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1. Introduction

In recent years there has been an increasing interest in positive solutions of
some nonlinear elliptic problems, where some concentration phenomena enable
one to relate the number of positive solutions to the geometrical properties of
the domain.

Phenomena of this type occur, for example, in some nonlinear problems
involving critical or supercritical Sobolev exponents like the following:

(1.1)


∆u+ up−1 = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth domain in RN , N ≥ 3, and p ≥ 2N/(N − 2) (the critical
Sobolev exponent for the embedding H1,2

0 (Ω) ↪→ Lp(Ω)).
Many papers have been devoted to such problems (see [2], [5], [6], [10]–[12],

[14], [15], [18]–[23], [25], [27], [28], and the references therein).
Here the lack of compactness, due to the presence of the critical exponent,

is just associated with concentration phenomena and, when it is possible to
overcome the difficulties due to the lack of compactness, one can often obtain
multiplicity results for positive solutions.
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But these phenomena can also occur in subcritical problems: for example in
the problem

(1.2)


∆u− λu+ up−1 = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

with 2 < p < 2N/(N − 2), when λ > 0 is large enough (as pointed out in [3]),
or in the problem

(1.3)


ε∆u+ g(x, u) = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

with g having subcritical growth, when ε > 0 is small enough (see [4]). These
properties of concentration have been used in order to obtain the multiplicity
results stated in [3], [4], [8], [9].

Analogous concentration phenomena are being investigated (see [14]) for the
equation

∆u+ a(x)up−1 = 0

with 2 < p < 2N/(N − 2) and a(x) a positive function which behaves like 1/|x|α

(α > 0) near 0. Here the concentration properties are just due to the singular
coefficient of the nonlinear term.

In [24] some concentration phenomena have been pointed out for degenerate
elliptic problems like

(1.4)

{
div(λ(x)Du) + g(x, u) = 0 in Ω,

u = 0 on ∂Ω,

where λ is a positive function in Ω. Even when the nonlinear term is subcritical,
these phenomena occur because of the degenerate character of the differential
equation.

Many papers have been devoted to degenerate elliptic problems (see, for
instance, [13], [17], [27] and the references therein). In [24] it is shown that the
solutions of (1.4) tend to “concentrate” near the degeneration set of λ, that is,
the subset of Ω where λ goes to zero.

So the following natural question arises: is it possible to relate the number of
positive solutions of problems like (1.4) to the geometrical properties of the de-
generation set? In particular, is it possible to show that problem (1.4) has several
positive solutions if the degeneration set has several connected components?

In [24] an example was also given where the degeneration set consists of k
spheres and the problem has at least k + 1 distinct positive solutions.
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In the present paper we answer the above question: we consider, for ε > 0,
a family of problems

(Pε(Ω, g))


div(aε(x)Du) + g(x, u) = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN , g(x, u) is a subcritical nonlinearity
and, for all ε > 0 and almost all x ∈ Ω, aε(x) is a positive definite symmetric
N ×N matrix with coefficients in L∞(Ω).

We assume that there exist k pairwise disjoint subsets Ω′1, . . . ,Ω
′
k of Ω such

that every connected component of Ω \
⋃k

i=1 Ω′i meets ∂Ω and that the matrix
aε(x) degenerates as ε → 0+ only in some subsets Ω1, . . . ,Ωk respectively of
Ω′1, . . . ,Ω

′
k. Then, under suitable assumptions on the nonlinear term g(x, u),

we obtain the existence of at least k + 1 distinct positive solutions for problem
Pε(Ω, g) when ε > 0 is small enough.

The paper is organized as follows: we first consider the problem Pε(Ω, g)
in the particular case where g(x, u) = up−1 with 2 < p < 2N/(N − 2). The
multiplicity result given by Theorem (4.4) in this particular case obviously follows
from Theorem (5.1) which concerns the case of a general nonlinearity g(x, u),
not necessarily homogeneous in u. Nevertheless we study the homogeneous case
separately because it is, in some sense, the model problem and also because the
proof, which in this case can be reduced to looking for the critical points of the
energy functional constrained on the unit sphere of Lp(Ω), is used in the general
case and seems to suggest better the behaviour of the solutions uε,1, . . . , uε,k+1

as ε→ 0+.

The assumptions on the matrix aε(x) are stated in Section 2; in Section 3
we introduce the main notations used in this paper; in Section 4 we prove the
multiplicity result in the case of a homogeneous nonlinearity (Theorem (4.4));
in Section 5 we state the assumptions on the function g : Ω× R → R and prove
the multiplicity result in the general case (Theorem (5.1)). Finally, Proposition
(5.13) provides some qualitative information on the behaviour as ε→ 0+ of the
solutions uε,1, . . . , uε,k+1 given by Theorem (5.1).

2. The homogeneous case

In this section we introduce our problem in the simplified case where the
nonlinear term is homogeneous. Moreover, we state the assumptions which allow
us to obtain a result on the multiplicity of positive solutions. The problem is
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the following:

(Pε(Ω, p))


div(aε(x)Du) + up−1 = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN , N ≥ 3, p ∈ ]2, 2N/(N − 2)[ and,
for all ε > 0, aε(x) = (ai,j

ε (x)) is a positive definite symmetric N × N matrix
with ai,j

ε (x) ∈ L∞(Ω; R) for all i, j = 1, . . . , N .
We make the following assumptions on aε(x):

(a.1) for all ε > 0 and for almost all x ∈ Ω there exist two positive constants
Λ1(ε, x) and Λ2(ε, x) such that

Λ1|ξ|2 ≤ ai,j
ε (x)ξiξj ≤ Λ2|ξ|2

for all ξ ∈ RN (here and later on we write, as usual, ai,j
ε (x)ξiξj instead

of
∑N

i,j=1 a
i,j
ε (x)ξiξj);

(a.2)
lim inf
ε→0+

( inf
x∈Ω

Λ1(ε, x)/ε) > 0;

(a.3) there exist k > 1 subsets Ω1, . . . ,Ωk of Ω (the degeneration subsets for
aε(x)) such that for all i, j = 1, . . . , k,

lim
ε→0+

ai,j
ε (x)/ε = ai,j(x) uniformly in

k⋃
s=1

Ωs

with
sup

x∈
Sk

s=1 Ωs

|ai,j(x)| <∞

(see also Remark (5.14));
(a.4) for all η > 0,

lim inf
ε→0+

(
inf

{
Λ1(ε, x) : x ∈ Ω

∖ k⋃
s=1

Ωs(η)
})

> 0,

where Ωs(η) = {x ∈ Ω : d(x,Ωs) < η}.

Moreover, we require that the degeneration subsets Ω1, . . . ,Ωk satisfy the
following condition:

(a.5) Ω1, . . . ,Ωk are smooth domains strictly contained in Ω, i.e. Ωs ⊂ Ω for
all s = 1, . . . , k. For all s = 1, . . . , k let us denote by Cs the union
of the connected components of Ω \ Ωs which do not meet ∂Ω, and set
Ω′s := Ωs ∪ Cs. We require that the subsets Ω′1, . . . ,Ω

′
k are pairwise

disjoint, i.e.

Ω′s ∩ Ω′t = ∅ ∀s, t ∈ {1, . . . , k} such that s 6= t.
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Notice that this condition implies, in particular, that every connected component
of Ω \

⋃k
s=1 Ω′s meets ∂Ω.

3. Notations

Before stating the theorem that gives a multiplicity result for positive solu-
tions of Pε(Ω, p) if ε > 0 is small enough, we introduce some useful notation.
Let H1,2

0 (Ω) denote the usual Sobolev space endowed with the norm

‖u‖ =
(∫

Ω

|Du|2 dx
)1/2

,

and let

‖u‖p =
(∫

Ω

|u(x)|p dx
)1/p

denote the usual norm in the space Lp(Ω).
We denote by u+ and u− respectively the positive part and the negative part

of a function u ∈ H1,2
0 (Ω).

For all u ∈ H1,2
0 (Ω), ε > 0 and s ∈ {1, . . . , k} we set

A(ε, u,Ω) :=
∫

Ω

ai,j
ε (x)
ε

∂xi
u∂xj

u dx, A(s, u) :=
∫

Ωs

ai,j(x)∂xi
u∂xj

u dx.

