand side is orthogonal
to the kernel of L4 namely that, multiplying it by dswg and integrating in {, s = 1,...,n, we must get
zero. If we do this, reasoning as at the end of Subsection we obtain the following condition on v

Codv=Cupw, where  Ci=p [ uf @wo)de,
RyF!

and where Cy is given in (47). With the choices

_ Gy _
M_Clula ¢_¢17

where 1 is an eigenvalues of J with eigenfunction 1);, the right-hand side of is perpendicular to the

kernel of L4, and we get solvability in z5. Using the eigenvalue equation for 1, can be simplified as

C -~ .
Loz = b dhwo (pciwg - 1) + 2873@1#{1 (%aéé — 2Cn+1Haj> (9]2-hw0

2
+ gilfzh <Rijjhaiw0 - Rihtj(tafjwo - 3HabFZ(Eh)a<n+1w0)-
Next, we set

_ _ Co ,_ _ _ ;
9% @.¢) =Ly [&Lwo <p0‘1)w6’ - 1)} D gm0 =2L5" {(3@&‘1’6 - 2Cn+1Haj) fﬁhwo} ;

2
95 (7. Q) = 5551 [(Riun0;wo — Rihtthafjwo — 3H I8 (ER)0k, , wo)] + Onwa(F, ¢ + (7). Cog1)s
and
95, ) = Ohw1 (7, ¢’ + D7), (nt)-

We notice that, by the definitions of Cy, C, the computations in Subsection and by oddness, the
arguments of E;l in the definitions of g, g7 and gh are all perpendicular to the kernel of L, and
therefore gy, g1 and go are well defined.
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Finally, with this notation, we define the approximate eigenfunction ¥; as v. times a suitable cut-off
function of ¢, namely
(87)

(7.0 = xs<|<|>{wf @) [Bhwo + gk (@.0) + 265 3.0] + 2utl @k @) + 205, 4 @D @, <>},

where Y. is as in , and, as usual, § = ey.

A more accurate analysis, which we omit, shows that the above error terms not only are of order €3,
but they decay exponentially to zero as |(| tends to infinity. Moreover, as we already remarked, in the
above estimates one can replace ug . with uy .. Precisely, one can prove the following result.

Lemma 5.4 If WV, is given in , then there exist a polynomial P(C) and a sequence of positive constants
(C1)i, depending on Q, K, p and I such that

- C -
“Ag Uy Wy = pulf = (<A, Wy 4 )| < G PO
1

5.3 A splitting of the functional space

In the previous subsection we expanded in € some of the eigenvalues of T;_, precisely those which are the
counterparts of the o;.’s for Ts.. Actually, T's. possesses another type of resonant eigenvalues, namely
the n; ’s for suitable values of j, which in principle could approach zero even faster. One of the differences
between these two families of eigenvalues is that the eigenfunctions corresponding to the resonant oy .’s
oscillate slowly along 0f)., and this allowed us to perform the above expansion. On the contrary, the
eigenfunctions related to the 7n;.’s possess only high Fourier modes, and therefore such an expansion
is not possible anymore. Nevertheless, we can deal with the counterparts of these eigenvalues applying
Kato’s theorem, which on the other hand requires to characterize the corresponding eigenfunctions up to
some extent.

The purpose of the present subsection is to identify appropriate subspaces of Hy._ with respect to
which T, is approximately in block form. Recalling the definitions in Proposition in and in
(87) (and also our convention about the range of an integer index), for § € (0,k), C' € (0,1), we define
the following subspaces

(88) Hy = span {¢i(ey)u; (), i =0,...,00};
(89) H, = span {v,,i1=0,... ,5_‘5} . H, = span {w;”(ay)ﬁj’aﬂd) %,j =e041,... ,Ca_k} ;
(90) HQZﬁQ@ﬁQ; H3:(H1@H2)J—,

where X+ denotes the orthogonal complement to the subspace X with respect to the scalar product in
Hy._. We have the following result, which is the counterpart of Proposition 4.2 in [37]. The proof follows
the same arguments, but for the reader’s convenience we prefer to give details since the notation and the
estimates are affected by the different dimensions and codimensions we are dealing with.

Proposition 5.5 There exists a small value of the constant C > 0 in , depending on Q, K and p,
such that the following property holds. For e sufficiently small and choosing § € (%,k) in (89]), every
function w € Hy,_ decomposes uniquely as

U= ui + us + us, with u1 € Hy,us € Hy,ug € Hs.

Moreover there exists a positive constant C, also depending on 2, K and p such that

1
(Tgsu;g,ug) Z Cci ||7.L3||%125.
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The proof requires some preliminary Lemmas. Before stating them, we recall our convention about the
symbol Zf, for two positive real values ¢ and d.

Lemma 5.6 Let iy = ZJCEE,(;H BT (ey) iy, €(|C|)% H,. Then

Ce™F

(o) Izl = (14+06 )5 Y 82

j=e=3

PRrROOF. By Lemma [5.1} it is sufficient to estimate ||@i2]|%,. . We notice that by (26]) there holds
HsE

—ARY; =3 + (B — R)iy = ey + (B — R)p);.
Integrating by parts, using and the last formula one finds that ||a||7;, becomes

- /. v Agg(zﬁj 0D ) (Z@m ineh )

€ jl=e=9+1

o o+ [ S (Zwm el 2 ) - (mel )03 ) = A + e

€ jl=e=9+1
where
Ce=F
> [( A+ (1 2hu) (32 A enine(e) m)] (Zﬁm (el )
Se jl=e—5+1

m=e [ b (Zﬁj (B - 96)" )05 2 ) - (mel Vel )

