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Existence and non-existence results
for fully nonlinear elliptic systems

Alexander QUAAS1

Departamento de Matemática, Universidad Tecnica Frederico Santa Maria
Avenida España 1680, Casilla 110-V, Valparáıso, Chile

Boyan SIRAKOV2

UFR SEGMI, Université Paris 10, 92001 Nanterre Cedex, France
and CAMS, EHESS, 54 bd Raspail, 75270 Paris Cedex 06, France

Abstract. We study systems of two elliptic equations, with right-hand sides with
general power-like superlinear growth, and left-hand sides which are of Isaac’s or
Hamilton-Jacobi-Bellman type (however our results are new even for linear left-
hand sides). We show that under appropriate growth conditions such systems have
positive solutions in bounded domains, and that all such solutions are bounded in
the uniform norm. We also get nonexistence results in unbounded domains.

1 Introduction.

We study positive solutions of nonvariational elliptic systems of the type



−H1[u] = f1(x, u1, u2) in Ω
−H2[u] = f2(x, u1, u2) in Ω

u1 = u2 = 0 on ∂Ω,
(1)

where Ω is a smooth bounded domain in RN , N ≥ 2, u = (u1, u2), f1, f2 are
nonnegative locally Lipschitz functions defined in Ω × [0,∞)2, and H1,H2

are uniformly elliptic linear or nonlinear operators.
In the last years there has been a lot of interest in superlinear elliptic sys-

tems with or without variational structure (we give various references below).
Requiring a system to have such structure is clearly a strong assumption, as
it means both that the elliptic operators are in divergence form, and that
f1 and f2 are the derivatives of a given function. An important feature in
most of the previous works on nonvariational systems is that only the latter
of these two requirements was removed. On the other hand, operators in
non-divergence form could be considered as in [3], [18], [37], provided they
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2Part of this research was done while the author visited Chile supported by Fondecyt

Grant # 7050191.
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are linear, with the same principal part. It is our goal here to study the
considerably more difficult case of different and nonlinear operators.

To accommodate the reader, we start by stating a consequence of our
main result in a very particular model case. LetM±

λ,Λ be the Pucci operators:

M+
λ,Λ(M) = supA∈S tr(AM), M−

λ,Λ(M) = infA∈S tr(AM) for any symmetric

matrix M , where S = Sλ,Λ
N is the set of symmetric matrices whose eigenval-

ues lie in the interval [λ, Λ]. These important fully nonlinear operators are
an upper and a lower bound for all uniformly elliptic linear operators with
ellipticity constant λ and bounded coefficients. Note M1,1(D

2u) = ∆u.

Theorem 1.1 I. Let λ1, λ2, Λ1, Λ2 > 0. Consider the system



M1[u1] + up

2 = 0 in Ω
M2[u2] + uq

1 = 0 in Ω
u1 = u2 = 0 on ∂Ω,

(2)

where Mk[uk] = M±
λk,Λk

(D2uk) (independently for k = 1, 2), and we set

ρk = (λk/Λk)
±1, Nk = ρk(N − 1) + 1.

Let p, q ≥ 1 be such that pq > 1 and

2(p + 1)

pq − 1
≥ N2 − 2 or

2(q + 1)

pq − 1
≥ N1 − 2.

Then there exists a positive classical solution of system (2). In addition, all
such solutions are uniformly bounded in the L∞-norm.

II. Under the same hypotheses, system (2) (without the boundary condi-
tion) does not have positive solutions in the whole space, that is, if Ω = RN .

Remark 1. Systems like (2) have been extensively studied when M1 = M2

is the Laplacian (or other divergence form operators), see [1], [10], [15], [17],
[29], [34], [35], [41], and the references in these papers.

Remark 2. When M1 = M2 and p = q this theorem reduces to the known
results for the scalar equation −M±

λ,Λ(D2u) = up (see [12], [30]).

More generally, Hk in (1) could be coupled second-order operators

Hk[u] = Lku =
∑
i,j

a
(k)
ij (x)∂ijuk +

∑
i

b
(k)
i (x)∂iuk + c

(k)
1 (x)u1 + c

(k)
2 (x)u2.

We will actually go much further, allowing H1,H2 to be nonlinear operators
of Isaac’s type, that is, sup-inf of coupled linear operators as above

Hk[u] = sup
α∈Ak

inf
β∈Bk

L
(α,β)
k u, (3)
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whereAk, Bk are arbitrary index sets. NoteHk is linear when |Ak| = |Bk| = 1
in (3). When |Bk| = 1 (like for Pucci operators) the corresponding sup-
operator is usually referred to as Hamilton-Jacobi-Bellman (HJB) operator.
These operators are essential tools in control theory and in theory of large
deviations, while general Isaac’s operators are basic in game theory. We refer
to [5], [24], and to the references in these papers, for a larger list of problems,
where systems of type (1) appear.

Next, we give the hypotheses we make on Hk, which we suppose to be
in the form (3). We write Hi[u] = Hi(D

2u,Du, u, x), in order to distinguish
between the way Hi depends on the derivatives of u. We assume all coeffi-
cients of the operators L

(α,β)
k in (3) are bounded measurable functions (say

|b(k)
i | ≤ γ, |c(k)

j | ≤ δ, we will no longer write the dependence in α, β), and

(H1) for all x ∈ Ω the eigenvalues of Ak(x) = (a
(k)
ij (x)) ∈ C(Ω) are in [λk, Λk],

and there is an invertible matrix R = R(x) such that the functions
Hk(R

T MR, 0, 0, x) depend only on the eigenvalues of M ;

(H2) the functions c
(2)
1 (x), c

(1)
2 (x) are nonnegative in Ω.

Hypothesis (H1) says Hk are uniformly elliptic and have an invariance prop-
erty with respect to the second derivatives of u. Most operators which have
geometrical meaning satisfy (H1) with R = I (Pucci operators are a trivial
example). Of course for each A ∈ S there exists R such that RT AR = I.

Hypothesis (H2) means Hk is nondecreasing in the variable ui, for i 6= k.
Systems satisfying such a hypothesis are called quasimonotone.

If Hk are HJB operators, we suppose that

(H3) there exist functions ψ1, ψ2 ∈ W 2,N
loc (Ω)∩C(Ω), such that ψ1 > 0, ψ2 > 0

in Ω, and Hk[ψ1, ψ2] ≤ 0 in Ω, k = 1, 2.

If Hk are not HJB, we suppose they are bounded above by HJB operators,
which satisfy (H3), see Section 2 for a precise definition. Note we have (H3)

with ψ1 = ψ2 ≡ 1 provided c
(k)
1 + c

(k)
2 ≤ 0, for all α, β, k. We recently

showed in [31], [32] (for scalar equations), [33] (for systems, the linear case
was considered earlier in [5]) that hypothesis (H3) is equivalent to supposing
that the vector operator (H1,H2) satisfies the comparison principle, and that
under (H3) the corresponding Dirichlet problem has a unique solution, see
Section 2.

As we explain in Section 3, to any operator Hk as in (3) we can associate
an explicitly given number Nk = N(Hk), which appears in the fundamental
solution of a related nonlinear operator. To avoid introducing heavy nota-
tions at this stage, here we only note that N(Hk) is always in the interval
[(λk/Λk)(N − 1) + 1, (Λk/λk)(N − 1) + 1], where λk, Λk are as in (H1).
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We now come to the hypotheses on the functions fi in (1). General
nonlinearities with power growth were considered in [17]. We are going to
use the same structural assumptions as in [17], strengthening them a little,
to avoid technicalities. We suppose that fi are locally bounded functions,
for which there exist exponents αij, γij ≥ 0 with γi1α

−1
i1 + γi2α

−1
i2 = 1 and

nonnegative functions dij, ei ∈ C(Ω), with either α11, α22 > 1, d11, d22 > 0 in
Ω, or α12, α21 ≥ 1, α12α21 > 1, d12, d21 > 0 in Ω, such that

fi = di1(x)uαi1
1 + di2(x)uαi2

2 + ei(x)uγi1

i uγi2
2 + gi(x, u1, u2), (4)

lim
|(u1,u2)|→∞

(di1(x)uαi1
1 + di2(x)uαi2

2 )−1 |gi(x, u1, u2)| = 0, (5)

lim
|(u1,u2)|→0

(|(u1, u2)|)−1 |fi(x, u1, u2)| = 0, i = 1, 2, (6)

uniformly in x ∈ Ω. Setting a/0 = ∞, a+ = max{a, 0}, for a ∈ R, we define

βi = min

{
2

(αii − 1)+

,
2αjj

αji(αjj − 1)+

,
2(αij + 1)

(αijαji − 1)+

, i, j = 1, 2, i 6= j

}
.

We make the convention that when we speak of a solution (supersolution,
subsolution) we mean LN -viscosity solutions. We refer to [9] for a general
review of this notion (we recall definitions and results that we need in the next
section). Note that viscosity solutions are continuous and that any vector
in W 2,N

loc (Ω) satisfies (1) almost everywhere if and only if it is a LN -viscosity
solution. For HJB operators these solutions are always strong (that is, in
W 2,p

loc (Ω) ∩ C(Ω), p < ∞), and are classical provided the dependence in x in
(1) is Cα, see [39], [8]. Viscosity solutions are not an added complication –
they provide a good framework in our setting, just like Sobolev spaces do for
some variational problems, when one knows that any H1-solution is classical.

Theorem 1.2 Assume that system (1) satisfies (H1)-(H3), (4)-(6), and

β1 ≥ N1 − 2 or β2 ≥ N2 − 2. (7)

Then there exists a positive solution of (1). In addition, all such solutions
are uniformly bounded in the L∞-norm.

The proof of the a priori bound in Theorem 1.2 is carried out with the
help of a blow-up argument of Gidas-Spruck type, while the existence of a
solution is a consequence of this bound combined with degree theory. Note
that, taking again system (2) as an example, when M1 = M2 = ∆ it is very
well known how one can apply a fixed point theorem to get the existence
of solution, once an a priori bound is proven. In our situation the known
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approach does not work, and our proof relies on a deep result of the theory of
elliptic equations, the Krylov-Safonov improved strong maximum principle,
see the proof of Proposition 6.2 and Theorem 7.1.

The blow-up method for obtaining a priori bounds was developed in [22]
for the scalar case, and recently extended to some systems of equations in [17],
[18], [37], [41] (see also the references in these works). This method is based
on a contradiction argument, which in turn relies on Liouville (nonexistence)
theorems for equations or systems in RN or in a half-space of RN . Proving
nonexistence results is usually the main difficulty in applying the Gidas-
Spruck method.

