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Abstract

We construct new examples of traveling wave solutions to the bistable and bal-
anced semilinear parabolic equation in RNC1, N � 2. Our first example is that
of a traveling wave solution with two non planar fronts that move with the same
speed. Our second example is a traveling wave solution with a nonconvex mov-
ing front. To our knowledge no existence results of traveling fronts with these
type of geometric characteristics have been previously known. Our approach
explores a connection between solutions of the semilinear parabolic PDE and
eternal solutions to the mean curvature flow in RNC1.
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1 Introduction
The problem of finding traveling wave solutions to autonomous semilinear par-

abolic PDEs,
�v C f .v/ D vt in Rn � .�1;1/;

has been studied extensively since the pioneering work of Kolmogorov, Petrovsky,
and Piskunow [23] and Fisher [15]. A traveling wave solution propagating in a
fixed direction e 2 Rn with speed c is, by definition, a solution of the form
v.x; t/ D u.x � cte/. When written in the Galilean frame, the traveling wave
problem reduces to the following semilinear elliptic PDE:

�uC ce � ruC f .u/ D 0 in Rn:(1.1)

The most typical scenario is that of a planar front. Taking the ansatz u.x/ D
U.x � e/ reduces (1.1) to the ODE

U 00 C cU 0 C f .U / D 0 in R:

In this case several examples of existence are well known; most common is the
monostable nonlinearity f .u/ D u.1 � u/ (KPP) and the bistable nonlinearity

f .u/ D .uC a/.1 � u2/; a 2 .�1; 1/:

In the former case a planar traveling front exists for any c > 2
p
f 0.0/ > 0 while

in the latter case the nonlinearity determines the speed uniquely,

c D

R 1
�1 f .t/R 1
�1.U

0/2
:

Note that in the case of balanced bistable nonlinearity we have c D 0. This means
that the traveling wave is a standing wave. These are classical results and we refer
the reader to [14] for more information. Other related results in the monostable and
bistable cases can be found in [20, 21] (see also [2, 3, 17, 19] and the references
therein).

The case of nonplanar fronts is much less understood. Since the subject of this
paper is to study the traveling waves with a bistable nonlinearity, we will mention
some results in this direction. First let us consider f unbalanced, i.e., a ¤ 0.
When n D 2 a V-shaped traveling wave was found by Ninomiya and Taniguchi
and in higher dimension by Hamel, Monneau, and Roquejoffre [18]. Let us com-
ment on the n D 2 case. Given a traveling wave solution u.x/ its traveling front
is the nodal set fu.x/ D 0g. It can be proven that the front is asymptotic to two
straight lines y D mjxj, and that it is convex at 1 [25]. Moreover, it is shown
that the traveling wave solution is stable. These results are generalized to higher
dimensions and fronts of more complex geometric structure, which however share
the general characteristics of the V-shaped front; i.e., the front profiles are asymp-
totically linear and convex, and as solutions of the parabolic problem the traveling
wave solutions are stable (see [18, 26, 27]).
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Let us now discuss the bistable balanced case. From now on we agree that
the direction of propagation will be fixed to coincide with one of the axes. It
is convenient to consider the traveling wave problem in RNC1, with the xNC1-
axis as the fixed direction of motion and N corresponding to the dimension of
the associated traveling front. We will assume that N � 2. Thus, if we look for
solutions to the parabolic Allen-Cahn equation

(1.2) ut D �uC u � u
3 in RNC1 � .�1;1/; N � 2;

in the following form:

(1.3) u.x; t/ D U.x0; xNC1 � ct/; x D .x0; xNC1/;

then U will satisfy the traveling wave Allen-Cahn equation

(1.4) �U C c@xNC1U C U � U
3
D 0:

In [4], the existence of a traveling wave in the form U.r; xNC1/, jx0j D r , is
obtained for any speed c > 0. Furthermore, it is shown that asymptotically the
0-level set of U—denoted here by �—is paraboloid-like:

lim
xNC1!C1
.x0;xNC1/2�

r2

2xNC1
D
N � 1

c
if N � 2:

In the same paper the case N D 1 is treated as well and the traveling front is
shown to be asymptotic to a hyperbolic cosine curve. In all cases traveling fronts
are connected, convex surfaces.

The objective of this paper is to show that in the bistable balanced case there
exist traveling wave solutions whose traveling fronts are nonconnected, multicom-
ponent surfaces (Theorem 1.1), and also that there are solutions whose fronts are
nonconvex (Theorem 1.2). These results are, to our knowledge, the first examples
of this type for an autonomous traveling wave problem.

To introduce our results we review some well-known facts about the relation
between (1.4) and the so-called translating solutions to the mean curvature flow.
These solutions are also called eternal, since they exist for all t 2 .�1;1/.
In general, we say that an evolving-in-time family of surfaces moves by mean
curvature if the following is satisfied:

(1.5) V D H;

where H denotes the mean curvature vector and V the normal velocity of the
surface. Translating solutions of this problem are surfaces that do not change
shape and are translated by the mean curvature (MC) flow in a fixed direction
and with constant velocity. After a rigid motion and rescaling we may assume
that a translating solution of the MC flow is represented by a family of surfaces
f˙CcteNC1gt2R, where˙ is a fixedN -dimensional surface in RNC1, and c 2 R
is a fixed number. From this we obtain the following equation to determine ˙ :

(1.6) H D c�NC1;
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where H is the mean curvature and � is the unit normal vector of the (oriented)
surface ˙ (recall that H D H�). Observe that the family f˙ C cteNC1gt2R is a
translating solution of the mean curvature flow, which is translated in the direction
parallel to the xNC1-axis with the constant speed c.

Let us fix a surface ˙ for which (1.6) holds and such that c D 1. Let us also
define its scaling ˙" by

(1.7) y 2 ˙"” "y 2 ˙:

Then, denoting the mean curvatures of these surfaces by H˙ and H˙" , respec-
tively, we see that if ˙ is a translating solution to the mean curvature flow with
speed 1, then we have

(1.8) H˙" D "�NC1;

which means that the scaled surface moves with the constant speed c D ". In this
paper we will consider " to be a small parameter, or in other words, we will be
interested in translating solutions of the MC flow moving with a small speed.

Several examples of translating solution to the MC equation are known; see, for
example, [1, 5, 24, 28]. Here we will discuss a special eternal solution of the mean
curvature flow for which † is a graph of a smooth function F WRN ! R, that is,
˙ D f.x0; F .x0//; x0 2 RN g. In this case (1.6) reduces to

(1.9) r

�
rFp

1C jrF j2

�
D

1p
1C jrF j2

:

It is known from [1, 5] that there exists a unique rotationally symmetric solution F
of (1.9), with the following asymptotic behavior:

(1.10) F.r/ D
r2

2.N � 1/
� log r C 1CO.r�1/; r � 1:

Notice that this asymptotic behavior corresponds (at leading order) to the asymp-
totic behavior of the nodal set of solutions to (1.4) found in [4]. In what follows we
will denote the rotationally symmetric translating solution of the MC flow by �
and the corresponding scaled surface by �". The latter surface is rotationally sym-
metric, is translating with speed c D ", and is given as a graph as well:

�" D fxNC1 D "
�1F."r/g:

The first result in this paper is about existence of a traveling wave solution to (1.4)
whose zero level set consists of two disjoint components, each of which is asymp-
totically a paraboloid-like surface in a neighborhood of the rotationally symmetric
eternal solution to the mean curvature flow �". More precisely, we have the fol-
lowing:

THEOREM 1.1. For each sufficiently small ", the traveling wave problem (1.4) has
a solution u" moving with speed c D " and with the following properties:

(1) The 0-level set of u" consists of two disjoint, rotationally symmetric, and
smooth hypersurfaces � ˙" .
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xNC1

r

F .r/

1
"
F."r/

FIGURE 1.1. Schematic view of the surface � represented as a graph
xNC1 D F.r/ and moving with speed c D 1, and the surface �", repre-
sented as a graph xNC1 D 1

"
F."r/ and moving with speed c D ".

(2) The nodal surfaces � ˙" divide the space into three disjoint and unbounded
components�˙" ,�0" . Each of the sets�˙" is a neighborhood, respectively,
of .0; xNC1 D ˙1/ 2 RNC1, and it holds u" < 0 in �˙" . The set �0"
contains �" and u" > 0 in �0" . Moreover,

lim
xNC1!˙1

u".x
0; xNC1/ D �1 8x0 2 RN ;

while at the same time

lim
.x0;xNC1/!1

.x0;xNC1/2�"

u".x
0; xNC1/ D 1:

(3) For any r > 0 let Cr be the cylinder Cr D f.x0; xNC1/ j jx0j D rg. Let
� ˙" .r/ D �

˙
" n Cr , and similarly �".r/ D �" n Cr . Then it holds that

(1.11) d.� ˙" .r/; �".r// D O
�

log
�
1C "2r2

"2

��
as r !C1;

where d is the Hausdorff distance between sets.

Of course, when u" is a solution so is �u", so our result automatically provides
existence of at least two traveling waves with multiple fronts.

Our construction of a traveling wave solution of (1.4) with a two-component
traveling front gives more precise information about the moving fronts � ˙" and
their relation to �". In particular, it is shown that � ˙" are normal graphs over �"
of certain functions f ˙" W �" ! R, whose asymptotic behavior coincides with the
one described in (1.11) above. In Section 2.2 we will discuss this in more detail and
we will introduce, based on formal calculations, a system of nonlinear PDEs on �"
that determines these functions. A schematic view of the situation is included in
Figures 1.1 and 1.2.

Our second result for the traveling wave problem (1.4) has to do with existence
of traveling waves whose fronts are nonconvex surfaces. In fact, in [5] it is proven
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xNC1

r

�
C
"

�"

� �"

u" � �1

u" � �1

u" � 1

FIGURE 1.2. Illustration of the results of Theorem 1.1. The surfaces
� ˙" are presented as well as the asymptotic values of the traveling wave
solution u".

that in the case of translating solutions of the mean curvature flow in RNC1, N �
2, there exists a family of rotationally symmetric surfaces ˙R, R > 0, of genus 0
that satisfies

H˙R D �R;NC1:

In other words, ˙R is translated by the mean curvature flow in the direction of the
xNC1-axis with speed c D 1. Each of these surfaces is formed by taking the union
of two graphs of radial functions W ˙R W ŒR;1/ ! R in RNC1. These functions
satisfy the following asymptotic formulas:

(1.12) W ˙R .r/ D
r2

2.N � 1/
� log r C C˙ CO.r�1/; r � 1;

with some constants C˙. The graphs of the functions W ˙R are called the ends
of ˙R, and we will refer to them as the upper end ˙CR and the lower end ˙�R ,
respectively. Comparing (1.12) with (1.10) we see that the ends of each of the sur-
faces ˙R are asymptotically “parallel” to the traveling graph � described above.
It is easy to see that ˙R divides the space into two disjoint components; we call
them�˙R , respectively, and agree that�CR is the component containing the vertical
axis xNC1 and ��R is the other one. Sometimes we refer to the surfaces ˙R as
traveling catenoids.

We consider a scaling of ˙R by a small parameter ˙R;" D 1
"
˙R. The scaled

surfaces move now with speed c D ". We will denote the ends of the scaled
traveling catenoid by ˙˙R;". Note that ˙R=" ¤ ˙R;". Indeed, while both of these
surfaces are defined for r > R

"
,˙R=" is a traveling catenoid whose speed is c D 1,

while ˙R;" is a traveling catenoid whose speed is c D ". In other words, the
surfaces˙R considered for different R are not simple scalings of one another. See
Figure 1.3, which illustrates the situation.

We show the following result:
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R

xNC1

r

˙R;"

�
˙R

FIGURE 1.3. Schematic view of the traveling catenoid˙R moving with
speed c D 1 and its rescaled version ˙R;" moving with speed c D ".
The surface � is also represented for comparison.

THEOREM 1.2. For each R > 0 and each " sufficiently small there exists a travel-
ing wave solution u" of the problem (1.4) moving with speed c D ", and such that
the following hold:

(1) The level set żR;" D fu" D 0g is a rotationally symmetric, smooth surface
of genus 0.

(2) The surface żR;" divides the space into two disjoint components D˙R;"
such that u" > 0 in DCR;" and u" < 0 in D�R;". Moreover, outside of a
sufficiently large ball the set��R;" , which is one of the two components into
which the traveling catenoid˙R;" divides RNC1, is contained inD�R;". We
also have

lim
xNC1!˙1

u".x
0; xNC1/ D 1 8x0 2 RN :

At the same time

lim
j.x0;xNC1/j!1

.x0;xNC1/2D
�
R;"\�

�
R;"

u".x
0; xNC1/ D �1:

(3) Let ż˙R;" denote the ends of the surface żR;". For each r > R we de-

note ż˙R;".r/ D ż
˙
R;" n Cr . Correspondingly we introduce the surfaces

˙˙R;".r/ D ˙
˙
R;" n Cr . With this notation it holds that

d
�
ż˙
R;".r/;˙

˙
R;".r/

�
D O

�
log

�
1C "2r2

"2

��
:

The existence results in Theorem 1.1 and Theorem 1.2 are rather counterintu-
itive in view of what happens with the planar fronts. To explain this, let us note that
because of statement (2) in Theorem 1.1 the phase labeled �1 has a tendency to in-
vade the other phase. This is because when we take the limit u".x0; xNC1/, with x0



8 M. DEL PINO, M. KOWALCZYK, AND J. WEI

xNC1

r

ż
R;"

u" � �1

˙R;"

u" � 1

u" � 1

FIGURE 1.4. Illustration of the results of Theorem 1.2. The surface
ż
R;" is presented as well as the asymptotic values of the traveling wave

solution u". For comparison we also include the surface ˙";R.

fixed and xNC1 ! ˙1, then u".x0; xNC1/! �1. In the one-dimensional situa-
tion a solution to the parabolic Allen-Cahn equation with initial data satisfying this
condition at ˙1 will eventually converge to �1. Thus, if this one-dimensional
interaction of fronts were the only mechanism present, the nodal hypersurfaces
should attract each other and eventually annihilate, and only one phase would re-
main in the asymptotic limit of infinite time. Based on this a natural statement in
higher dimension would then be: if a traveling wave solution of the bistable and
balanced problem satisfies limxNC1!˙1 u.x

0; xNC1/ D �1, then u � �1.
This turns out to be false because of the mediating effect of the geometry of the

front. Indeed, we see that in the situation described by the theorems one stable
phase, say �1, is “surrounded” by the other phase, say C1, which is also stable
thanks to the fact that the nonlinearity is bistable. The nonlinearity being balanced
as well, the two phases move with equal speed, and their initial configuration is
translated with constant speed and is preserved for all times. As a result we have
an eternal solution to the parabolic Allen-Cahn equation. The main effort in this
paper is to give a quantitative form of this by deriving and solving a system of
PDEs, called the Jacobi-Toda system, for the moving fronts.

Before we close this section, we make several important remarks as well as open
questions.

Remark 1.3. The results of Theorems 1.1 and 1.2 hold for general balanced non-
linearity

(1.13) �U C c@xNC1U C f .U / D 0

where f .U / D F
0

.U / and F 2 C4.R/ has two equal wells ˙1 with F.�1/ D
F.1/ D 0 and f

0

.˙1/ < 0. The proofs are similar but the notation and details of
some computations become quite cumbersome. For this reason we chose here to
work with the cubic, balanced nonlinearity f .u/ D u.1 � u2/.

On the other hand, it is also possible to construct solutions with multiple travel-
ing fronts when the nonlinearity is unbalanced (see [13]).
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Remark 1.4. In the statement of Theorem 1.1 we have assumed that N � 2. When
N D 1 the traveling wave solution to the mean curvature front is the well-known
grim reaper and its properties are quite different. In particular, the ends of the grim
reaper become parallel at1, and as a result to find multiple front traveling waves
for the traveling wave problem (1.1) one would have to take into account strong
interactions of the ends of the grim reaper. This situation resembles somewhat that
of Theorem 1.2, but the problem seems quite technical and is beyond the scope of
this paper. In this context it is worth mentioning that according to a result of Gui
[16] traveling wave solutions (1.1) with one front must be even symmetric. An
interesting question would then be whether multiple front traveling wave solutions
with no even symmetry exist.

Remark 1.5. In the proof of Theorem 1.1, for brevity we have only dealt with the
case of k D 2 front traveling wave. The techniques can be extended to a multiple
front traveling wave (k > 2), but the technical details render the proofs a bit longer.
The main issue, which is the solution of the Jacobi-Toda system, can be handled
similarly as in [12].

This paper is organized as follows. First, we formally explain the result in The-
orem 1.1 introducing in the process the Jacobi-Toda system for a traveling solution
to the mean curvature flow. Next, we solve this system for �". This is in fact
the core of our paper. Then we use the infinite-dimensional Lyapunov-Schmidt
reduction procedure to show the existence for (1.1). Finally, we prove Theorem
1.2.

2 Jacobi-Toda System and Multicomponent Traveling Fronts
The discussion in this section is mostly formal; however, we think that it is useful

in order to understand the role played by the Jacobi-Toda system in the existence
of a traveling wave with multiple components. We choose to work in the setting
that is more general than the one of Theorem 1.1 to emphasize the universality
of this system. The notation and many calculations presented here will be used
throughout the paper.