Let λ : Ω → R be a strictly positive function with λ ∈ L∞(Ω) and 1/λ ∈
L∞(Ω); then

‖u‖(λ,p) =
(∫

Ω

λ(x)|u(x)|p dx
)1/p

is a norm in Lp(Ω) equivalent to the usual norm ‖u‖p.
For all s = 1, . . . , k we set

µλ
ε,s = inf

{ ∫
Ω′

s

ai,j
ε (x)
ε

∂xi
u∂xj

u dx : u ∈ H1,2
0 (Ω′s),

∫
Ω′

s

λ(x)|u(x)|p dx = 1
}

;

indeed, µλ
ε,s is a minimum since p ∈ ]2, 2N/(N − 2)[ and it is strictly positive

because of (a.1). Let the function vλ
ε,s(x) be a minimizing function for µλ

ε,s.
For all s = 1, . . . , k set

µλ
0,s = inf

{ ∫
Ωs

ai,j(x)∂xi
u∂xj

u dx : u ∈ H1,2
0 (Ω′s),∫

Ω′
s\Ωs

|Du|2 dx = 0,
∫

Ω′
s

λ(x)|u(x)|p dx = 1
}

;

as before, µλ
0,s is a minimum and it is a positive number. Let vλ

0,s(x) be a
minimizing function for µλ

0,s for all s = 1, . . . , k. Set

µλ
m := min

s=1,... ,k
µλ

0,s and µλ
M := max

s=1,... ,k
µλ

0,s.
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When λ(x) = 1 for all x ∈ Ω, for simplicity of notation we will write µε,s, vε,s, µ0,s

and v0,s instead of µλ
ε,s, v

λ
ε,s, µ

λ
0,s and vλ

0,s respectively.

4. Multiplicity of positive solutions of Pε(Ω, p)

We begin with two general results.

(4.1) Proposition. Assume that the matrix aε(x) satisfies the conditions
(a.1)–(a.5). Let λ ∈ L∞(Ω) be a strictly positive function such that 1/λ ∈
L∞(Ω). Then for all s = 1, . . . , k we have (see Notations)

lim
ε→0+

µλ
ε,s = µλ

0,s.

Proof. From the definition of µλ
ε,s and vλ

0,s it follows that

(4.1) µλ
ε,s ≤

∫
Ω′

s

ai,j
ε (x)
ε

∂xi
vλ
0,s∂xj

vλ
0,s dx for all s = 1, . . . , k.

By (a.3),

lim
ε→0+

∫
Ω′

s

ai,j
ε (x)
ε

∂xiv
λ
0,s∂xjv

λ
0,s dx = lim

ε→0+

∫
Ωs

ai,j
ε (x)
ε

∂xiv
λ
0,s∂xjv

λ
0,s dx

=
∫

Ωs

ai,j(x)∂xi
vλ
0,s∂xj

vλ
0,s dx = µλ

0,s

and this implies that lim supε→0+ µλ
ε,s ≤ µλ

0,s <∞.
Since (aε(x)) is elliptic in Ω and lim infε→0+(inf{Λ1(ε, x)/ε : x ∈ Ω}) > 0,

for any sequence (εn)n of positive numbers such that limn→∞ εn = 0 the corre-
sponding sequence (vλ

εn,s)n is bounded in H1,2
0 (Ω′s); hence there exists a subse-

quence of (vλ
εn,s)n (which we shall call again (vλ

εn,s)n) converging to a function
vs ∈ H1,2

0 (Ω′s), weakly in H1,2
0 (Ω′s), in Lp(Ω′s) and almost everywhere in Ω′s.

Moreover, since for all η > 0,

lim inf
ε→0+

(
inf

{
Λ1(ε, x)

ε
: x ∈ Ω

∖ k⋃
t=1

Ωt(η)
})

= ∞,

we obtain
∫
Ω′

s\Ωs
|Dvs|2 dx = 0. It follows that

lim inf
n→∞

µλ
εn,s = lim inf

n→∞

∫
Ω′

s

ai,j
εn

(x)
εn

∂xiv
λ
εn,s∂xjv

λ
εn,s dx

≥ lim inf
n→∞

∫
Ωs

ai,j
εn

(x)
εn

∂xi
vλ

εn,s∂xj
vλ

εn,s dx

≥
∫

Ωs

ai,j(x)∂xivs∂xjvs dx ≥ µλ
0,s
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because vs ∈ H1,2
0 (Ω′s),

∫
Ω′

s\Ωs
|Dvs|2 dx = 0 and

∫
Ω′

s
λ(x)|vs(x)|p dx = 1. From

the arbitrary choice of the sequence (εn)n, the assertion follows. Notice that,
like vλ

0,s, also the function vs realizes the minimum µλ
0,s. �

(4.2) Lemma. Assume that the subsets Ω1, . . . ,Ωk satisfy the assumptions
introduced in Section 2. Let λ : Ω → R be a strictly positive function with
λ ∈ L∞(Ω) and 1/λ ∈ L∞(Ω). Suppose u ∈ H1,2

0 (Ω) is such that:

(1)
∫
Ω
λ(x)|u(x)|p dx = 1;

(2) u =
∑k

t=1 ut with ut ∈ H1,2
0 (Ω′t) and

∫
Ω′

t\Ωt
|Dut|2 dx = 0 for all t =

1, . . . , k;
(3) there exists s ∈ {1, . . . , k} such that

∫
Ω′

s
λ(x)|u(x)|p dx = 1− δ with

0 < δ < (µλ
m/µ

λ
M)p/p−2.

Then µλ
0,s <

∑k
t=1A(t, ut) (see Notations for µλ

m, µλ
M, µλ

0,s and A(t, ut)).

Proof. Suppose that s = 1. Define ct :=
∫
Ω′

t
λ(x)|ut(x)|p dx and ut(x) =

ut(x)/c
1/p
t for all t = 1, . . . , k. As 0 < δ < 1, c1 = 1− δ and

∑k
t=1 ct = 1, there

exists t ∈ {2, . . . , k} such that ct 6= 0. Let us compute:

k∑
t=1

A(t, u)− µλ
0,1

=
k∑

t=1

A(t, ut)c
2/p
t − µλ

0,1 ≥
k∑

t=1

µλ
0,tc

2/p
t − µλ

0,1

= µλ
0,1(c

2/p
1 − 1) +

k∑
t=2

µλ
0,tc

2/p
t ≥ µλ

M(c2/p
1 − 1) + µλ

m

( k∑
t=2

c
2/p
t

)

≥ µλ
M(c1 − 1) + µλ

m

( k∑
t=2

c
2/p
t

)
= µλ

M

(
−

k∑
t=2

ct

)
+ µλ

m

( k∑
t=2

c
2/p
t

)

=
k∑

t=2

(µλ
mc

2/p
t − µλ

Mct).

Now it suffices to remark that, since we have

0 <
k∑

t=2

ct < (µλ
m/µ

λ
M)p/(p−2),

it follows that 0 < ct < (µλ
m/µ

λ
M)p/(p−2) for some t = 2, . . . , k and so

µλ
mc

2/p

t
− µλ

Mct > 0,

while for t 6= t we have µλ
mc

2/p
t −µλ

Mct ≥ 0, because 0 ≤ ct < (µλ
m/µ

λ
M)p/(p−2) for

all t = 2, . . . , k.
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(4.3) Remark. Under the same assumptions of Lemma (4.2), if u ∈ H1,2
0 (Ω)

is such that ‖u‖(λ,p) = 1, u =
∑k

t=1 ut with ut ∈ H1,2
0 (Ω′t),

∫
Ω′

t\Ωt
|Dut|2 dx = 0

and

1− (µλ
m/µ

λ
M)p/(p−2) <

∫
Ω′

s

λ(x)|us(x)|p dx < 1,

then µλ
0,s <

∑k
t=1A(t, ut). �

We can now formulate our main result on multiplicity of positive solutions
for problem Pε(Ω, p).