In our situation we are led to proving Liouville results for systems involv-
ing a general class of extremal operators, related to ones recently defined in
[20] and [21]. Specifically, we are going to consider the HJB operators

M+
J (M) = sup

σ(A)∈J

tr(AM) and M−
J (M) = inf

σ(A)∈J
tr(AM), (8)

where J is any invariant with respect to permutations of coordinates subset
of the cube [λ, Λ]N and σ(A) is the set of eigenvalues of A. These operators
reduce to classical Pucci type operators when J = [λ, Λ]N , and to the Lapla-
cian when λ = Λ = 1. To each operator M±

J in this class we associate a
dimension-like number N±

J = N(M±
J ) (see Section 3) :

N+
J = min

x∈J

∑N
i=1 xi

max xi

≤ max
x∈J

∑N
i=1 xi

min xi

= N−
J . (9)

We will need to establish Liouville type theorems for the system
{ M1(D

2u) + vq = 0 in G,
M2(D

2v) + up = 0 in G,
(10)

where G = RN or G = RN−1 × R+, and M1 and M2 are two extremal
operators as in (8). Observe that the set J can be different for each operator
and that one operator can be a sup and the other a inf. The next theorem
is actually new even for Pucci operators. It also implies a new nonexistence
result for different linear operators.

Theorem 1.3 Suppose pq > 1 and N1, N2 > 2, where N1 and N2 are the
respective dimension-like numbers for M1 and M2, given by (9). Then

I. there are no positive supersolutions to (10) with G = RN if and only if

2(p + 1)

pq − 1
≥ N2 − 2 or

2(q + 1)

pq − 1
≥ N1 − 2. (11)

II. if p, q ≥ 1 and (11) holds then there are no positive bounded solutions
to (10) with G = RN−1 × R+, which vanish on {xN = 0}.
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Liouville theorems for equations and systems in RN or in RN
+ have a long

history. Previous results for systems concern divergence form operators, see
[3], [4], [17], [28], [36], and the references in these works.

It turns out that it is much more difficult to prove nonexistence results
for fully nonlinear operators. The first result in this line is [12], for viscosity
supersolutions in RN ofM(D2u) = up, whereM is a Pucci operator. Results
on nonexistence of radial solutions in RN for the same equation were obtained
in [19]. Nonexistence in a half-space for this equation is proved in [30].
Recently, Liouville results for scalar equations with general operators of type
(8) were obtained in [20] and [21]. To our knowledge, Theorem 1.3 is the
first result on nonexistence for systems involving fully nonlinear operators.

The paper is organized as follows. In Section 2 we restate our hypotheses
in the general setting of fully nonlinear equations, and recall some recent re-
sults on solvability and properties of solutions of such equations. In Section 3
we define and study the dimension-like numbers N(H), then in Section 4 we
prove our Liouville result in the whole space. In Section 5 we obtain nonexis-
tence results in a half-space, and in Section 6 we use the previous information
to prove our existence theorems. Finally, in Section 7 we discuss an improved
version of the strong maximum principle.

2 Preliminaries

In this section we give some precisions on the hypotheses in the introduction,
and recall some known results which we shall need in the sequel.

We use the following notation. For some given positive constants λ, Λ, γ,
and for all M, N ∈ SN (as usual, SN denotes the set of all symmetric matri-
ces), p, q ∈ RN , we define the extremal operators

L−(M, p) = M−
λ,Λ(M)− γ |p|, L+(M, p) = M+

λ,Λ(M) + γ |p|.
The operators L−,L+ are extremal with respect to all linear uniformly

elliptic operators with given ellipticity constant and L∞-bounds for the co-
efficients. We set

m−
i (u) := |ui|+ (uj)−, m+

i (u) := |ui|+ (uj)+, j 6= i, i, j = 1, 2,

and, for some given δ > 0,

F ∗
i (M, p, u) = L+(M, p) + δm+

i (u).

To facilitate what follows, we restate our hypotheses on system (1), with
the above notation. First, we assume that the operators Hi are positively
homogeneous of order 1, that is,
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(H̃0) Hi(tM, tp, tu1, tu2, x) = tHi(M, p, u1, u2, x), for all t ≥ 0.
Since we want to prove existence results, we need to suppose that

(H̃1) Hi(M, 0, 0, x) is continuous on SN × Ω.
The following definition plays an important role. Given a second order

operator F = F (M, p, u, x) which is convex in (M, p, u) (note HJB operators
are convex), we say that Hi(M, p, u, x) satisfies condition (DF ) provided

(DF )
−F (N −M, q − p, v − u, x) ≤ Hi(M, p, u, x)−Hi(N, q, v, x)

≤ F (M −N, p− q, u− v, x).

If F is positively homogeneous of order one in (M, p, u) then F is convex in
(M, p, u) if and only if F satisfies (DF ), as can be easily proved.

Next, we suppose that the operators Hi are quasimonotone and uniformly
elliptic with bounded measurable coefficients, that is, for some λ, Λ, γ, δ > 0
and all M, N ∈ SN , p, q ∈ RN , u, v ∈ R2, x ∈ Ω,

(H̃2) Hi satisfies (DF ∗i ), i = 1, 2.

Note the definition of mi and (H̃2) imply that the function Hi(M, p, u, x)
is nondecreasing in the variable uj, for j 6= i.

Finally, we need a hypothesis which describes the admissible behaviour of
the zero order terms in H1, H2. We shall give exact analogues of the known
results on scalar equations, in the sense that we suppose only that the vector
operator in the left-hand side of (1) satisfies a comparison principle. It turns
out that this property can be described in terms of first eigenvalues of the
system, as we explain next.

As an extension of earlier results on scalar equations in [31], [32], we
showed in [33] (for the linear case see sections 13 and 14 in [5]) that if we

have two operators Fi(M, p, u1, u2, x), convex in (M, p, u), satisfying (H̃0)-

(H̃2), and if F1(0, 0, 0, 1, x) 6≡ 0 and F2(0, 0, 1, 0, x) 6≡ 0 in Ω then the vector
operator F = (F1, F2) has ”first eigenvalues” λ+

1 (F ) ≤ λ−1 (F ), such that the
positivity of λ+

1 is a necessary and sufficient condition for (F1, F2) to satisfy
the comparison principle, and guarantees the unique solvability of the corre-
sponding Dirichlet problem. If, on the contrary, we have F1(0, 0, 0, 1, x) ≡ 0
or F2(0, 0, 1, 0, x) ≡ 0 then the two scalar operators F1(M, p, t, 0, x) and
F2(M, p, 0, t, x) have corresponding first eigenvalues λ±1,1(F ), λ±1,2(F ), whose
positivity has the same implications on (F1, F2). In this case we set λ+

1 (F ) =
min{λ+

1,1(F ), λ+
1,2(F )}, λ−1 (F ) = max{λ−1,1(F ), λ−1,2(F )}.

We shall suppose that there exist convex operators F1, F2, which satisfy
(H̃0) − (H̃2), such that Hi satisfies (DFi

) (note in any case the extremal
operators F ∗

i can be used as such F1, F2), and

(H̃3) λ+
1 (F ) > 0.
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Remark. We have shown in [33] that (H3) and (H̃3) are equivalent. Bounds
on the eigenvalues in terms of the domain and the coefficients of the operators
are given in [5] and [33]. These bounds can be used to verify (H̃3).

Let us now recall the definition of a viscosity solution of (1), see [11], [9].

Definition 2.1 We say that the vector v ∈ C(Ω) is a Lp-viscosity subso-
lution (supersolution) of Hi(D

2vi, Dvi, v, x) = f(x), p ≥ N , provided for
any ε > 0, any open ball O ⊂ Ω, and any ϕ ∈ W 2,p(O) – we call ϕ
a test function – such that Fi(D

2ϕ(x), Dϕ(x), v(x), x) ≤ f(x) − ε (resp.
F (D2ϕ(x), Dϕ(x), v(x), x) ≥ f(x)+ε) a.e. in O, the function vi−ϕ cannot
achieve a local maximum (minimum) in O.

We say that v is a solution of (1) if v is at the same time a subsolution
and a supersolution of (1).

Note that whenever a function v in W 2,N
loc (Ω) satisfies the inequality

F (D2v, Dv, v, x) ≥ (≤)f a.e. in Ω then it is a viscosity solution.
Next, we recall some easy properties of Pucci operators.

Lemma 2.1 Let M, N ∈ SN , φ(x) ∈ C(Ω) be such that 0 < a ≤ φ(x) ≤ A.
Then

M−
λ,Λ(M) = −M+

λ,Λ(−M),

M−
λ,Λ(M) = λ

∑

{νi>0}
νi + Λ

∑

{νi<0}
νi, where {ν1, . . . , νN} = σ(M),

M−
λ,Λ(M) +M−

λ,Λ(N) ≤M−
λ,Λ(M + N) ≤M−

λ,Λ(M) +M+
λ,Λ(N),

M−
λ,Λ(M) +M+

λ,Λ(N) ≤M+
λ,Λ(M + N) ≤M+

λ,Λ(M) +M+
λ,Λ(N),

M−
λa,ΛA(M) ≤M−

λ,Λ(φM) ≤M−
λA,Λa(M),

We will also use the following simple fact.

Lemma 2.2 Suppose u ∈ C2(B) is a radial function, say u(x) = g(|x|),
defined on a ball B ⊂ RN . Then g′′(|x|) is an eigenvalue of the matrix
D2u(x), and |x|−1g′(|x|) is an eigenvalue of multiplicity N − 1.

We are going to use the Generalized Maximum Principle for elliptic equa-
tions, commonly known as the Alexandrov-Bakelman-Pucci (ABP) inequal-
ity. The following theorem follows from Proposition 3.3 in [9].

Theorem 2.1 Suppose u ∈ C(Ω) is a LN -viscosity solution of

M+
λ,Λ(D2u) + γ|Du| ≥ f(x) in Ω ∩ {u > 0},
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where f ∈ LN(Ω). Then

sup
Ω

u ≤ sup
∂Ω

u+ + diam(Ω).C1‖f−‖LN (Ω+), (12)

where Ω+ = {x ∈ Ω : u(x) > 0} and C1 is a constant which depends on
N, λ, Λ, diam(Ω), and C1 remains bounded when these quantities are bounded.

We have the following version of Hopf’s boundary lemma (see for instance
[2], where a more general result is given).

