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The classical Onofri inequality in the two-dimensional sphere assumes a natural form
in the plane when transformed via stereographic projection. We establish an optimal
version of a generalization of this inequality in the d-dimensional Euclidean space for
any d> 2, by considering the endpoint of a family of optimal Gagliardo-Nirenberg inter-
polation inequalities. Unlike the two-dimensional case, this extension involves a rather
unexpected Sobolev—Orlicz norm, as well as a probability measure no longer related to

stereographic projection.

1 Introduction and main result

The Onofri inequality as stated in [18] asserts that

1
log (LZ e’ d02> - LZ vdoy < L_L”VUHEZ(SZ,dUZ) (1)

for any function v € H'(S?, do;). Here, do, denotes the standard surface measure on the

two-dimensional unit sphere S? ¢ R®, up to a normalization factor ﬁ so that [, 1doy =1.
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Using stereographic projection from S? onto R?, that is, defining u by

2x; 2 1—|x?

= .th = N N N = ), =, =
ux)=v(y) withy=(.y.»). n NPT Chl g AN Chak gy

for any x= (x1, x3) € R?, then (1) can be reformulated into the Euclidean Onofri inequal-

ity, namely

1 2
log (JRZ e" sz) - JRZ uduy < T6m VU2 82,4 2)
for any ue L' (R?, dj,) such that Vue L2(R?, dx), where

dx

dua® = e

is again a probability measure.

The purpose of this note is to obtain an (optimal) extension of inequality (2) to
any space dimension. There is a vast literature on Onofri’'s inequality, and we shall only
mention a few works relevant to our main result below. Onofri’s inequality with a nonop-
timal constant was first established by Moser [17], a work prior to that of Onofri [18].
For this reason, the inequality is sometimes called the Moser—-Onofri inequality. We also
point out that Onofri's paper is based on an earlier result of Aubin [2]. We refer the inter-
ested reader to [14] for a recent account on the Moser-Onofri inequality. The inequality
has an interesting version in the cylinder R x S!, see [12], which is however out of the
scope of the present work.

In this note, we will establish that the Euclidean version of Onofri’s inequality (2)
can be extended to an arbitrary dimension d > 3 in the following manner. Let us consider

the probability measure
dx

ST (1 + 1x)aT)d

dpa(x) =
Let us denote
Ra(X, V) :=|X+ Y|¢— X9 - d|X|"?X.Y, (X,¥)eR?xR?
which is a polynomial if d is even. We define

d-2
d|X|*ﬁ
d

1+ |x|at

Ha(x, p) :=Ryq <— X,d;Ip), (x, p) e R? x R?
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and

Jga Ha(x, Vu) dx
U := .
Qd “ log(J‘Rd et dﬂd) - J‘]Rd ud/'Ld

The following is our main result.

Theorem 1.1. With the above notation, for any smooth compactly supported function

u, we have

log <J' et dud> — J udpg < adJ Ha(x, Vu) dx. (3)
R4 Rd Rd

The optimal constant ¢4 is explicit and given by

d'~4r(d/2)
= —-.
4T 2(d- 12
Small multiples of the function
x-e
v(X)=—d—335 = (4)
| x| 1 (1 + |x]aT)
for a unit vector e are approximate extremals of (3) in the sense that
. 1
lim Qgls vl = —. 0
e—0 od

A rather unexpected feature of inequality (3) when compared with Onofri’s
inequality (2) is that it involves an inhomogeneous Sobolev-Orlicz-type norm. As we will
see below, as a by-product of the proof we obtain a new Poincaré inequality in entire

space, (7), of which the function v defined by (4) is an extremal.

Example 1.2. If d=2, [p,Hz(x, Vu) dx= 3 [, [Vu* dx and we recover Onofri's inequal-
ity (3) as in [11], with optimal constant 1/ay; =4 7. On the other hand, if, for instance,
d=4, we find that Hy(x, Vu) is a fourth-order polynomial in the partial derivatives of u,
since Ry(X, V) =4(X - Y)? + |Y|2(]Y]? + 4X - Y + 2| X]?). O

Extensions of inequality (2) to higher dimensions were already obtained long
ago. Inequality (1) was generalized to the d-dimensional sphere in [3, 5], where natu-

ral conformally invariant, nonlocal generalizations of the Laplacian were used. Those
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operators are of different nature than those in Theorem 1.1. Indeed, no clear connec-
tion through, for instance, stereographic projection is present. See also [15, 16] in which
bounded domains are considered.

Inequality (3) determines a natural Sobolev space in which it holds. Indeed, a
classical completion argument with respect to a norm corresponding to the integrals
defined on both sides of the inequality determines a space on which the inequality still
holds. This space can be identified with the set of all functions ue L' (R% dug) such that
the distribution Vu is a square integrable function. To avoid technicalities, computa-
tions will only be done for smooth, compactly supported functions.

Our strategy is to consider the Euclidean inequality of Theorem 1.1 as the
endpoint of a family of optimal interpolation inequalities discovered in [7] and then

extended in [8]. These inequalities can be stated as follows.

