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NONDEGENERACY OF ENTIRE SOLUTIONS

OF A SINGULAR LIOUVILLLE EQUATION

MANUEL DEL PINO, PIERPAOLO ESPOSITO, AND MONICA MUSSO

(Communicated by Matthew J. Gursky)

Abstract. We establish nondegeneracy of the explicit family of finite mass
solutions of the Liouvillle equation with a singular source of integer multiplic-
ity, in the sense that all bounded elements in the kernel of the linearization
correspond to variations along the parameters of the family.

1. Introduction and statement of the main result

Liouville type equations with singular sources in two space dimensions arise in
various interesting contexts and have been the object of many studies in recent
years. The model problem of this type is the equation

(1) Δu+ eu = 4πNδ0 in R
2

where δ0 designates the Dirac mass at the origin and N is a nonnegative integer.
Singular Liouville equations appear for instance in the Abelian Maxwell-Higgs

and Chern-Simons-Higgs theories of superconductivity, in the self-dual regime. In
the latter model, a mean field form of problem (1) on the torus becomes the limiting
equation for non-topological condensates as shown in [13, 15]. The number N
represents vortex multiplicity in that context, so that the most interesting case is
precisely that in which it is a positive integer. This type of singular equation arises
also in Euler flows [2, 17] and naturally in the construction of singular conformal
metrics in R

2. We refer the reader to [11, 12, 16] and references therein for recent
developments in this subject and related issues.

In [14], with the aid of Liouville’s formula (see (3) below), it is shown that
all solutions of this problem with finite mass

∫
R2 e

u < +∞ are given, in complex
notation, by the family

Uμ,a(z) = log
8μ2(N + 1)2|z|2N
(μ2 + |zN+1 − a|2)2 , μ ∈ R, a ∈ C,

for which we observe ∫
R2

eu = 8π(N + 1).
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Our purpose in this paper is to prove the L∞-nondegeneracy of these solutions.
The linearized operator for (1) at Uμ,a is given by

L(φ) := Δφ+ eUμ,a(z)φ

or

L(φ) = Δφ+
8μ2(N + 1)2|z|2N
(μ2 + |zN+1 − a|2)2 φ .

Since
ΔUμ,a(z) + eUμ,a(z) = 4πδ0,

it follows that the functions

Z1 := ∂μUμ,a, Z2 := ∂a1
Uμ,a, Z3 := ∂a2

Uμ,a (a = a1 + ia2)

are bounded solutions of the equation L(Z) = 0. Explicitly we have

Z1 = − 2

μ

μ2 − |zN+1 − a|2
μ2 + |zN+1 − a|2 , Z2 = 2

Re (zN+1 − a)

μ2 + |zN+1 − a|2 ,(2)

Z3 = −2
Im(zN+1 − a)

μ2 + |zN+1 − a|2 .

We prove the L∞-nondegeneracy of the solutions Uμ,a in the following sense:

Theorem 1. If φ ∈ L∞(R2) solves the equation L(φ) = 0, then φ must be a linear
combination of the functions Z1, Z2, Z3.

Nondegeneracy is an important ingredient in the construction of solutions to
problems involving small parameters and concentration phenomena in which, after
suitable blowing-up around a concentration point, one sees a limiting equation.
Theorem 1 is known for N = 0; see [1]. This property has been used for instance
in [1, 6, 9] to build solutions with multiple concentration points for the problem

Δu+ ε2eu = 0 in Ω, u = 0 on ∂Ω,

as ε → 0 where Ω is a bounded domain in R
2. See also [3, 4, 7, 10] for related

constructions. See also [8] for the case in which a singular source 4πNδP is present
in the right hand side of the equation and N is not an integer.

In the case that N is an integer, in [5] we have built concentrating solutions at a
single point in the simply connected case with the aid of Liouville’s representation
formula. Theorem 1 may represent a major step in the construction of new solutions
for this and related problems with exponential nonlinearities.

As we have mentioned above, in [1] Theorem 1 was proven for N = 0. We
observe that in that case the simple transformation

φ̃(z) := φ(a+ μz)

reduces the equation L(φ) = 0 to

Δφ̃+
8

(1 + |z|2)2 φ̃ = 0.

Then, using usual polar coordinates z = ρeiθ and decomposing φ̃ into a Fourier
series

φ̃(ρ, θ) =
∑
k≥0

ak(ρ) cos(kθ) + bk(ρ) sin(kθ),

we find that the equation decouples into independent ODEs for each of the coef-
ficients ak, bk. These equations can be solved one by one, then leading easily to
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NONDEGENERACY OF SOLUTIONS OF LIOUVILLLE EQUATION 583

the desired result. When N > 0, the parameter μ can be absorbed similarly, but
we cannot do so with a. Then, we have to live with the fact that the potential in
the equation is nonradial, which makes impossible the decoupling. We are able to
circumvent this nontrivial difficulty by an expansion of the solution into a suitable
orthonormal system, different from the trigonometric one, suitably adapted to the
equation. We devote the rest of the paper to carrying out the proof.