Theorem 2.2 Let Ω be a regular domain and let u ∈ C(Ω) satisfy

M−
λ,Λ(D2u)− γ|Du| − δu ≤ 0 in Ω, (13)

for some γ, δ ≥ 0, and u ≥ 0 in Ω. Then either u vanishes identically in Ω
or u(x) > 0 for all x ∈ Ω. Moreover, in the latter case for any x0 ∈ ∂Ω such

that u(x0) = 0, we have lim inf
t↘0

u(x0 + tν)− u(x0)

t
> 0, where ν is the inner

normal to ∂Ω.

We also recall the weak Harnack inequality for viscosity solutions of fully
nonlinear equations, proved in [8] and [40].

Theorem 2.3 Suppose u ∈ C(Ω) is a positive function satisfying

M−
λ,Λ(D2u)− γ|Du| − δu ≤ f in Ω,

for some f ∈ LN(Ω). Then for any Ω′ ⊂⊂ Ω there exist positive constants
p0 and C depending on N, λ, Λ, γ, δ, dist(Ω′, ∂Ω) such that

‖u‖Lp0 (Ω′) ≤ C

(
inf
x∈Ω′

u + ‖f‖LN (Ω)

)
.

We shall use the following comparison principle, see [26] and [27].

Theorem 2.4 Assume Ω is a bounded domain in RN . Let F : SN → R be
a continuous function such that there are positive constants λ, Λ, for which

λtr(B) ≤ F (M + B)− F (M) ≤ Λ tr(B), (14)

for all M, B ∈ SN , B ≥ 0 (this is equivalent to saying F satisfies (H̃2) with
γ = δ = 0). Then if u, v ∈ C(Ω̄) are subsolution and supersolution of

F (D2w) = f(x) in Ω, f ∈ C(Ω),

such that u(x) ≤ v(x) for all x ∈ ∂Ω, then u(x) ≤ v(x) for all x ∈ Ω.

9



We are going to use the following standard convergence result from general
theory of viscosity solutions (see Theorem 3.8 in [9]).

Theorem 2.5 Suppose un ∈ C(Ω), gn ∈ LN(Ω), and Hn(M, p, u, x) are

operators satisfying (H̃2), such that un is a solution (or subsolution, or su-
persolution) in Ω of the equation

Hn(D2un, Dun, un, x) = gn(x)

in a domain Ω. Suppose un → u in C(Ω), gn → g in LN(Ω), and Hn

converges to an operator H in the sense that for any ball B ⊂⊂ Ω and any
φ ∈ W 2,N(B) we have

Hn(D2φ,Dφ, un, x) → H(D2φ,Dφ, u, x) in LN(B).

Then u is a solution (or subsolution, or supersolution) in Ω of

H(D2u,Du, u, x) = g(x).

We shall also need the Cα-estimate proved in [40] (we refer to [38] for
more general results and simple self-contained proofs of the Cα-estimates).

Theorem 2.6 Let Ω be a regular domain and f ∈ LN(Ω). If u ∈ C(Ω)
satisfies the inequalities

M−
λ,Λ(D2u)− γ|Du| − δ|u| ≤ −f

M+
λ,Λ(D2u) + γ|Du|+ δ|u| ≥ f

in Ω, then for any Ω′ ⊂⊂ Ω there exist constants α, A > 0 depending
only on N, λ, Λ, γ, δ, ‖f‖LN (Ω), ‖u‖L∞(Ω), Ω′, Ω, such that u ∈ Cα(Ω′) and
‖u‖Cα(Ω′) ≤ A. If in addition u|∂Ω ∈ Cβ(∂Ω) for some β > 0 then u ∈ Cα(Ω)
and ‖u‖Cα(Ω) ≤ A (with constants depending also on β).

3 Extremal operators and definition of N(Hk)

In this section we are going to discuss in more details the class of extremal
operators M±

J we consider for the Liouville theorems.
Let J denote the set of subsets of [λ, Λ]N which are invariant with respect

to permutations of coordinates. First, obviously there is a one to one corre-
spondence between elements of J and subsets A of Sλ,Λ

N (the set of symmetric
matrices whose eigenvalues lie in [λ, Λ]), and such that PAP T = A, for each
orthogonal matrix P . Namely, for each J ∈ J we can take A to be the set

10



of matrices whose eigenvalues are in J , and for each such A we can take J to
contain the eigenvalues of the matrices in A. So we can indifferently write

M+
J (M) = sup

σ(A)∈J

tr(AM) = M+
A(M) = sup

A∈A
tr(AM),

respectively M−
J = M−

A.
The following lemma shows that the set of these operators is nothing

but the set of convex or concave positively homogeneous uniformly elliptic
operators F (M), which depend only on the eigenvalues of M .

Lemma 3.1 Suppose F : SN → R is an operator satisfying (H̃2), that is,

λtr(B) ≤ F (M + B)− F (M) ≤ Λtr(B),

for all M,B ∈ SN , B ≥ 0. Suppose also that F (tM) = tF (M) for all t ≥ 0
and that F (PMP T ) = F (M) for any orthogonal matrix P . If F is convex
(resp. concave) then there exists a set J ∈ J , such that F = M+

J (resp.
F = M−

J ).

Proof. Since F is convex, it is a supremum of affine functions. Since F is
homogeneous, these functions can be taken to be linear, that is,

F (M) = sup
A∈A1

tr(AM),

where A1 is some set of matrices such that A1 ⊂ Sλ,Λ
N , by the hypothesis

on F . Then we can take A = ∪(PA1P
T ), where the union is taken over all

orthogonal matrices P . ¤
Next, for a fixed operator M±

A in this class, we compute the quantity
M±

A(D2|x|α), for any α ∈ R. By Lemma 2.2 we have

σ(D2|x|α) = |x|α−2{α, α, . . . , α, α(α− 1)}
so clearly for each x there exist an orthogonal matrix P such that

D2|x|α = α|x|α−2PEαP t,

where Eα = I+(α−2)enn, and enn is the unitary matrix, whose last coefficient
is one, and all other coefficients are zero. Hence for α 6= 0

c(α) := |α|−1|x|2−αM+
A(D2|x|α)

=




− infA∈A

{∑N−1
i=1 aii + ann(α− 1)

}
if α < 0

supA∈A
{∑N−1

i=1 aii + ann(α− 1)
}

if α > 0,

11



and the same for M−
A, with inf and sup reversed (here A = (aij)).

By noting that c(α) is continuous and monotonous in R+ and R−, and
by looking at its sign at minus infinity, zero, and one, we immediately get
the following lemma. It permits to define the dimension-like numbers for the
operators M±

A.

Lemma 3.2 Suppose A is a set of matrices such that PAP T = A for all
orthogonal matrices P . Then

1. There exists α0 6= 0 such that M+
A(D2|x|α0) = 0 if and only if

N−1∑
i=1

aii − ann > 0 for all A ∈ A.

In this case α0 < 0 and we denote N+
A = 2− α0.

2. There always exists α0 < 0 such that M−
A(D2|x|α0) = 0, except if

N = 2, λ = Λ, and A = {λI} (that is, we are working with the
Laplacian in dimension two). We denote N−

A = 2− α0.

In addition, there exists α1 ∈ (0, 1) such that M−
A(D2|x|α1) = 0 if and

only if
N−1∑
i=1

aii − ann < 0 for some A ∈ A.

Further, we have M−
A(D2 log r) = 0 if and only if

max
A∈A

{
N−1∑
i=1

aii − ann

}
= 0.

So, since ann 6= 0,

N−1∑
i=1

aii − ann = ann

(
tr(A)

ann

− 2

)
,

and by observing that for all A ∈ SN we have min σ(A) ≤ aii ≤ max σ(A)
for all i, we get the following result.

Lemma 3.3 Let J be a subset of [λ, Λ]N which is invariant with respect to
permutations of coordinates. Let A be the corresponding set of matrices whose
eigenvalues are in J . Then we have

N+
J = N+

A = min
A∈A

tr(A)

max σ(A)
≤ max

A∈A
tr(A)

min σ(A)
= N−

A = N−
J

12



(of course the first two of these are valid if N+
A is defined), or, equivalently,

N+
A = N+

J = min
x∈J

∑N
i=1 xi

max xi

≤ max
x∈J

∑N
i=1 xi

min xi

= N−
J = N−

A .

We now define the numbers N(H) which appear in Theorem 1.2.

Definition 3.1 For any H[u] = H(M, p, u, x) satisfying (H̃0)− (H̃2) we set

J ±
H = {J ∈ J : M±

J (M) ≤ H(M, 0, 0, x) for all M ∈ SN , x ∈ Ω}

(note J +
H can be empty but [λ, Λ]N is always in J −

H ), and

N(H) = min

{
min
J∈J+

H

N+
J , min

J∈J−H
N−

J

}
.

4 Liouville results. Proof of Theorem 1.3 I

We start by proving a version, for the extremal operators of the previous
section, of the Hadamard Three Spheres Theorem which can be found in
[21]. For completeness we give the proof here.

For a given u ∈ C(BR), we define mu(r) = min
|x|≤r

u(x), for 0 ≤ r < R.

Theorem 2.2 clearly implies that if M±
J (D2u) ≤ 0 then mu(r) = min

|x|=r
u(x).

Theorem 4.1 Let J ∈ J and set N+
J = min

x∈J

∑N
i=1 xi

max xi

. If u ∈ C(BR) is a

viscosity solution of

M+
J (D2u) ≤ 0, in BR, (15)

then for any 0 < r1 < r < r2 < R we have

m(r) ≥ m(r1)(r
2−N+

J − r
2−N+

J
2 ) + m(r2)(r

2−N+
J

1 − r2−N+
J )

r
2−N+

J
1 − r

2−N+
J

2

if N+
J 6= 2

m(r) ≥ m(r1) log(r2/r) + m(r2) log(r/r1)

log(r2/r1)
if N+

J = 2.

(16)
The same result holds for M−

J , replacing N+
J by N−

J .