2.1 Geometric Background
Let us consider a parametrized, regular, N -dimensional surface ˙.t/ for which

(1.6) is satisfied. We will consider its parametrization over a family of open sets
U˛ � RN , ˛ 2 A, and associated smooth maps q˛ W U˛ ! RNC1 such that their
images cover ˙ , namely

S
˛2A q˛.U˛/ D ˙ . Furthermore, we fix an orientation

on ˙ , and by � we will denote the vector field of the unit normal vectors. Let us
consider a tubular neighborhood Dı of ˙ given by

Dı D fjdist.˙; x/j < ıg � RNC1;

where dist denotes the signed distance. All our calculations below have local char-
acter, and for this reason we will fix a pair .q˛;U˛/ and, for simplicity of notation,
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drop the subscript ˛. For each sufficiently small ı the map

.s; ´/ 7�! X 2 Dı where X.s; ´/ D q.s/C ´�.s/; s D .s1; : : : ; sN / 2 U ;
is a diffeomorphism ontoDı (we will consistently abuse the notation, writing �.s/
instead of �.q.s//).

In what follows we will work with the scaled version of ˙ , namely ˙", and we
will denote its parametrization and the unit normal by q" and �", respectively. It is
easy to see that the following relations hold:

q".s/ D "
�1q."s/; �".s/ D �."s/; s 2 "�1U ;

and that similar scaling formulas can be derived for other functions defined on ˙".
We also have local coordinates inDı=", which we will still denote by .s; ´/ and the
map X" defined by

X".s; ´/ D q".s/C ´�".s/:

It is convenient to introduce the following notation for functions f W Dı=" ! R:

.X�" f /.s; ´/ D .f ıX"/.s; ´/:

The function X�" f W X
�1
" .Dı="/! R can be interpreted as the pullback of f via

parametrization X". In a similar way, we define the pullback of a map f W Dı=" !
Rd , d � 1, via X". By .X�f / we denote the pullback of f W Dı ! Rd via X .

We will now derive formulas expressing � and @xNC1 in Dı=" in terms of
.s; ´/ 2 "U � .�ı="; ı="/. We define for each ´ 2 .�ı="; ı="/

˙";´ D fx 2 Dı=" j dist.˙"; x/ D ´g:

In other words ˙";´ is the surface obtained from ˙" by translation in the direction
of the normal by ´. Then the well-known formula gives

(2.1) � D �˙";´ C @
2
´ �H˙";´@´;

where H˙";´ denotes the mean curvature of ˙";´. We need to expand these opera-
tors in terms of the variable ´. By g˙" and g˙";´ , respectively, we will denote the
metric on ˙" and ˙";´ (induced from RNC1). In terms of s 2 "�1U we get the
following expressions:

(2.2) g˙";´;ij D g˙";ij C "´a";ij C "
2´2b";ij ;

where

(2.3)
g˙";ij D .@j q � @iq/."s/; a";ij .s/ D .@j q � @i�/."s/C .@iq � @j �/."s/;

b";ij .s/ D .@i� � @j �/."s/:

Then, for the matrix g�1˙";´ D .g
ij
˙";´

/i;jD1;:::;N , we get, provided that j"´j is suffi-
ciently small,

(2.4) g�1˙";´ D g
�1
˙"
C "´A" C "

2´2B";

where
A" D A."s/; B" D B."s; "´/;
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andA W U ! RN�RN ,B W U�.�ı; ı/! RN�RN are smooth matrix functions.
The expression for the Laplace-Beltrami operator on ˙" in local coordinates is

�˙" D
1p

det.g˙"/
@j
�p

det.g˙"/g
ij
˙"
@i
�

D g
ij
˙"
@ij C

1p
det.g˙"/

@j
�p

det.g˙"/g
ij
˙"

�
@i

D g
ij
˙"
@ij � g

k`� i
˙" ;k`

@i ;

where � i
˙" ;k`

are the Christoffel symbols. A similar formula holds for �˙";´ .
Using this we can write

�˙";´ D �˙" CA";ij @ij C B";i@i ;

where

A";ij D g
ij
˙";´
� g

ij
˙"
;

B";i D g
k`
˙";´

�
� i
˙";´ ;k`

� � i
˙" ;k`

�
C � i

˙" ;k`

�
gk`˙";´ � g

k`
˙"

�
:

Expressions in local coordinates for A";ij and B";i can be further derived using the
above expansions; however, their exact form is not crucial here. The point is that,
formally, these functions are small in terms of j"´j. Finally, for future reference,
we notice that if f" 2 C2.˙"/ is identified with f 2 C2.˙/ through the formula
.X�" f"/.s/ D .X

�f /."s/, then

(2.5) .X�" �˙"f"/.s/ D "
2.X��˙f /."s/:

Next, we will expand the mean curvature H˙";´ . To this end we will denote by
k";j , j D 1; : : : ; N , the principal curvatures of ˙". Then we have

(2.6)
H˙";´ D

NX
jD1

k";j
1 � ´k";j

D

NX
jD1

k";j C ´
NX
jD1

k2";j C ´
2R˙"

D H˙" C ´jA˙" j
2
C ´2R˙" ;

where

R˙" D

NX
jD1

k3";j C ´
NX
jD1

k4";j C � � � ;

and jA˙" j is the norm of the second fundamental form on ˙". Denoting by kj ,
j D 1; : : : ; N , the principal curvatures of ˙ , it is straightforward to see that
.X�" k";j /.s/ D ".X�kj /."s/, hence

(2.7) .X�" jA˙" j
2/.s/ D "2.X�jA˙ j

2/."s/:

To compute the expression for @xNC1 � @NC1 in local coordinates of Dı=", we
observe that for any function f" in Dı=" we have

@NC1f" D rf" � r.�";NC1/;
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where �";j W Dı=" ! R denotes the projection on the j th coordinate. Furthermore,
we have the following formula for the gradient (interpreted as a vector field defined
on Dı="):

(2.8) rf" D r˙";´f" C @´f"@´;

where r˙";´ denotes the gradient vector field on the hypersurface ˙";´.
The formula for the gradient in the local coordinates .s; ´/ 2 "�1U�.�ı="; ı="/

is given by
.X�" rf"/ D @j .X

�
" f"/g

ij
˙";´

@i C @´.X
�
" f"/@´I

hence

X�" .@NC1f"/ D .X
�
" r˙";´f"/ � .X

�
" r˙";´�";NC1/

CX�" .@�"f"/X
�
" .@�"�";NC1/

D g
ij
˙";´

@j .X
�
" f /@i .X

�
" �";NC1/C @´.X

�
" f"/@´.X

�
" �";NC1/:

Observe that X�" �";NC1 D q";NC1 C ´�";NC1; hence, using (2.4) and neglecting
those terms that carry a factor of "´ in front, we get the following asymptotic
formula, valid whenever j"´j is small:

(2.9) X�" .@NC1f"/ � g
ij
˙"
@j .X

�
" f /@i .q";NC1/C @´.X

�
" f"/�";NC1:

Here and below we denote f � g when f � g is a higher-order term.
To find the scaling formula for this expression, we observe that if f" 2 C2.Dı="/

and f 2 C2.Dı/ are related through the formula .X�" f"/.s; ´/ D .X�f /."s; "´/,
then

X�" .r˙"f"/ D "X
�.r˙f /;

and in particular, since we have

.X�" �";NC1/.s; ´/ D "
�1.X��NC1/."s; "´/; �";NC1.s/ D �NC1."s/;

therefore

(2.10)

X�" .@NC1f"/.s; ´/

� "X�.@NC1f /."s; "´/

D "
��
X�.r˙f � r˙�NC1/

�
C
�
X�.@�NC1f /.X

�@�NC1�NC1/
��
."s; "´/

D "
�
g
ij
˙ .@jX

�f /.@iqNC1/C @´.X
�f /�NC1

�
."s; "´/:

2.2 A Model for Multicomponent Traveling Waves
In this section we will describe an approximate form of the multiple traveling

wave solution to equation (1.4), where c D " is considered to be a small parameter.
This approximate solution models the multiple traveling waves in the sense that
the true solution to (1.4) with c D " is its small perturbation as "! 0. In general,
it is reasonable to assume that each component of the multiple traveling wave is
a normal graph over an eternal, translating solution of the MC flow, represented
by the hypersurface ˙". Moreover, the profile of each component of the traveling
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front should locally resemble a one-dimensional solution of (1.4) with " D 0.
Given these observations we will proceed now with more precise definitions.

Let H be the unique odd and monotonically increasing heteroclinic solution of
(1.4) in one dimension:

H 00 CH.1 �H 2/ D 0 in R:

For future reference let us recall that H.t/ D tanh.t=
p
2/.

Furthermore, let fj W ˙ ! R, j D 1; : : : ; k, k > 1, be smooth functions
such that fj < fjC1. We also set for convenience f0 D �1 and fkC1 D 1.
In our formal considerations we do not restrict k, however, to keep the paper at
a reasonable length, the rigorous construction is carried on for k D 2 only (see
Remark 1.5).

We now define the approximate solution u" through its expression in local coor-
dinates .q;U/ by

(2.11)
.X�" u"/.s; ´/ D

kX
jD1

.�1/jC1H.´ � .X�fj /."s//C
1

2
.1 � .�1/kC1/;

where s 2 "�1U ; ´ 2 .�ı="; ı="/:

Later on we will have to be more specific about the way the approximate solution
is defined outside of Dı=" (which is in fact a nontrivial matter), but for our formal
considerations it suffices to know u" in Dı=". In what follows we will denote
fj ."s/ D f";j .s/, so that f";j W ˙" ! R and that the following relation holds:
.X�" f";j /.s/ D .X

�fj /."s/, s 2 "�1U .
In order to solve (1.4) we will further introduce a new unknown function � and

look for a solution in the form u D u" C �. Substituting into (1.4) with c D " we
get

�uC "@xNC1uC f .u/ D S.u"/C L.�/CN.�/; f .u/ D u.1 � u2/;

where

S.u"/ D �u" C "@xNC1u" C f .u"/;

L.�/ D �� C "@xNC1� C f
0.u"/�;

N.�/ D f .u" C �/ � f .u"/ � f
0.u"/�:

Then, roughly speaking, (1.4) is reduced to finding � and f";j , j D 1; : : : ; k, such
that

(2.12) L.�/C S.u"/CN.�/ D 0:

As we will see later on, this problem requires further modification and in par-
ticular to solve it we will analyze in detail invertibility properties of the linear
operator L. Let us notice one important fact in this context. If by H 0";j we denote

.X�"H
0
";j /.s; ´/ D H

0.´ � .X�f";j /.s//;
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then
L.H 0";j / D o.1/; "! 0:

Thus the inverse of the linear operator L is not expected to be uniformly bounded
as " ! 0, since the function H 0";j is in the approximate kernel of L. On the other
hand, to solve (2.12) for � we would like to use a fixed point argument for the
operator

� 7�! �L�1.S.u"/CN.�//;

and this clearly requires that kL�1k be bounded independently on ". A standard
way to deal with this difficulty is to employ the method of infinite-dimensional
Lyapunov-Schmidt reduction. The idea is simple: for any function  W Dı=" ! R
we define a projection operator …" by

.X�"…" / D .X
�
"H
0
";j /.s; ´/

R ı="
�ı="

Œ.X�"  /.X
�
"H
0
";j /�.s; ´/d´R ı="

�ı="
.X�"H

0
";j /

2.s; ´/d´
:

Next we decompose � D �k C �? where

.X�" �
k/ D .X�"…"�/:

Then problem (2.12) reduces to

…"ŒL.�/C S.u"/CN.�/� D 0;(2.13)

.Id �…"/ŒL.�/C S.u"/CN.�/� D 0:(2.14)

Neglecting formally terms involving N.�/ and L.�/ in (2.13), which should be
of higher order, this condition reads

(2.15)
Z ı="

�ı="

�
X�" ŒS.u"/H

0
";j �

�
.s; ´/d´ D 0; j D 1; : : : ; k; 8s 2 "�1U :

Recall here that we work with a fixed pair .q;U/ belonging to the parametrization
.q˛;U˛/˛2A of ˙ , but of course this condition needs to be satisfied for all U˛.

We will now use equations (2.15) to derive the Jacobi-Toda system on ˙". We
will write for each fixed j :

(2.16)

Z ı="

�ı="

�
X�" .S.u"/H

0
";j /

�
.s; ´/d´

�

Z ı="

�ı="

X�"
�
.�H";j C "@xNC1H";j C f .H";j //H

0
";j /

�
.s; ´/d´

C

Z ı="

�ı="

X�"

��
f

� 2X
iD0

H";jCi�1

�
�

2X
iD0

f .H";jCi�1/

�
H 0";j

�
.s; ´/d´:

Observe that above we took into account only terms representing the interactions
of the j th wave with its “immediate” neighbors. The remaining terms represent
interactions of the j th wave with those waves whose distances to the j th wave are
large enough to render their interactions negligible.
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Now we will consider the integrand of the first of the integrals on the right-hand
side of (2.16). Using the expressions for � and @xNC1 , and neglecting small terms
(as in the previous section), we get

X�" S.H";j / � @´´X
�
"H";j CX

�
" f .H";j /CX

�
" ."�NC1 �H˙"/@´X

�
"H";j

CX�"
��
�˙" � ´jA˙" j

2@´
�
H";j C "r˙"H";j � r˙".�";NC1/

�
:

Consecutive terms above are organized in such a way that the first term is simply 0
by definition of H";j , the second term is also 0 since ˙" is an eternal solution of
the mean curvature flow translating with speed c D ", and the third is of order
O."2/. In this term we will separate those parts whose projection …" onto H 0";j is
nonzero from the rest:

(2.17)

X�" S.H";j /

� X�"
��
��˙"f";j � jA˙" j

2f";j � "r˙"f";j � r˙".�";NC1/
�
H 0";j

�
CX�" .jr˙"f";j j

2H 00";j / � .´ �X
�
" f";j /X

�
" .jA˙" j

2H 0";j /:

If we take this formula into account, it is not hard to show that

(2.18)

Z ı="

�ı="

X�" S.H";j /H
0
";j

� �c0X
�
"

�
�˙"f";j C jA˙" j

2f";j C "r˙"f";j � r˙".�";NC1/
�
.s/
�

D �"2c0X
�
�
�˙fj C jA˙ j

2fj Cr˙fj � r˙ .�NC1/
�
."s/;

where c0 D
R

R.H
0/2.

Similarly, we will identify in the integrand in the second integral in (2.16) those
parts whose projection onto H 0";j is nontrivial. Here we use the fact that from
H.t/ D tanh.t=

p
2/ we get 1 �H 2 D

p
2H 0. After some elementary manipula-

tions we find

(2.19) f
� 2X
iD0

H";jCi�1

�
�

2X
iD0

f .H";jCi�1/ �

3
p
2H 0";j .H";j�1 � 1/C 3

p
2H 0";j .H";jC1 C 1/;

where the terms that we have neglected turn out to have small contributions when
projected onto H 0";j . To compute the projection …", let us recall that

H.t/ � 1 � �2e�
p
2t ; t !1; H.t/C 1 � 2e

p
2t ; t ! �1:
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Then we obtain the following as the leading-order term in the second integral in
(2.16):

3
p
2

Z ı="

�ı="

X�"
�
.H 0";j /

2.H";j�1 � 1/
�
.s; ´/d´

C 3
p
2

Z ı="

�ı="

X�"
�
H 0";j .H";jC1 C 1/

�
.s; ´/d´

� 6
p
2c1X

�
"

�
e
p
2.f";j�1�f";j / � e

p
2.f";j�f";jC1/

�
.s/

D 6
p
2c1X

�
�
e
p
2.fj�1�f";j / � e

p
2.fj�fjC1/

�
."s/

(2.20)

where

c1 D

Z 1
�1

.H 0.t//2e
p
2t dt:

Denoting

˛0 D
c0

6
p
2c1
D

1

6
p
2

R
R.H

0/2R
R

�
H 0.t/

�2
e
p
2t
D

p
2

24
;

we find that to leading order (2.15) is equivalent to

(2.21) ˛0
�
�˙"f";j C jA˙" j

2f";j Cr˙"f";j � r˙ .�";NC1/
�

� e
p
2.f";j�1�f";j / C e

p
2.f";j�f";jC1/ D 0:

This system of k equations will be called the Jacobi-Toda system on ˙". Let us
recall that we have set f";0 D �1 and f";kC1 D 1 to close the system. Let us
also observe that by scaling back to ˙ we get the following singular perturbation
problem:

(2.22) ˛0"
2
�
�˙fj C jA˙" j

2fj Cr˙fj � r˙ .�NC1/
�

� e
p
2.fj�1�fj / C e

p
2.fj�fjC1/ D 0:

Solutions of (2.21) and (2.22) are related through the formula f";j . � / D fj ." �/.
We should mention here that a similar system appears in the context of foliation by
interfaces [9, 12].

3 An Existence Result for the Jacobi-Toda System
3.1 Rotationally Symmetric Eternal Solutions

The formal calculations of the previous section show that to prove Theorem 1.1
we need to find a suitable approximation of the components of the traveling front,
and this in turn requires solving the Jacobi-Toda system (2.22). This will be done
in several steps in this section. We begin by writing the Jacobi-Toda system for a
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special solution of (1.6). Assuming that the surface ˙ is given as a graph ˙ D
fxNC1 D F.x

0/; x0 2 RN g, and that c D 1, we obtain that (1.6) is equivalent to

(3.1) r

�
rFp

1C jrF j2

�
D

1p
1C jrF j2

:

We will further assume that F.x0/ D F.jx0j/, i.e., ˙ is rotationally symmetric.
Denoting jx0j D r we get

(3.2)
Frr

1C F 2r
C .N � 1/

Fr

r
D 1:

The following result is proven in [1] in the case N D 2 and in general in [5]:

PROPOSITION 3.1. There exists an entire, rotationally symmetric, and strictly con-
vex graphical eternal solution to the mean curvature flow. This solution satisfies
(3.2), and consequently it is translating with speed c D 1. Additionally, the follow-
ing asymptotic expansion as r !1 is valid:

(3.3) F.r/ D
r2

2.N � 1/
� log r C 1CO.r�1/:

In what follows by � we will denote the surface corresponding to the rotation-
ally symmetric eternal solution described in Proposition 3.1.