€ jl=e—9%41

Looking at A, the integral over any fiber N, K. is non zero if and only if m = h (and by symmetry,
when computing the integral we can assume both the indices to be 1). Then, from (65) and from the

orthogonality among different ¢;’s (which now are scaled in ¢), recalling that ;. (|¢]) ¥ = Viem, A1
becomes
1 Ce=k 1 Ce=k
2
= Y BlvieallZy, . = & > 8 [/m (IVojea® + (1 +52ﬂj)”;‘,a,1)] :
j=e—5+1 j=e—d+1 Ry

Recalling the normalization and the fact that 7; = w; + O(1) (independently of j), see Subsection
we obtain that

Ce™F
(93) A= Y 0+0E)E
j=e0+1

We turn now to the estimate of As. By the orthogonality of the 1);’s, using again and one finds

Ce™* CeF
i2dV 1 )
UV, = E 6 ||'U]s 1||L2(Rn+1) < E ,8

Se j=e—%+41 j=e—b41

Working in a local system of coordinates (y, z) as in Subsection it is also convenient to write iy as

Ce™F

W) = 3 fa )G where  fuln i) = 3. B
m=1

j=e=%+1

5.1
T
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If U is a neighborhood of some point ¢ in K, where the coordinates y are defined, letting U. = éu , one

has
a /Nuga%dv Z/ (/ o y7CI)<1dC> v (y),

( /]R Tlfi(y,locfclc) Vg (y) < /S @5dV;, <— Z g3

€ j=e—0+1

so it follows that

(94) 3 /

m=1 Ue
Now, we can write

Ce™*
Ay =2 /S WiadVy,  where  fa= S 8 (B — R (0)dse(1C) D

e j=e=%+1

<l

As for Gy, we can write iy = Y 1 fim (v, |])Cm, where f,,, = ZCEE 541(B —=R)m; f5(y,[¢]), and compute

/Nugaédv Z/ (/ 2, y,|<|)<1dg> - ().

In conclusion, from the Hélder inequality, from , covering K. with finitely-many U.’s we derive

1 Ce—F
_ 2 _ 2 1
(95) |Ag] < &2 (/S ungga) </S u%dVga) < 05257”% Rl Y. B

j=e=0+1
Then the conclusion follows from (93)) and ( . |
In order to estimate the norm ||uz|| Hs, it is convenient to introduce an abstract result.

Lemma 5.7 Forj € {0,...,e7%}, and for a sequence (3;);, let us consider a function u : S. — R of the
form

() = Z > Bi(Lagt) @) gm (),

where §J = ey, where Lqy is a linear differential operator of order d with smooth coefficients in y, and
where the functions g, (¢) are also smooth and have an exponential decay at infinity.
Then there exists a positive constant C, independent of €, § and (5;); such that

lelles,) < C Z (1 +*5l?) 57

PROOF. The proof is similar in spirit to that of Lemmal5.6] but here we take advantage of the fact that
the profile g, () is independent of the index j (this lemma applies in particular to each of the summands
in the definition of ¥y, see (87))

Using local coordinates, and the exponential decay of the g,,’s, after integration in ¢ we find

sy = 32 s |, o @ Lt vy

7,l=0m,h=1

for some bounded coefficients (c;,n). As for (95) then we find [|ul[z2(g.) < C||¢||Hd(K Nk.) and the last

quantity, with a change of variables and by (30 ., can be estimated with Zj 0(1 + 2|15|) 52, This
concludes the proof. ®
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5—6

Lemma 5.8 Let up = s + Uz = Y 3;V;(ey,() + Z ﬁjw’”(sy)ng(|ﬁ|)% . Then, choosing
3=0

€ (g,k) m , one has

1 _ 725
(96) sl = (14O +277 Zﬂ 19v1woll s 1) + Z 5
j=e—%+1
PrOOF. We first claim that the following formula holds
] -5
. _ _28
(97) lasll, = ;kzogjz (1 + O 4 2 ¥ )) ||61w0”?{1(111<1+1)'
j=
Proof of . We write
=3
Ug =21 + Uz 2 —Zﬂg (ey) Omwo(C)x=(I¢]) +Zﬂy (e, €).-

7=0

where @j is the term of order e (and higher) in ¥;. Reasoning as in the proof of Lemma we get

1 €
= = Z B+ + 0(52))H8mwox5||§{1mi+l)
j*O

(98) = = 252 (1 +0(e* )) ||<91U10HH1 ®R7+1)

where the last equality follows from the Weyl’s asymptotic formula .
On the other hand, using Lemma the Weyl’s formula and some computations, one also finds

—5 -5
¥l ollf,, < OEQZW (1+ 250 +Ce4262 (1+€2[pl)
j=0 7=0
e~ ¢ e ?
_4s _6s
+ 054Zﬁ?(1+|uj|+52|,uj|3)SC(52+54 w4 k)Zﬁf
§=0 -

By our choice of 4, the last formula reads

(99)

Finally, from and we also obtain

—s
U C | _2s
(u2,1,u272)HSE < 87 Zﬂ? (6 + 0(52 u )) ’
=0

which concludes the proof of @

Proof of . We write again tip = 1lo,1 + U2,2. Then, by the orthogonality relations among the ;’s,
reasoning as in the proof of Lemma we get that (iz,2,1) s, becomes

B3> / <Zﬂg (5 — )™ (e)s (1) m)-(xg<|<|>§ﬁlwf<ey>ahwo).

js5+1l0
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As above, with some computations we find

Cek

A 5 R 1
(g, 21) s, = O(e?) || ms, 21 || s, = 0(82)67 > 8
=0
From Lemma and we also find

1 Ce™F 2 s Ce™k
S _ _2s 1
(UQ,UQJ)HSE < Cg (1 + 0(51 ’Y)ﬁ?) e2™% ( Z ﬂ?)Z

7=0 =0

The result follows from the last two formulas. B

Remark 5.9 From the proof of it also follows that every function uz € Ha can be written uniquely
as us = Ug + Ug, with Uo € Hy and s € Hs.