Theorem 1.3. Let pe(1,d], a> 1 such thata< pfidf_pl) if p<d,and b= p;;_}. There exists
a positive constant C,, such that, for any function, fe L%R?, dx) with V fe LP(R?, dx),

we have

(a—pd

I £l = CrallV flipga |V Fllizfeey with 0= o= (5)
if a > p. A similar inequality also holds if @ < p, namely
IV e = CpallV Flpen | Flfstza, Wit 0= 2o -2 = fﬁa —5
In both cases, equality holds for any function taking the form
ﬂ@=Aﬂ+Bm—&ﬁ%ﬂ% V xeR?
for some (A4, B, X)) € R x R x R%, where B has the sign of a — p. O

While in [8], only the case p < d was considered, the proof there actually applies
to also cover the case p=d, for any a € (1, c0).

For a= p, inequality (5) degenerates into an equality. By subtracting it from
the inequality, dividing by a — p and taking the limit as a— p,, we obtain an opti-

mal Euclidean LP-Sobolev logarithmic inequality which goes as follows. Assume that
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1 < p<d. Then, for any ue W"P(R% with [, |u/? dx=1, we have

d
J |u|Plog |ul? dx < — log |:'3p’dJ |Vu|pdxi| ,
R4 p R4

where

p/p—1\""' 1 F(é 1) §
b () 5 [,
e 7t | rdet+1)

is the optimal constant. Equality holds if and only if for some ¢ > 0 and x, € R?

1 ré e L

ux) = L I I s
27t p—1 F(d S

This inequality has been established in [9] when p < d and, in general, in [13]; see also

[6, 10].

When p < d, the endpoint a= p(d_pl)

corresponds to the usual optimal Sobolev
inequality, for which the extremal functions were already known from the celebrated
papers by Aubin and Talenti [1, 20]. See also [4, 19] for earlier related computations,
which provided the value of some of the best constants.

When p=d, Theorem 1.1 will also be obtained by passing to a limit, namely as
a— +o00. In this way, the d-dimensional Onofri inequality corresponds to nothing but
a natural extension of the optimal Sobolev’s inequality. In dimension d=2, with p=2,

a=q+ 1> 2 and b= 2q, it has recently been observed in [11] that

gq+1

) IV fq ||L2<Rz) I fall o gy erew Va2 VUl dx
1 <lim Cy g1 = id
q—00 Il follrze w2 J g2 €% dpuz

if fo=01+ |X|2)_‘1%1(1 + %) and [, udpu, =0. In that sense, Onofri’s inequality in dimen-
sion d =2 replaces Sobolev’s inequality in higher dimensions as an endpoint of the fam-

ily of Gagliardo-Nirenberg inequalities

1 fllzea) < Cogra IV Flfs e | FllE5 ey

with 6 = q m In dimension d > 3, we will see below that (3) can also be seen as

an endpoint of (5).
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2 Proof of Theorem 1.1

Assume that ue D(R9) is such that ‘[Rd udug=0 and let

where F, is defined by

o

—1

J
<
X
m
=
Q

Fa(x) = (1 + |x]@7)

From Theorem 1.3, Inequality (5), we know that

IV Fall? aay | Fall o
1< lim Cgq4, LR L(R)
a—-+oo I fallLome)

if p=d. Our goal is to identify the right-hand side in terms of u. We recall that b=

and 6 = d(a 1)

f=f,as

a—d
S LSl 5 dx_ (S VA ) 5 Jy | ol dx
Joo 1Fal 6 dx ~ \Jpa Va9 dx Jaa | Fal® dx

and observe that:

d(a—1)

() limg . soo [ [Fal 5 dx= [5a(1 + x177) ¢dx=4|5¢"| and

a 1) d(a—1) —1 d-1 U
lim J | fal ' dx= lim J F,*! <1+d—u) dX:J. ©
R4 da R

3605

d(a—1)

d-1

Using the fact that F, is an optimal function, we can then rewrite (5) with

a—+o0o a—+00 d (]_ + |X|d%dl)d
so that
d(a-1)
J. alfal 1 dx
lim RW J eud,u,d.
a—+00 J‘Rd|p |"eT dx  Jre

(ii)) As a— +oo,

2ar¥?
Fltdx~ 22y ¥
JRd| s 2T aggleww dx = oo,
and
Jral fal®dx

m ——— =
a—+00 de |Fg|¢dx
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(iii) Finally, as a— +o00, we also find that

_a—d_ »
Jga |V fal? dx ) ©7 dd—1) &%
T v dAdw ~l14 —2 H v
(fRd |VF,|4dx < + a ad JRd a(x, Vu) dx

~ exp <(de Ha(x, Vu) dX> .
R4

Here and above ¢;(a) ~ {;(a) means that lim, ., ¢;(a)/l2(a) =1. Fact (iii)
requires some computations which we make explicit next. First of all,
we have

dd-2pd2 |

J IVF,|%dx="—"_¢
Rd r(d/2)