The Jacobi-Toda system (2.22) for � becomes

"2˛0.�� fj C jA� j
2fj Cr� fj � r� F /

� e
p
2.fj�1�fj / C e

p
2.fj�fjC1/ D 0:

Our theory of solvability of the Jacobi-Toda system will be valid for functions
of the radial variable r only, and so we need to express the Jacobi-Toda system on
� in terms of the radial variable r . For what follows it will be convenient to denote

(3.4) LŒv� D �� v C jA� j
2v Cr� v � r� F:

Now, we will find the expression of this operator when restricted to functions
v D v.r/, i.e., functions depending on the radial variable only. The Laplace-
Betrami operator for a surface xNC1 D F.r/ acting on v D v.r/ is

(3.5)
�� v D

1

rN�1
p
1C F 2r

@

@r

�
rN�1p
1C F 2r

@

@r

�
v

D
vrr

1C F 2r
C

�
N � 1

r
�

Fr

1C F 2r

�
vr :

The principal curvatures are given by

(3.6) k1 D � � � D kN�1 D
Fr

r
p
1C F 2r

; kN D
Frr

.1C F 2r /
3=2
;
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hence

(3.7) jA� j
2
D

NX
jD1

k2j D
.N � 1/F 2r
r2.1C F 2r /

C
F 2rr

.1C F 2r /
3
:

Finally, we have

r� v � r� F D
vrFr

1C F 2r
I

hence we find the following expression for the operatorL acting on radial functions
(we denote this operator by Lr ):

(3.8) Lr Œv� D
vrr

1C F 2r
C
.N � 1/vr

r
C

�
.N � 1/F 2r
r2.1C F 2r /

C
F 2rr

.1C F 2r /
3

�
v:

3.2 Weighted Hölder Norms on �
We will now proceed to define some weighted norms that we will use in what

follows. First we recall that, in general, for a function h given on a manifold ˙ we
have, in some local coordinates,

r˙h D g
ij @jh@i ; .D2˙h/ij D g

ij @ijh � g
ij�kij @kh:

We refer to the vectorr˙ as the gradient and to matrixD2˙ as the second derivative
matrix of h.

Now, in the case at hand we can use the fact that the surface � is rotationally
symmetric to find r� and D2� . In particular, when h D h.r/, i.e., we are dealing
with a radial function, then we have the following relations:

jr� h.r/j �
C j@rh.r/jp
1C jFr.r/j2

;

j@rh.r/j � C

q
1C jFr.r/j2 jr� h.r/j;

jD2� h.r/j �
C.j@2rh.r/j C r

�1j@rh.r/j/

1C jFr.r/j2
;

j@2rh.r/j � C.1C jFr.r/j
2/.jD2� h.r/j C jr� h.r/j/

We define the following weighted norms for C2;� functions on � :

khkC0;�
ˇ
.� /
D sup
y2�

.1C jFr.jy
0
j/j2/ˇkhkC0;�.B.y;1/\� /; y D .y0; yNC1/;

khkC2;�
ˇ

.� /
D khkC0;�

ˇ
.� /
C kr� hkC0;�

ˇ
.� /
C kD2� hkC0;�

ˇ
.� /
:

3.3 A Nonhomogeneous Jacobi-Toda System
We observe that so far we were considering the Jacobi-Toda system with the

right-hand side equal to 0. However, as we will see later on, we have to deal with a
more general, nonhomogeneous Jacobi-Toda system. This is because in our formal
considerations we neglected some terms that are of lower order but need to be
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eventually taken into account. Also in this case we assume k D 2, and thus we get
the following problem:

(3.9)
"2˛0LŒf1�C e

p
2.f1�f2/ D "2h1;

"2˛0LŒf2� � e
p
2.f1�f2/ D "2h2;

where fj W � ! R, hj W � ! R. To solve the above problem we will assume
that fj and hj are radial functions. In the remaining part of this section we will
consider the problem of the existence of solutions to (3.9) under some assumptions
about the decay in r and smallness in " for the right-hand side. In general, we will
assume that

(3.10) khj kC0;�
ˇ
.� /
� C"� ; � > 0; ˇ > 1:

Let us briefly explain why a nonhomogeneous problem (3.9) with this type of
right-hand side appears in our considerations. Going back to the formal calcula-
tions in Section 2.2 we notice that in (2.17) we expanded the mean curvature ac-
cording to (2.6), and we neglected the error term R˙" . In the case considered here,
i.e., ˙ D � , this term is small in terms of ", and it decays like O..1C r2/�3=2/
when r !1.

We have the following:

PROPOSITION 3.2. Consider the Jacobi-Toda system (3.9) where hj , j D 1; 2, are
radial functions satisfying (3.10). There exists a solution of this problem such that
the functions u and v defined by

u D
p
2.f2 � f1/; v D

p
2.f1 C f2/;

satisfy

(3.11)

u.r/ D log
2
p
2

"2˛0jA� .r/j2
CO

�
log log

1

"2jA� .r/j2

�
;

as "r ! 0C or "r � 1;

jv.r/j � C"� .1C r2/�
1
2 log.2C r2/;

where jA� .r/j is the norm of the second fundamental form on � .

To describe the strategy let us denote

h D

p
2

˛0
.h2 � h1/ and g D

p
2

˛0
.h2 C h1/:

Then we get the following decoupled system:

LŒu� �
2
p
2

"2˛0
e�u D h;(3.12)

LŒv� D g:(3.13)
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Let us discuss briefly the second of the above equations. The key observation is
that the operator L has a decaying, positive element in its kernel

(3.14) �0.r/ D
1p

1C F 2r
�
1

r
; r � 1;

from which we can solve (3.13) by a standard ODE method.
The solvability theory for the nonlinear equation (3.12) is where the real dif-

ficulty lies. Our approach will be to first use an approximation scheme to find a
suitable asymptotic approximation of the solution of (3.12), after which we will be
in a position to use a fixed point argument to solve the nonhomogeneous problem,
with the right-hand side satisfying (3.10).

The following sections are devoted to the proof of Proposition 3.2.

3.4 Solvability Theory for the Operator L
We begin by proving the claim that we have made in (3.14), namely that �0 is

in the kernel of L. Note that since � is an eternal graph solution to the MC flow,
then so is � C �eNC1, namely, the graph of xNC1 D F.x0/ translated by � in the
direction of the xNC1-axis. This results in an invariance of the nonlinear operator
on the left-hand side of (3.2), which we will take advantage of in the proof of the
following:

LEMMA 3.3. The function �0 D 1=
p
1C F 2r satisfies LŒ�0� D 0; i.e., it is a

positive, decaying element in kerL.

PROOF. Let us consider the nonlinear operator

H.ˆ/ D
ˆrr

1Cˆ2r
C .N � 1/

ˆr

r
:

Taking variations of this operator of the form ˆ� D F C ��, � D �.r/, we get

d

d�
H.ˆ� /

ˇ̌̌
�D0
� H0Œ�� D

�rr

1C F 2r
�
2FrrFr�r

.1C F 2r /
2
C
.N � 1/�r

r
:

In particular, we have H0Œ1� � 0. In addition, the following relation is not hard to
prove, again assuming that � D �.r/:

LŒ�� D H0
�
�

q
1C F 2r

�
:

From this the assertion of the lemma follows immediately. �

The existence result for (3.13) follows from the following:

LEMMA 3.4. Let g be a C0;�.� / radial function such that

kgkC0;�
ˇ
.RC/

<1; ˇ � 1:

There exists a unique, bounded solution to

(3.15) LŒv� D g
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such that

(3.16) kvkC2;�
ˇ�1

.� /
� CkgkC0;�

ˇ
.� /
:

PROOF. Since the function g in (3.15) is radial, we can use ODE methods to
solve the equation. Given �0 > 0 as in Lemma 3.3, which is a radial solu-
tion of LŒ�� D 0, we find the second linearly independent solution �1 of .1 C
jFr.r/j

2/Lr Œ�� D 0 (recall that Lr is the radial form of L) by the reduction-of-
order formula:

�1.r/ D �0.r/

Z 1
r

.1C jFr.�/j
2/ expŒ�A.�/�d�;

A.�/ D

Z �

1

.N � 1/.1C jFr.�/j
2/

�
d�:

From this we readily get that

�1.r/ �

(
log r; N D 2;

r2�N ; N > 2;
r � 1; �1.r/ � re

�r2 ; r � 1:

Denoting by W.r/ D W.1/ expŒ�A.r/� the Wronskian, and letting zg.r/ D .1 C

jFr.r/j
2/g.r/, we write

v.r/ D ��0.r/

Z r

0

�1.�/zg.�/

W.�/
d�C �1.r/

Z r

0

�0.�/zg.�/

W.�/
d�:

The assertion of the lemma follows from a straightforward argument, using the
asymptotic formulas for the functions �0.r/ and �1.r/. �

3.5 Solving for u: The Approximate Solution
Our goal in this and the following section is to solve the problem (3.12). Of

course, once this is done Proposition 3.2 will be proven. We begin by finding an
approximate solution of (3.12) assuming that h � 0, which is equivalent to solving

(3.17) Sı Œu� D 0;
where

(3.18) Sı Œu� � LŒu� � ı�2e�u; ı D
"
p
˛0

23=4
;

and L is the linear operator defined in (3.4). For the purpose of finding a suit-
able approximate solution we will consider a sequence of approximations vk D
v0 C v1 C � � � C vk . Once an accurate enough approximation is found, the non-
linear problem (3.12) can be reduced to a fixed point problem. This step involves
inverting the linear operator obtained by linearization of the nonlinear operator Sı
around the approximate solution and will be dealt with in the next section.

The nonlinear operator Sı can be written explicitly (using the notation of Section
3.1):

Sı Œv� D �� v Cr� v � r� F C jA� j2v � ı�2e�v:
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We will now describe the construction of an approximate solution of (3.17). The
leading-order term of this approximation is found by solving for v0 the following
equation:

(3.19) jA� j
2v0 D

1

ı2
e�v0 H) v0e

v0 D
1

ı2jA� j2
:

For brevity we denote b.r/ D jA� .y/j2, y D .y0; yNC1/, r D jy0j. Now, equa-
tion (3.19) implies that

(3.20) v0.r/ D log
1

ı2b.r/
� log log

1

ı2b.r/
CO.log log jlog ı2b.r/j/:

This asymptotic formula is valid when ı � 1. This follows from the fact that
b.r/ D 1CO.r2/, r ! 0, and on the other hand b.r/ D N�1

r2
CO.r�4/, r � 1.

Let us also observe the following relations:

(3.21) v00 D �
b0

b

v0

1C v0
; v000 D �

�
b0

b

�0 v0

1C v0
�

�
b0

b

�2 v0

.1C v0/3
;

from which the asymptotic behavior of the derivatives of v0 of any order can be
readily deduced. In particular, we observe that

(3.22) jv
.j /
0 j �

C

.r C 1/j
; j D 1; 2; : : : :

Accepting v0 as the leading-order approximation and assuming that the next
approximate solution is of the form v1 D v0 C v1, we are left with the following
problem:

(3.23) jA� j
2v1 �

1

ı2
.e�v0�v1 � e�v0/ D �Œ�� v0 Cr� v0 � r� F � � �0:

This is a nonlinear equation with a right-hand side that satisfies

(3.24) j�0.y/j �
C

.1C r/2
; r D jy0j:

This follows from the fact that v0 is a smooth function on � and (3.22). Using this
fact we can find a smooth solution of the equation (3.23) that satisfies

(3.25) jv
.j /
1 .y/j �

C

log
�
2Cr2

ı2

� 1

.1C r/j
; j D 0; 1; : : : :

The next terms in the approximate solutions will be determined inductively. It
is important to keep in mind that the approximations we want to construct must be
decaying functions of both 1=log ı2 and r . Given vk�1 D v0Cv1C� � �Cvk�1, for
which we already know (suitably adapted) relations (3.24)–(3.25), we determine vk
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by solving

jA� j
2vk �

1

ı2
.e�v0�v1�����vk � e�v0�v1�����vk�1/

D �Œ�� vk�1 Cr� vk�1 � r� F �

� �k�1:

(3.26)

Solving this equation gives vk D v0 C v1 C � � � C vk where

(3.27) jv
.j /

k
.y/j �

C�
log 2Cr

2

ı2

�k 1

.1C r/kCj�1
; j D 0; 1; : : : ;

and

(3.28) j�k.y/j D
ˇ̌
�� vk Cr� vk � r� F

ˇ̌
�

C�
log 2Cr

2

ı2

�k 1

.1C r/kC1
:

Thus we have proven the following:

LEMMA 3.5. For each k > 1 there exists a function vk such that

Sı Œvk� �
C�

log 2Cr
2

ı2

�k 1

.1C r/kC1
:

Another Parametrization of �
The next step in the proof of Proposition 3.2 is to linearize the operator Sı

around vk and find a solution of Sı Œu� D g in the form u D vk C h using ODE
methods.

To have a convenient form of the linear operator S 0
ı
Œvk� we define another

parametrization of � , which is obtained by taking the arc length along the curve
.r; F.r//. Thus we define

(3.29) s D

Z r

0

q
1C F 2r d�:

Of course, the function r 7! s.r/ is invertible and its inverse is s 7! r.s/. We also
note the following relations:

(3.30)
cj@shj � jr� hj � C j@shj;

c.j@2shj C s
�1
j@shj/ � jD

2
� hj � C.j@

2
shj C s

�1
j@shj/:

Using the asymptotic formula (3.3) for F , we get that

(3.31) s � r; r � 1; and s D
r2

2.N � 1/
CO.log r/; r � 1:

By a straightforward computation we obtain the following expression for the
operator L but now in terms of the arc length variable s:

(3.32) LsŒv� D vss C a.s/vs C b.s/v;
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where

(3.33) a.s/ D
Fr.r.s//C

N�1
r.s/p

1C F 2r .r.s//
; b.s/ D jA� .r.s//j

2:

Note that

(3.34)
a.s/ D

(
N�1
s
.1CO.s2//; s � 1;

1CO.s�1/; s � 1;

b.s/ D
N � 1

r2.s/
CO.r�4/ D

1

2s
CO.s�2 log s/; s � 1;

and that in general a.s/, b.s/ > 0 since � is convex and Fr.0/ D 0. We also have
b.0/ D 1 and b0.0/ D 0. Another important fact is that

(3.35) b00.0/ D �
N 2 C 4N C 2

N 4.N C 2/
< 0; N D 2; 3; : : : :

This last identity follows by a direct computation. Setting bN D
N 2C4NC2
2N 4.NC2/

, we
have

(3.36) b.s/ D 1 � bN s
2
CO.s4/; s ! 0:

Definition of the Linearized Operator Lı
From the above considerations we see that linearization of Sı around the ap-

proximate solution vk expressed in terms of r is the following operator:

(3.37) Lı Œh� D
hrr

1C F 2r
C
N � 1

r
hrCpı.r/h; pı.r/ D b.r/.1Cv0e

�vkCv0/:

We will often use the approximate solution vk expressed in terms of the arc length
variable s, which we will denote by uk.s/ D vk.r.s//. We will also set uj .s/ D
vj .r.s//, j D 0; 1; : : : . We let b.s/ D b.r.s//.

Later on we will consider the linearized operator in the space of functions that
decay in both s and log. s

ı2
/ as s increases. We will see that for our purposes we

need to determine vk (or uk) for k sufficiently large.
With some abuse of notation we will denote by the same symbol Lı the lin-

earized operator expressed in terms of the arc length variable s:

Lı Œh� D hss C a.s/hs C pı.s/h;

pı.s/ D b.s/.1C u0.s/e
�.u1.s/C���Cuk.s///:

(3.38)

Our goal is to find a right inverse of Lı . The idea is very simple. Since (3.38)
is an ODE, an inverse can always be written using the variation-of-parameters for-
mula. To control the norm of L�1

ı
, we need to understand the behavior of a fun-

damental set. This is complicated by the fact that on the one hand the operator
depends on ı and on the other hand its properties change as s varies from 0 to1.
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In fact, we observe that from (3.19)–(3.20) and (3.26)–(3.27) it follows that

(3.39) pı.s/ � log
1

ı2
;

when s � xs with some xs > 0 fixed, independent of ı, while when s � 1 we have

(3.40) pı.s/ �
log s

ı2

s
:

This can be summarized:

pı.s/ �
1

2C s
log
�
2C s

ı2

�
for all s and ı � 1. At the same time a.s/ � 1

s
, s � 1, and a.s/ � 1, s � 1. In

particular, we will need to study carefully Lı in these ranges of s.

3.6 An Inverse of Lı
In this section, we solve the problem

(3.41) Lı Œh� D g.s/:

Clearly, solving this problem is the key to implementing a fixed point argument
needed to solve (3.12). The point is to construct a right inverse of Lı that is
bounded in suitable Hölder weighted norms. Let us define these norms first:

(3.42)

kgkC0;�
ˇ;�
.RC/

D sup
s>1

�
.2C s/ˇ

�
log

2C s

ı2

��
kgkC0;�..s�1;sC1//

�
;

kgkC`;�
ˇ;�

.RC/
WD

X̀
jD0

kg.j /kC0;�
ˇ;�
.RC/

:

Because of the relations (3.30) these norms are easily translated into the norms of g
as a function (of the radial variable) on � .