PROOF OF PROPOSITION [5.5] In order to prove the uniqueness of the decomposition it is sufficient to
show that, for € small

(100) (w1, u2) iy, = 0c()||urllmy, lu2llas, . w1 € Hi,uz € Ha,
where 0.(1) — 0 as ¢ — 0. Indeed, by Lemma [5.1] we have
(ur, ug) s, = (ur,ug) s, + O™ ") |uall s, vzl ms, ,
and since the functions dpwo, g&, g4 and v ; are odd in ¢’ (and so also iy and 4y 1), we get
(U1,U2)HSE = (U1;a2,2)HsEa

where we have used the notation in the proof of Lemma Hence from the last three formulas,
and form we deduce

(101) (ur,u2)pry, < C(E7 42728 |l [z s,
which implies (T00)), since § € (£, k).

To prove the second statement, it is sufficient to show that

(102) (g, 0)rts, < Sluslls, [0l ase—0,

-2

for all us € H3 and for all the functions v of the form

N

Ce™
Z 5y Vle m(C)
=0

In fact, if we write uz = us o+ u3; + uz 2 as in Remark (with an obvious change of notation),

uzo = Y aju; (1) (ey); us1 =Y Bonei(Qi(ey),
3=0 =0

from we find

1 o0
(103) lus||3, = 572 ai + 67) + |lus, 2||H5
1=0
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From , from Lemma, and from the fact that us is perpendicular in Hy,_ to uso € H;, we deduce

e Zaz = (ws.0,u0) s, = (wa.0,ua)rrs, = O ) usl s, Iusollzre, < O fually, -

1. —k
Moreover from (102)), choosing v = ijf Biel (ey)vie,m(C), and using (103) we get
S Y A= (w)m < pllusl

I<3Ce*

The last two formulas and (103) then imply

(104) luslzs, <C | D B+ lusallas, | -
1>1Ce—*

for some fixed constant C.
On the other hand, by we also have

1 1
(Ts.us,us)s. 2 > B 5||u3,2\|%155~
1>1CeF+1

Using the fact that o;. ~ 0.24, ¢ ~ 2% by Proposition from (104) and the last formula it follows
that

1 1
(Ts.uz,u3)s. > P pp— Z 51 |
ce i>1CeF+1

1
?‘ISE Z j||u3||2HSE *
co*

This yields our conclusion, hence we are reduced to prove (102)).

Proof of (102). By the form of v and by (79), we have

N

Ce™*

1 ~

(105) o, = > B
=0

Using the L? basis (1), of eigenfunctions of J, we define the function ¢ and the coefficients {3, }i1=1. . o
as

[N

6 oo o0
Z @ =>_ 8@ = Bl @) En
=0 =0

so we have

Ce=* 00
(106) H‘PH%P(K;NK) = Z 512 = 2512
1=0 1=0

Using these new coefficients 3;, we set (see (73))

=

=e—0+1
where C| is given in Remark Hence we can write

v—0=A1 + Ay + A3+ Ay + As,
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with

1Ce™* 0o
A=Y BeEy) em(Q) —voem(Q]: Az= > B (en)voen(Q);
=0 1=Ce—*+1
e~ s Cek
Az =-Co Y _ B;9,(ey,Q); Av=Y Bul(ey) (voen = vien);
3=0 l=e—5+1

8

As = Bt (vo.en — Cox=(|¢)nwo) ,

=0

and where ¥, is defined in the proof of Lemma Since u3 is orthogonal to Hy, we get (u2,?)my, = 0,
and so

(107) (u3, )y, = (u3, A1)y, + (u3, A2) iy, + (u3, A3) e, + (u3, Ag) gy, + (u3, As) py, -

We prove now that [|4;||m. is small for every i = 1,...,5. From (65)), the proof of Proposition
Proposition and (105 there holds

Nl=

—2 —2 1
e SCC(1+ 0|l < EIIUII%SE,

1 Ce*
A%, = ps Z B llvren — voenl
1=0

provided C is sufficiently small.
To estimate A we can use Lemma and some computations to find

1 oo
(108) [Aollms, <C X B+ ml).
I=Ce—Fk+1

We now set ¢ =3, q ity Since J = —A¥ + O(1), for any integer m one finds
@M@, )2 kinky < (M0, 0) L2 (k)
< ((AR)™e, 0 r2(riNk) + Cm [(FAR)™ 0, @) L2 (kv i) + (0, ©) L2(kN K -
Ak -
Since ¢ = Zl:%s B, from (106) we deduce that

2m

Nl=

s O\ " om —a(m—
"G @) (kiNk) < (2> g2 ||<P||2L?(K;NK)+O(€ 2 1))||<P||2L2(K;J\/K)
6 sz %557’“
(109) < <2> £72m 4 O(e~2(m=1) 32
1=0

On the other hand, since in the basis (1;);, the function % has non zero components only when [ > Ce ™",
by the Weyl’s asymptotic formula we have also that