13



Proof. Let us define

φ(x) =

{
C1|x|2−N+

J + C2 if N+
J 6= 2

C1 log(|x|) + C2 if N+
J = 2,

where C1 and C2 are such that φ(x) = m(r1) on ∂Br1 and φ(x) = m(r2)
on ∂Br2 . It is trivial to check that C1 > 0 if N+

J > 2 and C1 < 0 if
N+

J ≤ 2. Since M+
J (D2φ) = 0 in Br2 \ Br1 (here we have to recall that

M+
J (−M) = −M−

J (M), and to note that when N+
J < 2 we have α1 = 2−N+

J

in the second part of Lemma 3.2), by using Theorem 2.4 we get u(x) ≥ φ(x)
in Br2 \Br1 , which implies the result. ¤

Proposition 4.1 Let J ∈ J and set N+
J = min

x∈J

∑N
i=1 xi

max xi

. Let u ∈ C(RN) be

a viscosity solution of

M+
J (D2u) ≤ 0 in RN .

Then
1) if N+

J > 2 and u is positive then the function rN+
J −2mu(r) is increasing.

2) if N+
J ≤ 2 and u is bounded below then u is constant.

The same result holds for M−
J , replacing N+

J by N−
J (note once more that

N−
J > 2 except for the Laplacian in dimension two).

Proof. 1) First, (16) implies m(r)(r
2−N+

J
1 − r2−N+

J ) ≥ m(r1)(r
2−N+

J − r
2−N+

J
2 ),

since u is positive. This inequality holds for all r2, so we can take r2 → ∞,
and conclude, by using m(r) ≥ 0.

2) We take r2 →∞ in (16), and obtain that m(r) ≥ m(r1), therefore the
decreasing function m(r) is constant. Then by the strong maximum principle
(Theorem 2.2) u is constant. ¤
Proof of Theorem 1.3 I. We argue by contradiction, and suppose that u, v ≥ 0
are nontrivial supersolutions to system (10). First, if N1 ≤ 2 or N2 ≤ 2 we
immediately conclude, by the second statement in Proposition 4.1. So we
shall suppose N1 > 2, N2 > 2. For given r1 > 0 fixed, we consider the
function

g(r) = mu(r1/2)

(
1− (r − r1/2)3

+

(r1/2)3

)
,

similarly to [12].
If we define φ(x) = g(|x|), we have constructed φ so that u ≥ φ in Br1/2,

φ ≤ 0 < u in RN \ Br1 , and u(x0) = φ(x0) for some x0 with |x0| = r1/2.
Hence the minimum of u − φ in RN is non-positive and achieved at a point

14



x̄ = x(r1), such that r1/2 ≤ |x̄| < r1. Thus we can use φ as test function in
the first equation of (10) at x̄ (recall Definition 2.1) and get

M1(D
2φ(x̄)) + v(x̄)q ≤ 0.

Then, by a simple computation and the definition of M1 = MA1 ,

v(x̄)q ≤ 3mu(r1/2)

(r1/2)3

[
ann + â

(|x̄| − r1/2)+

|x̄|
]

(|x̄| − r1/2)+,

for some A = (aij) ∈ A1 ⊂ Sλ,Λ
N , where we have set â :=

N−1∑
i=1

aii. If

|x̄| = r1/2, then we get v(|x̄|) = 0, which is impossible. Thus, we necessarily
have r1/2 < x̄ < r1. Noting that the expression in the large brackets is
bounded, by mv(r1) ≤ v(x̄) we get

(mv(r1))
q ≤ C

mu(r1/2)

(r1/2)2
,

for some positive constant C. Now we use the first statement in Proposi-
tion 4.1 to obtain

(mv(r1))
q ≤ C

mu(r1)

(r1)2
, (17)

with C possibly different, but independent of r1. Arguing in the same way
we get from the second equation in (10) that

(mu(r1))
p ≤ C

mv(r1)

(r1)2
. (18)

Thus, by combining the last two inequalities we conclude that

mv(r1) ≤ C1
1

(r1)2(p+1)/(pq−1)
, and mu(r1) ≤ C2

1

(r1)2(q+1)/(pq−1)
.

Hence

rN2−2
1 mv(r1) ≤ C1

1

(r1)α2−(N2−2)
, (19)

rN1−2
1 mu(r1) ≤ C2

1

(r1)α1−(N1−2)
, (20)

where α1 = 2(q + 1)/(pq − 1) and α2 = 2(p + 1)/(pq − 1).
Therefore if α2 > N2 − 2 or α1 > N1 − 2 then one of increasing functions

rN2−2
1 mv(r1) or rN1−2

1 mu(r1) goes to 0 as r1 →∞, providing a contradiction.
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In case, say, α2 = N2 − 2 we need a supplementary logarithmic lower
bound. In this case we define, for fixed 0 < r1 < r2,

h(r) = c1
log(1 + r)

rN2−2
+ c2,

where c1 > 0 (to be chosen later) and c2 ∈ R are such that h(r1) ≤ m(r1)
and h(r2) = m(r2). More specifically, we take

0 < c1 ≤ (m(r1)−m(r2)) /

[
log(1 + r1)

rN2−2
1

− log(1 + r2)

rN2−2
2

]
,

c2 = m(r2)− c1
log(1 + r2)

rN2−2
2

.

We may choose and fix r1 large enough so that h′′(r) > 0 and h′(r) < 0,
for r > r1. Let w(x) = h(|x|), then

M2(D
2w(x)) = annh

′′(r) + â
h′(r)

r
, r1 ≤ r ≤ r2,

for some A = (aij) ∈ A2 (which may depend on r).
Then, if M2 = M+

A2
is a supremum operator by its definition we have

M2(D
2w(x)) ≥ a∗nnh

′′(r) + â∗
h′(r)

r
,

where A∗ = (a∗ij) ∈ A2 is the matrix at which N2 = NA2 is achieved (recall
Lemma 3.3). We recall that N2 − 1 = â∗/a∗nn. A simple computation gives

h′′(r) + (N2 − 1)
h′(r)

r
≥ −C

c1

|x|N2
,

for some positive constant C, hence

M2(D
2w(x)) ≥ −C

c1

|x|N2
. (21)

If M2 = M−
A2

is an infimum operator the optimality condition is reversed.

So we use a different argument to get (21). In case h′′(r) + â
ann

h′(r)/r ≥ 0

we have trivially (21). In case h′′(r) + â
ann

h′(r)/r < 0, since â
ann

≤ N2 − 1,

N2 = N−
A2

, we have

annh
′′(r) + â

h′(r)
r

≥ ann(h′′(r) + (N2 − 1)
h′(r)

r
),
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from which (21) follows.
On the other hand, by Proposition 4.1 we have

mv(x) ≥ mv(r1)r
N2−2
1

|x|N2−2
=

C1

|x|N2−2
,

for |x| ≥ r1, and then from the equation for v, (17) and α2 = N2 − 2 we get

M2(D
2v(x)) ≤ −mp

u(x) ≤ −|x|2pmpq
v ≤ − C2

|x|N2
,

for some positive C2. Therefore, we can use Theorem 2.4, choosing a smaller
c1 if necessary, to conclude w(x) ≤ v(x) in Br2 \ Br1 . Letting r2 → ∞ we
finally conclude that c2 ≥ 0 at the limit and

v(x) ≥ C log(1 + |x|)
|x|N2−2

,

for large |x| and some positive C. This is a contradiction with (19).
In the case α1 = N1− 2, we can argue in the same way. This proves that

system (10) has no positive supersolutions provided (11) holds.
It remains to construct a super-solution of (10), when

α2 < N2 − 2 and α1 < N1 − 2.

Note the solution of the linear system s + 1 = pt, t + 1 = qs is t = α1

2
and

s = α2

2
. So for these s, t we have

s <
N2 − 2

2
and t <

N1 − 2

2

We define the functions

v(r) = A(1 + r2)−s and u(r) = B(1 + r2)−t,

and claim that (u, v) is a radial super-solution of (10), for an appropriate
choice of the positive constants A and B. We observe that v′′(r) ≥ v′(r)/r
for all r > 0, and for the function w(x) = v(|x|) we have

M2(D
2w(x)) = ann(v′′(r) +

â

ann

v′(r)
r

),

for some A = (aij) ∈ A2. In the case M2 is a supremum operator we have as
above â

ann
≥ N2−1, by the definition of N2. We also recall that λ ≤ ann ≤ Λ.

Then using v′ ≤ 0, we get

M2(D
2w(x)) ≤ C̄(v′′(r) + (N2 − 1)

v′(r)
r

).
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In the case of an infimum operator we get the same just from the definition
of M2. Thus, by a simple computation,

M2(D
2w) + up ≤ −C1

A(N2 − 2(s + 1))

(1 + r2)s+1
+

Bp

(1 + r2)pt
.

By arguing in the same way we see that z(x) = u(|x|) satisfies

M1(D
2z) + vq ≤ −C2

B(N1 − 2(t + 1))

(1 + r2)t+1
+

Ap

(1 + r2)qs
.

Recall that by the definition of s and t we have N2 − 2(s + 1) > 0,
N1− 2(t + 1) > 0, and s + 1 = pt, t + 1 = qs. Finally, we remark that pq > 1
permits to choose A and B such that the right hand sides of the last two
inequalities are equal to zero. ¤

5 A Liouville theorem in a half-space

In this section we prove the second part of Theorem 1.3. We shall actually
need a stronger variant of this theorem.

We use an idea by Dancer [13], which consists in the following : if there
is a solution of the problem in {xN > 0}, and if one is able to show that any
such solution is increasing in the xN -direction, then, after eventually some
supplementary work, one should be able to pass at the limit as xN → ∞
and thus get a solution of the same problem in RN−1, which in turn permits
to use the nonexistence result for the whole space, that we already proved.
Note that the numbers N1, N2 from Theorem 1.3 (which we defined in the
previous sections) are strictly increasing in N , so the nonexistence results in
RN

+ hold for a larger range of p, q than the nonexistence result in RN .
Monotonicity results for systems of two equations were proved in [17]. The

approach there relies on a moving planes argument and on some extensions of
the Harnack-Krylov-Safonov estimates for nonlinear elliptic systems obtained
in [5]. Note that the moving planes method was recently extended to viscosity
solutions and fully nonlinear equations in [14].

When trying to get extensions of the Harnack estimates from [5], which
are needed in the moving planes argument, a crucial role is played by an
extension to viscosity solutions of a basic ”quantitative strong maximum
principle” of Krylov and Safonov, which was one of the cornerstones of their
theory of linear equations in nondivergence form, see [25]. We give such an
extension in the appendix (Theorem 7.1), see also the comments there. We
use this result also in Section 6.
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Here are the precise monotonicity and (non-)existence statements for sys-
tems in a half-space. Suppose we have an autonomous system of the type

{
F1(D

2u1) + f1(u1, u2) = 0
F2(D

2u2) + f2(u1, u2) = 0,
(22)

where F1, F2 satisfy (14), fi ∈ C1(R2), i = 1, 2, and fi is increasing in uj,
i 6= j. We shall suppose in addition that we can write

f1(u1, u2) = up
2 + g1(u1, u2)u1, f2(u1, u2) = uq

1 + g2(u1, u2)u2, (23)

for some p, q ≥ 1 and some nonnegative continuous functions g1, g2, which
have polynomial growth in u1, u2.