More precisely, we will show the following:

LEMMA 3.6. Suppose that ˇ > 0, � > 0. Then there exists a constant C > 0 and
a solution h to (3.41) such that

(3.43) khkC0;�
ˇ;�
.RC/

C kh0kC0;�
ˇC1;�

.RC/
C kh00kC0;�

ˇC1;�
.RC/

�

C

�
log

1

ı2

�4C2ˇ
kgkC0;�

ˇC1;�C1
.RC/

:

In the rest of this section we prove this important lemma.
To begin with, we make the following transformation:

(3.44) yh D exp
�
1

2

Z s

1

a.�/d�

�
h:
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Then, when s ! 0, yh � s.N�1/=2h, and when s ! C1, yh � es=2h, by (3.34).
Equation (3.41) is transformed to

(3.45) yh00 C .pı.s/ � ya.s//yh.s/ D yg;

where

ya D
1

2
a0 C

1

4
a2; yg D exp

�
1

2

Z s

1

a.�/d�

�
g:

In what follows we will mainly work with the transformed equation (3.45). The
idea of the proof of the lemma follows the same lines as the construction of the
approximate solutions. The situation now is more complicated since we have to
consider a second-order ODE.

Let us denote
yLı Œh� D h

00
C ypıh; ypı D pı � ya:

When we consider the operator yLı for functions defined in the interval I1 D .0; s1/
for some s1 > 0 independent of ı, then we refer to this problem as the inner
problem. We speak of the outer problem when we take Isı D .sı ;1/, sı � s1 >

0, as the domain of the functions involved.
First, we will describe the way we choose s1 and sı . For s ! 0, we have, by

(3.34)–(3.36)

(3.46)
pı.s/ D .1 � bN s

2
CO.s4//

�
log

1

ı2
C 1CO.s2/

�
;

ya.s/ D s�2
�
.N � 2/2

4
�
1

4

�
CO.1/:

As a consequence, there exist

M > 0 and s1 >
Mq
log 1

ı2

> 0;

which are independent of ı, such that

(3.47) ypı.s/ D pı.s/ � ya.s/ > 0;
Mq
log 1

ı2

� s � s1:

When s !1 we have by (3.34) that pı satisfies (3.40) and

(3.48) ya.s/ D
1

4
CO.s�1/;

with similar formulas for the derivatives. From this we can find the asymptotic
behavior of ypı.s/ for s large and infer the existence of s2 � s1, again independent
of ı, such that for s > s2 it holds that

(3.49) yp0ı.s/ � 0:

Observe that s1 and s2 in general do not coincide and we need to solve an interme-
diate problem to glue the inner solution and the solution for s between s1 and s2.
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Finally, we will assume that ı is chosen sufficiently small so that

(3.50) ypı.s/ > 0; s1 < s < s2:

This can be achieved since, when s is bounded away from 0 and1 independently
of ı, we have ypı.s/ � pı.s/ � b.s/ log 1

ı2
. For future reference we observe that

from (3.49) and (3.50), it follows that there exists a unique sı such that ypı.sı/ D 0
and

(3.51) ypı.s/ > 0; s1 � s < sı ; ypı.s/ < 0; s > sı :

Actually, from (3.34) it follows that there exist constants M1 < M2 such that

(3.52) sı 2

�
M1 log

1

ı2
;M2 log

1

ı2

�
:

One more observation we make is that on any interval I D .0; s�/, with s� <
C log 1

ı2
, the norms k � kC`;�

ˇ;�
.I /

and k � kC`;�
ˇ;0

.I /
are equivalent in the following

sense:

kgkC`;�
ˇ;�

.I /
� C

�
log

1

ı2

��
kgkC`;�

ˇ;0
.I /
� CkgkC`;�

ˇ;�
.I /
:

We agree that k � kC`;�
ˇ;0

.I /
D k � kC`;�

ˇ
.I /

. We will use this equivalence of norms

when we consider the operator Lı on the interval .0; sı/.

Inner Problem for the Operator Lı
In this section we will consider the following problem:

(3.53)
Lı Œhi � D g in I1 D .0; s1/;

hi .0/ D 0; hi
0.0/ D 0:

Our goal is to show that there exists a unique solution hi to (3.53) such that

(3.54) khikC2;�
ˇ

.I1/
� C log

1

ı2
kgkC0;�

ˇC1
.I1/

:

We will work with the transformed operator Lı so that (3.53) becomes

(3.55)
yLı Œyhi � D yg in I1 D .0; s1/;

yhi .0/ D 0; yhi
0.0/ D 0:

For convenience we will denote � D
p
1C log.1=ı2/. Taking into account the

asymptotic behavior of b.s/ and ya.s/ when s ! 0, we see that the operator yLı can
be written in the form

yLı Œyh� D yh
00
C

�
�2 � s�2

�
.N � 2/2

4
�
1

4

��
.1CO.s2//yh:

It is convenient to make a further change of variables:

yhi .s/ D zhi .�s/; yg.s/ D zg.�s/; ypı.s/ D �
�2
zp.�s/; etc.
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Then, denoting by zLı the rescaled operator, we have

zLı Œzh� D zh
00
C

�
1 � s�2

�
.N � 2/2

4
�
1

4

��
.1CO.��2s2//zh;

and (3.55) becomes
zLı Œzhi � D �

�2
zg in I� D .0; �s1/:

Formally zLı Œzh� D 0 resembles the modified Bessel equation, and the operator
zLı should have an element of the kernel zhi;1 such that

(3.56) zhi;1.s/ � s
1
2JN�2

2
.s/;

where J.N�2/=2.s/ is the Bessel function. The second linearly independent ele-
ment in the kernel is such that

(3.57) zhi;2.s/ � s
1=2J.�NC2/=2.s/;

when N�2
2

is not an integer and

zhi;2.s/ � s
1=2Y.N�2/=2.s/;

when N�2
2

is an integer, where Y.N�2/=2 is the modified Bessel function of the
second kind [6].

We choose the solution to (3.55) given by

zhi .s/ D ��
�2zhi;1.s/

Z s

0

zhi;2.�/zg.�/ d�

C ��2zhi;2.s/

Z s

0

zhi;1.�/zg.�/d�:

(3.58)

Note that zhi .0/ D 0 and zh0i .0/ D 0 since, after the change of variables, we have
zg.s/ D O.s.N�1/=2/.

To make use of the above formula and to estimate zhi we need some information
about the functions zhi;j , j D 1; 2. We recall that the Bessel functions oscillate,
and the same is expected for zhi;j . We observe first that passing to the limit over
compacts we can justify the asymptotic statements (3.56)–(3.57) and show the uni-
form convergence of zhi;j to the corresponding solutions of the Bessel equation as
�!1. In particular, it follows that for each K > 0 and each sufficiently large �
the function zhi;1 is uniformly bounded on the interval .0;K/, and for each small
� > 0 the function zhi;2 is uniformly bounded over the interval .�;K/. Furthermore,
taking K sufficiently large, we may assume that

zp.s/ D

�
1 � s�2

�
.N � 2/2

4
�
1

4

��
.1CO.��2s2// > 0; s 2 .K; �s1/:

In fact, we even have

c1 � zp.s/ � c2; s 2 .K; �s1/;
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with some constants c1; c2 > 0. Now we will make an important observation: let
zh be a solution of zLı Œzh� D 0 in .K; �s1/ and consider the following expressions:

Q1.zh/ � Œzh
0.s/�2 C zp.s/Œzh.s/�2; Q2.zh/ D

Œzh0.s/�2

zp.s/
C Œzh.s/�2:

It is easy to see that

(3.59)
d

ds
Q1.zh/ D zp

0.zh/2;
d

ds
Q2.zh/ D �

zp0

zp
.zh0/2:

Let nowK � �1 < �2 < �s1 be two points such that zh0.�j / D 0. Then from (3.59)
and the bound on zp, it follows that there exist constants C1 and C2 such that

(3.60) C2Œzh.�1/�
2
� Œzh.�2/�

2
� C1Œzh.�1/�

2

as long as zp0 does not change sign in the interval .�1; �2/ (recall that zp > 0 in
.K; �s1/).

We claim that from this and the uniform bound for the functions zhi;j for s < K,
which we have already proven, it follows that these functions are actually bounded
uniformly for s � K as well. To prove this we observe that from (3.46) it follows
that

zp.s/ D

�
Œ1 � bN�

�2s2 CO.��4s4/� � s�2
�
.N � 2/2

4
�
1

4

��
.1CO.��2s2//I

hence when N D 2; 3 we have zp0.s/ < 0 for all s 2 .0; �s1/, while when N > 3

there exists a unique s� < C
p
� such that

zp0.s/ > 0; s 2 .0; s�/; zp0.s/ < 0; s 2 .s�; �s1/:

Therefore when N D 2; 3 the uniform bound on zhi;j follows immediately from
(3.60). WhenN > 3 we need to consider the growth of zhi;j between �1 < s� < �2
where �` are zeros of zhi;j . Observe that since zp.s/ is bounded uniformly for 0 <
s < �s1, therefore using the relations (3.59) but now considering those points � at
which zhi;j .�/ D 0, we get, as long as � < s�, that Œzh0i;j .�/�

2 is bounded uniformly
in �. Then, for each s 2 .�1; s�/, we get

d

ds
Q2.zhi;j /.s/ � 0 H) C

�
zh0i;j .�1/

�2
�
�
zh0i;j .s/

�2
C zp.s/

�
zhi;j .s/

�2
;

and in particular Œzh0i;j .s�/�
2 C Œzhi;j .s�/�

2 is bounded. A similar argument, but

using Q1.zhi;j /.s/ for s 2 .s�; �2/, gives that Œzh0i;j .s/�
2 C Œzhi;j .s/�

2 is bounded as
well. Now (3.60) applies in .�2; �s1/ and the claim follows.

The asymptotic formulas (3.56)–(3.57) for s small, and the uniform bound on
zhi;j , together with the variation-of-parameters formula (3.58), give the following
bound:

(3.61)


s 1�N2 zhi

C0.0;K/ � C

�2



s2C 1�N2 zg

C0.0;K/:
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On the other hand, the uniform bounds on zhi;j yield

(3.62)


s 1�N2 zhi

C0.K;�s1/ � C

�2



s1C 1�N2 zg

C0.K;�s1/:
Scaling back these estimates we get for the solution of the inner problem the esti-
mate

khikC0;�.I1/ � CkgkC0;�.I1/:

Using then equation (3.53), we can write

hss C a.s/hs D g � pı.s/h;

and since pı.s/ � log 1
ı2

on I1,

khikC2;�.I1/ � C log
1

ı2
kgkC0;�.I1/;

from where we get (3.54), using the fact that on the interval I1 D .0; s1/, with
s1 bounded independently of ı, the weight in the definition of the C0;�

ˇ
norm is

bounded by a constant.

Continuation of the Solution from s D s1 to s D s2
Let s1 < s2 be as defined above (see (3.47)–(3.50)). We will solve now

(3.63)
yLı Œyhn� D yg in I2 D .s1; s2/;

yhn.s1/ D yhi .s1/; yhn
0.s1/ D yh

0
i .s1/:

Let us recall that in the interval considered here we have ypı.s/ > 0, ypı.s/ �
b.s/ log 1

ı2
, and s2 is a point such that p0

ı
.s/ � 0 for s > s2.

The solution of (3.63) can be written using the variation-of-parameters formula

(3.64)

yhn.s/ D yhn;1.s/yhi .s1/C yhn;2.s/yh
0
i .s1/ �

yhn;1.s/

Z s

s1

yh2;n.�/yg.�/d�

C yhn;2.s/

Z s

s1

yh1;n.�/yg.�/d�;

where the yhn;j form a fundamental set of the ODE (3.63) with

yhn;1.s1/ D 1 D yh
0
n;2.s1/;

yh0n;1.s1/ D 0 D
yhn;2.s1/:

Using the fact that, by the choices of s1, s2, and ı in (3.47)–(3.50), ypı.s/ > c > 0
in I2, we can employ the identities (3.59) to obtain a uniform bound on Œyhn;j .s/�2

and Œyh0n;j .s/�
2 in I2.

Then from the estimate on yhj .s1/ and yh0i .s1/ and (3.64) we get, after changing
back to the original functions hn and g,

(3.65) khnkC0;�.I2/ � C log
1

ı2
kgkC0;�.I1[I2/I
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hence we get, again using the equation

(3.66) khnkC2;�.I2/ � C

�
log

1

ı2

�2
kgkC0;�.I1[I2/;

and since s2 is bounded,

(3.67) khnkC2;�
ˇ

.I2/
� C

�
log

1

ı2

�2
kgkC0;�

ˇC1
.I1[I2/

:

Continuation of the Solution from s D s2 to s D sı
Next we will solve

(3.68)
yLı Œyhm� D yg in I3 D .s2; sı/;

yhm.s2/ D yhn.s2/ yhm
0.s2/ D yh

0
n.s2/;

where sı is defined in (3.51). Notice that in I3 we have yp0
ı
.s/ < 0; however, ypı.s/

is not bounded away from 0 since by definition of sı , ypı.sı/ D 0. But we can
still use the quadratic form Q1.h/ in (3.59) to find a uniform bound on Œyh0m;j .s/�

2,

where the yhm;j are elements of a fundamental set. From this we find

(3.69) jyhm;j .s/j � C.1C .s � s2//; s 2 I3:

Then, the variation-of-parameters formula gives

(3.70)

yhm.s/ D yhm;1.s/yhn.s2/C yhm;2.s/yh
0
n.s2/ �

yhm;1.s/

Z s

s2

yh2;m.�/yg.�/d�

C yhm;2.s/

Z s

s2

yh1;m.�/yg.�/d�:

Multiplying this identity by expf�1
2

R s
1 a.�/d�g and using (3.69) we infer that the

function

hm.s/ D yhm.s/ exp
�
�
1

2

Z s

1

a.�/d�

�
satisfies

khmkC0;�.I3/ � C

�
log

1

ı2

�
.jhn.s2/j C jhn

0.s2/j/C C

�
log

1

ı2

�2
kgkC0;�

ˇC1
.I3/

:

Taking into account (3.66) we find

(3.71) khmkC0;�.I3/ � C

�
log

1

ı2

�3
kgkC0;�

ˇC1
.I1[I2[I3/

;

and then using the equation Lı Œhm� D g in I3:

(3.72) khmkC2;�.I3/ � C

�
log

1

ı2

�4
kgkC0;�

ˇC1
.I1[I2[I3/

:
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Finally, noting that for s2 < s < sı we have .2C s/ˇ � C.log 1=ı2/ˇ , we obtain
the following estimate:

(3.73) khmkC2;�
ˇ

.I3/
� C

�
log

1

ı2

�4Cˇ
kgkC0;�

ˇC1
.I1[I2[I3/

:

Outer Problem for the Operator Lı

Now we will find a solution yho of (3.45) such that

(3.74)
2yh00o C ypı

yho D yg; s > sı ;

yho.sı/ D yhm.sı/; yh0o.sı/ D
yh0m.sı/:

It is convenient to change variables s D sı C t and regard at first this problem
for t 2 RC. We will use the same symbols for the functions involved. Again we
will use the variation-of-parameters formula. To this end, we need to choose two
linearly independent solutions of the homogeneous problem such that

yho;1.t/!1 and yho;2.t/! 0; t !1:

A fundamental set with these properties can be found (for instance, see [22]) given
that ypı.sı C t / D �14 C o.1/ as t !1. Moreover, we can choose yho;j in such a
way that

(3.75)
yho;1.0/ D 0; yho;2.0/ D 1;

yh0o;1.0/ D 1;
yh0o;2.0/ D ��;

where � > 0 is bounded independently of ı. Observe that the Wronskian of these
functions is W.yho;1; yho;2/.t/ D �1. Then we get

(3.76)

yho.sı C t / D
�
�yho.sı/C yh

0
o.sı/

�
yho;1.t/C ho.sı/yho;2.t/

C yho;1.t/

Z t

0

ho;2.�/yg.sı C �/d�

� yho;2.t/

Z t

0

ho;1.�/yg.sı C �/d�:

Since yp0
ı
.sı C t / < 0 and yp00

ı
.sı C t / > 0 for t > 0, by the general theory for

second-order linear ODEs (see, for instance, [22, chap. 9.2]), we get that for some
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cj ; Cj > 0, j D 1; 2:

(3.77)

C1 exp
�Z t

0

Œ� ypı.sı C �/�
1=2 d�

�
� yho;1.t/

� C2 exp
�Z t

0

Œ� ypı.sı C �/�
1=2 d�

�
;

c1 exp
�
�

Z t

0

Œ� ypı.sı C �/�
1=2 d�

�
� yho;2.t/

� c2 exp
�
�

Z t

0

Œ� ypı.sı C �/�
1=2 d�

�
:

We note that for any ˛ > 0, � > 0, and ı sufficiently small, the functions

(3.78)

.sı C t /
˛

�
log

sı C t

ı2

��C1
� exp

�Z t

0

�
Œ� ypı.sı C �/�

1=2
�
1

2
a.sı C �/

�
d�

�

.sı C t /
˛

�
log

sı C t

ı2

��C1
� exp

�Z t

0

�
�Œ� ypı.sı C �/�

1=2
�
1

2
a.sı C �/

�
d�

�

are monotone decreasing for t > 0, hence using that sı D O.log 1
ı
/ and denoting

!ˇ;�C1.sı C t / D .sı C t /
ˇ

�
log

sı C t

ı2

��C1
exp

�
�

Z sıCt

1

a.�/d�

�
;

we get by (3.73):

(3.79)

!ˇ;�C1.sı C t /jŒ�yho.sı/C yh
0
o.sı/�

yho;1.t/C yho.sı/yho;2.t/j

� C

�
log

1

ı

�5C2ˇC�
kgkC0;�

ˇC1;0
.0;sı/

� C

�
log

1

ı

�4C2ˇ
kgkC0;�

ˇC1;�C1
.0;sı/

:
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On the other hand, for any ˇ > 0, � > 0, and ı sufficiently small, the functions

