Website: http://aimSciences.org pp. **295–306**

SIGN CHANGING SOLUTIONS TO A BAHRI-CORON'S PROBLEM IN PIERCED DOMAINS

Monica Musso

Departamento de Matematica, Pontificia Universidad Catolica de Chile Avenida Vicuna Mackenna 4860, Macul, Santiago, Chile and Dipartimento di Matematica, Politecnico di Torino Corso Duca degli Abruzzi, 24 – 10129 Torino, Italy

Angela Pistoia

Dipartimento di Metodi e Modelli Matematici, Università di Roma "La Sapienza" via A. Scarpa 16, 00161 Roma, Italy

ABSTRACT. We consider the problem

$$\left\{ \begin{array}{ll} -\Delta u = |u|^{\frac{4}{N-2}} u & \text{ in } \Omega \setminus \{B(\xi_1,\varepsilon) \cup B(\xi_2,\varepsilon)\}, \\ u = 0 & \text{ on } \partial \left(\Omega \setminus \{B(\xi_1,\varepsilon) \cup B(\xi_2,\varepsilon)\}\right), \end{array} \right.$$

where Ω is a smooth bounded domain in \mathbb{R}^N , $N \geq 3$, ξ_1 , ξ_2 are different points in Ω and ε is a small positive parameter. We show that, for ε small enough, the equation has at least one pair of sign changing solutions, whose positive and negative parts concentrate at ξ_1 and ξ_2 as ε goes to zero.

1. **Introduction.** Let D be a smooth bounded domain in \mathbb{R}^N , $N \geq 3$. Consider the following nonlinear elliptic problem

$$\Delta u + |u|^{\frac{4}{N-2}}u = 0 \quad \text{in} \quad D, \quad u = 0 \quad \text{on} \quad \partial D. \tag{1}$$

It is well known that the Sobolev embedding $H_0^1(D) \hookrightarrow L^{\frac{2N}{N-2}}(D)$ is not compact and that this lack of compactness makes the question of solvability of (1) quite delicate.

Pohozaev's identity [31] shows that problem (1) has only the trivial solution if the domain D is assumed to be strictly starshaped. On the other hand, Kazdan and Warner showed in [23] that if D is an annulus then (1) has a (unique) positive solution in the class of functions with radial symmetry. In [7], the authors study the asymptotic behavior of this solution as the radius of the inner ball of the annulus tends to zero. In the nonsymmetric case, Coron [17] found via variational methods that (1) is solvable and that it admits a positive solution under the assumption that D is a domain exhibiting a small hole. Substantial improvement of this result was obtained by Bahri and Coron [5], showing that if some homology group of D with coefficients in \mathbb{Z}_2 is not trivial, then (1) has at least one positive solution. See also [4, 6, 11, 18, 20, 32] for related results.

 $^{2000\} Mathematics\ Subject\ Classification.\ Primary:\ 35J60;\ Secondary:\ 35J25.$

Key words and phrases. Critical Sobolev exponent, pierced domain, single blow up, sign changing solutions.

The authors are supported by the M.I.U.R. National Project "Metodi variazionali e topologici nello studio di fenomeni non lineari". The first author is supported by Fondecyt 1040936 (Chile).