Let J1, J2 be the subsets at which the dimension-like numbers for F1 and
F2 are attained, see Definition 3.1. Set Ñ1 = N(F1), Ñ2 = N(F2). Let MJ1 ,
MJ2 be the corresponding extremal operators. We consider the system

{ MJ1(D
2u1) + up

2 ≤ 0
MJ2(D

2u2) + uq
1 ≤ 0.

(24)

Theorem 5.1 Suppose we have a system of type (22) which satisfies (23).
If problem (24) has no positive bounded solutions in RN−1, then (22) has no
nontrivial nonnegative bounded solutions in RN

+ which vanish on {xN = 0}.
In the case when F1 and F2 are the Laplacian, this theorem appeared

in [17]. Its proof is divided into two parts. In the first part we prove that
all bounded solutions of (22) in a half-space are strictly increasing in the
xN -direction, and in the second part we pass to the limit as xN →∞.

The monotonicity result is proved like in [17], once we have the cor-
responding Harnack estimates for fully nonlinear systems, together with a
variant of the moving planes method for viscosity solutions. We are going to
sketch the arguments in Section 5.2, for completeness.

On the other hand, the passage to the limit cannot be done like in [17],
since the approach there, based on multiplication by cut-off functions and
integration, is not applicable to operators in non-divergence form. We give
a different and simpler proof in Section 5.3.

5.1 Harnack type estimates for systems

The argument in the next section requires some Harnack estimates for sys-
tems which we state in this section. Such results were obtained in [5]. The
first theorem below is a particular case of Theorem 3.2 and Proposition 3.1
in [5]. We include it here for the reader’s convenience.

In this section G denotes an arbitrary domain in RN and Ql (l = 1, 2) are
concentric cubes with side l, properly included in G.
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Theorem 5.2 ([5]) Assume f1(u1, u2), f2(u1, u2) are globally Lipschitz con-
tinuous functions, with Lipschitz constant A, such that fi is nondecreasing
in uj for i 6= j. Let (u1, u2) be a nonnegative solution of (22) in a domain G.
We suppose that the system is fully coupled, in the sense that f1(0, v) > 0 for
all v > 0, and f2(u, 0) > 0 for u > 0. Then for any cube Q in G there exists
a function Φ(t) (depending on N, λ, Λ, A, Q and G), continuous on [0,∞),
such that Φ(0) = 0 and

sup
x∈Q

max{u1, u2} ≤ Φ(inf
x∈Q

min{u1, u2}).

In particular, if any of u1, u2 vanishes at one point in G then both u1 and u2

vanish identically in G.
Further, if Q1 ⊂ Q2 ⊂ G, and u is a subsolution of (22) then for each

p > 0 there exists a constant C depending only on p,N, λ, Λ, and A such that

sup
x∈Q1

max{u1, u2} ≤ C‖max{u1, u2}‖Lp(Q2)

The same results hold if fi depend on x and the constant A is uniform in x.

Next, we state two Harnack inequality for systems, which play an impor-
tant role in the moving planes argument. The proofs of these theorems are
the same as the proofs of Theorems 3.6 and 1.4 from [17], making essential
use of Theorem 7.1 in the Appendix.

Theorem 5.3 Let F1, F2 satisfy (14). Suppose the functions a, b, c, d ∈
L∞(Q2) are such that |a|, |d| ≤ A, and 0 ≤ b ≤ A, 0 ≤ c ≤ A in Q2.
Suppose (u1, u2) is a positive solution of

{
F1(D

2u1) + a(x)u1 + b(x)u2 = 0
F2(D

2u2) + c(x)u1 + d(x)u2 = 0

in Q2. Assume in addition that b(x) is bounded below by a positive constant
on Q1. Then

sup
x∈Q1

u1 ≤ C inf
x∈Q1

u1. (25)

where the constant C depends on N,A, λ, Λ, and on upper bound for
supQ2

b

infQ1 b
.

Theorem 5.4 Let (u1, u2) be a positive solution of (22) in some domain G
and suppose (23) holds. Suppose K is a compact set properly included in G

and max

{
inf
x∈K

u1, inf
x∈K

u2

}
≤ 1, max

{
sup
x∈G

u1, sup
x∈G

u2

}
≤ M . Then

sup
x∈K

max{u1, u2} ≤ C min

{(
inf
x∈K

u1

) 1
p

,

(
inf
x∈K

u2

) 1
q

}
,
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where C depends only on N, λ, Λ,M, K, G.

5.2 A monotonicity result

This section is devoted to the following theorem.

Theorem 5.5 Suppose we have a nontrivial nonnegative bounded solution
(u1, u2) of system (22) in RN

+ = {x ∈ RN | xN > 0}, such that u1 = u2 = 0
on ∂RN

+ . Suppose (23) is satisfied. Then

∂ui

∂xN

> 0 in RN
+ , i = 1, 2. (26)

In the the proof of this theorem we shall use an extension to viscosity
solutions of fully nonlinear systems a maximum principle in narrow domains,
proved by Cabre [6] in the case of strong solutions of a scalar equation.

We recall the following definition of [6]. For a given domain Ω ⊂ RN , the
quantity R(Ω) is defined to be the smallest positive constant R such that

meas (BR(x) \ Ω) ≥ 1

2
meas (BR(x)) , for all x ∈ Ω.

If no such radius R exists, we define R(Ω) = +∞. It is easy to see that
whenever the domain Ω is contained between two parallel hyperplanes at a
distance d, we have R(Ω) ≤ 2Ndω−1

N , where ωN is the volume of the unit ball
in RN .

We have the following easy extension of the results in [6] (see also [7]).

Proposition 5.1 Let Ω be a domain with R(Ω) < ∞. Suppose u ∈ C(Ω)
and f ∈ L∞(Ω) satisfy M+

λ,Λ(D2u)+γ|Du|−δu ≥ f in Ω, for some γ, δ ≥ 0,
and sup

Ω
u < ∞. Then

sup
Ω

u ≤ lim sup
x→∂Ω

u(x) + CR(Ω)2||f ||L∞(Ω),

where C is a constant depending only on N, λ, Λ, γ, δ, R(Ω), and C is bounded
when these quantities are bounded.

The proof of this result is identical to the proof of Theorem 5.3 in [7], by
using the weak Harnack inequality for viscosity solutions.

It is not difficult to deduce from Proposition 5.1 a maximum principle for
systems in domains with small R(Ω).
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Theorem 5.6 Let Hi(M, p, u1, u2, x) be operators satisfying (H̃2). Then
there exists a number R̄ depending only on N, λ, Λ, γ, δ,, such that R(Ω) ≤ R̄
implies that each solution u ∈ C(Ω) of





H1(D
2u1, Du1, u1, u2, x) ≥ 0 in Ω

H2(D
2u2, Du2, u1, u2, x) ≥ 0 in Ω

u1 ≤ 0, u2 ≤ 0 on ∂Ω,
(27)

satisfies ui ≤ 0 in Ω, i = 1, 2.

Proof. From H̃2 and (27) we get

M+
λ,Λ(D2ui) + γ|Dui| − δui ≥ −2δu+

i − δu+
j , i = 1, 2, j 6= i.

By applying Proposition 5.1 to these equations we obtain

sup
Ω

u+
i ≤ C1R(Ω)2(sup

Ω
u+

1 + sup
Ω

u+
2 ), i = 1, 2.

We sum up these two equations and take R̄ = (
√

4C1)
−1. ¤

Proof of Theorem 5.5. Set M = max

{
sup
RN

+

u1, sup
RN

+

u2

}
. We can suppose that

the functions f1 and f2 are globally Lipschitz continuous. Indeed, if they are
not, we can replace them by f1ϕ and f2ϕ, where ϕ is a cut-off function such
that ϕ = 1 on the positive cube with side M , and ϕ = 0 outside a cube with
side M + 1, containing properly the previous one.

Hence system (22) satisfies the hypotheses of Theorem 5.2, from which
we deduce that either both functions u1 and u2 vanish identically on RN

+ or
both u1 and u2 are strictly positive on RN

+ . The first case is excluded by
hypothesis. So we can assume that u1, u2 are strictly positive in RN

+ .
For each λ > 0 we denote Tλ = {x ∈ RN | xN = λ}, Σλ = {x ∈ RN | 0 <

xN < λ}, and introduce the functions

v
(λ)
i (x) = ui(x

′, 2λ− xN), w
(λ)
i (x) = v

(λ)
i (x)− ui(x), i = 1, 2,

defined in Σλ. Since both (u1, u2) and (v
(λ)
1 , v

(λ)
2 ) satisfy system (22) we obtain

by subtracting the corresponding equations and by using Proposition 2.1
from [14] (recall u1, u2 are only continuous)

{
M−

λ,Λ(D2w
(λ)
1 ) + c

(λ)
11 (x)w

(λ)
1 + c

(λ)
12 (x)w

(λ)
2 ≤ 0

M−
λ,Λ(D2w

(λ)
2 ) + c

(λ)
21 (x)w

(λ)
1 + c

(λ)
22 (x)w

(λ)
2 ≤ 0

(28)
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in Σλ, where cλ
ij(x) is the partial derivative of fi with respect to uj, evaluated

at some point between uj(x) and v
(λ)
j (x). Note that c

(λ)
ij are bounded by a

Lipschitz constant of ~f = (f1, f2) on [0,M ]2, and c
(λ)
12 , c

(λ)
21 ≥ 0.

Obviously ~w(λ) = (w
(λ)
1 , w

(λ)
2 ) ≡ 0 on Tλ and ~w(λ) > 0 on T0 (recall that

ui = 0 on T0 and ui > 0 on Tλ, λ > 0). By Theorem 5.6, if λ is small enough,
then ~w(λ) ≥ 0 in Σλ. Hence

λ∗ = sup{λ | ~w(µ) ≥ 0 in Σµ, ∀µ < λ} > 0.