(3.80)

.sı C t /
�ˇ�1

�
log

sı C t

ı2

����1
� exp

�Z t

0

�
�Œ� ypı.sı C �/�

1=2
C
1

2
a.sı C �/

�
d�

�
;

.sı C t /
�ˇ�1

�
log

sı C t

ı2

����1
� exp

�Z t

0

�
Œ� ypı.sı C �/�

1=2
C
1

2
a.sı C �/

�
d�

�
;

are monotone increasing for t > 0. Then, assuming kgkC0;�
ˇC1;�C1

.RC/
< 1, we

get that the functions

y1.t/ D yho;1.t/

Z t

0

ho;2.�/yg.sı C �/d�;

y2.t/ D yho;2.t/

Z t

0

ho;1.�/yg.sı C �/d�;

satisfy

(3.81) !ˇ;�C1.sı C t /.jy1.t/j C jy2.t/j/ � CkgkC0;�
ˇC1;�C1

.RC/
:

We recall that

ho.sı C t / D yho.sı C t / exp
�
�
1

2

Z sıCt

1

a.�/d�

�
:

Thus, by the variation-of-parameters formula (3.76) and (3.79)–(3.81), it follows
that

(3.82) khokC0;�
ˇ;�C1

.sı;1/
� C

�
log

1

ı

�4C2ˇ
kgkC0

ˇC1;�
.RC/

:

To estimate the Hölder norms of the derivatives, we write the equation for ho in
the form �

h0o exp
�Z s

s�
a.�/d�

��0
D exp

�Z s

s�
a.�/d�

�
.g � pıh/;
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where s� < sı is large and fixed independently of ı. Integrating this equation
from s� to s > sı we get

(3.83)

ˇ̌̌̌
h0o.s/ exp

�Z s

s�
a.�/d�

�ˇ̌̌̌
� jh0o.s

�/j C

ˇ̌̌̌ Z s

s�
exp

�Z �

s�
a.�/d�

�
.g � pıh/d�

ˇ̌̌̌
� jh0o.s

�/j C C
�
kgkC0

ˇC1;�
.RC/

C khokC0;�
ˇ;�
.RC/

� Z s

s�
z!ˇ;�.�/d�;

where

z!ˇ;�.�/ D .2C �/
�ˇ�1

�
log

2C �

ı2

���
exp

�Z �

s�
a.�/d�

�
:

When s� is taken sufficiently large, we have for � > s�

z!ˇ;�.�/ � C.2C �/
�ˇ�1

�
log

2C �

ı2

���
exp

�Z s

s�
a.�/d�

�
:

Using this for s 2 .s�; s� C 1/ we find by (3.83) that

.2C s/ˇC1
�

log
2C s

ı2

��
jh0o.s/j � C

�
log

1

ı

�4C2ˇ
kgkC0

ˇC1;�
.RC/

by the previous argument. Then we argue inductively considering intervals of the
form .s� C k; s� C k C 1/ to show that for s 2 .s� C k; s� C k C 1/ we have an
analogous estimate. This gives at the end

(3.84) kh0okC0;�
ˇC1;�

..sı;1//
� C

�
log

1

ı

�4C2ˇ
kgkC0;�

ˇC1;�C1
.RC/

:

Then we estimate h00o using the equation directly.
Now the solution of (3.41) can be written in the form

h D hi�I1 C hn�I2 C hm�I3 C ho�.sı;1/;

where �I is the characteristic function of the interval I . We conclude the proof of
Lemma 3.6 by combining estimates (3.54), (3.67), (3.73), and (3.84). For future
purposes we will denote the right inverse of Lı by L�1

ı
. According to the statement

of Lemma 3.6 we have in particular

(3.85) kL�1ı .g/kC0;�
ˇ;�
.RC/

C k.L�1ı .g//0kC1;�
ˇC1;�

.RC/
�

C

�
log

1

ı2

�4C2ˇ
kgkC0;�

ˇC1;�C1
.RC/

:
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Conclusion of the Proof of Proposition 3.2
We will now use the theory of the previous two sections to solve (3.12)–(3.13)

and thereby complete the proof of Proposition 3.2.
Notice that the existence of the function v" solving (3.13) has been established

already. Thus we only need to consider (3.12). We will use a fixed point argument
for the nonlinear operator Sı . Let k > 0 be fixed and take the approximate solution
vk; see Lemma 3.5. We define uk.s/ D vk.r.s//. Then the result of Lemma 3.5
reads

jSı Œuk�.s/j �
C�

log 2Cs
ı2

�k 1

.1C s/.kC1/=2
:

We will look for a solution in the form u D uk C �. We will write

Sı Œuk C �� D Lı Œ��C Sı Œuk�CNı.�/;

where

Nı.�/ D �
1

ı2
e�uk .e�� � 1C �/

D �b.s/u0

�
1CO

�
1

log 2Cs
ı2

��
.e�� � 1C �/

�
1

2C s
log
�
2C s

ı2

�
.e�� � 1C �/;

is a nonlinear function with quadratic growth in its argument. Thus, we need to
solve

Lı Œ��C Sı Œuk�CNı.�/ D hı :

Now given the right inverse of Lı , we can put the above equation in the form of a
fixed point problem for

Tı Œ�� WD �L�1ı ŒSı Œuk�CNı.�/ � hı �:

Given the result of Lemma 3.6 and (3.85) the existence of � can be established. To
see this let us fix real numbers ˇ; �; 
 > 0 and a positive integer k, which satisfy
in addition

1

2
> ˇ; � > 6C 2ˇ C 
; k > 4C 2ˇ C � C 
:

With this choice one can verify that

(3.86)

�
log

1

ı2

�4C2ˇ
kSı Œuk�kC0;�

ˇC1;�C1
.RC/

� C

�
log

1

ı2

��

;�

log
1

ı2

�4C2ˇ
kNı.�/kC0;�

ˇC1;�C1
.RC/

� C

�
log

1

ı2

��

k�k2

C2;�
ˇ;�

.RC/�
log

1

ı2

�4C2ˇ
khıkC0;�

ˇC1;�C1
.RC/

� C

�
log

1

ı2

��

:
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Then we see that, for each sufficiently small ı, the map Tı takes the set(
�
ˇ̌̌
k�kC0;�

ˇ;�
.RC/

C k�0kC1;�
ˇC1;�

.RC/
<

�
log

1

ı2

�� 1
2


)

into itself. Also, one can verify in a similar manner that this map is a Lipschitz
contraction on this set and thus the proof of Proposition 3.2 follows.

4 Setting Up the Infinite-Dimensional Reduction
4.1 Construction of the Approximation

Let � be the eternal solution of the mean curvature flow with c D 1, and let
�" be the corresponding surface translating with speed c D " � 1. We will use
the natural representation of � as a graph of the radial function xNC1 D F.r/.
The scaled surface is given by �" D fxNC1 D F".r/ j F".r/ D "�1F."r/g. In
general, we will take advantage of the radial symmetry of the eternal solution and
employ the infinite-dimensional Lyapunov-Schmidt reduction method to reduce
the original PDE,

(4.1) �uC "@xNC1uC u � u
3
D 0 in RNC1;

to a one-dimensional system of two equations whose independent variable is the
radial variable r . This will be in fact the Jacobi-Toda system treated above.

We will now proceed to define an approximation of a solution of (4.1) that de-
pends on the radial variable r and the signed distance ´ to �". We will use the nota-
tion introduced in Sections 2.1–2.2, with obvious modifications taking into account
the fact that �" is radially symmetric and thus has a globally defined parametriza-
tion.

A Model for the Multicomponent Traveling Wave near �"
In what follows, it will be useful to keep in mind that a global system of coordi-

nates on � and �" can be defined by

� D f.r‚; F.r// j r > 0;‚ 2 SN�1g;

�" D f.r‚;
1
"
F."r// j r > 0;‚ 2 SN�1g:

There are other ways to introduce local coordinates on � . For instance, around
each point y 2 � we have the normal geodesic coordinates. It is not hard to
show that there exists ı0 > 0 such that these coordinates are well defined for each
y 2 � , at least in a neighborhood of y of the form Uy;ı0 D B.y; ı0/ \ � . A
similar statement can be made when y 2 �" are considered, now with Uy;ı0=" D
B.y; ı0="/ \ � .

We choose an orientation

�.y/ D
.�rF.r.y//; 1/p
1C jrF.r.y//j2
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on � and take ´ D ´.x/ D dist.x; � / compatible with this orientation. Let us
introduce the following weight functions:

!.x/ D 2C jFr.r/j
2; !".x/ D 2C jFr."r/j

2; x D .x0; xNC1/; r D jx
0
j:

We recall here that Fr.r/ � r , r � 1. Also in what follows we will write !.r/,
!".r/, understanding that r D r.x/ D jx0j.

It is not hard to show that there exists an �0 > 0 such that for all points x such
that j´.x/j � �0 log!.r/ the map

x 7! y C ´�.y/; y 2 �;

is a diffeomorphism. We denote this diffeomorphism by X.x/ D .y; ´/ and for a
function u given in a neighborhood of � we set .X�u/.y; ´/ D .u ı X�1/.y; ´/.
The coordinates .y; ´/ above are called Fermi coordinates of � . Similar claims are
true when we consider �" and points x such that j´.x/j � �0

"
log.!".r//. Taking

this into account we introduce the following neighborhood of �":

U�".M/ D

�
x 2 RNC1 j j´.x/j D jdist.x; �"/j �M log

�
!".r/

"2

��
:

Clearly Fermi coordinates are well defined in U�".M/ for all M > 0 large and
" > 0 small. If by X" we denote the diffeomorphism in U�".M/ defined by
X".x/ D .y; ´/, then for a function u defined in this neighborhood we set

.X�" u/.y; ´/ D .u ıX
�1
" /.y; ´/:

We will describe functions fj representing the leading order for the location
of the nodal set of our traveling wave. To this end we appeal to the results of
Proposition 3.2 and let the functions fj , j D 1; 2, be solutions of the Jacobi-Toda
system (3.9) with hj � 0. We get that functions fj satisfy

(4.2) fj .r/ D
.�1/j

2
p
2

log
2
p
2

"2˛0jA� .r/j2
CO

�
log log

1

"2jA� .r/j2

�
:

In addition, we have f1 D �f2.
In what follows we will use scaled versions of these functions, namely f";j W

�" ! R, defined by

f";j .r/ D fj ."r/; r D r.y/ D jy0j; y D .y0; yNC1/ 2 �":

We recall here that "2jA� ."r/j2 D jA�".r/j
2.

In reality functions f";j give only the leading-order behavior of the traveling
fronts and thus we further need two functions, which will be for a moment un-
known parameters to be determined in the course of the Lyapunov-Schmidt scheme
we use.

Thus we let hj , j D 1; 2, be functions of the radial variable r on � such that
for some ˇ; � 2 .0; 1/ we have

(4.3) khj kC2;�
ˇ

.� /
� "� :
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As before we introduce scaled versions of these functions h";j W �" ! R defined
by h";j .r/ D hj ."r/. Let us make an elementary observation about the relation
between the weighted norms on � and �". Defining the C2;�

ˇ
.�"/ norm in a natural

way, namely using the weight function !ˇ" .r/ D !ˇ ."r/ and letting h".y/ D
h."y/, for y 2 �" we get

kh"kC2;�
ˇ

.�"/
� khkC2;�

ˇ
.� /
� "�2��kh"kC2;�

ˇ
.�"/

:

In particular, we get from this and (4.3)

(4.4) kh";j kC2;�
ˇ

.�"/
� "� ; j D 1; 2:

Given the functions f";j and h";j as described above we will denote

f" D .f";1; f";2/; h" D .h";1; h";2/;

etc.
To define a model for the traveling profile we first recall that by H we have

denoted the unique, odd, and monotonically increasing solution of H 00 C H.1 �
H 2/ D 0. Next we consider a cutoff function

�.t/ D

(
0; jt j < 1;

1; jt j > 2:

Now, let M > 0 be a fixed large number and let

(4.5) �".x/ D �
� ´.x/

M log.!".r/
"2

/

�
; ´.x/ D dist.x; �"/:

Taking M large and " small we define the initial approximation of the solution
in the support of �" by

(4.6) .X�" u"/.r; ´/ D H.´� f";1.r/� h";1.r//�H.´� f";2.r/� h";2.r//� 1:

Next we define the initial approximation globally in RNC1 by

(4.7) w".x/ D .1 � �".x//u".x/ � �".x/:

4.2 Reduction to the Nonlinear Projected Problem
We look for a solution of

S.u/ D �uC "@xNC1uC u.1 � u
2/ D 0

in the form u D w" C '", where '" is a small function. We write

S.w" C '"/ D S.w"/C L'" CN.'"/;

where

L'" D �'" C "@xNC1'" C .1 � 3w
2
" /'";

N.'"/ D �3w"'
2
" � '

3
" :
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We will decompose our nonlinear problem into a system suitable to apply an
infinite-dimensional Lyapunov-Schmidt reduction scheme. To this end we recall
that we have given functions f" and also unknown functions h".

Given a large number M as in the definition of w" above we consider smooth
cutoff functions �j � 0, j D 1; 2, which satisfy the following conditions:

(4.8) �1.t/C �2.t/ D

(
1; jt j �M;

0; jt j � 2M;
�1.t/ D

(
1; �M < t < �1;

0; t > 1:

We define cutoff functions �";j by

(4.9) .X�" �";j /.r; ´/ D �j

�
´ �

�
1

2
C ı

�
jf";1.r/ � f";2.r/j

�
;

where ı is a small constant. Note that with this definition we have

�";1 C �";2 D 1; j´j < M C

�
1

2
C ı

�
jf";1.r/ � f";2.r/j;

�";1 C �";2 D 0; j´j > 2M C

�
1

2
C ı

�
jf";1.r/ � f";2.r/j:

Also we have
�";j .r; .f";j C h";j /."r// D 1:

Furthermore, we choose cutoff functions z�";j such that

supp z�";1 D
�
�3M �

1

2
jf";1.r/ � f";2.r/j < ´ <

�
1

2
C 2ı

�
jf";1.r/ � f";2.r/j

�
;

supp z�";2 D
�
3M C

1

2
jf";1.r/ � f";2.r/j > ´ > �

�
1

2
C 2ı

�
jf";1.r/ � f";2.r/j

�
;

and additionally
z�";j �";j D �";j :

Now we look for a solution of our problem '" in the form

'" D
X
jD1;2

�";j�";j C  ":

The functions �";j and  " must still be determined from a system of equations that
we will now describe. First we introduce functions H 0";j defined by

.X�"H
0
";j /.y; ´/ D H

0.´ � f";j ."r//; r D jy0j:

We also introduce new unknowns c";j , j D 1; 2, which are functions on �". Next,
we ask that the functions �";j ,  ", and c";j be solutions of the following coupled
system of equations:

z�";jL�";j D z�";j
˚
�.S.w"/CN/ � .L �� � "@xNC1 C 2/ "

� ŒL; �";j ��";j C c";jH
0
";j g;

(4.10)
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.�C "@xNC1 � 2/ " D �
�
1 �

X
iD1;2

�i;"

�
fS.w"/CN C ŒL; �";i ��";ig

�

�
1 �

X
iD1;2

�";i

�
.L �� � "@XNC1 C 2/ ";

(4.11)

where N D N.
P
jD1;2 �";j �"j C  "/. Note that after multiplying (4.10) by �";j ,

j D 1; 2, using the fact that �";j z�";j � 1, and adding the resulting expression and
(4.11), we obtain

(4.12) L'" C S.w"/CN.'"/ D
X
jD1;2

c";jH
0
";j �";j :

As is usual in a Lyapunov-Schmidt reduction approach, the functions c";j will be
initially determined in such a way that (4.10) has a solution for any given parameter
function h". Later we will adjust the traveling front, whose location is represented
by f" C h", so that c";j � 0. After this is done, we will get the solution to our
original problem.

In fact, a slight modification of (4.10), which we will describe now, is needed.
We introduce the following functions:

.X�" w";j /.y; ´/ D H.´ � f";j ."r//; j D 1; 2; r D jy0j;

and check that we have, say in the set z�";j � 1,

L�";j D ��" C @
2
´�";j C f

0.w";j /�";j

C Œf 0.w"/ � f
0.w";j /��";j C Œ��";´ ���" ��";j

� .H�";´ � "��";NC1/@´�";j C "r�";´.�";NC1/ � r�";´�";j :

Then, we can write (4.10) in the form

(4.13) ��"�";j C @
2
´�";j C f

0.w";j /�";j D g";j C c";jH
0
";j ;

at least when z�";j � 1. However, it is convenient to view this problem in the set
�" �R. Indeed, the operator L";j D ��" C @

2
´C f

0.w";j / is defined on functions
whose domain is �" �R, while the right-hand side is a function supported on a set
supp z�";j . More precisely, we have

(4.14)

g";j D z�";j .S.w"/CN/ � z�";j .L �� � "@xNC1 C 2/ "

� z�";j ŒL; �";j ��";j C z�";j Œf
0.w"/ � f

0.w";j /��";j

C z�j;"Œ��";´ ���" ��";j

C z�";j Œ.H�";´ � "��";NC1/@´�";j � "r�";´.�";NC1/ � r�";´�";j �:

Again, multiplying (4.13) by �";j and adding the resulting equations and (4.11),
we get (4.12).