Zﬁée*’“-&-l MZ"ﬁf%
(110) (3", @) L2 (KiNK) =

2

AR _—2 o 2
CC 13 mzl:6€7’€+1 ﬁl M

Using (109) and the first inequality in (110)) with m =1 we get

0o %5&7’“
__2 ~
g2 Z W < (CC"' +05(1)) 67
1=Ce=k+1 =0
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Moreover, using (109)) and the second inequality in (110f) with m arbitrary one also finds

fo%e) 1 2Tm %687k
> e ((3) o) X
1=Ce—F*+1 =0

Using (105), (108) and the last two inequalities (for the second one we take m large enough), for
sufficiently small C' we find || A2z, < f5[v]las, -

Now we estimate || A3z, . Reasoning as for (99), from (105) and (106) we get
5

1 4w 48
|4sl3r,, < C et 382 < cet o3,
0

Next, similarly to the estimate of A1, for small C we find

CeF
1 . 5 —2 —2 1
|A4lF, < ¢ > B llboen —vieal;. <CT (1+C)|olk,, < T6||v||?155~
l=e=0+1

Finally, from Proposition [4.5] and reasoning as for As, we obtain also

-5
1 Sy _ -
\|A5||§{SE < ;kcefc 1o 2/312(1 +e2w) Ce™ =% < Ceke @ 1 w||v||§,55.
=0

Taking (107) into account, this concludes the proof of (102), provided we choose C' and e sufficiently
small. ®

6 Diagonalization of 7y and applications

In this section we study how the operator Tx_ behaves with respect to the above splitting of Hx,_ in the
three subspaces Hy, H> and H3z. We prove that its form is almost diagonal and we apply this analysis to
study its invertibility for suitable values of €.

6.1 Diagonalization

Integrating by parts, we can evaluate the operator 7%, multiplying a test function by the following
quantity

(111) S (u) =+/detyg (—Agu—i—u—pull’;lu)

and integrating in the variables y and ¢ (using ) In Lemmawe studied &, acting on the functions
U, for any [ fixed. In that lemma, our estimates depend on the value of the index [, and in general one
can expect that they become worse and worse as [ increases. The goal of this subsection is to derive
estimates in terms of both £ and [ and, evaluating &.(u) on the functions @y € H,, we will keep track
also of the terms of order €2 and higher.

In the following, we will sometimes omit the factor x. appearing in since this will only produce
error terms exponentially small in €, which are negligible for our purposes.

Lemma 6.1 There exist linear differential operators L1, Lo, Ls (acting on the variables ) of order 1, 2
and 3 respectively, whose coefficients (independent of 1) are smooth and satisfy the bounds

(112) ca(Li) < C(L+[¢[O)e e,
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and such that in local coordinates we have the following expression for &.(¥;)

&.(V;) = C —2 il Bpwo)!
— 28° (GTO(Ei) = Cusr Hap + Cugr HYSan) (02 5 01 Ohwo — €2(82 5 4" ) O
(113) + PG HE gl (1 — pwh ™) — p(p — Vb 2wyl gl — (02, w1 gh

+ 3Ly + e Ly + et Ly + €2 Lathy,
where Cy, Cy are as in Subsection [5.3.

PROOF. As for the construction of the approximate solutions uy ., we can expand formally &.(;) in
powers of € and check carefully all the error terms, paying particular attention to the ones involving
derivatives in the variables 7,, which produce larger and larger terms (as [ increases) in the Fourier
modes. When we differentiate with respect to the variables ¢, the quantities appearing will be considered
as coefficients (depending smoothly on ¢, with exponential decay) of the functions 1; or their derivatives
in 7.

We recall that the functions wg and (g;); in are shifted in the ¢’ variable by the (smooth) normal
section ®(y). Hence, when differentiating with respect to 7, the derivatives of ® might appear through
the chain rule, see also Subsection[3:2} This fact will be assumed understood, and it will not be mentioned
anymore since it does not create any serious difficulty, or any difference in the estimates.

By our construction of W¥;, all the terms multiplying powers of € less or equal than 2 reduce to
g2 g‘l’ W ( Ac(Phopwo) + 1/thc'9hw0) = €2pg° wwh ahwod)lh, so we are left to consider the powers (of )
of order 3 and higher. In the remainder of the proof, we use the symbol As(e) to denote terms of order
1, € or £2: since they all generate a single term, we do not need to compute them separately.

We begin by considering the terms where derivatives in 5 appear. Since & is linear in u, we can deal
with each summand in ¥; separately. Looking at —/det gA (¢ (7)8hw0 second derivatives in § appear
only in the expression —+/det gg®u,y, so from Lemma and Remark [3.4] (b) we find that

det g Ay (V7 ()Ohwo) = As(e) — 2% (GIY(E:) = CuyrHap + Cuyr HY) (02 5 07')Ohwo
+ 3Ly + et Loy,

where L1, Lo are as in the statement of the lemma.
Similarly one finds

det g Ay (e @95 (U,C)) = Aa(e) =02 o i Opwy + &> Lathy + e Loty;
det g Ag (20" ()95 (,¢)) = As(e) + Loty + > Lyt
det g Ag(2mvl (@96 (7,0) = Asz(e) — (85 5, %" g0 + € mLuthy + € Lo,
det g Ag(e*(05, 1" @)91(7,0) = As(e) +&*Lath.