2. The proof of Theorem 1

As we have commented above, by scaling we can eliminate the parameter μ in
the equation so that we have to prove that if φ ∈ L∞(R2) solves the equation

L(φ) = Δφ+
8(N + 1)2|z|2N

(1 + |zN+1 − a|2)2 φ = 0 in R
2,

then φ is a linear combination of the functions Z1, Z2, Z3 in (2) for μ = 1.
Let us recall the Liouville formula: given a holomorphic function f on C, the

function

(3) U(z) = ln
8|f ′(z)|2

(1 + |f(z)|2)2

solves the equation

ΔU + eU = 0

in the set

{z ∈ C / f ′(z) �= 0}.
If f ′ now has a zero at the origin of multiplicity N , the function

ln
8|f ′(z)|2

(1 + |f(z)|2)2 − ln |z|2N

solves the equation ΔU + |z|2NeU = 0 in the set {z ∈ C \ {0} / f ′(z) �= 0}. The
choice

f(z) = zN+1(1 + τzk)− a, k ≥ 0,

leads to a family

Uτ,k(z) = ln
8(N + 1)2|1 + τ N+1+k

N+1 zk|2

(1 + |zN+1(1 + τzk)− a|2)2 , τ ∈ C,

of solutions of

ΔU + |z|2NeU = 0

in

C \ {z ∈ C : 1 + τ
N + 1 + k

N + 1
zk = 0}.

The derivative of Uτ,k in τ at τ = 0

φk :=
N + 1

N + 1 + k
∂τUτ,k

∣∣∣
τ=0

= zk

(
1− 2

N + 1

N + 1 + k

zN+1zN+1 − a

1 + |zN+1 − a|2

)

solves L(φk) = 0 in C, and in particular, φ1
0 = Re φ0 and φ1

k = Re φk, φ
2
k = Im φk

are real solutions for k ≥ 1. We claim that
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584 MANUEL DEL PINO, PIERPAOLO ESPOSITO, AND MONICA MUSSO

Claim 1. Every bounded solution φ of L(φ) = 0 is a linear combination of φ1
0 and

φi
k, k ≥ 1 and i = 1, 2:

φ = a0φ
1
0 +

∑
k≥1

(
akφ

1
k + bkφ

2
k

)
.

Proof of Claim 1. The key idea is that, for ρ small, the functions φ1
0(ρe

iθ),
1
ρk φk(ρe

iθ) and 1
ρkφk(ρe

iθ) with k ≥ 1 are very close to the complex Fourier basis
1
2π e

ikθ, k ∈ Z, and then form a complete set in L2(∂Bρ(0),C).
By an integration by parts first we can compute for k �= 0

1

2π

∫
S1

φ1
0(ρe

iθ)dθ = 1 +O(ρN+1),
1

2π

∫
S1

eikθφ1
0(ρe

iθ)dθ = O(
ρN+1

|k| )

as ρ → 0+ (uniformly in k). A more careful integration by parts yields that for
j ≥ 1:

1

2π

∫
S1

eikθ
1

ρj
φj(ρe

iθ)dθ

=
1

2π

∫
S1

ei(k+j)θ

(
1− 2

N + 1

N + 1 + j

ρN+1ei(N+1)θρN+1ei(N+1)θ − a

1 + |ρN+1ei(N+1)θ − a|2

)
dθ

= δk=−j −
N + 1

π(N + 1 + j)
ρN+1

∫
S1

ei(k+j+N+1)θ ρN+1ei(N+1)θ − a

1 + |ρN+1ei(N+1)θ − a|2 dθ

= δk=−j + δk=−j−N−1O(
ρN+1

N + 1 + j
)− δk �=−j−N−1

i(N + 1)ρN+1

π(N + 1 + j)(k + j +N + 1)

×
∫
S1

ei(k+j+N+1)θ∂θ[
ρN+1ei(N+1)θ − a

1 + |ρN+1ei(N+1)θ − a|2 ]dθ

= δk=−j + δk=−j−N−1O(
ρN+1

N + 1 + j
)

+ δk �=−j−N−1O(
ρN+1

(N + 1 + j)|k + j +N + 1| )

as ρ → 0+ (uniformly in k). Similarly, for j ≥ 1 as ρ → 0+ (uniformly in k) we
have that

1

2π

∫
S1

eikθ
1

ρj
φj(ρe

iθ)dθ

=
1

2π

∫
S1

ei(k−j)θ

(
1− 2

N + 1

N + 1 + j

ρN+1e−i(N+1)θ[ρN+1ei(N+1)θ − a]

1 + |ρN+1ei(N+1)θ − a|2

)
dθ

= δk=j + δk=j+N+1O(
ρN+1

N + 1 + j
) + δk �=j+N+1O(

ρN+1

(N + 1 + j)|k − j −N − 1| ).