For future purposes we write (4.11) in the form

(4.15) .�C "@xNC1 � 2/ " D h";
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where by h" we have denoted the right-hand side of (4.11). Note that if we assume
that �";j and  " are functions of .r; xNC1/ only with r D jx0j, then so are the
functions g";j and h". Conversely, if we consider more generally problems of the
form (4.13) and (4.15) with g";j and h" depending on .r; xNC1/ only, then the
solutions of these problems �";j and  " will also depend on .r; xNC1/ only.

4.3 Further Modification of (4.13)
Let us look now at equation (4.13) more closely. We have in general the follow-

ing system to solve:�
��" C @

2
´ C f

0.w";j /
�
�";j D g";j in �" �R; j D 1; 2:

It is convenient to rewrite this system in the following way: first, we introduce
shifted Fermi coordinates

tj D ´ � f";j .r/; j D 1; 2:

Second, we write each of the operators above in terms of these new coordinates:

��" C @
2
´ C f

0.w";j / D ��" C @
2
tj
C f 0.H.tj // ���"f";j @tj

� r�"f";j � r�"@tj C jr�"f";j j
2@2tj :

Usually the second line above is relatively small in the sense that its norm can be
controlled by the norm of the solution times a small factor, and thus we can absorb
it on the right-hand side of the corresponding equation. Note also that variables tj
are related through the formula

(4.16) t1 � t2 D f";2 � f";1:

Then letting

zg";j .y; tj / D g";j C z�";j
�
��"f";j @tj Cr�"f";j � r�"@tj

� jr�"f";j j
2@2tj

�
�";j ;

we obtain the following system:

(4.17)
�
��" C @

2
tj
C f 0.H.tj //

�
�";j D zg";j .y; tj /C c";jH

0.tj /; j D 1; 2;

where now, with some abuse of notation, �";j D �";j .y; tj /. This system can be
considered as a system for functions defined on two copies �" �R, and it looks at
first sight as being decoupled. However, in reality we have, in the original setting,

zg";j D zg";j .y; ´I�";1; �";2;  "/:

Therefore when considering for instance the equation for �";1 in the shifted vari-
able t1, we need to use the above relation between t1 and t2 to express all func-
tions involved in terms of y 2 �" and t1 2 R. Of course, the same must be done
with the second equation. As a result, we will obtain a nonlinear and nonlocal
system for �";j , j D 1; 2. The advantage of making this transformation is that we
always work with the same, basic linearized operator on the left-hand side. Again,
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we point out that all the functions involved depend on y through the radial variable
r D jy0j.

5 Linear Theory
We recall that we have denoted !.r.y// D 1 C jrF.r.y//j2 and !".r/ D

!."r/. Given a C2;�.�" �R/ function u we define its weighted norms by

(5.1)

kukC0;�
ˇ;�

.�"�R/
D sup
.y;´/2�"�R

.cosh ´/�!ˇ" .r.y//kukC0;�.B.y;1/\�"�.´�1;´C1//

kukC2;�
ˇ;�

.�"�R/
D kukC0;�

ˇ;�
.�"�R/

C kr�"�RukC0;�
ˇ;�

.�"�R/

C kD2
�"�RukC0;�

ˇ;�
.�"�R/

:

Above r�"�R and D2
�"�R denote the gradient and second derivative on the mani-

fold �" �R equipped with a natural product metric and the associated Levi-Civita
connection.

In this section we will consider the following basic linearized operator:

��"� C @
2
´� C f

0.H.´//� � L"�:

We note that

@2´H
0
C f 0.H/H 0 D 0:

In fact,H 0 is the unique bounded element in the kernel of @2´Cf
0.H/. In particular,

we have, with some �0 > 0,Z
R

j�0.´/j2 � f 0.H.´//j�.´/j2 � �0

Z
R

j�.´/j2;

whenever � satisfies Z
R

�.´/H 0.´/d´ D 0:

In general, we will consider the following problem:

(5.2)
��"� C @

2
´� C f

0.H/� D g in �" �R;Z 1
�1

�.y; ´/H 0.´/d´ D 0; y 2 �":

We will assume that

kgkC0;�
ˇ;�
.�"�R/

� 1

with some ˇ; � > 0. In the case at hand we have ˇ 2 .0; 1/ and � 2 .0;
p
2/.
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5.1 A Priori Estimates
Most of what will be said in this section follows the argument of [8], and so we

will only outline the main points.
First we need the following:

LEMMA 5.1. The only bounded solutions of

�� C @2´� C f
0.H.´//� D 0 in RNC1; N � 0;

are of the form � D cH 0.´/ with some constant c.

This lemma is proven in [11] (see also [10]) .
Next, we show the following a priori estimate:

LEMMA 5.2. Let � be a solution of the problem (5.2). There holds

(5.3) k�kC2;�
ˇ;�

.�"�R/
� CkgkC0;�

ˇ;�
.�"�R/

:

PROOF. The proof of this lemma follows arguments in [10, 11], with only small
changes due to the fact that here we use slightly different norms.

We argue by contradiction. Thus we assume that there exist sequences f"ng,
f�"ng, and fg"ng such that

��"n�"n C @
2
´�"n C f

0.H/�"n D g"n in �"n �R;Z 1
�1

�"n.y; ´/H
0.´/d´ D 0; y 2 �"n ;

and such that as "n ! 0

k�"nkC2;�
ˇ;�

.�"n�R/
D 1; kg"nkC0;�

ˇ;�
.�"n�R/

! 0:

In particular, from the definition of the norm there exists yn 2 �"n and ´n 2 R
such that

(5.4) .cosh ´n/�!ˇ"n.r.yn//k�"nkC0;�.B.yn;1/\�"n�.´n�1;´nC1// >
1

2
:

We consider four cases depending on the behavior of the sequences f"nr.yn/g and
f´ng. The various possibilities are, for example, (1) "nr.yn/ and ´n bounded, (2)
"nr.yn/ ! 1 while ´n bounded, etc. In each of these cases we use essentially
the same argument with just slight modifications. This has been done in detail in
[10, 11].

To get the idea of the general scheme, we assume for instance that f"nr.yn/g
and f´ng are bounded. We take the normal geodesic coordinates on �"n , which are
defined around each yn at least in the set Un D B.yn; ı0="n/\�"n , where ı0 > 0
is a small number independent of yn. We denote the coordinates of y 2 Un by
� D .�1; : : : ; �N / and set

z�n.�; ´/ D �"n.y; ´/; .y; ´/ 2 Un �R:
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In the local coordinates we have

��"n�"n C @
2
´�"n C f

0.H/�"n D �
z�n C @

2
´
z�n C f

0.H/z�n

C a"n;ij @ij
z�n C b"n;j @j

z�n:

Passing to the limit over compacts we obtain that z�n ! z� in C2;�
0

loc .RN � R/,
�0 < �, where z�.0/ > 0 and z� is bounded, and at the same time

�z� C @2´
z� C f 0.H/z� D 0:

Lemma 5.1 implies that z� D cH 0, but this contradicts the fact that we also haveZ
R

z�. � ; ´/H 0.´/d´ D 0;

passing to the limit in the orthogonality condition.
To get an idea of how the other cases are handled, let us consider the case

"nr.yn/!1, while f´ng remains bounded. Then we proceed in a similar manner
as above letting

z�n.�; ´/ D !
ˇ
" .r.y//�"n.y; ´/:

For the remaining cases we refer the reader to [10] (see also [11]). �

5.2 An Existence Result for the Model Linear Problem
PROPOSITION 5.3. Given g 2 C0;�

ˇ;�
.�" � R/ such that

R
R g. � ; ´/H 0.´/d´ D 0,

there exists a unique solution of (5.2).

PROOF. We will argue by approximations. Let us replace g in (5.2) by a func-
tion gR.y; ´/ D g.y; ´/�.0;R/.y/ where we will take R ! 1 later on. With
this right-hand side we can give to the problem (5.2) a weak formulation in the
closed subspace of the Sobolev space H 1.�" � R/ of functions that satisfy the
orthogonality conditions in (5.2). Thus we have

(5.5)

��"�R C @
2
´�R C f

0.H.´//�R D gR;Z
R

�R.y; ´/H
0.´/d´ D 0;

With this operator we associate the bilinear form

aR.�;  / D

Z
�"�R

Œr�"� � r�" C @´�@´ � f
00.H.´//� �dV.�"/d´:

Then we say that �R is a weak solution of this problem if for all tests functions  
we have

aR.�R;  / D

Z
�"\B.0;R/�R

gR dV.�"/d´:



46 M. DEL PINO, M. KOWALCZYK, AND J. WEI

Since we have as well, by our assumption,Z
R

gR.y; ´/H
0.´/d´ D 0 8y 2 �";

and, under the orthogonality conditions, the bilinear form aR. ; �/ is actually pos-
itive definite, it follows that there exists a unique �R 2 H 1.�" � R/ that satisfies
weakly the equation and the orthogonality condition.

Letting R!C1 and using the uniform a priori estimates valid for the approx-
imations completes the proof of the Proposition. �

5.3 A Priori Estimates and Existence for (4.11)
In this section we will consider the following problem:

(5.6)
�
�C @2xNC1 C "@xNC1 � 2

�
 D h:

We observe that if h depends on r D jx0j, x0 2 RN�1, and xNC1 only, so does  .
We will use the following weighted norms:

khkC0;�
ˇ
.RN�R/

D sup
x02RN

.1C "2jx0j2/ˇkhkC0;�.B.x0;1/�R/; ˇ > 0:

The weighted Hölder norms C2;�
ˇ
.RN � R/ are defined similarly. Note that the

definition of the norm implies in particular that

khkC0;�
ˇ
.RN�R/

<1 H) khkC0;�.RN�R/ <1;

and thus, by a standard argument, we obtain the existence of a solution to (5.6),
 2 C2;�.RN �R/. Now, to show that in fact

k kC2;�
ˇ

.RN�R/
� CkhkC0;�

ˇ
.RN�R/

;

one can use a comparison argument based on the fact that the reciprocal of the
weight function .1C "2jx0j2/ˇ is a positive supersolution of (5.6). Details are left
to the reader.

6 Infinite-Dimensional Reduction
6.1 Estimates for the Error of the Initial Approximation

Our first goal is to estimate the functions zg";j defined in (4.14) and (4.16).
Whenever convenient, we will indicate the fact that these functions depend on their
functional arguments by writing zg";j D zg";j .�";1; �";2;  ";h"/. In general, besides
the assumptions on h", which we have made in (4.3)–(4.4), we will also assume
that for some � 2 .0;

p
2/ and K > 0 we have, with ˇ� D 1 � �=

p
2,

(6.1) k�";j kC2;�
ˇ� ;�

.�"�R/
� K"2��

p
2:

About the function  " we assume that, with some � > 3, we have

(6.2) k kC2;�� .RN�R/
� K"3:
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LEMMA 6.1. Under the preceding hypotheses there exists a � 2 .0;
p
2/ such that

the following estimate holds:

(6.3) kzg";j kC0;�
ˇ� ;�

.�"�R/
�

C
n
"2��

p
2
C o.1/

X
jD1;2

k�";j kC2;�
ˇ� ;�

.�"�R/
C k "kC2;�� .RN�R/

o
:

The function g";j is a Lipschitz function of its arguments and we have

(6.4)



zg";j ��.1/";1 ; �.1/";2 ;  .1/" ;h.1/"
�
� zg";j

�
�
.2/
";1 ; �

.2/
";2 ;  

.2/
" ;h.2/"

�


C0;�
ˇ� ;�

.�"�R/

� C
n
"2��

p
2


h.1/" � h.2/"




C2;�
ˇ�

.�"/
C o.1/

X
jD1;2



�.1/";j � �.2/";j 

C2;�
ˇ� ;�

.�"�R/

C


 .1/" �  .2/" 



C2;�� .RN�R/

o
:

PROOF. The proof of this lemma follows by a somewhat tedious but rather
straightforward calculation. Similar calculations can also be found in [7, 8]. We
will outline the main part, which is the estimate of the term involving S.w"/. Note
that z�";jS.w"/ D z�";jS.u"/ (see (4.6)–(4.7)).

Let us denote zu".y; ´/ D .X�" u"/.y; ´/. We expand � near �" in terms of the
Fermi coordinates to get

(6.5)

.X�" S.u"// D ��" zu" C Œ@
2
´zu" C f .zu"/�

C Œ"@´.�";NC1/ �H�" �@´zu" � ´jA�" j
2@´zu"

C "r�".�";NC1/ � r�" zu" CA"Œzu"�C B"Œzu"� � ´
2R�"@´zu":

Above, A" and B" are linear differential operators of second and first order, re-
spectively, whose expressions in terms of local coordinates on �" are given in Sec-
tion 2.1. Most of the terms in (6.5) are estimated directly. The leading-order term
is in fact given by

@2´zu" C f .zu"/ D f .zu"/ � f .H.´ � f";1 � h";1// � f .�H.´ � f";2 � h";2//:

Using this, the definition of zu", and (2.19), we can estimate, taking � 2 .0;
p
2/,

j@2´zu" C f .zu"/j � C
˚
H 0.´ � f";1 � h";1/Œ1CH.´ � f";2 � h";2/�

CH 0.´ � f";2 � h";1/Œ1 �H.´ � f";1 � h";1/�
	

� C max
j
fe�� j´�f";j jg exp

�
�

p
2 � �
p
2

log
!"

"2

�
� C"2��

p
2 max

j

˚
e�� j´�f";j j

	
!�ˇ�" :
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Since we have "@´.�";NC1/ � H�" D 0, the remaining nonzero term in the first
line in (6.5) is

(6.6)

��" zu" � ´jA�" j
2@´zu" D

X
jD1;2

.�1/jH 0.´ � f";j � h";j /��".f";j C h";j /

C jA�" j
2
X
jD1;2

.f";j C h";j /H
0.´ � f";j � h";j /

C

X
jD1;2

H 00.´ � f";j � h";j /jr�".f";j � h";j /j
2

C jA�" j
2
X
jD1;2

.´ � f";j � h";j /H
0.´ � f";j � h";j /:

We note that

(6.7) jA�".r/j
2
D "2jA� ."r/j

2
� C"2!�2" .r/:

Each term in (6.6) is then estimated directly. The second line in (6.5) is easily
seen to be smaller relative to the terms we have just considered. As for the terms
involving functions �";j , we observe that the largest among them is

ŒL; �";j ��";j D �.�";j�";j / � �";j��";j :

Using the fact that��";j D o.1/ and r�";j D o.1/, which follows from the choice
of the cutoff functions �";j , we can estimate this term by o.1/k�";j kC2;�

ˇ� ;�
.�"�R/

.

The rest of the proof is straightforward, and we leave the details to the reader.
�

Going back to the system (4.17) and taking into account the theory of the preced-
ing section, we see that the functions c";j need to be determined from the formula

(6.8) c";j D

R
R zg";j .y; tj /H

0.tj /dtjR
R.H

0.tj //2�";j .y; tj /dtj
:

Using Lemma 6.1 we see that statements analogous to (6.3) and (6.4) hold when
we replace zg";j by zg";j C c";jH

0.tj /�";j .
Next we will consider the right-hand side of equation (4.15). We have the fol-

lowing:

LEMMA 6.2. Under the same hypotheses as in Lemma 6.1, and assuming that the
constant M > 0 in (4.5) and (4.8) is large enough, there exist � > 3 and 
 > 1

such that we have

(6.9)

kh"kC0;�� .RN�R/
� C

n
"3 C "


X
jD1;2

k�";j kC2;�
ˇ� ;�

.�"�R/

C o.1/k "kC2;�� .RN�R/

o
:
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Considering h" as a function of .�";1; �";2;  ";h"/,

(6.10)



h"��.1/";1 ; �.1/";2 ;  .1/" ;h.1/"
�
� h"

�
�
.2/
";1 ; �

.2/
";2 ;  

.2/
" ;h.2/"

�


C0;�
ˇ�C�ı

.RN�R/

� C
n
"3


h.1/" � h.2/"




C2;�
ˇ�

.�"/
C "


X
jD1;2



�.1/";j � �.2/";j 

C2;�
ˇ� ;�

.�"�R/

C o.1/


 .1/" �  .2/" 



C2;�� .RN�R/

o
:

A proof of this estimate is omitted, since similar results are proven in [7, 8] and
no essentially new elements are needed to carry out the argument in the present
case. We only point out that the support of the function h" is in the set where
j´�f";j j > M log !"

"2
, from which it follows that all exponentially decaying terms

are very small, like O."3/ at least.

6.2 Projected Nonlinear Problem
Our objective in this section is to solve (4.13)–(4.15). Given the linear theory

available and the results of the preceding section, we will achieve this by a simple
fixed point argument.

Let functions z�";j , j D 1; 2, and z " satisfying assumptions (6.1)–(6.2) be fixed.
We will also choose h" satisfying (4.4). We first use the linear theory of Section 5
to solve the following system:�

��" C @
2
tj
C f 0.H.tj //

�
�";j

D zg";j .y; tj I z�";1; z�";2; z ";h"/C c";jH
0.tj /; j D 1; 2;

(6.11)

Z
R

�";j .y; tj /H
0.tj /dtj D 0; j D 1; 2;(6.12)

.�C "@xNC1 � 2/ " D h".xI z�";1; z�";2; z ";h"/:(6.13)

This is equivalent to (4.13)–(4.15) when z�";j D �";j and z " D  ". In fact, using
Lemma 6.1 and Lemma 6.2, we obtain existence of such a fixed point satisfying
(6.1)–(6.2) by the Banach fixed point theorem. To do this we first solve (6.13)
for  " as a function of .z�";1; z�";2;h"/. Existence of  " follows by a fixed point
argument using Lemma 6.2 and the results in Section 5.3. We have in fact

k "kC2;�� .RN�R/
� C

n
"3 C "


X
jD1;2

k�";j kC2;�
ˇ� ;�

.�"�R/

o
;

with a similar estimate showing the Lipschitz character of  ". Given this we solve
(6.11) using again the Banach fixed point theorem. Let us summarize this:

LEMMA 6.3. Under the above hypotheses there exists a unique solution .�";1; �";2;
 "/ of (6.11) and (6.13) satisfying (6.1) and (6.2).