(4.4) Theorem. Assume that the domains Ω,Ω1, . . . ,Ωk and the matrix
aε(x) satisfy the conditions introduced in Section 2. Then there exists ε > 0 such
that for all ε ∈ ]0, ε[ problem Pε(Ω, p) has at least k+1 solutions uε,1, . . . , uε,k+1.
Moreover, these solutions have the following properties:

(I) limε→0+ ‖uε,s‖2 = 0 for all s = 1, . . . , k + 1;
(II) there exists δ ∈ ]0, 1[ such that for all s = 1, . . . , k and for all ε ∈ ]0, ε[

the solution uε,s minimizes the functional

u 7→
∫

Ω

ai,j
ε (x)∂xi

u∂xj
u dx

in the set{
u ∈ H1,2

0 (Ω) : ‖u‖p = ‖uε,s‖p,

∫
Ω′

s

|u(x)|p dx > (1− δ)
∫

Ω

|u(x)|p dx
}

(the subsets Ω′s have been introduced in Section 2);
(III) for all s = 1, . . . , k,

lim
ε→0+

∫
Ω′

s
|uε,s(x)|p dx∫

Ω
|uε,s(x)|p dx

= 1;

(IV) for all s = 1, . . . , k,

lim
ε→0+

∫
Ω′

s
ai,j

ε (x)∂xiuε,s∂xjuε,s dx

ε‖uε,s‖2
p

= µ0,s

(see Notations for µ0,s);
(V)

µM ≤ lim inf
ε→0+

∫
Ω
ai,j

ε (x)∂xi
uε,k+1∂xj

uε,k+1 dx

ε‖uε,k+1‖2
p

≤ lim sup
ε→0+

∫
Ω
ai,j

ε (x)∂xi
uε,k+1∂xj

uε,k+1 dx

ε‖uε,k+1‖2
p

≤ 2(p−2)/pµM,

where µM = maxs=1,... ,k µ0,s.
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Proof. The solutions of problem Pε(Ω, p) correspond to the positive func-
tions u which are critical points of the functional

fε(u) =
∫

Ω

ai,j
ε (x)
ε

∂xiu∂xju dx

constrained to lie upon the manifold

Vp =
{
u ∈ H1,2

0 (Ω) :
∫

Ω

(u+)p dx = 1
}
.

In fact, a function u which is a constrained critical point for fε on Vp is a weak
solution of the equation

div(aε(x)Du) + µε(u+)p−1 = 0;

multiplying the last equation by u− we see that u ≥ 0 and it solves the equation

div(aε(x)Du) + µεu
p−1 = 0

with µε = εfε(u), so that [εfε(u)]1/(p−2)u is a solution of Pε(Ω, p) and it is
strictly positive by the maximum principle.

We now prove that for all s = 1, . . . , k,

(4.2) lim inf
ε→0+

(
inf

{
fε(u) : u ∈ Vp,

∫
Ω′

s

|u(x)|p dx = 1− δ

})
> µ0,s,

where 0 < δ < (µm/µM)p/(p−2) with

µm = min
t=1,... ,k

µ0,t and µM = max
t=1,... ,k

µ0,t.

By contradiction, assume that there exist a sequence (εn)n → 0 of positive
numbers and a sequence (un)n of functions in Vp such that∫

Ω′
s

|un(x)|p dx = 1− δ for all n ∈ N,(4.3)

lim
n→∞

fεn
(un) ≤ µ0,s.(4.4)

Since aε(x) is elliptic in Ω and lim infε→0+(inf{Λ1(ε, x)/ε : x ∈ Ω}) > 0, the
sequence (un)n has to be bounded in H1,2

0 (Ω); hence there exists a subsequence
of (un)n (which we shall denote again by (un)n) converging to a function u ∈
H1,2

0 (Ω), weakly in H1,2
0 (Ω), in Lp(Ω) and almost everywhere in Ω.

Moreover, since for all η > 0

lim inf
ε→0+

(
inf

{
Λ1(ε, x)

ε
: x ∈ Ω

∖ k⋃
j=1

Ωj(η)
})

= ∞,

we must have
∫
Ω\
Sk

j=1 Ωj
|Du(x)|2 dx = 0, which implies u(x) = 0 for all x ∈

Ω\
⋃k

j=1 Ω′j because u ∈ H1,2
0 (Ω) and every connected component of Ω\

⋃k
j=1 Ω′j

meets ∂Ω (see Section 2).
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Since the subsets Ω′1, . . . ,Ω
′
k are pairwise disjoint, we have u(x) = u1(x) +

. . .+ uk(x), where uj ∈ H1,2
0 (Ω′j), 1 ≤ j ≤ k, and

∫
Ω′

s
|u(x)|p dx = 1− δ.

So, the assumptions of Proposition (4.1) (with λ(x) = 1 for all x ∈ Ω) are
satisfied and, by the choice of δ, we have

µ0,s <
k∑

t=1

A(t, u) ≤ lim inf
n→∞

k∑
t=1

A(εn, un,Ωt) ≤ lim
n→∞

fεn(un),

contrary to (4.4). So (4.2) is proved.
Now, let us verify that, for all s = 1, . . . , k,

(4.5) lim sup
ε→0+

(
inf

{
fε(u) : u ∈ Vp,

∫
Ω′

s

|u(x)|p dx > 1− δ

})
≤ µ0,s;

in fact, let v0,s be the positive function which realizes the minimum µ0,s, i.e.
v0,s ∈ H1,2

0 (Ω′s), v0,s > 0 in Ω′s,
∫
Ω′

s
|v0,s|p dx = 1,

∫
Ω′

s\Ωs
|Dv0,s|2 dx = 0 and∫

Ωs

ai,j(x)∂xi
v0,s∂xj

v0,s dx = µ0,s.

It is easy to verify that limε→0+ fε(v0,s) = µ0,s, which implies (4.5), for all
s = 1, . . . , k.

From (4.2) and (4.5) we infer that for all ε > 0 small enough and for all
s = 1, . . . , k there exists a function uε,s which is a minimum for the functional
fε in the set {

u ∈ Vp :
∫

Ω′
s

|u(x)|p dx > 1− δ

}
.

The solutions uε,s = [εfε(uε,s)]1/(p−2)uε,s have property (II) with 0 < δ <

(µm/µM)p/(p−2) by construction. Moreover, it is evident that

(4.6) lim sup
ε→0+

fε(uε,s/‖uε,s‖p) ≤ µ0,s for all s = 1, . . . , k.

We now prove that there exists another critical point uε,k+1 for fε on Vp.
Suppose that µM = µ0,1; let γ : [0, 1] → Vp be a continuous path joining the
functions v0,1 and v0,2:

γ(τ) =
τv0,1 + (1− τ)v0,2

‖τv0,1 + (1− τ)v0,2‖p
.

One can verify that

(4.7) lim sup
ε→0+

{fε ◦ γ(τ) : τ ∈ [0, 1]} ≤ 2(p−2)/2µM.

Let µ > µM be such that (see (4.2)) µ < lim infε→0+(inf{fε(u) : u ∈ Vp,∫
Ω′

1
|u(x)|p dx = 1 − δ}). For ε small enough, v0,1 and v0,2 belong to {u ∈ Vp :

fε(u) ≤ µ} and they are not connected in that sublevel, which does not meet
the set {u ∈ Vp :

∫
Ω′

1
|u(x)|p dx = 1 − δ}; while the two functions v0,1 and v0,2
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are connected in the sublevel {u ∈ Vp : fε(u) ≤ µε}, with µε = max{fε ◦ γ(τ) :
τ ∈ [0, 1]}, in which the curve γ lies (see (4.7)).

Moreover, as lim infε→0+(infx∈Ω Λ1(ε, x)/ε) > 0 and p ∈ ]2, 2N/(N − 2)[, the
functional fε constrained on Vp satisfies the well-known Palais–Smale condition.
Hence, by the Mountain Pass Theorem of Ambrosetti–Rabinowitz, there is a
critical value for fε on Vp in the interval ]µ, µε] if ε is small enough.

Let uε,k+1 be the corresponding critical point; then the function

uε,k+1 = [εfε(uε,k+1)]1/(p−2)uε,k+1

is a solution of Pε(Ω, p) and it is distinct from the previous ones because it
corresponds to a greater critical level.