Letting ψ ∈ L2(∂Bρ(0),C) in the form ψ(ρeiθ) =
∑
k∈Z

cke
ikθ, we can compute

c̃0 :=
1

2π

∫
S1

ψ(ρeiθ)φ1
0(ρe

iθ)dθ = c0 + ρN+1O(
∑
k∈Z

|ck|
|k|+ 1

),
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NONDEGENERACY OF SOLUTIONS OF LIOUVILLLE EQUATION 585

and for j ≥ 1

c̃j :=
1

2π

∫
S1

ψ(ρeiθ)
1

ρj
φj(ρe

iθ)dθ

= cj +
ρN+1

N + 1 + j
O

(∑
k∈Z

|ck|
|k − j −N − 1|+ 1

)
,

c̃−j :=
1

2π

∫
S1

ψ(ρeiθ)
1

ρj
φj(ρe

iθ)dθ

= c−j +
ρN+1

N + 1 + j
O

(∑
k∈Z

|ck|
|k + j +N + 1|+ 1

)
.

We consider the operator

T : c = (. . . , c−1, c0, c1, . . . ) ∈ l2 → c̃ = (. . . , c̃−1, c̃0, c̃1, . . . ) ∈ l2.

In view of

∑
k∈Z

|ck|
|k + j0|+ 1

≤
(∑

k∈Z

|ck|2
) 1

2
(∑

k∈Z

1

(|k + j0|+ 1)2

) 1
2

= ‖c‖l2
(∑

k∈Z

1

(|k|+ 1)2

) 1
2

for every given j0, we have shown so far that

|c̃0 − c0| = O(ρN+1‖c‖l2), |c̃j − cj |+ |c̃−j − c−j | = O(
ρN+1

j + 1
‖c‖l2),

and then

‖T − Id‖ ≤ C ′ρN+1

⎛
⎝∑

j≥0

1

(j + 1)2

⎞
⎠

1
2

≤ CρN+1.

In conclusion, for ρ small we have that T is an invertible operator. If ψ ∈
L2(∂Bρ(0),R) is such that∫

S1

ψ(ρeiθ)φ1
0(ρe

iθ)dθ =

∫
S1

ψ(ρeiθ)φj
k(ρe

iθ)dθ = 0 ∀k ≥ 1, j = 1, 2,

then c̃ = 0, and by injectivity of T we deduce that the Fourier coefficients cj
of ψ(ρeiθ) vanish yielding to ψ = 0. This means that, for ρ small, the space
L2(∂Bρ(0),R) coincides with the closure in L2-norm of

Span {φ1
0, φ

j
k, k ≥ 1, j = 1, 2}.

In particular, every bounded solution φ of L(φ) = 0 in C can be written on ∂Bρ(0),
for ρ small, as

φ(ρeiθ) = a0φ
1
0(ρe

iθ) +
∑
k≥1

(
akφ

1
k(ρe

iθ) + bkφ
2
k(ρe

iθ)
)
,

for suitable aj and bj . By regularity theory φ ∈ C∞(C), and then φ |∂Bρ(0)∈
C∞(∂Bρ(0)). Arguing as for the Fourier coefficients, it is easily seen (with tedious
computations, due to the almost orthogonality of φk(ρe

iθ)) that ak and bk tend to
zero as k → +∞ faster than any power of k. In particular, the function

φ̂(z) = a0φ
1
0(z) +

∑
k≥1

[akφ
1
k(z) + bkφ

2
k(z)]
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is well defined, is in C∞(C) and satisfies L(φ̂) = 0 in C. Since φ = φ̂ on ∂Bρ(0)

and δ = φ− φ̂ satisfies L(δ) = 0 in C, an integration by parts yields to∫
Bρ(0)

|∇δ|2 =

∫
Bρ(0)

V δ2 −
∫
Bρ(0)

L(δ)δ =

∫
Bρ(0)

V δ2 ≤ Cρ2N
∫
Bρ(0)

δ2,

where V (z) = 8(N+1)2|z|2N
(1+|zN+1−a|2)2 . As soon as Cρ2N < λ1(Bρ(0)) (λ1 being the first

eigenvalue of −Δ with Dirichlet boundary conditions), we get that necessarily δ = 0
in Bρ(0). Then, for ρ small we have that δ = 0 in Bρ(0), and by the strong maximum
principle δ = 0 in C. So we have shown that

φ(z) = a0φ
1
0(z) +

∑
k≥1

[akφ
1
k(z) + bkφ

2
k(z)]

in C. �

Let us look now at the behavior of φ(z) as |z| → +∞. Since the only bounded
components in φ(z) are φ1

0 and φ1
N+1, φ

2
N+1, we claim that

Claim 2. ak = bk = 0 for k �= 0, N + 1.