We see that for each 0 < λ ≤ λ∗ the function w
(λ)
i ≥ 0 satisfies the inequality

M−
λ,Λ(D2w

(λ)
i ) + c

(λ)
ii w

(λ)
i ≤ 0 in Σλ. Hence Hopf’s lemma (Theorem 2.2)

implies w
(λ)
i > 0 and ∂ui

∂xN
= −1

2

∂w
(λ)
i

∂xN
> 0 on Tλ. Therefore, the theorem is

proved if we show that λ∗ = +∞.
Suppose for contradiction that λ∗ is finite. By Theorem 5.6 we can fix

ε0 > 0 such that the matrix operator M−
λ,Λ + Cλ(x) satisfies the maximum

principle in the domain Σλ∗+ε0 \Σλ∗−ε0 (here Cλ(x) denotes the matrix of the
coefficients in (28)). For instance, we can take ε0 = ωN

2N+1 R, where R is the
number from Theorem 5.6.

Lemma 5.1 There exists δ0 ∈ (0, ε0], such that for each δ ∈ (0, δ0) we have

w
(λ∗+δ)
i ≥ 0 in Σλ∗−ε0 \ Σε0 , i = 1, 2.

The proof of this lemma is the same as the proof of Lemma 3.1 in [17].
Then we can apply Theorem 5.6 to (28) in Σλ∗+δ \ Σλ∗−ε0 and in Σε0 (these

domains are narrow enough) to conclude that w
(λ∗+δ)
i ≥ 0 in Σλ∗+δ for each

δ ∈ (0, δ0). This contradicts the maximal choice of λ∗. ¤

5.3 Proof of Theorem 5.1

Suppose u = (u1, u2) is a solution of (22), u 6≡ 0, 0 ≤ u1, u2 ≤ M . For each
x = (y, xN) in the strip Σ1 = {x ∈ RN : 0 < xN < 1} we set

u
(n)
i (y, xN) = ui(y, xN + n), i = 1, 2.

Now u(n) satisfies the same system as u, since (22) is autonomous. Then,
using once more the Cα-regularity, Theorem 2.6, we see that {un} is bounded
in Cα and hence a subsequence of it converges uniformly on compact subsets
of Σ1 to a vector ũ. By Theorem 2.5 this vector satisfies

{
F1(D

2ũ1) + f1(ũ1, ũ2) = 0 in Σ1

F2(D
2ũ2) + f2(ũ1, ũ2) = 0 in Σ1,

(29)
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so, by the definition of MJ1 ,MJ2 and the hypotheses on fi,

{ MJ1(D
2ũ1) + ũp

2 ≤ 0 in Σ1

MJ2(D
2ũ2) + ũq

1 ≤ 0 in Σ1.
(30)

However, the monotonicity result of Theorem 5.5 trivially implies that ũ is
strictly positive and independent of the xN -variable. This means that the
last line and column of D2ũ1, D

2ũ2 contain only zeros, so the N -dimensional
extremal operators MJ1 ,MJ2 applied to these matrices are actually (N−1)-
dimensional, and we have (30) in RN−1.

6 Proof of Theorem 1.2

6.1 The setting

The proof of our existence theorem is an application of degree theory for com-
pact operators in cones. This theory, essentially developed by Krasnoselskii,
has often been used to show that such operators possess fixed points. We
are going to use an extension of Krasnoselskii results, due to Benjamin and
Nussbaum, in the form that appeared in [16].

We start by recalling the abstract setting in [16]. Let K be a closed cone
with non-empty interior in the Banach space (E, ‖ · ‖). Let Φ : K → K and
Ψ : K× [0,∞) → K be compact operators such that Φ(0) = 0 and Ψ(x, 0) =
Φ(x) for all x ∈ K. Then the following theorem holds (see Proposition 2.1
and Remark 2.1 in [16]).

Theorem 6.1 Assume there exist numbers R1 > 0, R2 > 0 and T > 0 such
that R1 6= R2 , and

(i) x 6= βΦ(x) for all 0 ≤ β ≤ 1 and ‖x‖ ≤ R1,
(ii) Ψ(x, t) 6= x for all ‖x‖ = R2 and all t ∈ [0, +∞),
(iii) Ψ(x, t) 6= x for all x ∈ BR2 and all t ≥ T .

Then Φ has a fixed point x ∈ K such that ‖x‖ is between R1 and R2.

Note that (i) implies that iC(Φ, BR1) = 1, while (ii) and (iii) imply
iC(Φ, BR2) = 0, where iC is the Krasnoselskii index and BR = {x ∈ K :
‖x‖ < R}, so Theorem 6.1 follows from the excision property of the index.

We set E = {u = (u1, u2) ∈ C(Ω) × C(Ω) | ui = 0 on ∂Ω, i = 1, 2} and
K = {u ∈ E |ui ≥ 0 in Ω, i = 1, 2}. It is clear that solving (1) is equivalent
to finding a fixed point in K of Φ : K → K, defined by

Φ(u1, u2)(x) := S(f1(u1, u2, x), f2(u1, u2, x)), x ∈ Ω,
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where for any (h1, h2) ∈ K we define S(h1, h2) as the solution of the Dirichlet
problem




−H1(D

2u1, Du1, u1, u2, x) = h1(x) in Ω
−H2(D

2u2, Du2, u1, u2, x) = h2(x) in Ω
u1 = u2 = 0 on ∂Ω,

(31)

Lemma 6.1 The operator S : K → K is well defined, continuous and com-
pact. In addition, S(0, 0) = (0, 0).

Proof. It follows from the results in [33] (which extend the earlier results

in [5], [31], [32]) that under (H̃0)-(H̃3) system (31) is uniquely solvable for
any h ∈ LN(Ω)2 and satisfies the maximum principle, that is, h ≥ (≤)0
implies u ≥ (≤)0 in Ω. Hence S is well defined and S(0, 0) = (0, 0). In
addition, the Alexandrov-Bakelman-Pucci estimate (which extends Theorem
2.1 to systems)

‖ui‖L∞(Ω) ≤ C max
i=1,2

‖Hi‖LN (Ω) (32)

is valid (here C depends on N, λ, Λ, γ, δ, diam(Ω) and λ+
1 (F ) > 0). Hence S

is continuous.
Further, it follows from (32) and from the Cα-estimates, Theorem 2.6,

that if un is a sequence of solutions of (31) then un is uniformly bounded in
Cα(Ω), for some α ∈ (0, 1). Therefore the compactness of S follows from the
compactness of the embedding Cα(Ω) ↪→ C(Ω). ¤

In our case we define the operator Ψ as follows : for any u ∈ K, t ∈ [0,∞],

Ψ(u1, u2, t)(x) = S(f1(u1 + t, u2 + t, x), f2(u1 + t, u2 + t, x)).

First we show that condition (i) in Theorem 6.1 is satisfied. This is the
content of the following proposition.

Proposition 6.1 There is R1 > 0 so that for all t ∈ [0, 1] the system



−H1(D

2u1, Du1, u1, u2, x) = tf1(u1, u2, x) in Ω
−H2(D

2u2, Du2, u1, u2, x) = tf2(u1, u2, x) in Ω
u1 = u2 = 0 on ∂Ω,

(33)

has no solution (u1, u2) with 0 < ‖u‖ := max(‖u1‖L∞(Ω), ‖u2‖L∞(Ω)) ≤ R1.

Proof. We argue by contradiction. Let {(u(n)
1 , u

(n)
2 , tn)}n∈N be a sequence of

positive solutions to (33) such that ‖u(n)
i ‖L∞(Ω) → 0 as n → +∞, i = 1, 2,

and tn ∈ [0, 1]. Define

v
(n)
i (x) =

u
(n)
i (x)

‖u(n)‖ .
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Then we have, by (H̃0),

−H1(D
2v

(n)
1 , Dv

(n)
1 , v

(n)
1 , v

(n)
2 , x) =

tn
‖u(n)‖f1(u

(n)
1 , u

(n)
2 , x)

−H2(D
2v

(n)
2 , Dv

(n)
2 , v

(n)
1 , v

(n)
2 , x) =

tn
‖u(n)‖f2(u

(n)
1 , u

(n)
2 , x).

Note v
(n)
1 , v

(n)
2 ≤ 1 in Ω, and v

(n)
i (xn) = 1 for some i and some xn ∈ Ω.

However, the right hand sides of the last two equalities go to zero uniformly
in Ω, by hypothesis (6). Then, by Lemma 6.1 v

(n)
i converges uniformly to

some function vi. Applying Theorem 2.5 and then Lemma 6.1 yields v ≡ 0,
a contradiction. ¤
Remark. Note that if the left hand side of the system is decoupled, that is, H1

does not depend on u2 and H2 does not depend on u1 (like in Theorem 1.1)
then we can allow one of the functions fi to have a linear growth in uj, i 6= j,
since then the equalities

−H1(D
2v1, Dv1, v1, x) = v2

−H2(D
2v2, Dv2, v2, x) = 0.

would still imply v ≡ 0. This remark shows that we can allow p = 1 or q = 1
in Theorem 1.1, which in particular gives an existence result for higher order
equations involving iterated fully nonlinear operators. ¤

In order to prove condition (iii) in Theorem 6.1 we state the following
proposition.

Proposition 6.2 There exists a constant T > 0 so that if the system



−H1(D

2u1, Du1, u1, u2, x) = f1(u1 + t, u2 + t, x) in Ω
−H2(D

2u2, Du2, u1, u2, x) = f2(u1 + t, u2 + t, x) in Ω
u1 = u2 = 0 on ∂Ω,

(34)

possesses a solution u = (u1, u2) ∈ K, then 0 ≤ t ≤ T.

Proof. First, by (H̃2), the positivity of fi and the strong maximum principle
(Theorem 2.2) we have ui ≡ 0 in Ω or ui > 0 in Ω, i = 1, 2.

By the hypotheses we made on the functions f1, f2, for any A > 0 we can
find T = T (A) ≥ 1 such that for all t ≥ T we have either (case I)

f1(u1 + t, u2 + t, x) ≥ A(u1 + t), f2(u1 + t, u2 + t, x) ≥ A(u2 + t),

or (case II)

f1(u1 + t, u2 + t, x) ≥ A(u2 + t), f2(u1 + t, u2 + t, x) ≥ a(u1 + t),
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or the last two inequalities with A and a interchanged (here a is a positive
lower bound for d21 or d12 from (4))3.