Let us prove (I). Since

lim sup
ε→0+

fε(uε,s) <∞ for all s = 1, . . . , k + 1

and lim infε→0+ (infx∈Ω Λ1(ε, x)/ε) > 0, it follows that, if we choose λ1 > 0
such that infx∈Ω Λ1(ε, x)/ε ≥ λ1 > 0 for all ε > 0 small enough, then, for all
s = 1, . . . , k + 1,

‖uε,s‖2 =
∫

Ω

|Duε,s|2 dx =
∫

Ω

Λ1(ε, x)
ε

· ε

Λ1(ε, x)
|Duε,s|2 dx

≤ 1
λ1

∫
Ω

Λ1(ε, x)
ε

|Duε,s|2 dx ≤
1
λ1
fε(uε,s)

=
1
λ1

[εfε(uε,s)]2/(p−2)fε(uε,s) → 0 as ε→ 0+.

Let us prove (III). Since uε,s = uε,s/‖uε,s‖p for all s = 1, . . . , k, we have∫
Ω′

s

|uε,s|p dx ≤ 1.

By contradiction, assume that there exists an infinitesimal sequence (εn)n of
positive numbers such that

(4.8) lim
n→∞

∫
Ω′

s

|uεn,s|p dx < 1.

Since lim supn→∞ fεn(uεn,s) ≤ µ0,s and lim infε→0+(infx∈Ω Λ1(ε, x)/ε) > 0, the
sequence (uεn,s)n is bounded in H1,2

0 (Ω) and then (uεn,s)n, or a subsequence,
converges in H1,2

0 (Ω) weakly, in Lp(Ω) and almost everywhere in Ω to a function
u. Since u ∈ H1,2

0 (Ω) and since for all η > 0 we have

lim inf
n→∞

(
inf

{
Λ1(εn, x)

εn
: x ∈ Ω

∖ k⋃
t=1

Ωt(η)
})

= ∞,

it follows that u(x) = 0 for all x ∈ Ω\
⋃k

t=1 Ω′t and
∫
Ω′

t\Ωt
|Du(x)|2 dx = 0 for all

t = 1, . . . , k. As
∫
Ω′

s
|u(x)|p dx ≥ 1−δ and, if (4.8) holds, then

∫
Ω′

s
|u(x)|p dx < 1,
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there is t ∈ {1, . . . , k}, t 6= s, such that
∫
Ω′

t
|ut(x)|p dx 6= 0. By the choice of δ

(see Remark (4.3)),

µ0,s <
k∑

t=1

A(t, u) ≤ lim inf
n→∞

k∑
t=1

A(εn, uεn,s,Ω′t) ≤ lim
n→∞

fεn(uεn,s) ≤ µ0,s,

which is a contradiction.
Let us prove (IV). By construction, the functions uε,s = uε,s/‖uε,s‖p are such

that
lim sup
ε→0+

fε(uε,s) ≤ µ0,s for all s = 1, . . . , k.

If, by contradiction, there exists an infinitesimal sequence (εn)n of strictly posi-
tive numbers such that

(4.9) lim
n→∞

A(εn, uεn,s,Ω′s) < µ0,s,

then it is easy to prove that the sequence (uεn,s)n is bounded in H1,2
0 (Ω) and

that one of its subsequences converges in Lp(Ω) and almost everywhere in Ω to
a function us which is zero in Ω \ Ω′s. It follows that

µ0,s ≤ A(s, us) ≤ lim
n→∞

A(εn, uεn
,Ω′s),

contrary to (4.9).
Property (V) is a simple consequence of the fact that fε(uε,k+1) ∈ ]µ, µε]

with µ > µM and lim supε→0+ µε ≤ 2(p−2)/2µM (see (4.7)).

5. The nonhomogeneous case

This section is devoted to the more general semilinear problem having the
nonlinear term not necessarily homogeneous.

We are concerned with the following problem:

(Pε(Ω, g))


div(aε(x)Du) + g(x, u(x)) = 0 in Ω,

u > 0 in Ω,

u = 0 on Ω,

where Ω is a smooth bounded domain in RN , N ≥ 3, and, for all ε > 0, aε(x) =
(ai,j

ε (x)) is a positive definite symmetric N ×N matrix (ai,j
ε (x) ∈ L∞(Ω; R) for

all i, j = 1, . . . , N).
Both Ω and aε(x) satisfy the assumptions required in Section 2 for the ho-

mogeneous problem Pε(Ω, p).
The requirements on the function g : Ω× R → R are the following:

(g.1) for all t ∈ R, g(x, t) is measurable with respect to x; for almost all
x ∈ Ω, g(x, t) is a C1-function with respect to t;
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(g.2) there exist a positive constant a > 0 and q ∈ ]2, 2N/(N − 2)[ such that
for all t > 0 and for almost all x ∈ Ω,

|g(x, t)| ≤ a+ atq−1 and |g′t(x, t)| ≤ a+ atq−2,

where g′t(x, t) denotes the derivative of g with respect to t;
(g.3) there exist p ∈ ]2, 2N/(N − 2)[ and a strictly positive function λ :

Ω → R with λ ∈ L∞(Ω) and 1/λ ∈ L∞(Ω) such that

lim
t→0+

g(x, t)/tp−1 = λ(x) uniformly on Ω;

(g.4) there exists θ ∈ ]0, 1/2[ such that

G(x, t) ≤ θtg(x, t)

for all t ≥ 0 and for almost all x ∈ Ω, where

G(x, t) =

{ ∫ t

0
g(x, τ) dτ if t ≥ 0,

0 otherwise;

(g.5) for all t > 0 and for almost all x ∈ Ω,

d

dt

[
g(x, t)
t

]
> 0.

We have the following result on the number of solutions of problem Pε(Ω, g).

(5.1) Theorem. If the domains Ω,Ω1, . . . ,Ωk and the matrix aε(x) satisfy
the conditions introduced in Section 2 and if the above conditions on g are sat-
isfied, then there exists ε > 0 such that for all ε ∈ ]0, ε[ problem Pε(Ω, g) has at
least k + 1 solutions uε,1, . . . , uε,k+1.

Let us observe that a positive function uε ∈ H1,2
0 (Ω) is a solution of Pε if

and only if uε is a critical point for the functional Fε : H1,2
0 (Ω) → R,

Fε(u) =
1
2

∫
Ω

ai,j
ε (x)
ε

∂xiu∂xju dx−
1
ε

∫
Ω

G(x, u(x)) dx.

Define the set

Mε = {u ∈ H1,2
0 (Ω) : u 6= 0 in Ω and Jε(u) = 0},

where

Jε(u) = F ′ε(u)[u] =
∫

Ω

ai,j
ε (x)
ε

∂xi
u∂xj

u dx− 1
ε

∫
Ω

g(x, u(x))u(x) dx.

We will now prove some properties of Mε which we need for proving Theo-
rem (5.1).
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(5.2) Proposition. For all ε small enough, Mε is a C1-manifold of codi-
mension 1 in H1,2

0 (Ω).

Proof. First observe that for all u ∈Mε,

meas{x ∈ Ω : u(x) > 0} > 0.

In fact, if u ≤ 0 in Ω, since it is not restrictive to assume that g(x, t) = 0 for all
t ≤ 0 and for almost all x ∈ Ω and Jε(u) = 0, we have

∫
Ω
ai,j

ε (x)∂xi
u∂xj

u dx = 0,
which implies u = 0.

Therefore, by (g.5), for all u ∈Mε,

J ′ε(u)[u] = 2
∫

Ω

ai,j
ε (x)
ε

∂xi
u∂xj

u dx− 1
ε

∫
Ω

g′t(x, u(x))u(x)
2
dx

− 1
ε

∫
Ω

g(x, u(x))u(x) dx

=
1
ε

∫
Ω

g(x, u(x))u(x) dx− 1
ε

∫
Ω

g′t(x, u(x))u(x)
2
dx < 0.

So the assertion follows as Jε ∈ C1. �

(5.3) Proposition. For all ε > 0 small enough there exists r > 0 such that
‖u‖ > r for all u ∈Mε.