At this point we are left with the terms (of order € and higher) which do not involve derivatives of
1y in 7j: these will appear as multiplicators of the summands in the expression of ¥;. The ones involving
Onhwo, g1, g2 and gz are included in the expression 3L11);, so it remains to consider & ,ulwl gl. Recalling
that /det g = 1 + ¢, HY + O(g?) (see the proof of Lemma, and expanding —pu,ﬁE as

- - - 1 s
—p|wh ™+ e(p — Dwfwi + 2 (p = Dufwa + 5% (0 — Do — 2ufwi| + 0,
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we obtain

Vet g(1 = pul NP uif'gy = As(e) + G HG it g6 (1 — pwf ")
p(p — Vwh 2w gh + e Lo,
where Lg is a multiplication operator with coefficients also satisfy (112)). This concludes the proof of the
lemma. H

Next, using the above characterization, if o is a suitable linear combination of the W¥;’s, we can
estimate the scalar products of T%_u9 (in Hy_) with some other elements belonging to the subspaces Hy,

ﬁg, E[Q and Hg, see —.

Lemma 6.2 For some arbitrary real coefficients (cq); and (5;)1, we consider functions uy € Hy, Uy € H,
and us € Hy of the form

S e ¢ Ce™F
up = Zaj(bj@y)uj,g(m); Ug = 251‘1’13 Up = Z By (ey)ir,e,m (C)-
3=0 1=0 e %+1

We also let us € Hs. Then, for § € ( +, 3k 7) and 7y sufficiently small, we have the following
relations

) 1 <

(114) (Ts. @i, u1) s, = 0(€7) gZ\mw Jutll s, 5
(115) (T iz, G2) s, = Co(1 + 02(1 Ze 7

o a1 [ .
(116) (T, @, @2) s, = O(") > (ui +eui)B Z B =o(ed)|allmy, 02l my, ;

1=0 l=e—5+1
. :
(117) (Ts. 02, u3) iy, = O(1)[|usl| mry, = (%07 + %)) B}
=0

PROOF. We recall that, by Lemma , and there holds

-5

1+0 > . 1+0 ( )
lurllr,, = Lol) Za’ la2llrs, = 191wl RM)Z@,
7=0

(118)
- 1—|—0
[a]|7r,. = L oe(l) Z g
l=e—%41

We show first (114). Since u1 is even in (', when we use the expression of &.(¥;) in we have
to consider only —2e3(;T"% (E;)02 . ybwlha wo = €2 Loty and the errors £° Ly, since the products of all the
others terms with u; will vanish by oddness. Therefore we leave this term as it is, and we estimate the
error terms only. So we get

(Ts. t2,u1) s, = = Z%ﬁz/ / wj (1€ () (2 Loty + e* Lathy + e* Ly + €° i Loty) dydc.

42



Reasoning as in Lemma (avoiding the scaling in e, which has been already taken care of) one can
show that, for any integer m

-5 2 e=9
(119) BiLmtr | <CY (14 |m|™BP).

From the Holder inequality and the last three formulas we deduce that

(T a2, un) s, < Cllurllms, | Z (U [l®) + 8|ul® + &0lpul*) B7

Now, from the Weyl’s asymptotic formula and from the fact that § € (g + 7, %k‘ — 'y), one finds that for

I < £7° there holds 52|/m2 = 0.(1)||, that e*|1|® = 0-(1) and that £°|u|* = 0.(1), so follows.
We turn now to . It is convenient first to evaluate some L? norms. Writing &.(¥;) =

stgomwO 8hw0¢l —|— 6 (U)), and ¥; = x.(|¢<)Yropwo + ¥y, from we find (I runs between 0

and £77)

2 2
(120) HZﬁz\I/zHLz, hahonm Z L+ + & wl?) kZ@,
=12 9 4 2 2 2
(121) [Saw|, < S @ v etnP) 7 < S 0 +tub)et
l
2 c 4 2 6 2 8 4 10 4
22 | ae )|, <0l + Sl + Sl + ) Zm,

l

(123) HZﬁlée(‘I’l)’ ;

C C
<% Dl + Bl + 20w *) 87 < 6756 > (ml® + £l )67
l l

Using the orthogonality of the ;’s, and recalling the definition of Cy in Subsection ([5.2]), we find
(124) (Ts. (01), ;) iy, = €2 Copdiy + (S (¥7), ¥ Opwo) 2 + (S:(91), T;) 2
Multiplying by the coefficients 3’s, using the Holder inequality and ((120)-(123]) we get

(Ts. b2, t2) s, = 00252/!1/312 + ;’“0(83) <Z(“l +e%hi) > (Z 51)

l

(Zufﬂ?) (zu +62u?)ﬂ?>
l

l

Recalling the Weyl’s asymptotic formula and the fact that § € ( +, 3k ’y) we obtain e2u? = o(u),
etut = o() for I < e79, so the last formula implies (TT5)).

To prove ([116)) we notice that, by the orthogonality of the v;’s, the term of order £ in &.(¥;), once
multiplied by @s and integrated, vanishes identically. Therefore, from the Hélder inequality, (118]) and

(123) we find

B} % “_—k 2
e” Ce™
a o~ 1
(T25“27U2)H25 = 0(53)87€ E (Nz +e Nz)ﬁz § 512 )
=0 l=e—0+1
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which is precisely (116]).
It remains to prove (117). Using (42), the formulas in the proof of Lemma and the fact that
(linearizing at wo) —Ac(Opwo) + dpwo = pwh ™~ wo, one finds

Vet ge(—Ag Wy + ;) = pwl 'Y Ohwo + eLoty + 2 (Lot + uLohr) + € Loty
(125) + (Lot + Lath).

Hence from ([113]) it follows that

C
6 (V) = 52@2%\/ det g-(—Ag W + U)) + €y Loty + e*pu(Lothy + i Lotr)
+ Loty + 8 Loty + Latn) + 6.().