50 M. DEL PINO, M. KOWALCZYK, AND J. WEI

6.3 Solution of the Reduced Problem
At this point we are left with the task of adjusting h" in such a way that c";j � 0.

For this let us observe that the map

.z�";1; z�";2; z "Ih"/ 7�! .�";1; �";2;  "/

is a uniform contraction (with a small Lipschitz constant) with respect to h". It
follows that .�";1; �";2;  "/ are Lipschitz functions of h" with small Lipschitz con-
stants. This last fact can be easily seen from Lemma 6.1 and Lemma 6.2. Another
important fact is that since we have assumed initially that f";j and h";j are func-
tions of r , where r D jx0j, .x0; xNC1/ 2 RNC1, we have .�";1; �";2;  "/ are
functions of .r; ´/ only, at least near �", i.e., where the Fermi coordinates are de-
fined. In fact, instead of working in an abstract setting, which does not refer to
the rotational symmetry of �", we could have reduced the whole problem to the
one in the half-plane R2

C
D .r; xNC1/, and think of �" as a curve, with .r; ´/ as

its Fermi coordinates. Then the end result, from the point of view of existence of
.�";1; �";2;  "/, would of course be the same. Summarizing, all functions involved
depend on x D .x0; xNC1/, through r.x/ D jx0j and xNC1, and when expressed
in Fermi coordinates .y; ´/, they depend on r.y/ D jy0j and ´ only.

Now we will find the exact conditions for h" that guarantee that c";j � 0. We
will show that they result in a nonhomogeneous and nonlocal Jacobi-Toda system,
quite similar to the one already studied in Section 3. From the theory developed in
this section, the existence of h" will follow immediately, thus completing the proof
of Theorem 1.1. Our first task is then to justify rigorously the formal calculations
in Section 2.2. In fact, with the notation as in the previous sections, we need to
adjust h" so that Z

R

zg";j .r; tj /H
0.tj /dtj D 0; j D 1; 2:

Let us recall that zg";j depends on .�";1; �";2;  ";h"/, that .�";1; �";2;  "/ depend
nonlocally on h", and that this dependence involves second derivatives of h". Thus
its projection onto H 0.tj / will be a nonlocal, second-order ODE in terms of the
radial variable r .

Let us write

zg";j D z�";jS.w"/C yg";j ; yg";j D yg";j .�";1; �";2;  ";h"/:

Examining the expression for S.u"/ in (6.5), we see that as a function of .r; tj /
it has general form (say, where z�";j � 1) S.u"/.r; tj / D S.u"/.r; tj � h";j /. It
is therefore more convenient to integrate zg";j against H 0.tj � h";j / rather than
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H 0.tj /. It is easily seen that cj;" D 0 when

(6.14)

Z
R

zg";j .r.y/; tj /H
0.tj � h";j /dtj

D

Z
R

z�";jS.w"/.r.y/; tj /H
0.tj � h";j / tj

C

Z
R

yg";jH
0.tj � h";j /dtj

D ˘";j C y̆";j D 0:

As we have argued in Section (2.2) the main term in the above integral (remem-
bering that by definition w" D u" in supp �";j ) comes from

˘";j D

Z
R

�";jS.u"/.r.y/; tj /H
0.tj � h";j / tj ;

while the remaining part of the projection, denoted by y̆";j , is a lower-order term.
Repeating calculations in Section 2.2 and taking into account formula (6.5), one

can derive the following expression:

(6.15) ˘";j D ˛0J�".f";j C h";j /C Tj .f" C h"/C q";j .f" C h"/;

where, for a vector function v D .v1; v2/, on �" we have denoted

(6.16)
J�".vj / D ��"vj C jA�" j

2vj C "r�".�";NC1/ � r�"vj ;

Tj .v/ D �e
p
2.vj�1�vj / C e

p
2.vj�vjC1/:

We observe that the main order term in q";j (see (6.5)) comes from

´2z�";jR�"@´zu" � .tj � f";j /
2
NX
`D1

k3�";`H
0.tj � h";j /;

where k�";` are the principal curvatures of �". Direct calculations show thatˇ̌
k3�";`

ˇ̌
� "3!�3=2" :

Taking into account the assumptions we have made at the beginning on f", and h"
in (4.2)–(4.3), we see that there exist ˇ > 0 and � > 0 such that

kq";j kC0;�
1Cˇ

.�"/
� C"2C�:

Identifying functions on �" and � by v".r/ D v."r/, so that q";j .r/ D qj ."r/, we
get from the above

kqj kC0;�
1Cˇ

.� /
� C"2C���:
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Function qj now depends on the functions f and h defined on � . Similar statements
hold for the remaining term in (6.14); namely, we have

k y̆";j kC0;�
1Cˇ

.�"/
� C"2C�;

and, scaling back to � , we can write

k y̆j kC0;�
1Cˇ

.� /
� C"2C���:

We let � > 0 be a small number and set � D � � � > 0, also choosing it in such
a way that � < � (see (4.3)). Denoting by J� the scaled operator in (6.16) and
setting yqj D qj C y̆j , we then get

(6.17) ˛0"
2J� .fj C hj /C Tj .fC h/ D yqj :

This is a Jacobi-Toda system, which can be solved using the theory we developed
in the proof of Proposition 3.2 and in particular the result of Lemma 3.6. In fact, yqj
is a Lipschitz function of h since it follows from the Lipschitz character of S.w"/,
�";j , and  " as functions of h that

kyqj .h.1// � yqj .h.2//kC0;�
1Cˇ

.� /
� C"2C�kh.1/ � h.2/kC2;�

ˇ
.� /
:

Defining
Tj .fC h/ � Tj .f/ � T 0j .f/h D Nj .h/;

we also have
kNj .h/kC0;�

1Cˇ
.� /
� C"2C�khkC2;�

ˇ
.� /
:

Similarly, Nj .h/ is a Lipschitz function of h. Since we have chosen f to be a
solution of the homogeneous version of (6.17) we are left with

(6.18) ˛0"
2J� .hj /C T 0j .f/.h/ D zqj ; zqj D yqj �Nj :

The left-hand side of this equation is the linearized Jacobi-Toda system, and now
Lemma 3.6 can be employed directly to solve (6.17) using the Banach fixed point
theorem. As similar arguments can be found for instance in [7] and [8], we omit
the details here. With this last step we complete our proof.

7 An Example of a Traveling Wave with a Nonconvex Front
In this section we will prove Theorem 1.2. We will begin with some preliminary

facts about the asymptotic form of the nonconvex traveling front.

7.1 Traveling, Catenoidlike Surface
We will summarize here an existence result proven in [5].

PROPOSITION 7.1. For each R > 0 there exist rotationally symmetric, graphical
solutions to the mean curvature flow, given by F˙R W R

N n BR.0/ � R ! R, and
translating with speed c D 1, where

F˙R .r; t/ D t CW
˙
R .r/:
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The functions W ˙R satisfy

(7.1) W ˙R .r/ D
r2

2.N � 1/
� log r C C˙ CO.r�1/; r !1:

Moreover, the union of these graphs forms a complete nonconvex translating solu-
tion to the mean curvature flow.

In what follows by ˙ , we denote the surface obtained by taking the union of
the graphs of W ˙R , and by ˙" we denote its scaled version. The individual graphs
of each function W ˙R will be referred to as the ends of ˙ and will be denoted by
˙˙, respectively, with a similar notation for the scaled versions. We assume that
the constants C˙ appearing in (7.1) are such that C� < CC, and we will call ˙�

(˙C) the lower (the upper) end of ˙ . Also, in order to not to complicate notation,
we will not indicate explicitly the dependence of the surface˙ onR. Nevertheless,
the reader should keep in mind that our results are valid for the whole family of
traveling catenoids parametrized by R.

The surface ˙ is an embedded, rotationally symmetric, and genus 0 surface
in RN , and in some sense it is a counterpart of the usual catenoid, now in the
context of the eternal solutions of the mean curvature flow. Another important,
obvious property is its nonconvexity.

Comparing the asymptotic formula (7.1) with the asymptotic formula for F , we
notice that as r !1 the ends of˙ remain at a constant distance from � . Indeed,
we have

(7.2)
ˇ̌
F.r/ � 1 �W ˙R .r/C C

˙
ˇ̌
D O.r�1/; r !1:

This is important in the calculation of various geometric characteristics of ˙ . In
fact, formula (7.2) says that the mean curvature H˙ , the second fundamental form
A˙ , r˙ , and�˙ are, for r sufficiently large, very close to their counterparts on � .
Thus in what follows, we may omit many of the explicit calculations and appeal to
the calculation we have already done for � .

7.2 An Improvement of the Initial Profile
The fact that the ends of ˙ are asymptotically parallel means that if we want to

use its scaled version ˙" as a model for a traveling wave with the speed c D ",
we must perturb the ends of the surface. To see this, let us denote the signed
distance to ˙" by ´ D ´.x/ for x 2 RNC1 close to ˙". Then it is natural to
take u" D H.´/ as the first approximation to the solution. A short calculation
will convince the reader that, since the ends of ˙" are parallel, the error S.u"/ of
this approximation contains a term of order O.e�1="/. This means that S.u"/ is
globally a very small function of " but it is not a decaying function of r D jx0j
along ˙".

To remedy this situation we will consider an improvement of the initial pro-
file ˙". In general we want a new surface ż" to be a normal graph over ˙", to be
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identical with ˙" on a compact set, and to have ends that are diverging from one
another as r !1.

To give a formal definition, we need to introduce some notation. We let � be a
smooth cutoff function such that �.t/ D 0, t � 1, and �.t/ D 1, t � 2. By r"
we denote a number to be determined later on and about which we assume initially
that, with some c < C ,

(7.3) r" � e
c
" and r" � e

C
" :

Next, we will fix an orientation on ˙ in such a way that a unit normal n is interior
to this component of RNC1 n ˙ , which contains the origin. By n".y/ D n."y/

we denote the corresponding normal on ˙", and by n˙ and n˙" we denote the
restrictions of n and n" to the ends of ˙ . Finally, by � 2 SN�1 we denote points
on SN�1.

The new surface ż" will be a union of its lower and upper ends ż˙" given by
(7.4)
ż˙
" D

��
r�;

1

"
W ˙R ."r/

�
C �

�
r

r"

�
n˙."r;�/f ˙."r/

ˇ̌̌
r � R;� 2 SN�1

�
;

where the radial functions f ˙ W ˙ ! R are still to be determined.

Construction of f ˙

Choosing the functions f ˙ is a subtle point of our problem. To give some mo-
tivation, let us recall how in the preceding considerations we have determined the
functions f1; f2 W � ! R, which model the traveling fronts near �". Restrict-
ing our attention to r � 1, we observe that, to main order we needed to solve an
algebraic equation

(7.5) jA� j
2u D

e�u

ı2
; ı D

"
p
˛0

23=4
;

and then we obtained, to main order,

f1 � �
1

2
p
2
u; f2 �

1

2
p
2
u:

Equation (7.5) describes a balance between the interactions of the ends due to the
exponential decay of the heteroclinic to the stable phases ˙1 and the geometry
of the moving front � . Now we need to discover the analogue of (7.5) with �
replaced by ˙ . The natural guess would be to take jA˙ j2 on the right-hand side
and leave the exponential function on the left. However, the story is not so simple
because, altering the ends of˙ by adding normal perturbations as described above,
we have changed the character of the surface—the new surface is not a translating
solution of the mean curvature flow anymore. To take this into account, we solve
(instead of (7.5)) the following problem:

(7.6)
Frr

1C jFr j2
u D

e�u

zı2
; zı D z̨";
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where z̨ > 0 is a constant to be specified later. In what follows, we will show that
we can choose z̨ in such a way that defining

(7.7) f ˙ D
1

2
p
2
u

and using the modified surface as a model for the traveling wave, we can achieve
the following:

(1) If the approximate solution is defined by u" D H.´/, where ´ is the signed
distance from ż", then, at least near this surface, the error of the approxi-
mation S.u"/ is a small function of ", and it also decays as r ! 1 at an
algebraic rate in r .

(2) The projection of the error onto H 0.´/, namely
R

R S.u"/H
0.´/, is a func-

tion that behaves like
"2C�

.1C "2r2/1Cˇ
as r !1:

These two claims, which we will make more precise later, are sufficient to imple-
ment a Lyapunov-Schmidt construction quite similar to the one presented in the
previous sections and, as a result, prove Theorem 1.2.

Let us go back to equation (7.6). Based on the known asymptotic behavior of
the function F.r/ and its derivatives, one can prove the following:

LEMMA 7.2. Let u D u.r/ be the solution of (7.6), and let f ˙ D f ˙.r/ be the
functions defined in (7.7). There exist r0 > R and C > 0 such that for all r > r0
it holds that

(7.8) .f C.r/C f �.r// �
2
p
2

log
�
1C r2

"2

�
� C log log

�
1C r2

"2

�
:

From now on ż" will be the surface we defined in (7.4) with f ˙ as in Lemma
7.2. By zn" we will denote its unit normal, and by zn the unit normal of its scaled
version ż . These vectors are chosen in such a way that zn" is interior with respect
to the connected component of RNC1 n ż", which contains the origin.

7.3 Construction of the Initial Approximation
We will consider the Fermi coordinates associated with the surface ż":

x 7�! .y; ´/; y 2 ż"; ´ D dist.x; ż"/;

in a neighborhood of U" of this surface. We let U" be such that this map is a
diffeomorphism; namely we define

U" WD
(
x 2 RNC1

ˇ̌̌̌
j´j � C.˙/

"

�
1 � �

�
r
r"

��
C

1
2
�
�
r
r"

�
.f C."r/C f �."r//;

x D y C ´zn".y/; r D r.y/

)
:(7.9)

The constant C.˙/ > 0 depends on ˙ only. As before, for u W U" ! Rk , by
.X�" u/.y; ´/ we denote the pullback of u by this diffeomorphism. At this point we
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will choose conveniently the value of r" by letting it be a solution of the following
equation:

(7.10)
C.˙/

"
D
1

2
.f C.2"r"/C f

�.2"r"// H) r" � e
zc
" :

As a next step we define a smooth cutoff function �" that is supported in U" and
such that

.X�" �"/.y; ´/ D 1; dist.x; @U"/ � 1; x D y C ´zn".y/:

To be more precise, we take for instance a smooth cutoff function �.t/ such that
�.t/ D 1, t � �1, and �.t/ D 0, t � 0, and set
(7.11)

.X�" �"/.y; ´/ D �

�
j´j �

C.˙/

"

�
1 � �

�
r

r"

��
�
1

2
�

�
r

r"

�
jf C."r/C f �."r/j

�
:

In order to use a Lyapunov-Schmidt reduction procedure, we have to allow pos-
sible further perturbations of the surface ż". They will be given as normal graphs
over ż" of C2;�

ˇ
. ż"/ functions. More precisely, we start with radial functions

h W ż ! R such that

(7.12) khkC2;�
ˇ

. ż/
� "� ; some � > 0; ˇ > 0:

We will also make the usual identification h".r/ D h."r/ and consider normal
graphs of these functions over ż" as admissible perturbations. Numbers �; ˇ > 0

will be specified later on.
We denote the two components of RNC1 n ˙" by D˙" , respectively. We agree

that DC" is the component containing the set U" \ f´ > 0g, and D�" is “interior”
to ż". Finally, by �

D˙"
we denote the characteristic functions of these sets.

With this notation we set

.X�" u"/.y; ´/ D H.´ � h".r//; r D jy0j;

and define the approximate solution

(7.13) w".x/ D �".x/u".x/C .1 � �".x//.�DC"
.x/ � �D�" .x//:

7.4 Error of the Approximation
In this section we will compute the error of the approximation, namely,

S.w"/ D �w" C "@xNC1w" C w".1 � w
2
" /:

Using (7.13) we can write

(7.14)

S.w"/ D �"S.u"/C w".1 � w
2
" / � �"u".1 � u

2
"/„ ƒ‚ …

I

C Œ�; �"�u" � .��"/.�DC"
� �D�" /C "@xNC1�".u" � �DC"

C �D�" /„ ƒ‚ …
J

:
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As done in (6.5), we write S.u"/ in Fermi coordinates and denote .X�" u/.y; ´/ D
zu".y; ´/ for brevity. Thus we get

(7.15)

.X�" S.u"// D � ż"
zu" C Œ@

2
´zu" C f .zu"/�C Œ"@´.�";NC1/ �H ż"

�@´zu"

� ´jA ż
"
j
2@´zu" C "r ż

"
.�";NC1/ � r ż

"
zu"

CA"Œzu"�C B"Œzu"� � ´
2R ż

"
@´zu":

To proceed we need to calculate various geometric quantities appearing in (7.15)
in terms of the parametrization of ż" given in (7.4). These are standard compu-
tations, and we will only summarize the most important points in the form of a
lemma.