Proof. It is sufficient to prove that there exists a constant r > 0 such that
Jε(u) > 0 for all u 6= 0 with ‖u‖ ≤ r. Since Fε ∈ C2(H1,2

0 (Ω); R) and F ′ε(0) = 0,
it suffices to prove that F ′′ε (0)[v][v] > 0 for all v ∈ H1,2

0 (Ω) \ {0}. By calculation,
we have

F ′′ε (u)[v][v] = 2
∫

Ω

ai,j
ε (x)
ε

∂xi
v∂xj

v dx− 1
ε

∫
Ω

g′t(x, u(x))v(x)
2 dx.

Since g′t(x, 0) = 0 for almost all x ∈ Ω from (g.1) and (g.3) and since we have
infx∈Ω Λ1(ε, x) > 0 for ε > 0 small enough, we can conclude that F ′′ε (0)[v][v] > 0
for all v ∈ H1,2

0 (Ω) \ {0}. �

(5.4) Proposition. For all ε > 0 small enough,

inf{Fε(u) : u ∈Mε} > 0.

Proof. Let u ∈Mε with ε fixed. By (g.4) we obtain

Fε(u) =
1
2

∫
Ω

ai,j
ε (x)
ε

∂xi
u∂xj

u dx− 1
ε

∫
Ω

G(x, u(x)) dx

≥ 1
2

∫
Ω

ai,j
ε (x)
ε

∂xiu∂xju dx−
1
ε
θ

∫
Ω

g(x, u(x))u(x) dx

=
(

1
2
− θ

) ∫
Ω

ai,j
ε (x)
ε

∂xi
u∂xj

u dx ≥
(

1
2
− θ

)
‖u‖2 infx∈Ω Λ1(ε, x)

ε
.

The conclusion follows from Proposition (5.3) and from (a.2). �
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(5.5) Proposition. Set S := {u ∈ H1,2
0 (Ω) : u+ 6= 0}. Then for every

u ∈ S there exists a unique αε ∈ R+ such that

αε

∫
Ω

ai,j
ε (x)∂xi

u∂xj
u dx =

∫
Ω

g(x, αεu(x))u(x) dx.

Proof. Let u ∈ S and consider the map R 3 z 7→ Fε(zu). It is continuous; it
achieves its maximum as, by (g.3) and (g.4), z = 0 is a strictly local minimum and
limz→∞ Fε(zu) = −∞. Let z = αε be such a maximum point. Then necessarily

∂

∂z
Fε(zu)

∣∣∣∣
z=αε

= αε

∫
Ω

ai,j
ε (x)
ε

∂xi
u∂xj

u dx− 1
ε

∫
Ω

g(x, αεu(x))u(x) dx = 0,

from which the existence of αε follows. The uniqueness of αε follows by observing
that (g.5) means that g(x, zu(x))/(zu(x)) is a strictly increasing function of z,
for all x ∈ Ω such that u(x) > 0. �

Roughly speaking, Proposition (5.5) says that, if we fix ε > 0 and u ∈ S,
the half-line connecting the origin in H1,2

0 (Ω) with u meets the manifold Mε in
a unique point αεu.

(5.6) Remark. By the implicit function theorem, the function ψε : S → R
defined by ψε(u) = αε if and only if Fε(αεu) is the maximum value of the function
R 3 z 7→ Fε(zu) (i.e. αεu ∈Mε) is continuous (C1) for all ε > 0 small enough.

(5.7) Proposition. For all ε > 0 and for every pair of functions (us, ut) ∈
Mε ×Mε such that us ∈ H1,2

0 (Ω′s), ut ∈ H1,2
0 (Ω′t) (see Section 2) there exists a

continuous path γε : [0, 1] →Mε connecting us to ut,

γε(τ) = αε(τ)[τut + (1− τ)us]

with αε(τ) a real number, depending on ε and on τ , such that αε(τ) ≥ 1 for all
τ ∈ [0, 1].

Proof. Existence and continuity of γε follow from Proposition (5.5) and
Remark (5.6).

Let us show that αε(τ) ≥ 1 for all τ ∈ [0, 1]. Observe that αε(0) = 1 and
αε(1) = 1. Consider the functional

R 3 z 7→ Fε(z(τut + (1− τ)us));
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if ∂
∂zFε(z(τut +(1−τ)us))|z=1 is greater than 0, then αε(τ) > 1 for all τ ∈ ]0, 1[.

Let us compute, by using the definition of Mε:

∂

∂z
Fε(z(τut + (1− τ)us))

∣∣∣∣
z=1

= τ2

∫
Ω′

t

ai,j
ε (x)
ε

∂xiut∂xjut dx+ (1− τ)2
∫

Ω′
s

ai,j
ε (x)
ε

∂xius∂xjus dx

− 1
ε

∫
Ω′

t

g(x, τut)τut dx−
1
ε

∫
Ω′

s

g(x, (1− τ)us)(1− τ)us dx

=
τ2

ε

∫
Ω′

t

[
g(x, ut)−

g(x, τut)
τ

]
ut dx

+
(1− τ)2

ε

∫
Ω′

s

[
g(x, us)−

g(x, (1− τ)us)
1− τ

]
us dx > 0

where the last inequality is a consequence of (g.5). �

(5.8) Lemma. The following statements are equivalent:

(i) uε ≥ 0, uε 6= 0 is a critical point of Fε;
(ii) uε ≥ 0, uε ∈Mε is a critical point of Fε constrained on Mε.

Proof. (i)⇒(ii). Since Jε(uε) = F ′ε(uε)[uε] = 0 it follows that uε belongs
to Mε and it is a constrained critical point of Fε constrained on Mε.

(ii)⇒(i). By assumption there exists µ ∈ R such that F ′ε(uε) = µJ ′ε(uε) and
uε ∈Mε. So we have

0 = Jε(uε) = F ′ε(uε)[uε] = µJ ′ε(uε)[uε]

with J ′ε(uε)[uε] < 0 (see the proof of Proposition (5.2)). Consequently, µ = 0.�

(5.9) Definition. For all ε > 0 and for all s = 1, . . . , k, we set

µε,s := inf{Fε(u) : u ∈ H1,2
0 (Ω′s) ∩Mε}

and we denote by ωε,s ∈ H1,2
0 (Ω′s) ∩ Mε a function which realizes µε,s. For

simplicity of notation, we write µ0,s and v0,s instead of µλ
0,s and vλ

0,s respectively
(see Notations), where λ(x) is the positive function appearing in the assumption
(g.3). Let µε,m = min1≤s≤k µε,s and µε,M = max1≤s≤k µε,s.

(5.10) Lemma. For all s = 1, . . . , k,

lim sup
ε→0+

µε,s

ε2/(p−2)
≤

(
1
2
− 1
p

)
µ

p/(p−2)
0,s ,

where p is the number in ]2, 2N/(N − 2)[ which appears in (g.3).

Proof. By Proposition (5.5), for all ε > 0 there exists a unique positive
constant αε such that αεv0,s ∈ Mε, where v0,s is the function in H1,2

0 (Ω′s) that
realizes µ0,s.
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Let us first observe that limε→0+ αε = 0; in fact, by contradiction suppose
that there is an infinitesimal sequence (εn)n such that limn→∞ αεn = α > 0.
Since limε→0+ ai,j

ε (x)/ε = ai,j(x) uniformly in Ωs and
∫
Ω′

s\Ωs
|Dv0,s|2 dx = 0, we

have

lim
n→∞

Fεn
(αεn

v0,s)

= lim
n→∞

[
α2

εn

2

∫
Ω′

s

ai,j
εn

(x)
εn

∂xi
v0,s∂xj

v0,s dx−
1
εn

∫
Ω′

s

G(x, αεn
v0,s) dx

]

=
α2

2

∫
Ωs

ai,j(x)∂xiv0,s∂xjv0,s dx− lim
n→∞

1
εn

∫
Ω′

s

G(x, αv0,s) dx = −∞,

which contradicts the fact that Fεn
(αεn

v0,s) ≥ 0 for all n ≥ 1 since αεn
v0,s be-

longs to Mεn and it is the maximum point for the function R+ 3 z 7→ Fεn(zv0,s)
(see Proposition (5.5)).