Proof of Claim 2. Also in this case we will use that the components of φ are very
close to the Fourier basis as |z| → +∞. Indeed, observe that

zN+1zN+1 − a

1 + |zN+1 − a|2 = 1 +O(
1

|z|N+1
) as |z| → +∞,

and then

φk(z) = zk
(
k −N − 1

N + 1 + k
+O(

1

|z|N+1
)

)
at infinity (uniformly in k ≥ 0). More explicitly, we have that

φ1
0(z) = −1 +O(

1

|z|N+1
), φ1

k(z) =
k −N − 1

N + 1 + k
|z|k cos(kθ)(1 +O(

1

|z|N+1
)),

φ2
k(z) =

k −N − 1

N + 1 + k
|z|k sin(kθ)(1 +O(

1

|z|N+1
))

as |z| → +∞. Using Cauchy-Schwartz’s inequality, we compute

1

R

∫
∂BR(0)

φ2 = π

⎛
⎝∑

k≥0

(k −N − 1)2

(N + 1 + k)2
R2ka2k +

∑
k≥1

(k −N − 1)2

(N + 1 + k)2
R2kb2k

⎞
⎠

+ o

⎛
⎝∑

k,j

|k −N − 1

N + 1 + k
||j −N − 1

N + 1 + j
|Rk+j(|ak||aj |+ |bk||bj |+ |ak||bj |)

⎞
⎠

= π(1 + o(1))

⎛
⎝∑

k≥0

(k −N − 1)2

(N + 1 + k)2
R2ka2k +

∑
k≥1

(k −N − 1)2

(N + 1 + k)2
R2kb2k

⎞
⎠

as R → +∞. Since φ is bounded in C, we have that 1
R

∫
∂BR

φ2 is bounded in R,
and then ∑

k≥0

(k −N − 1)2

(N + 1 + k)2
R2ka2k +

∑
k≥1

(k −N − 1)2

(N + 1 + k)2
R2kb2k

is bounded in R. Then ak = 0 and bk = 0 for k ≥ 1 unless k = N + 1. �
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For a bounded solution φ of L(φ) = 0 we have then shown that

φ(z) = a0φ
1
0(z) + aN+1φ

1
N+1(z) + bN+1φ

2
N+1(z).

To establish the validity of Theorem 1, we need simply to rewrite φ0 and φN+1 in
a more explicit way. We have that

φ0(z) = 1− 2
zN+1zN+1 − a

1 + |zN+1 − a|2 =
1− |zN+1 − a|2
1 + |zN+1 − a|2 − 2a

zN+1 − a

1 + |zN+1 − a|2

and

φN+1(z) = zN+1

(
1− zN+1zN+1 − a

1 + |zN+1 − a|2

)

= a
1− |zN+1 − a|2
1 + |zN+1 − a|2 +

zN+1 − a

1 + |zN+1 − a|2 − a2
zN+1 − a

1 + |zN+1 − a|2 .

In real form we can then write that

φ1
0(z) =

1− |zN+1 − a|2
1 + |zN+1 − a|2 − 2a1Re

zN+1 − a

1 + |zN+1 − a|2 − 2a2Im
zN+1 − a

1 + |zN+1 − a|2

and

φ1
N+1(z) = a1

1− |zN+1 − a|2
1 + |zN+1 − a|2 + (1− (a1)2 + (a2)2)Re

zN+1 − a

1 + |zN+1 − a|2

− 2a1a2Im
zN+1 − a

1 + |zN+1 − a|2

and

φ2
N+1(z) = a2

1− |zN+1 − a|2
1 + |zN+1 − a|2 − 2a1a2Re

zN+1 − a

1 + |zN+1 − a|2

+ (1 + (a1)2 − (a2)2)Im
zN+1 − a

1 + |zN+1 − a|2 ,

where a = a1 + ia2. As a conclusion, the function φ can be written as

φ = (a0 + aN+1a
1 + bN+1a

2)
1− |zN+1 − a|2
1 + |zN+1 − a|2

+ [−2a0a
1 + aN+1(1− (a1)2 + (a2)2)− 2bN+1a

1a2]Re
zN+1 − a

1 + |zN+1 − a|2

+ [−2a0a
2 − 2aN+1a

1a2 + bN+1(1 + (a1)2 − (a2)2)]Im
zN+1 − a

1 + |zN+1 − a|2

and Theorem 1 is established. �
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Dipartimento di Matematica, Università degli Studi “Roma Tre”, Largo S. Leonardo

Murialdo, 1, 00146 Roma, Italy

E-mail address: esposito@mat.uniroma3.it
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