In case I we see that the nonpositive functions v1 = −u1, v2 = −u2 satisfy

F ∗
1 (D2v1, Dv1, v1, 0, x) ≥ F ∗

1 (D2v1, Dv1, v1, v2, x) ≥ −Av1 + 1
F ∗

2 (D2v2, Dv2, 0, v2, x) ≥ F ∗
2 (D2v2, Dv2, v1, v2, x) ≥ −Av2 + 1

(35)

in Ω, by (H̃2) (recall (H̃2) implies the system is quasimonotone). Clearly this
implies v1, v2 < 0 in Ω, by Theorem 2.2. We recall the following corollary
from Proposition 4.2 in [32].

Lemma 6.2 If F (M, p, t, 0, x) satisfies (H̃0)-(H̃2) and is convex in (M, p, t)
then the quantity

λ−1 (F, Ω) = sup {λ | Ψ−(F, Ω, λ) 6= ∅}, where

Ψ−(F, Ω, λ) = {ψ ∈ C(Ω) | ψ < 0 in Ω, F (D2ψ, Dψ, ψ, x) + λψ ≥ 0 in Ω},
is bounded by constants which depend only on N, λ, Λ, γ, δ, Ω.

So (35) is a contradiction, since A can be taken arbitrarily large.

In case II we get, by (H̃2) and M+(M) = −M−(−M),

−M−
λ,Λ(D2u1) + γ|Du1|+ δu1 ≥ Au2 + A > Au2,

−M−
λ,Λ(D2u2) + γ|Du2|+ δu2 ≥ au1 + a > au1,

in Ω. This implies u1, u2 > 0 in Ω, by Theorem 2.2. Fix ε > 0, depending
only on the geometry of Ω, such that

Ω′ = {x ∈ Ω : dist(x, ∂Ω) > ε}

is a domain which is not empty, and fix two concentric cubes Q1 ⊂⊂ Q2 ⊂ Ω′.
Then Theorem 7.1 implies

inf
Q1

u1 ≥ κA inf
Q1

u2 and inf
Q1

u2 ≥ κa inf
Q1

u1,

where κ depends only on N, λ, Λ, γ, δ, and Ω. This is clearly a contradiction,
if we fix A larger than (κ

√
a)−2. ¤

Finally, condition (ii) in Theorem 6.1 is a consequence of the following
proposition.

3Note that if H1, H2 are linear, then it is trivial to conclude at this stage, simply by
adding up the two equations and by using known results on scalar inequalities, for the
sum u1 + u2.
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Proposition 6.3 For each t0 there exists a constant C, such that if u =
(u1, u2) is a solution of system (34) with 0 ≤ t ≤ t0, then

‖u‖L∞(Ω) ≤ C.

Proof. We argue by contradiction, using the widely employed blow-up
method of Gidas and Spruck [22], [17]. Suppose there exists a sequence
(u1,n, u2,n) of positive solutions of (34) with t = tn ∈ [0, t0], such that at least
one of the sequences u1,n and u2,n tends to infinity in the L∞-norm. Without
restricting the generality we suppose t0 = 0 (the argument below remains
the same for t0 > 0). Let β1, β2 be the numbers from Theorem 1.2. We set

λn = ||u1,n||−β1

L∞(Ω) ,

if ||u1,n||β2

L∞(Ω) ≥ ||u2,n||β1

L∞(Ω) (up to a subsequence), and λn = ||u2,n||−β2

L∞(Ω)

otherwise. Say we are in the first of these two situations.
Note that we have λn → 0 as n →∞. Let xn ∈ Ω be a point where u1,n

assumes its maximum. The functions

vi,n(x) = λβi
n ui,n(λnx + xn),

are such that v1,n(0) = 1 and 0 ≤ vi,n ≤ 1 in Ω. One easily verifies that the
functions v1,n and v2,n satisfy

−H1,n(D2v1,n, Dv1,n, v1,n, v2,n, ·) = a1(·)λβ1+2−β1α11
n vα11

1,n +
b1(·)λβ1+2−β2α12

n vα12
2,n + c1(·)λβ1+2−β1γ11−β2γ12

n vγ11

1,nvγ12

2,n + g̃1,n

−H2,n(D2v2,n, Dv2,n, v1,n, v2,n, ·) = a2(·)λβ2+2−β1α21
n vα21

1,n +
b2(·)λβ2+2−β2α22

n vα22
2,n + c2(·)λβ2+2−β1γ21−β2γ22

n vγ21

1,nvγ22

2,n + g̃2,n

(36)

in the domain Ωn =
1

λn

(Ω− xn), where the dot stands for λnx + xn, and we

have set g̃i,n = λβi+2
n gi

(·, λ−β1
n v1,n, λ−β2

n v2,n

)
,

Hi,n(M, p, u1, u2, x) := Hi(M, λnp, λ2
nu1, λ

2
nu2, xn + λnx).

By compactness we can assume that {xn} tends to some point x0 ∈ Ω. It
is a very standard fact that the domain Ωn converges either to RN or to a
half-space in RN .

With the choice of β1, β2 that we made in the introduction, we have that
all powers of λn in (36) are non-negative (see for example lemma 2.2 in [17]).
Thus the right hand side of (36) is bounded in L∞(Ω), so by compactness –
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see Lemma 6.1 – we find that, up to a subsequence, vi,n converges to some
function vi uniformly in compact sets of RN (or RN

+ ). In order to pass to the
limit in (36), we use the fact that the sequence of operators Hi,n satisfies the
hypothesis of Theorem 2.5. Indeed, as can be easily verified with the help of
(H̃2) and λn → 0, for any fixed ball B and any φ ∈ W 2,N(B) we have

Hi,n(D2φ,Dφ, v1,n, v2,n, x) → H1(D
2φ, 0, 0, 0, x0) in LN(B).

Thus we can pass to the limit in (36). Note that in the passage to the limit
the terms in the right hand side of (36) which contain strictly positive powers

of λn disappear, as well as h̃i,n, while the terms where the power of λn is zero
remain. Actually, this observation has dictated the choice of β1, β2 (note
this choice depends only on the exponents αij) – more details on this can be
found in [17].

In this way we obtain a nontrivial (since v1(0) = 1) bounded solution of
the system

{ −H1(D
2v1, 0, 0, 0, x0) = c11v

α11
1 + c12v

α12
2 + c13v

γ11

1 vγ12

2

−H2(D
2v2, 0, 0, 0, x0) = c21v

α21
1 + c22v

α22
2 + c23v

γ21

1 vγ22

2

(37)

in RN or RN
+ (with a Dirichlet boundary condition), where cij ≥ 0 are con-

stants. There are several cases now, depending on the possible values of cij.
We shall only list them and give the contradiction in each case, referring to
[17] for an explanation on how these cases appear. Note in any case c12 = 0
implies c13 = 0 and c21 = 0 implies c23 = 0.

Let J1, J2 be the sets at which the dimension-like numbers N1, N2 cor-
responding to the operators in the left-hand side of (37) are attained, and
let M1,M2 be the corresponding extremal operators, see Definition 3.1. So
(v1, v2) is a supersolution of (37) with H1, H2 replaced by M1,M2, accord-
ing to Definition 3.1. When the domain for (37) is RN we are going to use
Theorem 1.3 to get a contradiction, while in the case when the domain is RN

+

we are going to apply Theorem 5.1 directly to (37). If N1 ≤ 2 or N2 ≤ 2 we
just use Proposition 4.1 part 2.

Case 1. c11 > 0 and c22 > 0. If the domain is RN then we have a contra-
diction with the Liouville theorem for scalar inequalities from [20], which is
a particular case of Theorem 1.3 with p = q and M1 = M2. If the domain
is RN

+ we have two subcases. If all cij > 0 we have a contradiction with our
Liouville theorem in half-space, see Theorem 5.1. If c21 = c23 = 0 then the
second equality in (37) implies v2 ≡ 0 by Theorem 5.1 (with p = q = α22).
Then the first equation in (37) becomes scalar in v1 and we apply the same
theorem to it.
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Case 2. c12 > 0 and c21 > 0. Then we have a contradiction with Theorems
1.3 and 5.1.

Case 3. c21 = c22 = c23 = 0, c11, c12 > 0. Then the second equation in (37)
implies that v2 ≡ c0, a constant (this is a consequence from the Harnack
inequality, see for instance [8]). If c0 = 0 (this is the only case for a half-
space, because of the Dirichlet boundary condition) again the first equation
is scalar. If c0 > 0 by the first equation we get a positive bounded solution to
−M−

λ,Λ(D2v1) ≥ c0c21 = c̃ > 0 in RN which is easily seen to be impossible.
Indeed, if there were such a function, by the comparison Theorem 2.4 we
would have v1(0) ≥ wR(0), where wR is the solution of the Dirichlet problem
−M−

λ,Λ(D2w) = c̃ in the ball BR (this problem is solvable, see for instance

Proposition 7.1). Then if vR(y) = wR(Ry), we have −M−
λ,Λ(D2vR) = c̃R2 in

B1. So, by Theorem 7.1 we have v1(0) ≥ cR2 for all R, a contradiction. ¤
Theorem 1.2 is proved, since it is a consequence of Theorem 6.1.

7 Appendix

Here we prove the following result. To fix notations, again Ql will denote a
cube with size l. Any two cubes such that one is obtained by doubling the
size of the other are supposed to be concentric. For any measurable set E
we denote with meas(E) = |E| its Lebesgue measure.

Theorem 7.1 Let ω ⊂ Q2 be a closed set with positive measure and suppose
u ∈ C(Q2) is a positive function satisfying

M−
λ,Λ(D2u)− γ|Du| − δu ≤ −αχω in Q2, (38)

for some α > 0 (here χω denotes the characteristic function of ω). Then
there exists a constant m > 0, depending only on N, λ, Λ, γ, δ, and on a
positive lower bound of the measure of ω, such that

inf
Q1

u ≥ mα. (39)

This theorem extends a result by Krylov and Safonov, concerning linear
elliptic operators and strong solutions, that is, u ∈ W 2,N

loc (Q2). For such
operators and solutions Theorem 7.1 follows from Theorem 2, page 118, in
the book [25].

As we will show below, Theorem 7.1 can be reduced to the result in [25].
However, since this reference is not easy to work with, and since Theorem 7.1
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plays an essential role in our arguments, we are going to give a full self-
contained proof of this theorem, which is based only on the Alexandrov-
Bakelman-Pucci inequality, convergence properties of viscosity solutions and
on a result from measure theory – Egoroff’s theorem.

First proof of Theorem 7.1. We use the following well-known results from
the theory of fully nonlinear operators.