We next prove that limε→0+ αε/ε
1/(p−2) = µ

1/(p−2)
0,s . In fact, since αεv0,s

belongs to Mε for all ε > 0, αε satisfies the equation

(5.1)
∫

Ω′
s

ai,j
ε (x)
ε

∂xi
v0,s∂xj

v0,s dx =
1
ε

∫
Ω′

s

g(x, αεv0,s(x))αεv0,s(x)
αε

2
dx.

We are now going to evaluate the limits as ε → 0+ of both sides of the above
equation. By (a.3),

lim
ε→0+

∫
Ω′

s

ai,j
ε (x)
ε

∂xiv0,s∂xjv0,s dx = lim
ε→0+

∫
Ωs

ai,j
ε (x)
ε

∂xiv0,s∂xjv0,s dx = µ0,s.

In order to evaluate the other limit, we write

1
ε

∫
Ω′

s

g(x, αεv0,s(x))αεv0,s(x)
α2

ε

dx =
αp−2

ε

ε

∫
Ω′

s

g(x, αεv0,s(x))v0,s(x)
p

(αεv0,s(x))p−1
dx.

Since limε→0+ αε = 0 and (g.3) holds,

lim
ε→0+

g(x, αεv0,s(x))v0,s(x)p

(αεv0,s(x))p−1
= λ(x)v0,s(x)p for almost all x ∈ Ω′s.

Moreover, from (g.2) and (g.3) (where we can assume q ≥ p), there exist C > 0
and η > 0 such that∣∣∣∣g(x, αεv0,s(x))v0,s(x)p

(αεv0,s(x))
p−1

∣∣∣∣
≤

{
(λ(x) + C)v0,s(x)p if x ∈ Ω′s, |αεv0,s(x)| ≤ η,

(a/ηp−1 + a(αεv0,s(x))
q−p)v0,s(x)p if x ∈ Ω′s, |αεv0,s(x)| > η,
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where a is the positive constant which appears in (g.2). From the Lebesgue
Theorem we deduce that

lim
ε→0+

1
ε

∫
Ω′

s

g(x, αεv0,s(x))αεv0,s(x)
α2

ε

dx =
(

lim
ε→0+

αp−2
ε

ε

)∫
Ω′

s

λ(x)|v0,s(x)|p dx

= lim
ε→0+

αp−2
ε

ε
.

Passing to the limit as ε→ 0+ in (5.1), we see that

lim
ε→0+

αε/ε
1/(p−2) = µ

1/(p−2)
0,s .

The conclusion is quite near; in fact, by definition of µε,s,

µε,s

ε2/(p−2)
≤ Fε(αεv0,s)

ε2/(p−2)
(5.2)

=
α2

ε

2ε2/(p−2)

∫
Ω′

s

ai,j
ε (x)
ε

∂xi
v0,s∂xj

v0,s dx

− 1
εp/(p−2)

∫
Ω′

s

G(x, αεv0,s(x)) dx

=
α2

ε

2ε2/(p−2)

∫
Ω′

s

ai,j
ε (x)
ε

∂xi
v0,s∂xj

v0,s dx

− αp
ε

εp/(p−2)

∫
Ω′

s

G(x, αεv0,s(x))v0,s(x)p

(αεv0,s(x))
p dx.

Since limε→0+ αε = 0 and (g.3) holds, we see that

lim
ε→0+

G(x, αεv0,s(x))v0,s(x)p

(αεv0,s(x))p
=
λ(x)
p

v0,s(x)p for almost all x ∈ Ω′s;

(g.2) and (g.3) ensure that there exist constants C, η, b > 0 such that∣∣∣∣G(x, αεv0,s(x))v0,s(x)p

(αεv0,s(x))
p

∣∣∣∣
≤

{
(λ(x)/p+ C)v0,s(x)p if x ∈ Ω′s, |αεv0,s(x)| ≤ η,

(b/ηp + b(αεv0,s(x))
q−p)v0,s(x)p if x ∈ Ω′s, |αεv0,s(x)| > η.

From (a.3) and the Lebesgue Theorem, if we pass to the limit ε → 0+ in (5.2)
we finally obtain

lim sup
ε→0+

µε,s

ε2/(p−2)
≤

(
1
2
− 1
p

)
µ

p/(p−2)
0,s . �
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(5.11) Corollary. For δ ∈ (0, 1) and for all s = 1, . . . , k we have

lim sup
ε→0+

inf{Fε(u) : u ∈ H1,2
0 (Ω) ∩Mε,

∫
Ω′

s
λ(x) |u(x)|p

‖u‖p
(λ,p)

dx > 1− δ}

ε2/(p−2)

≤
(

1
2
− 1
p

)
µ

p/(p−2)
0,s .

(see Notations for ‖u‖(λ,p)).

(5.12) Lemma. There exists δ ∈ (0, 1) such that for all s = 1, . . . , k,

lim inf
ε→0+

inf
{
Fε(u) : u ∈ H1,2

0 (Ω) ∩Mε,
∫
Ω′

s
λ(x) |u(x)|p

‖u‖p
(λ,p)

dx = 1− δ
}

ε2/(p−2)

>

(
1
2
− 1
p

)
µ

p/(p−2)
0,s .

Proof. By contradiction assume that there exist a sequence (εn)n → 0 of
positive numbers and a sequence (un)n of functions such that un ∈Mεn ,

(5.3)
∫

Ω′
s

λ(x)
|un(x)|p

‖un‖p
(λ,p)

dx = 1− δ for all n = 1, 2, . . .

and

(5.4) lim
n→∞

Fεn
(un)

ε
2/(p−2)
n

≤
(

1
2
− 1
p

)
µ

p/(p−2)
0,s .

Let un(x) := un(x)/‖un‖(λ,p) and ũn(x) := un(x)/‖un‖q (we can assume q ≥ p

without any loss of generality). The proof consists of the following three steps.

Step 1. We prove that the sequence (ũn)n is bounded in H1,2
0 (Ω). In fact,

if we set βn = ‖un‖q, from (g.4) we see that

(5.5)
Fεn

(un)

ε
2/(p−2)
n

≥ 1

ε
2/(p−2)
n

(
1
2
− θ

)
β2

n

∫
Ω

ai,j
εn

(x)
εn

∂xi
ũn∂xj

ũn dx,

which, in particular, implies βn → 0. Since un ∈Mεn
and

∫
Ω
|ũn(x)|q dx = 1 for

all n = 1, 2, . . . , there exist two positive constants C1 and C2 such that

0 < C1 ≤
∫

Ω

ai,j
εn

(x)
εn

∂xi
ũn∂xj

ũn dx =
1

εnβ2
n

∫
Ω

g(x, βnũn)βnũn dx(5.6)

=
βp−2

n

εn

∫
Ω

g(x, βnũn(x))ũn(x)p

βp−1
n ũn(x)p−1

dx ≤ C2
βp−2

n

εn
;

the last inequality is due to (g.2) and (g.3). Since lim infε→0+(infx∈Ω Λ1(ε, x)/ε)
> 0, if we choose λ1 > 0 such that infx∈Ω Λ1(ε, x)/ε ≥ λ1 > 0, from (5.5) and
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(5.6) it follows that

A ≥ Fεn
(un)

ε
2/(p−2)
n

≥
(

1
2
− θ

)
B

∫
Ω

ai,j
εn

(x)
εn

∂xi
ũn∂xj

ũn dx

≥
(

1
2
− θ

)
Bλ1

∫
Ω

|Dũn|2 dx

with suitable positive constants A and B. Then (ũn)n is bounded in H1,2
0 (Ω);

hence there is a subsequence of (ũn)n (which we still call (ũn)n) converging to
a function ũ ∈ H1,2

0 (Ω), weakly in H1,2
0 (Ω), in Lp(Ω), in Lq(Ω) and almost

everywhere in Ω.
Since ũ 6= 0 (because ‖ũ‖q = 1), we have ‖ũ‖(λ,p) 6= 0 and so un =

ũn/‖ũn‖(λ,p) converges in Lp(Ω) to u := ũ/‖ũ‖(λ,p) ∈ H1,2
0 (Ω). We can also

assume that for this subsequence there exists

lim
n→∞

∫
Ω

ai,j
εn

(x)
εn

∂xi
un∂xj

un dx = µ;

then µ <∞ and, if we set αn := ‖un‖(λ,p), since αnun ∈Mεn
for all n = 1, 2, . . . ,

we get, arguing as in the proof of Lemma (5.10),

(5.7) lim
n→∞

αp−2
n /εn = µ.