Since ug is orthogonal to H, in Hs,_, integrating by parts we have fEs ug(—Ag. ¥ + U;)/det g.dyd( = 0
for 1 =0,...,e79. Hence from (119) and (123)) we get

-4 2
€
(€0 + <5k +e12f) 67
=0

(Ts. a2, u3) iy, = O()|[us| s,

o~

As shown before, e21? = 0.(1) for [ < 79, so we have €218 = o(e®}), and the conclusion holds. B
M 1 1

We have now the counterpart of Lemma[6.2] with @ replacing .

Lemma 6.3 For some arbitrary real coefficients (aq); and (5;)1, we consider functions uy € Hy, Uy € H,
and us € Hy of the form

o} e=¢ Ce™F
up =Y a;o;(ey)u; - (IC); iy =Y BV iy =Y B (ey)irem(C)-
=0 1=0 l=e—0+1

Suppose also that uz € Hs. Then, for § € (g + 7, %k — ’y) and vy sufficiently small, we have the following
relations

Ce k 2
- _ 1
(126) (T2, u1) s, = O( ™) |Jua || ps, o >oos s
l=e—0+1
e & 2 a2
(127) (Ts. 2, t2) oy, > 5 > Swph
l=e—0%+1
1 Ce k 2
(128) (T26ﬂ27u3)H25 = O<El_ﬁy)||u3Hst 57 Z ﬁ?
l=e—%+1

PrOOF. We show first (126). Since u; and s, for any fixed y are linear combinations of spherical
harmonics (in %) of different type, from the arguments of Subsection it follows that

(s, ) 1, = 0 / Wl (CDuiizdVs, = 0,
Se
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so we clearly have that (Ts u1,%2)ms, = 0. Then (126) follows immediately from Lemma
To prove ([127)), we reason as for the proof of Lemma [5.6] to find

(129) (Ts. iz, w)mg. = A1 + Ay + As,

where w € Hg_ is arbitrary, and where

/ZCZH “Ac+ (14 e2wy) — pul” )(;ml (ey)ore(IC]) ICI>]
)= / ;‘H(Zﬂl (1 = R0 e ine(lc) $2 s
== ;JZ@ = ) en)ine(c) 2 Jus

As for (95)), since |1 — w;| is uniformly bounded one finds
(130) | Az (w)] + |A3(w)| < C|aal s, |w] s,

for a fixed positive constant C. Taking w = o, by the orthogonality of the ;’s, by the fact that
Te24,Vie,m = 024, cVle,m (see Proposition 4.5) and by , with an integration by parts we have

_ Ce™ 1 Ce™F
Al(u Z Oe2yy, eﬁl ”vl €, 1”6 20,6 — Eik Z 0—52wl755l2'
l e=941 l=e—0+1

From , Proposition and Proposition which provide estimates on 0.2, ., we obtain

.-k
B ~ C_l Ce
(131) A (i) > = > Swpl
l=e=%+1

for some fixed C' > 0. Then (127) follows from (I30), (I31)), Lemmal5.6|and Lemmal5.1] (since e2; > €17
for I > 7% and for v sufﬁ(nently small). . }
We turn now to (128]). By (L30]), taking w = us, it is sufficient to estimate Aj(us) + As(us). From

Te2,Vie,m = Oc2y, eVe,m 0 Hez2y, o, with an integration by parts we find

Ce*k
Ay (us) + Az(ug) = /S Z Oc2uy l(—Ag + (1 + &%) — puwg~ ) ( Z Bupi™ (ey)vne(I€1) ic| )]
€ l=e—%+1

From and from the fact that —AR¥ v = ) + (R — B)4y, one finds

= —e*ARY] @zs(ICI)*Jrff (R —B)y)™ vzs(lCl)

(1)) 1q

1q Iel”

Therefore, integrating by parts we obtain

(132) A (ug) + 1213(103) = (027u3)HsE + ;14(U3)a

where

= [ S (2% P (B = Ry ) in (1) T2

Se l=e=%+1
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~ ~_—k
and where Uy = Z§f5+l T2, U] (€Y)V1,e.m (C) € Ha. Now, as for 4y it is possible to prove that there
exists a fixed C' > 0 such that

Ce™* Ce™*
. C C
2 2 2 2
HUQHHSE S Eik Z UEZWl,E/Bl S eik Z Bl?

l=e—%+41 l=e— %41

where we used the fact that 0.2, . is uniformly bounded for [ < Ce~". Since ug is orthogonal in Hy,_ to
H,, from Lemma [5.1] these observations and the last two formulas it follows that

1

2

Ce™*
(U, us) s, = O N Usllms, luslms, <C7 D B | Nusllas, -
l=e—941

The arguments of the proof of Lemma yield Ag(usg) < Ce? ( Zgj@rl 612) : |us||ms, . Hence from

([129), (132) and Lemma [5.1] we find that

2

Ce™F
(T25ﬂ27u3)H25 = (UZ’U3)HSE "’_0(5177) Z ﬂlz ||U3HHssa
l=e—5+1

which concludes the proof. B

6.2 Applications

In this subsection we apply the estimates in Lemmas and to estimate the morse index of T,
as € tends to zero, and to characterize the eigenfunctions of Tx,_ corresponding to resonant eigenvalues.

From Proposition [1.2] we know that there exists a unique positive number @ such that nz = 0. If Cj,
is the constant given in , we also let

k

(133) 0= (O‘> Vol(K).
Ck
Then we have the following result.

Proposition 6.4 Let © be the constant given in (133]), and let Tx,_ be the operator given in . Then,

as ¢ tends to zero, the Morse index of Tx_ is asymptotic to Oe~*.