LEMMA 7.3. Let n˙" be the unit normal, g˙";ij be the coefficients of the metric, and
k˙";j be the principal curvatures of the ends ˙˙" of the surface ˙", and let zn˙" ,

zg˙";ij , and zk˙";j be the corresponding quantities on ż˙" , expressed in terms of the
local coordinates .r;�/ 2 RC � SN�1. Then, the following holds:

zn".r;�/ D n".r;�/�

�
0; "�

�
r

r"

�
@2rW

˙
R ."r/f

˙."r/

1C j@rW
˙
R ."r/j

2

�
C "�

�
r

r"

�
O
�
jf ˙."r/j

.1C "2r2/3=2

�
:

(7.16)

Furthermore, the matrices g˙";ij and zg˙";ij are diagonal, and we have the follow-
ing formulas:

zg";ij D g";ij

�
1C "�

�
r

r"

�
O
�
jf ˙."r/j

.1C "2r2/1=2

��
:

The principal curvatures satisfy

zk˙";1 D k˙";1

�
1C "�

�
r

r"

�
O
�
jf ˙."r/j

.1C "2r2/1=2

��
;

zk˙";j D k˙";j

�
1C "�

�
r

r"

�
O
�
jf ˙."r/j

.1C "2r2/

��
; j D 2; : : : ; N:

Let us recall that asymptotically, as r ! 1, the ends of ˙" are parallel to �".
As a result, in the above formulas we can replace g˙";ij and k˙";j in the right-hand
side by the coefficients of the metric and principal curvatures computed on �". The
error created this way will be very small. Another observation we make is that if
we take r" as in (7.10), then we have

�

�
r

r"

�
jf ˙."r/j

.1C "2r2/ˇ
�

C"2

.1C "2r2/ˇ
0

for all ˇ0 < ˇ provided that " is taken sufficiently small.
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Then straightforward calculations show that the error of the initial approxima-
tion is essentially of the same size in the C0;�

ˇ;�
. ż"/ sense. Namely, we can show

the exact analog of Lemma 6.1 for this part of the error:

(7.17) k�"S.u"/kC0;�
ˇ�;�

. ż"/
� C"2��

p
2; ˇ� D 1 � �

p
2:

Now we will estimate the second term in (7.14) denoted by I. For future pur-
poses it is convenient to have an explicit formula:

(7.18) I D
(
3.u" C 1/

2�".�" � 1/C .u" C 1/
3�".1 � �

2
" / in D�" ;

3.u" � 1/
2�".1 � �"/C .u" � 1/

3�".1 � �
2
" / in D�" :

From this, using H.t/ D ˙1CO.e�
p
2jt j/ and also the asymptotic formula (7.8),

we find, with some � > 0,

(7.19) kIkC0;�
ˇ� ;�

. ż"/
� C"2��

p
2:

Our final calculation involves the third term in (7.14) denoted by J . This term
is quite important since it represents the interactions between the ends of ż". We
write

J D .��" C "@xNC1�"/.u" � �DC" C �D�" /C 2r�" � ru":

Since H 0.t/ D O.e�
p
2jt j/ we can estimate

jJ j � Ce�
p
2jt j�f0<�"<1g

� Ce�� j´j exp
�
�.
p
2 � �/

�
C.˙/

"

�
1 � �

�
r

r"

��
C
1

2
�

�
r

r"

�
jf C."r/ � f �."r/j

��
:

By (7.8) we have

(7.20) kJ kC0;�
ˇ�;�

. ż"/
� C"2��

p
2:

We will summarize (7.17)–(7.20).

LEMMA 7.4. Let w" be the approximate solution defined in (7.13). For any � 2
.0; 1/ the error of this approximation S.w"/ satisfies the following estimate:

(7.21) kS.w"/kC0;�
ˇ�;�

. ż"/
� C"2��

p
2; ˇ� D 1 � �

p
2:

Assuming that the admissible perturbation of ż" satisfies (7.12), the constant C
appearing above depends on � but not on this perturbation.

In addition, as a function of the admissible perturbations, S.w"/ is a Lipschitz
function from C2;�

ˇ
. ż"/ into C0;�

ˇ�;�
. ż"/ with a Lispchitz constant proportional to

"2��
p
2.
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7.5 An Outline of the Lyapunov-Schmidt Reduction
Given the results of Lemma 7.4, it is rather straightforward to implement a

Lyapunov-Schmidt reduction procedure similar to the one used in the proof of
Theorem 1.1. In fact, large parts are simply repetitions with some natural changes.
Thus we will only give a brief outline of the general scheme. As before we look
for a solution of the problem

S.u/ D �uC "@xNC1uC u.1 � u
2/ D 0 in RNC1

in the form u D w" C '". Now we write

'" D �"�" C  "

and decompose the original problem into a system as described in Section 4.2. As
a result, we get the following analogue of (4.13)–(4.15):

� ż
"
�" C @

2
´�" C f

0.u"/�" D g" C c"H
0.´ � h"/ in ż" �R;(7.22)

.�C "@xNC1 � 2/ " D h" in RNC1:(7.23)

The functions g" and h" are similar to their counterparts in 4.2, and it can be
proven that they have all the properties described in 6.1. Also, all the linear theory
needed is a verbatim repetition of the content of Section 5. This leads us to the
existence result for the nonlinear projected problem as in Section 6.2. Namely, we
have a solution of the system (7.22)–(7.23), with

c" D

R
R g"H

0.´ � h"/d´R
RŒH

0.´ � h"/�2 d´
:

At this point all that remains to be done is to find h" such that c" D 0. Next we
will address this problem.

7.6 Solution of the Reduced Problem
We note that the leading terms in the projection of g" onto H 0.´ � h"/ come

from the projection of the error of the approximation S.w"/. To prove this requires
somewhat tedious calculations that we omit. Thus we concentrate on

(7.24)
Z
R

S.w"/H
0.´ � h"/d´ DZ

R

�"S.u"/H
0.´ � h"/d´C

Z
R

.I C J /H 0.´ � h"/d´:
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Using (7.14) and analyzing the terms involved, we observe that

(7.25)

Z
R

�"S.u"/H
0.´ � h"/d´

D �c0J ż
"
.h"/

C

Z
R

�"Œ"@´.�";NC1/ �H ż
"
�.H 0.´ � h"/�

2 d´

C�".h"/;

where J ż
"

is essentially the Jacobi operator on ż":

J ż
"
.h"/ D � ż

"
h" C "r ż

"
.�";NC1/ � r ż

"
h" C jA ż

"
j
2h";

and�".h"/ is a small term for all admissible functions h" in the sense that we have

k�"kC0;�
ˇ
. ż"/
� C"2C� some ˇ > 0; � > 0:

It remains to calculate the second term on the right-hand side of (7.25). We observe
that since ˙" is a translating solution to the mean curvature flow, this term would
have been 0 if we had not modified ˙" to ż". Using the fact that @´.�";NC1/ D
zn";NC1, i.e., it is simply the .N C 1/th component of the normal on ż" we get, by
(7.16) in Lemma 7.3,

(7.26)

Z
R

�"Œ"@´.�";NC1/ �H ż
"
�ŒH 0.´ � h"/�

2

D �"2
Z
R

�˙" �

�
r

r"

�
@2rW

˙
R ."r/f

˙."r/

1C j@rW
˙
R ."r/j

2
ŒH 0.´ � h"/�

2 d´

COC0;�
ˇ

. ż"/
."2C� /

D �"2
Z
R

�˙" �

�
r

r"

�
@2rF."r/f

˙."r/

1C j@rF."r/j2
ŒH 0.´ � h"/�

2 d´COC0;�
ˇ

. ż"/
."2C� /

D �a0"
2�

�
r

r"

�
@2rF."r/Œf

C."r/C f �."r/�

1C j@rF."r/j2
COC0;�

ˇ
. ż"/

."2C� /:

where a0 > 0 is a constant and

�˙" .y; ´/ D

(
�".y; ´/; y 2 ż˙" ;

0 otherwise:

In (7.26) we have omitted terms that are at most of a size comparable to "2C� in the
sense of C0;�

ˇ
. ż"/, as indicated by the notation. We observe as well that the error in

replacing @2rW
˙
R ."r/ and @rW ˙R ."r/ by @2rF."r/ and @rF."r/, respectively, again

results in a higher-order term. This justifies the third line in (7.26).
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Going back to (7.24) we observe that the projection on I is again negligible
since, by (7.18), we see that I � e�2

p
2j´j�f0<�"<1g. Thus it remains to calculate

(7.27)
Z
R

JH 0.´ � h"/d´ D

Z
R

�
.��" C "@xNC1�"/.u" � �DC"

C �D�" /C 2r�" � ru"
�
H 0.´ � h"/d´:

Using the definition of �" in (7.11) and the identity 1 �H 2 D
p
2H 0, after some

integrations by parts we get

(7.28)

Z
R

JH 0.´ � h"/d´

D

Z
R

Œ�00" .H
0.´ � h"/ � �DC"

C �D�" /C 2�
0
"H
0.´ � h"/�H

0.´ � h"/d´

COC0;�
ˇ

. ż"/
."2C� /

D 2

Z
R

�0"ŒH
0.´ � h"/�

2 d´COC0;�
ˇ

. ż"/
."2C� /

D a1 exp
�
�2
p
2
C.˙/Œ1 � �. r

r"
/�

"

�
� exp

�
�
p
2�

�
r

r"

�
.f C."r/C f �."r//

�
e�2
p
2h" COC0;�

ˇ
. ż"/

."2C� /:

Summarizing (7.25), (7.26), and (7.28) we get that the reduced problem amounts
to solving for h" the following equation:

(7.29)

c0J ż
"
.h"/C zc1 exp

�
�2
p
2
C.˙/

�
1 � �

�
r
r"

��
"

�
� exp

�
�
p
2�

�
r

r"

�
.f C."r/C f �."r//

�
h" D

D a0"
2�

�
r

r"

�
@2rF."r/Œf

C."r/C f �."r/�

1C j@rF."r/j2

� a1 exp
�
�2
p
2
C.˙/Œ1 � �. r

r"
/�

"

�
� exp

�
�
p
2�

�
r

r"

�
.f C."r/C f �."r//

�
COC0;�

ˇ
. ż"/

."2C� /:

This is of course a fixed point problem for h" and the term that we have denoted by
OC0;�

ˇ
. ż"/

."2C� / depends in a nonlinear and nonlocal way on h". It can be shown
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that this term in fact is a Lipschitz contraction of h" (and consequently of the
admissible functions h"). This is quite similar to the previous part. We concentrate
on analyzing the invertibility of the linear operator on the right-hand side of (7.29).

We make first an observation: by the choice of f ˙ we have for r > 2r"

a0"
2 @
2
rF."r/Œf

C."r/C f �."r/�

1C j@rF."r/j2
� a1 exp

˚
�
p
2.f C."r/C f �."r//

	
D 0:(7.30)

Second, when r � 2r", then by the choice of r" we have that the whole right-hand
side is an OC0;�

ˇ
. ż"/

."2C� / term. As a consequence, arranging some terms suitably,

we are left with solving the following problem:

�c0J ż
"
.h"/C �

�
r

r"

�
exp

˚
�
p
2.f C."r/C f �."r//

	
h" D OC0;�

ˇ
. ż"/

."2C� /:

Scaling back to the surface ż , we are left with the problem of the form

(7.31)

� żhCr ż .�NC1/ � r żhC jA ż j
2h

C
1

"2
�

�
r

"r"

�
exp

˚
�
p
2.f C.r/C f �.r//

	
h

D OC0;�
ˇ
. ż/
."� /:

Since we consider only the radial perturbations of the original surface˙ as admis-
sible, then ż is also rotationally symmetric, and the above problem reduces to an
ODE. Thus we may use a similar technique as in the previous part, namely solve
it by the variation-of-parameters formula, gluing various parts. When r < "r" our
operator is essentially identical with the linearization of the translating graph solu-
tion to the mean curvature flow (cf. Lemma 7.3). Inverting this operator is the only
significantly different part of the theory, and thus we will present it in some detail.
Note that when r > "r" the operator above resembles the linearized operator Lı ,
treated extensively in Section 3.6. An argument similar to the one in Section 3.6
can be used to control a fundamental set and to write the variation-of-parameters
formula.

7.7 Jacobi Operator of the Traveling Catenoid ˙
Our goal is to prove the following:

LEMMA 7.5. Let g 2 C0;�
ˇ
. ż/, ˇ > 1, be a function depending on the radial

variable only. There exists a solution v D v.r/ of the problem�
� ż Cr ż .�NC1/ � r ż C jA ż j

2
�
v

C
1

"2
�

�
r

"r"

�
exp

˚
�
p
2.f C.r/C f �.r//

	
v D g;

with
kvkC2;�

ˇ�1
. ż/
� CkgkC0;�

ˇ
. ż/
:
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In the region where r < "r" the surface ż coincides with the original traveling
catenoid ˙ . This is where our problem is different and we need the following
result:

LEMMA 7.6. Let us consider the following problem:

(7.32) J˙ .v/ D Œ�˙ Cr˙ .�NC1/ � r˙ C jA˙ j2�v D g;

where g 2 C0;�
1Cˇ

.˙/, with ˇ > 0, is a function that depends on the radial vari-
able r only. There exists a solution v D v.r/ of this problem such that

(7.33) kvkC0;�
ˇ
.˙/
� CkgkC0;�

1Cˇ
.˙/
:

PROOF. We observe that the Jacobi operator for the surface ˙ can no longer
be expressed in terms of the radial variable globally. In fact, we need to use three
charts on ˙ to write conveniently equation (7.31) in local variables. This in fact is
the only new element.

Near the point of the traveling catenoid where r D R we will express the surface
as a graph over the xNC1-axis. Thus we have, following the results in [5]:

˙ \ BR1 D f.q.´/�; ´/ j ´ 2 .�´0; ´0/g;

where R1 > R and q satisfies�
N � 1

q
� q0

�
.1C .q0/2/ D q00:

With this in mind we express the radial function g on the right-hand side of (7.32)
in terms of ´ D q�1.r/. We will abuse notation and denote this, and other functions
involved, by the same symbols g, v, etc.

We write the Jacobi operator J˙ restricted to functions of v D v.´/ in this chart
and get the following ODE:

(7.34)
v00

1C jq0j2
C

�
N � 1

q
C

1

1C jq0j2

�
v0

C

�
jq0j2

.1C jq0j2/3
C

N � 1

q2.1C jq0j2/

�
v D g:

We multiply this equation through by 1 C jq0j2 and arrive at the equation in the
following form:

v00 C p1.´/v
0
C p2.´/v D .1C jq

0
j
2/g D zg:

Let �0 and �1 be two linearly independent elements of a fundamental set of the
operator chosen so that

�0.0/ D 0; �1.0/ D 1;

�00.0/ D 1; �01.0/ D 0:
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Finally, let P1.´/ be a primitive of p1. Then we can write explicitly

(7.35) v.´/ D

Z ´

�´0

e�P1.�/

�20.�/

Z �

�´0

zg.�0/�0.�
0/eP1.�

0/d�0 C a0�0.´/C a1�.´/:

Next we write J˙ on the ends ˙˙ n Br0 , where r0 is chosen so that R < r0 <

R1 and the various local charts overlap. The natural parametrization is of course

˙˙ n Br0 D f.r�;W
˙
R .r// j .�; r/ 2 S

N�1
�RCg:

In this chart J˙ can be written as an ODE in r for each of the two ends. This is
very similar to what we did in Lemma 3.4. Denoting by �˙0 and �˙1 the elements
of a fundamental set corresponding to �0 and �1 in Lemma 3.4, and letting zg˙ D
.1C j@rW

˙
R j

2/, we get the following formula:

v˙.r/ D ��˙0

Z r

r0

�˙1 .�//zg
˙.�/

W ˙.�/
d�

C �˙1

Z r

r0

�˙0 .�//zg
˙.�/

W ˙.�/
d�C a˙1 �

˙
1 .r/

(7.36)

for a general solution v in C2;�
ˇ
.˙/. Note that we have

�˙0 .r/ �
1

1C r
; �˙1 .r/ � re

�r2 ; r � 1;

which is why in (7.36) we have included only constant multiplicities of �˙1 .
Next we need to choose the four constants a0, a1, and a˙1 in such a way that

v˙.r0/ D v ı .W
˙
R /
�1.r0/;

@rv
˙.r0/ D @rv ı .W

˙
R /
�1.r0/:

This is a matter of solving a simple system of four linear equations.
After this is done we have a solution defined now on the whole surface ˙ .

Estimate (7.33) follows directly from the explicit formulas we have derived. This
ends the proof. �

Next, we describe how to solve the linearized problem (7.31). Note that as long
as r < "r" we are dealing with the Jacobi operator discussed in the lemma above.
Thus, at least up to r D "r", we will have no problem in defining a solution v in
C2;�
ˇ�1

.˙ \ fr < r"g/ (here we take ˇ > 1). What is left is to solve a problem of
the form

(7.37) J ż˙.v˙/C
1

"2
�

�
r

"r"

�
exp

˚
�
p
2.f C.r/C f �.r//

	
v˙ D g˙

on each end˙˙, with r > r" for radial functions v˙, with initial data given by the
solution v, already found, at r D "r".
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Now we notice that because of the definition on f ˙ in (7.6)–(7.7), the operator
appearing in (7.37) is very similar to the operator Lı considered in Section 3.5. In
fact, we can write (7.37) in the form

.1C o.1//v˙rr

1C j@rW
˙
R j

2
C
.N � 1/.1C o.1//v˙r

r
C p˙" .r/v

˙
D g˙; r > "r";

where

p".r/ �
1

1C r2
log

�
1C r2

"2

�
; r > "r";

which is in agreement with the behavior of the function pı in (3.37), and the o.1/
term above means terms that are small both in " and r . Since we are interested in
this problem only for large values of r � "r" � ezc=", we see that the argument in
Section 3.6 can be repeated verbatim to solve our problem. Having the inverse of
the operator in (7.31) at hand, we proceed in the same way as in the previous case
to finally solve a fixed point problem for h. We omit the details.
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