Step 2. We prove that µ ≤ µ0,s. By using (5.4), for n large enough we have(
1
2
− 1
p

)
µ

p/(p−2)
0,s ≥ Fεn

(αnun)

ε
2/(p−2)
n

(5.8)

=
1
2

α2
n

ε
2/(p−2)
n

∫
Ω

ai,j
εn

(x)
εn

∂xiun∂xjun dx

− 1

ε
p/(p−2)
n

∫
Ω

G(x, αnun(x)) dx;

now, since un → u in Lp(Ω) and in Lq(Ω), and (g.2), (g.3) hold, we can use the
Lebesgue Theorem as in the proof of Lemma (5.10) to obtain, as n→∞,(

1
2
− 1
p

)
µ

p/(p−2)
0,s ≥ lim sup

n→∞

Fεn
(αnun)

ε
2/(p−2)
n

≥
(

1
2
− 1
p

)
µp/(p−2)

and consequently

(5.9) µ ≤ µ0,s.

Step 3. We arrive at a contradiction. Since for all η > 0

lim inf
ε→0+

(
inf

{
Λ1(ε, x)

ε
: x ∈ Ω

∖ k⋃
t=1

Ωt(η)
})

= ∞,
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we must have
∫
Ω\
Sk

t=1 Ωt
|Du|2 dx = 0. Since u ∈ H1,2

0 (Ω) and every connected

component of Ω \
⋃k

t=1 Ω′t meets ∂Ω, it follows that u(x) = 0 for almost all
x ∈ Ω \

⋃k
t=1 Ω′t.

As Ω′t1 ∩ Ω′t2 = ∅ for all t1, t2 ∈ {1, . . . , k}, t1 6= t2, u can be written in
the form u(x) = u1(x) + . . . + uk(x) with ut ∈ H1,2

0 (Ω′t) for all t = 1, . . . , k.
Since

∫
Ω
λ(x)|u(x)|p dx = 1 and

∫
Ω′

s
λ(x)|u(x)|p dx = 1 − δ, there exists at

least one t ∈ {1, . . . , k}, t 6= s, such that
∫
Ω′

t
λ(x)|u(x)|p dx > 0. Moreover,∫

Ω′
t\Ωt

|Du(x)|2 dx = 0 for t = 1, . . . , k. Hence u satisfies the assumptions of

Lemma (4.1) if δ ∈ ]0, (µm/µM)p/(p−2)[ and so

µ0,s <
k∑

t=1

∫
Ωt

ai,j(x)∂xi
ut∂xj

ut dx ≤ lim inf
n→∞

∫
Ω

ai,j
εn

(x)
εn

∂xi
un∂xj

un dx

≤ lim
n→∞

∫
Ω

ai,j
εn

(x)
εn

∂xi
un∂xj

un dx = µ,

contrary to (5.9). �

We are now ready to prove Theorem (5.1).

Proof of Theorem (5.1). The solutions of problem Pε(Ω, g) are the crit-
ical points of the functional

Fε(u) =
1
2

∫
Ω

ai,j
ε (x)
ε

∂xi
u∂xj

u dx− 1
ε

∫
Ω

G(x, u(x)) dx

constrained to lie upon the manifold

Mε =
{
u ∈ H1,2

0 (Ω) : u 6= 0 and
∫

Ω

ai,j
ε (x)∂xi

u∂xj
u dx =

∫
Ω

g(x, u(x))u(x) dx
}

(see Lemma (5.8)). According to Corollary (5.11) and Lemma (5.12) there exists
δ ∈ ]0, 1[ such that, for all s = 1, . . . , k,

(5.10) lim inf
ε→0+

inf{Fε(u) : u ∈Mε,
∫
Ω′

s
λ(x) |u(x)|p

‖u‖p
(λ,p)

dx = 1− δ}

ε2/(p−2)

>

(
1
2
− 1
p

)
µ

p/(p−2)
0,s

and

(5.11) lim sup
ε→0+

inf{Fε(u) : u ∈Mε,
∫
Ω′

s
λ(x) |u(x)|p

‖u‖p
(λ,p)

dx > 1− δ}

ε2/(p−2)

≤
(

1
2
− 1
p

)
µ

p/(p−2)
0,s .
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From (5.10) and (5.11) we can infer that there exists ε > 0 such that for all
ε ∈ ]0, ε[ and for all s = 1, . . . , k, there exists a function uε,s which is a minimum
point for the functional Fε in the set{

u ∈Mε :
∫

Ω′
s

λ(x)
|u(x)|p

‖u‖p
(λ,p)

dx > 1− δ

}
.

Moreover, it is evident that

(5.12) lim sup
ε→0+

Fε(uε,s)
ε2/(p−2)

≤
(

1
2
− 1
p

)
µ

p/(p−2)
0,s .

We now prove that there exists another critical point uε,k+1 for Fε on Mε.
For ε > 0 and s = 1, . . . , k we have already defined

µε,s := inf{Fε(u) : u ∈ H1,2
0 (Ω′s) ∩Mε};

let ωε,s ∈ H1,2
0 (Ω′s) ∩ Mε be a function that realizes µε,s. Let µε,M :=

max1≤t≤k µε,t for ε ∈ ]0, ε[. Suppose µε,M = µε,1; let γε : [0, 1] → Mε be a
continuous path joining the functions ωε,1 and ωε,2,

γε = αε[τωε,2 + (1− τ)ωε,1]

with αε a positive constant depending on ε and on τ ∈ [0, 1] (see Proposition
(5.7)). Define mε := max{Fε ◦ γε(τ) : τ ∈ [0, 1]}. It is clear that µε,M = µε,1 ≤
mε. Let µ′ε > µε,M be such that

µ′ε < inf
{
Fε(u) : u ∈Mε,

∫
Ω′

1

λ(x)
|u(x)|p

‖u‖(λ,p)
dx = 1− δ

}
.

For ε ∈ ]0, ε[, ωε,1 and ωε,2 belong to {u ∈Mε : Fε(u) ≤ µ′ε} because of Lemma
(5.10) and they are not connected in that sublevel, which does not meet the set{

u ∈Mε :
∫

Ω′
1

λ(x)
|u(x)|p

‖u‖p
(λ,p)

dx = 1− δ

}
;

while the two functions ωε,1 and ωε,2 are connected in the sublevel

{u ∈Mε : Fε(u) ≤ mε}

to which the curve γε belongs.
Moreover, as lim infε→0+(infx∈Ω Λ1(ε, x)/ε) > 0 and p ∈ ]2, 2N/(N − 2)[ (see

(g.2)), the functional Fε constrained onMε satisfies the well-known Palais–Smale
condition. Hence, by the Mountain Pass Theorem of Ambrosetti–Rabinowitz,
there is a critical value for Fε on Mε in the interval ]µ′ε,mε]. Let uε,k+1 be the
corresponding critical point: it is a solution for Pε(Ω, g) and it is distinct from
the previous ones because it corresponds to a greater critical level. �

The next proposition provides some qualitative information on the behaviour
of the solutions uε,1, . . . , uε,k+1 of problem Pε(Ω, g) when ε goes to 0.
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(5.13) Proposition. For ε > 0 small enough and s = 1, . . . , k + 1, let
uε,s ∈ H1,2

0 (Ω) be the solutions of problem Pε(Ω, g) given by Theorem (5.1).
They have the following properties:

(I) for all s = 1, . . . , k + 1,

lim
ε→0+

‖uε,s‖2 = 0;

(II) for all s = 1, . . . , k,

lim
ε→0+

∫
Ω′

s

λ(x)
|uε,s(x)|p

‖uε,s‖p
(λ,p)

dx = 1;

(III) for all s = 1, . . . , k, if we set uε,s(x) = uε,s(x)/‖uε,s‖(λ,p), we have

lim sup
ε→0+

‖uε,s‖ <∞;

moreover, if for a sequence (εn)n → 0, the sequence (uεn,s)n → us

in Lp(Ω), then us ∈ H1,2
0 (Ω′s) and it is a function which realizes the

minimum µ0,s;
(IV) for all s = 1, . . . , k,

lim
ε→0+

Fε(uε,s)
ε2/(p−2)

=
(

1
2
− 1
p

)
µ

p/(p−2)
0,s .