Proor. For any m € N, the m-th eigenvalue A, of T5_, and the m-th eigenvalue Am of Ts. can be
evaluated via the classical Rayleigh quotients

Ty u,u ~ Ts u,u
(134) Am = inf  sup M; A= inf  sup Ts.u, u)ms,
dimMpu=m yenr,, (U, U)Hy, dimMp,=m yenr,, (U, U)Hg,

where M, is a vector subspace of Hy,_. Choosing M,, = M, to be the span of the first m eigenfunctions
of Ts_, from the above formula for A, and from Lemma [5.1] we get

(Ts.u,w)my, (Ts.u,u) s, + O ) (u, u)

B ueMm (U, u)HEs uEMm (1 + 0(6177))(11‘7 U)HSE

Boe < X +0(").

Reasoning in the same way we also find A < A + O(e'77), and hence it follows that

(135) Am — Ap| < Cer7 for all m € N and for € small,
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where C' > 0 is a fixed constant. } -
Now we let Ni(¢) denote the number of eigenvalues A, less or equal than —e 2, and by Ny(e) the

number of eigenvalues A, less or equal than e’z . From Proposition it follows that N;(e) is the

number of the 7 .’s which are smaller than —&2". Reasoning as in Corollary one finds that, as ¢
tends to zero

Ni(e) = (g;) ’ Vol(K)e*.

On the other hand, still by Proposition [4.6| we have that Na(g) = Na 1(¢) + No o(e), where Na 1(¢) is the
number of 7; .’s which are smaller than =, and Ny . the number of 0y .’s which are smaller than e

From (27), and Proposition [4.5 we obtain, for € small

e} H _k 1 3 k(=7) _k
Noj(e) | = | Vol(K)e™"; Ny o(e) =~ Vol(K)e™ = =o(e™").
Cy Cn_1k
From the last formula we deduce that also
k
a\® .
No(e) = | =— | Vol(K)e™".
Ck

Since by (135]) the Morse index of Tx_ is between Ni(g) and Nz(e), the conclusion follows. W

We can now characterize the eigenfunctions of T, corresponding to eigenvalues close to zero.

Proposition 6.5 For ¢ sufficiently small, let X\ be an eigenvalue of Ts_ such that |A| < €°, for some
¢ > 2, and let uw € Hs_ be an eigenfunction of Tx_ corresponding to X with ||u||gy, = 1. In the above
notation, let u = uy + ug + us, with u; € H;, 1 = 1,2,3. Then, if u; = Z;io a;oi(ey)u;(|C]), one has

(136) u— Z ;PUj e —0 as e — 0.
{1z}
HEE

PrOOF. We show that uz,us tend to zero as ¢ tends to zero. This clearly implies ||u — u1||m,. — O.
Once this verified, can be proved as in [39] Proposition 4.1.

To prove that us tends to zero as ¢ — 0, we take the scalar product of the eigenvalue equation
Ts_u = Au with us. Using the above arguments (in particular Lemma we easily find

lusllry, + O ™ lullms, lusllars, < (Ts.u,us) s, = Mu,us)ay, = Mus|[i,_-

cCc*
This 1mphes ||u3||2H2 = 0(81—’)’)||u”H25 ||’U’3HH):57 and hence ||u3||HzE < C'é':'l_w/”’u’”HzE < Cel=.
Next we take the scalar product of the eigenvalue equation with us. From Lemmas [6.2] and [6.3] we
find

N

— — k 2
Co(1+ 0-(1)) < o(1 : <
(oo, > UL S o OV (o5 cupyap | (o Y0 a2
1=0 1=0 l=e—5+1
.~k
071 Ce
t > Swbt
l=e—%+1

47



Since £%u? + et = 0. (1)|| for | < e7% and e = o(?yy) for I > e79 (recall that § € (% +7,k—7)), it
follows that
1 Ce™F
(137) (T u2,u2) s, > ng > Ewp
1=0

for a fixed positive constant C. Finally, still from Lemmas [6.2/{6.3] from the fact that || + &% |® =
0-(1) for 1 < e and €727 = o(2y;) > 1 for | > 79 (taking v sufficiently small) we have also that

Ct’;‘ik 2

1
(138) (Te.uz,ur + us)ns, = oe(V(luallms, + uslims) | > &lml6?
=0

From (137) and (138]) and the fact that T%,_ is self-adjoint we deduce that

Ce™F Ce™F 2

Cfl

e > EmB o) | X Sl | (hwlls, + luslas) < (Toowun) s, = Muug)is,
=0 =0

IN

Ce*[ull s, [[uzl s, -

Also, from Lemma testing the eigenvalue equation on ), ; 3/ W;, where [y is the biggest integer such
that u, < 0, one finds -

L, 2 3

575 Zﬂz | = O ||ull ms,. -

1<lo
= —k

The last two formulas imply that % lC:EO B7 = 0-(1), namely that |luz|| gy, tends to zero as e tends to
zero. This concludes the proof. B

6.3 Proof of Theorem [1.1]

Once Propositions and have been established, the proof goes as in [38], Section 8 (see also [37]
Section 5) and therefore we will limit ourselves to sketch the main steps.

First of all, using Kato’s theorem, see [30], pag. 445, one can prove that the eigenvalues of Tx_ are
differentiable with respect to €, and if A is such an eigenvalue, then there holds

(139) g—i = {eigenvalues of @)},
where Q) : Hy X Hy — R is the quadratic form given by
2 o (Ou
(140) Or(wv) = (1— A)g/2 Vu- Vo — plp— 1)/E o ( 32’6) ).