Lemma 7.1 Let w ∈ W 2,N
loc (Ω). There exists a scalar linear uniformly el-

liptic second order operator L0 (depending on w) with bounded measurable
coefficients, such that

M−
λ,Λ(D2w)− γ|Dw| = L0w

The ellipticity constant of L0 and the L∞-bounds for the coefficients of L0

depend only on N, λ, Λ, γ.

Proof. This is very standard. Recall M−
λ,Λ(M) = infA∈Sλ,Λ

N
tr(AM). This

infimum is attained (since Sλ,Λ
N is compact), for any fixed M . Then we take

L0w(x) = tr
(
A0(x)D2w(x)

)−~b(x).Dw(x),

where x −→ A0(x) is a measurable selection of elements of Sλ,Λ
N at which the

infimum above is attained, and

~b(x) =





γ
Dw(x)

|Dw(x)| , if Dw(x) 6= 0

0 , if Dw(x) = 0.

Proposition 7.1 Let c, f ∈ L∞(Ω), and c ≥ 0 in Ω. Then there exists a
unique solution v ∈ W 2,N

loc (Ω) ∩ C(Ω) of the following problem

{ M−
λ,Λ(D2v)− γ|Dv| − cv = f a.e. in Ω

v = 0 on ∂Ω.
(40)

Proof. When c ≡ 0 this result was proved in [9] (Corollary 3.10 in that
paper). Exactly the same proof works for c ≥ 0, since the authors use
Theorem 17.17 in [23] and the ABP estimate, which both hold when c ≥ 0.

In order to prove Theorem 7.1 we apply Proposition 7.1 to get a solution
in W 2,N

loc ∩ C(Ω) of

{ M−
λ,Λ(D2v)− γ|Dv| − δv = −αχω a.e. in Q2

v = 0 on ∂Q2.
(41)
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Set w = v − u. By Lemma 2.1 we have

{ M+
λ,Λ(D2w) + γ|Dw| − δw ≥ 0 in Q2

v = 0 on ∂Q2.

so Theorem 2.1 implies w ≤ 0 in Q2, that is,

u ≥ v in Q2. (42)

By Lemma 7.1 equation (41) can be recast as a linear one, in which the
coefficients depend on v but their L∞ bounds do not. So we can apply the
result in [25] to this equation and v, and conclude, by (42). ¤
Second proof of Theorem 7.1. Here we give a self-contained proof of the
theorem. We start with the following basic proposition.

Proposition 7.2 There exists a number ρ0 ∈ (0, 1) depending only on N ,
λ, Λ, γ, δ, such that if for some ρ ∈ (0, ρ0] and some cube Q2ρ ⊂⊂ Q2, the
function u ∈ C(Q2) satisfies

G[u] := M−
λ,Λ(D2u)− γ|Du| − δu ≤ 0 in Q2ρ

u ≥ 0 in Q2ρ,

then for any ν, a > 0 there exists κ > 0 depending on ν, N, λ, Λ, γ, δ, such
that

meas {x ∈ Qρ : u(x) ≥ a} ≥ ν |Qρ| implies u ≥ κa in Qρ.

Before proving this proposition, let us show how Theorem 7.1 follows from
it. We also need a well-known result from measure theory, usually referred
to as Egoroff’s theorem.

Theorem 7.2 Suppose {un} is a sequence of functions which converges lo-
cally in measure in a domain G, |G| < ∞, to a function u, that is, for any
compact set K ⊂ G and any ε > 0

meas{x ∈ K : |un(x)− u(x)| ≥ ε} → 0 as n →∞.

Then there exists a subsequence of {un} which converges to u almost every-
where in G, and for any δ > 0 and any open bounded set E ⊂ E ⊂ G there
exists an open subset E1 ⊂ E such that |E1| < δ and un converges uniformly
to u in E \ E1.
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Proof of Theorem 7.1. We are going to suppose that ω = Q1 (we actually
apply the theorem only in this case). The full strength of Theorem 7.1 can
then be obtained by a covering argument.

Replacing u by u/α we can suppose α = 1. Let ρ0 be the number from
Proposition 7.2.

Claim. There exist ν, a > 0 such that for any cube Q ⊂ Q1 with size ρ0, and
for any solution u of (38)

meas {x ∈ Q : u(x) ≥ a} ≥ ν.

If this claim is true then Theorem 7.1 follows from Proposition 7.2. So
suppose the claim is false, that is, for all n ∈ N there exists a cube Q(n) with
fixed size ρ0, Q(n) ⊂ Q1, and a solution un of (38), such that

meas

{
x ∈ Q(n) : un(x) ≥ 1

n

}
≤ 1

n
.

Then, clearly, there exists a subsequence of {Q(n)} which contains a fixed
cube Q with size larger than ρ0/2. The above inequality implies that {un}
converges in measure to zero in this cube. Then by Egoroff’s theorem {un}
converges uniformly to zero in some subset of Q with positive measure. This
implies, by Theorem 2.5, that zero is a solution of (38) in some subset of Q1,
a contradiction. ¤

We now turn to Proposition 7.2. First we prove a weaker result.

Proposition 7.3 There exist numbers β, κ, ρ0 ∈ (0, 1) depending only on N ,
λ, Λ, γ, δ, such that if for some ρ ∈ (0, ρ0] and some cube Q2ρ ⊂ Q2, the
function u ∈ C(Q2) satisfies

G[u] := M−
λ,Λ(D2u)− γ|Du| − δu ≤ 0 in Q2ρ

u ≥ 0 in Q2ρ,

then for any a > 0

meas {x ∈ Qρ : u(x) ≥ a} ≥ (1− β) |Qρ| implies u ≥ κa in Qρ.

Proof. Without restricting the generality we can suppose a = 1 (replace u
by u/a). To simplify some of the following computations, we suppose that Q
stands for a ball instead of a cube in this lemma (this is obviously equivalent).

Set v(x) = 1− |x|2
ρ2 . Then, by Lemmas 2.1 and 2.2, for any x ∈ Qρ

M+
λ,Λ(D2(v − u)) + γ|D(v − u)| ≥ M−

λ,Λ(D2v)− γ|Dv| −G[u]− δu

≥ − 2

ρ2

(
NΛ + γ|x|+ δρ2u

)

≥ −C

ρ2

(
1 + γρ + δρ2u

)
,
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provided u ∈ W 2,N(Q2ρ). Extending this inequality to u only continuous is
easy (and standard, since v ∈ C2), by using Definition 2.1 and test functions.

Since v − u ≤ 0 on ∂Qρ, by applying Theorem 2.1 to the last inequality
we obtain

sup
Qρ

(v − u) ≤ Cρ−1‖1 + γρ + δρ2u‖LN (Qρ∩{v−u>0})

≤ Cρ−1(1 + γρ + δρ2 sup
v−u>0

u) |Qρ ∩ {v − u > 0}|1/N .

Note that {v − u > 0} ⊂ {u < 1}, so meas(Qρ ∩ {v − u > 0}) ≤ C(N)βρN ,
by hypothesis. Then

sup
Qρ

(v − u) ≤ Cβ1/N(1 + γρ + δρ2).

By choosing β sufficiently small and ρ0 ≤ 1 we get

3

4
− inf

Q ρ
2

u = inf
Q ρ

2

v − inf
Q ρ

2

u ≤ sup
Q ρ

2

(v − u) ≤ sup
Qρ

(v − u) ≤ 1

4

for ρ ≤ 1, so u ≥ 1

2
in Q ρ

2
.

Now set, for s > 0 and x ∈ Q2ρ \Q ρ
2
,

w(x) =
1

4

|x|−s − (2ρ)−s

(ρ/2)−s − (2ρ)−s
.

It is easy to compute, with the help of Lemma 2.2, that

M−
λ,Λ(D2(|x|−s))− γ|D(|x|−s)| = s(λ(s + 1)− Λ(N − 1)− γ|x|)|x|−s−2,

and hence, fixing s such that λ(s + 1) = Λ(N − 1),

M+
λ,Λ(D2(w − u)) + γ|D(w − u)| ≥ M−

λ,Λ(D2w)− γ|Dw| −G[u]− δu

≥ −Cρs|x|−s−1 − δu

≥ −Cρ−1(1 + ρu)

in the set Q2ρ \ Q ρ
2
. Since w − u ≤ 0 on ∂(Q2ρ \ Q ρ

2
) and u < 1 on the set

{w − u > 0}, Theorem 2.1 yields

sup
Qρ\Q ρ

2

(w − u) ≤ sup
Q2ρ\Q ρ

2

(w − u) ≤ C(1 + ρ)‖1‖LN (Q2ρ) ≤ C|Q2ρ|1/N = Cρ
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so, by taking ρ0 sufficiently small, we have, for ρ ≤ ρ0,

u(x) ≥ inf
Qρ\Q ρ

2

w − Cρ ≥ (2−s−4 − Cρ) ≥ 2−s−5 , for x ∈ Qρ \Q ρ
2
,

which finishes the proof of Proposition 7.3. ¤
Now we can carry out the proof of Proposition 7.2 with the help of an ar-

gument which goes back to Krylov. It uses the following well-known measure
theoretic result.

Lemma 7.1 Let G be a cube and K be some measurable subset of G, such
that |K| ≤ η|G|, for some η ∈ (0, 1). Let F be the set of all cubes B contained
in G, and such that |B ∩K| ≥ η|B|. Then, setting ζ = 1−η

η
> 0,

meas(∪B∈FB) ≥ (1 + ζ)meas(K).

Proof. This is inequality (9.20) from [23], setting f to be the indicator
function of K in the reasoning there. ¤
Proof of Proposition 7.2. Set Ka = {x ∈ Qρ : u(x) ≥ a}. We know that
|Ka| ≥ ν |Qρ|. If |Ka| ≥ (1−β)|Qρ|, where β is the number from Proposition
7.3 then we conclude, by that Proposition.

If, on the other hand, |Ka| < (1 − β)|Qρ|, we apply Lemma 7.1, with
η = 1 − β. By Proposition 7.3 we have u ≥ κa in each cube in F (defined
in Lemma 7.1), for some κ > 0, depending on the appropriate quantities.
Hence, by Lemma 7.1,

|Kκa| ≥ (1 + ζ)|Ka| ≥ ν(1 + ζ) |Qρ|.
We repeat the same reasoning and get either Proposition 7.2 or

|Kκ2a| ≥ ν(1 + ζ)2 |Qρ|.
This process stops after at most n iterations, where n is a number such that
ν(1 + ζ)n ≥ 1. ¤
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