Proof. (I) Since lim infε→0+ (infx∈Ω Λ1(ε, x)/ε) > 0, we can choose λ1 > 0
such that infx∈Ω Λ1(ε, x)/ε ≥ λ1 > 0. Then, from (g.4), for ε > 0 small enough
and for all s = 1, . . . , k, we have

‖uε,s‖2

=
∫

Ω

Λ1(ε, x)
ε

· ε

Λ1(ε, x)
|Duε,s(x)|2 dx ≤

1
λ1

∫
Ω

Λ1(ε, x)
ε

|Duε,s(x)|2 dx

≤ 1/2− θ

λ1(1/2− θ)

∫
Ω

ai,j
ε (x)
ε

∂xiuε,s∂xjuε,s dx

=
1

λ1(1/2− θ)

[
1
2

∫
Ω

ai,j
ε (x)
ε

∂xiuε,s∂xjuε,s dx−
θ

ε

∫
Ω

g(x, uε,s(x))uε,s(x) dx
]

≤ 1
λ1(1/2− θ)

[
1
2

∫
Ω

ai,j
ε (x)
ε

∂xi
uε,s∂xj

uε,s dx−
1
ε

∫
Ω

G(x, uε,s(x)) dx
]

=
1

λ1(1/2− θ)
Fε(uε,s)

with limε→0+ Fε(uε,s) = 0, because of (5.12).
If s = k + 1 the same conclusion holds. In fact, the proof of Theorem (5.1)

shows that
lim sup
ε→0+

Fε(uε,k+1)/µε,M <∞
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and consequently, by Lemma (5.10),

lim sup
ε→0+

Fε(uε,k+1)/ε2/(p−2) <∞.

(II) If we define uε,s(x) := uε,s(x)/‖uε,s‖(λ,p) for s = 1, . . . , k, it is evident
that

∫
Ω′

s
λ(x)|uε,s(x)|p dx ≤ 1. By contradiction, assume that there exists an

infinitesimal sequence (εn)n of positive numbers such that

(5.13) lim
n→∞

∫
Ω′

s

λ(x)|uεn,s(x)|p dx < 1.

Since

lim sup
ε→0+

Fε(uε,s)
ε2/(p−2)

≤
(

1
2
− 1
p

)
µ

p/(p−2)
0,s

and lim infε→0+(infx∈Ω Λ1(ε, x)/ε) > 0, it can be proved that (uεn,s)n, or a
subsequence, converges in Lp(Ω) and almost everywhere in Ω to a function us ∈
H1,2

0 (Ω), in the same way as we proved it in Lemma (5.12). Moreover, we can
assume that, for this subsequence, there exists

lim
n→∞

∫
Ω

ai,j
εn

(x)
εn

∂xi
uεn,s∂xj

uεn,s dx = µ <∞.

Since limn→∞ ‖uεn,s‖(λ,p) = 0 (see (I)) and uεn,s ∈Mεn , we can obtain

lim
n→∞

‖uεn,s‖(λ,p)/ε
1/(p−2)
n = µ1/(p−2)

arguing as in step 1 of the proof of Lemma (5.12). From (5.12) and by using the
Lebesgue Theorem we see that(

1
2
− 1
p

)
µ

p/(p−2)
0,s ≥ lim sup

n→∞

Fεn(uεn,s)

ε
2/(p−2)
n

≥
(

1
2
− 1
p

)
µp/(p−2)

and so µ ≤ µ0,s.
Moreover, since for all η > 0 we have

lim inf
n→∞

(
inf

{
Λ1(εn, x)

εn
: x ∈ Ω

∖ k⋃
t=1

Ωt(η)
})

= ∞,

we conclude that
∫
Ω\
Sk

t=1 Ωt
|Dus(x)|2 dx = 0. Since us ∈ H1,2

0 (Ω) and every

connected component of Ω \
⋃k

t=1 Ω′t meets ∂Ω, we have us(x) = 0 for almost all
x ∈ Ω \

⋃k
t=1 Ω′t.

Since
∫
Ω
λ(x)|us(x)|p dx = 1 and, by (5.13),

∫
Ω′

s
λ(x)|us(x)|p dx < 1, there

exists t ∈ {1, . . . , k}, t 6= s, such that
∫
Ω′

t
λ(x)|us(x)|p dx 6= 0. Moreover, 1− δ <∫

Ω′
s
λ(x)|us(x)|p dx with δ ∈ ]0, (µm/µM)p/(p−2)[ (see proof of Theorem (5.1))
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and
∫
Ω′

t\Ωt
|Dus(x)|2 dx = 0 for all t = 1, . . . , k. Therefore Remark (4.3) assures

that

µ0,s <
k∑

t=1

∫
Ωt

ai,j(x)∂xi
us(x)∂xj

us(x) dx

≤ lim inf
n→∞

∫
Ω

ai,j
εn

(x)
εn

∂xi
uεn,s(x)∂xj

uεn,s(x) dx

≤ lim
n→∞

∫
Ω

ai,j
εn

(x)
εn

∂xiuεn,s(x)∂xjuεn,s(x) dx = µ.

This is a contradiction with what was previously proved.
(III) The proof of property (III) can be easily obtained with the same argu-

ments used for (II) and in the proof of Theorem (5.1).
(IV) Because of (5.12), it suffices to prove that

lim inf
ε→0+

Fε(uε,s)
ε2/(p−2)

≥
(

1
2
− 1
p

)
µ

p/(p−2)
0,s .

We argue by contradiction and suppose that there exists a sequence (εn)n of
positive numbers such that limn→∞ εn = 0 and

(5.14) lim
n→∞

Fεn
(uεn,s)

ε
2/(p−2)
n

<

(
1
2
− 1
p

)
µ

p/(p−2)
0,s .

Then one can prove that the sequence uεn,s = uεn,s/‖uεn,s‖(λ,p) or one of its
subsequences converges in Lp(Ω) and almost everywhere in Ω to a function us

which belongs to H1,2
0 (Ω) and is zero in Ω\Ω′s (argue as in the proofs of Lemma

(5.12) and of (I)).
Since for all η > 0,

lim inf
ε→0+

(
inf

{
Λ1(ε, x)

ε
: x ∈ Ω

∖ k⋃
t=1

Ωt(η)
})

= ∞

we have
∫
Ω′

s\Ωs
|Dus|2 dx = 0. Moreover, us ∈ H1,2

0 (Ω′s),
∫
Ω′

s
λ(x)|us(x)|p dx

= 1 and from the fact that uεn,s ∈Mεn it follows that

lim
n→∞

‖uεn,s‖(λ,p)

ε
1/(p−2)
n

=
( ∫

Ω′
s

ai,j(x)∂xi
us∂xj

us dx

)1/(p−2)

.

From (5.14) we find, by using (a.3) and the Lebesgue Theorem (as in the proof
of Lemma (5.12)),(

1
2
− 1
p

)( ∫
Ωs

ai,j(x)∂xi
us∂xj

us dx

)p/(p−2)

≤ lim
n→∞

Fεn
(uεn,s)

ε
2/(p−2)
n

<

(
1
2
− 1
p

)
µ

p/(p−2)
0,s ,

i.e.
∫
Ωs
ai,j(x)∂xius∂xjus dx < µ0,s, contrary to the definition of µ0,s. �
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(5.14) Remark. In order to obtain the multiplicity results stated in Theo-
rems (4.4) and (5.1), it would be sufficient to require that

lim sup
ε→0+

1
ε

sup
x∈
Sk

s=1Ωs

Λ2(ε, x) <∞

instead of condition (a.3). However, in this paper we have assumed (a.3) for the
sake of simplicity and also because it has been useful in studying the asymptotic
behaviour of the solutions.
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