Here H) C Hy_ stands for the eigenspace of T%_ corresponding to A and the function @y : @ — R is
defined by the scaling Ty . (z) = us (ex), where uy . is as in Section [3| Notice that, since A might have
multiplicity bigger than 1, when we vary ¢ this eigenvalue can split into a multiplet, which is allowed by
formula .

Taking A as in Proposition we can apply , and evaluate the quadratic form in on the
couples of eigenfunctions in H), which are characterized by . Reasoning as in [37], Proposition 5.1
one can prove the following result.

Proposition 6.6 Let A be as in Proposition[6.5, Then for ¢ small one has

o\ 1 —
% E(F+o€(1))7

where F is a positive constant depending on N,k and p.
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Now we are in position to prove the following proposition, which states the invertibility of T%._ for suitable
values of €.
Proposition 6.7 For a suitable sequence ej — 0, the operator J”(ul o) HY(Q.) — HY(Q.) is invertible

(u[ o) 1HH1(Q : < m, for all j € N.

and the inverse operator satisfies

PRrROOF. From Proposition we have that, letting N, denote the Morse index of T%_, there holds
N, ~ ( ) Vol(K)e™". For I € N, let &, = 27!. Then we have

a4 a4
(141) Neppy = N ~ (CO‘) Vol (K)(28(HD — okly ~ (g) Vol(K)(2F — 1)e*.
k

k

By Proposition the eigenvalues A\ of Tx,_ with |A] < ¢ are strictly monotone functions of € so by the
last equation the number of eigenvalues which cross 0, when e decreases from ¢; to £;41, is of order Efk.
Now we define

A = {6 S (€l+17€l) : kerTEE 75 (Z)}, B, = (5l+1a5l) \Al

By Proposition [6.6/and (T41)) we deduce that card(4;) < Ce; ¥, and hence there exists an interval (az, by)
such that

1 meas(B;)

142 C B;: — > (O~
(142) (ar,b;) C By; by —ai| > C card(A) =

1 _k+1
C g™

From Proposition then it follows that every eigenvalue of T+ in absolute value is bigger than

ar+b;
2
C~'min{e* e} for some C' > 0. By Lemma [5.2| then the same is true for the eigenvalues of J” (uy ) so

(Ljer’

the conclusion follows taking ¢; = ~5—~. B

Remark 6.8 The arguments in the proof of Proposition can be easily adapted to the case in which
A < C71e? with C is suﬁiciently large. Therefore the result of Proposition can be improved to

‘ JI (uLEj)_lH 7y for all j € N.

= —
Hl(er) — mln{s ,€
Below, || - || denotes the standard norm of H'(Q.). For the values of ¢ such that J/(u;.) is invertible,
it is sufficient to apply the contraction mapping theorem. Writing ¢ = 5], we find a solution 4. of .
in the form 4. = us . +w, with w € H'(Q.) small in norm. Since J”(u;s.) is invertible we have that
JL(u) = 0 if and only if w = — (J” (usc)) " [J.(us.c) + G(w)], where

G(w) = J(ure +w) — J(ure) — I (ure)[w].
Note that
G(w)[v] = —/ [(uLE +w)P —uf —pu’l’glw v; ve HY (Q.).
Q. ’

Reasoning as in the last section of [39], we find the following estimates, which are based on elementary
inequalities

p <
(143) |G < { CIvl” forp<2, w]| < 1;
Cllw|?> forp>2;

C (lwa [P~ + JJwe|[P~) lwy — w2l p <2,

[[wr ][, lwal] < 1.
C (l[wrll + lwe]]) [lwr — wo p>2;

(144)  [|G(w1) = G(w2) < {
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Defining F. : H*(Q.) — H(Q.) as
Fo(w) = — (J/(ure) "' [T(ure) + Gw)),  we HY(Q),

we will show that F. is a contraction in some closed ball of H*(£2.). From (40, Proposition (with
Remark [6.8) and (143)-(144) we get

Ce= kD) (It1=5 4 ||w|P)  for p < 2,

(145 Fe(w)ll <
) | Fe(w)]| Ce—(k+1) (I+1-% + Hw“? for p > 2;

Jwll < 1;

Ce™ D (Jlwn [P~ + [lwa|[P~1) [lwr —wal p <2,

[[wr ][, lwal] < 1.
Ce™ 0+ (Jfwn || + [[wal]) [lwn — wo p>2

(146) ”Fs(wl) - Fs(w2)H < {

Now we choose integers d and k such that

Bl for p <2 3
(147) d> {1 TP=S I>d—1+ 2k,
k+1 forp>2; 2

and we set
B={weH () : ||lv|] <e'}.

From (145))-(146) we deduce that F. is a contraction in B for e small, so the existence of a critical
point . of J; near ur . follows. All the properties listed in Theorem including the positivity of the
solutions, follow from the construction of us . and standard arguments. As in [39], when p is supercritical

one can use truncations and L estimates to apply the above argument working in the function space
HY(Q.) N L>®(Q).

Remark 6.9 With the arguments given in Section[5 we could obtain sharp estimates on the Morse index
of Tx.. and on the eigenfunctions corresponding to resonant eigenvalues. In particular about the latter
we showed that the components in Hy, H3 are small, and that in Hy the Fourier modes are localized near
some precise frequencies. This allowed us to prove Proposition[6.7 using Kato’s theorem.

Even if we did not work the computations out, it seems it should be possible to give a more rough
characterization of these eigenfunctions (in particular on the Hy component) and to prove a (non sharp)
estimate on the derivatives of the eigenvalues, still obtaining invertibility. This might slightly simplify the
proof of existence, although most of the delicate estimates will be shifted from the analysis of Tx_ to that

of the quadratic form Qy defined in (140)).
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