With X,:= (1+d%dalu) VF, and Y, := %FaVu, we can write, using the definition of
Rg, that

d
da u) + Ra(Xg, Yo).

d—1 \¢
|Vfa|d=|VFa|d<1+ u) +Fa|VFa|d2VFa~V<1+

Consider the second term on the right-hand side and integrate by parts. A straightfor-

ward computation shows that

J Fo|VF,|4“2VF,.V 1+d_1uddx——J |V F,|? 1+d_luddx
- a a a da = R a da

J F,A4F, 1+d_1uddx
Rdada da s

where A F,=V - (IVF,|P~2VF,) is computed for p=d. Collecting terms, we obtain

d
J IV % dx = —J F,A4F, (1 + u) dx + J Ra(X,, V) dx.
Rd R4 R4

We may next observe that

da _ _a-l
aVF,(x) = —m|x|’%x(1 +1x]7T) " > —d—————  a.e. as a— 400,
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while aV(1 + %lu)=%1Vy, so that both X,=(1+ % wVF, and Y,=%4'F,Vu in
Ra(X,, ¥,) are of the order of 1/a. By homogeneity, it follows that

dix- &  d—
ade(Xas Y,) — Ral — X a X
1+ |x|aT d

1
Vu) =Hg(x, Vu) asa— +oo,
by definition of H;. Hence we have established the fact that

~1\¢
J |Vfa|ddX=—J- FaAdFa<1+d—u) dX+J Ra(X,, Y,) dx
RA R4 da R4

d—1
da

= —J- F,A4F, <1 +d u+ o(a1)> dx + a’dJ Ha(x, Vu) dx.
R4 R4

Next we can observe that — [, FoAgF, dx = [, |VF,|9dx, while —lim,_,« a? ' FoAqF, =
d4 1S4 1| g, so that

lfd)

—J F AqF,udx = a'~4d4 1S4 J as a— +oo
Rd

udug+ o(@ % =o(a
Rd
by the assumption that fRd udug=0. Altogether, this means that

a-d

dan
J Ha(x, Vu) dX)
Rd

_a—d_ o
Joa |V A4\ P77 [ HaGe Vi di\ @5 dd-1)
[pe IVFg|ddx @ [ o0 |V Fglddx a ¢

as a— +oo, which concludes the proof of (iii).
Before proving the optimality of the constant «g4, let us state an intermediate

result which is of interest in itself. Let us assume that d> 2 and define Qg as
d2
Qu(X, V) :=2lim e *Ry(X, £Y) = X+ tY)d_o=d|X|*(d—-2)(X - V)? + | X|* Y],
E—>

We also define

dix"a1  d—1
%" X, p), (X,p)eRdx]Rd.

U

Ga(x, p) :=Qq (— -
1+ |x]& d
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Corollary 2.1. With a4 as in Theorem 1.1, we have
J v — 32 dpg < adJ Gg(x, Vv)dx with v :J vdug, (7)
R4 R4 Rd
for any v € L' (R%, dug), such that Vv € L?(R%, dx). O

This inequality is a Poincaré inequality, which is remarkable. Indeed, if we prove
that the optimal constant in (7) is equal to «g, then «g4 is also optimal in Theorem 1.1,

Inequality (3). We will see below that this is the case.

Proof of Corollary 2.1. Inequality (7) is a straightforward consequence of (3), written
with u replaced by ¢v. In the limit ¢ — 0, both sides of the inequality are of order £2.
Details are left to the reader. [ |

To conclude the proof of Theorem 1.1, let us check that there is a nontrivial

function v which achieves equality in (7). Since F, is optimal for (3), we can write that

—-d
log (J | Fy| T dX) =1logCqqs + d(d D log (JRd |VFa|ddX> + log (JRd |Fa|“dx> .

However, equality also holds true if we replace F, by F,. with F,.(x) := Fo(x+ ¢e), for
an arbitrary given e € S¥!, and it is clear that one can differentiate twice with respect

to ¢ at ¢ = 0. Hence, for any a > d, we have

d(a— 1) <d(a— 1) 1) .I.Rd |F |d§:11> |Ua|2 dx . a—d IRd Qd(Xa, d%dl Ya) dx
d—1 d—1 J”Rd|F|dg1U dx _d(d_l) J.]Rd|VFa|ddX

Fu|%vg|? dx
+ a1 Jea Fellua
J‘]Rd |Fa|adX

with X, =VF,, Y=~ 1F Vg, and v, :=€ - Vlog F,, that is,

X-e
a—dixE 1+ [x]77)

Va(X) = —
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Hence, if ¢ is a radial function, we may notice that fRd ¢v,dx=0 and

12 2 Fa
|x|#17"(x- ) |x| @7
—— —dx=d X

d

lim azj ¢|va|2dx=d2j () < A
e ra’ (L4 a2 1+ x5

a—+00

Since [pa |Fa|% dx = 0([a |Fal* dx), the last term in (8) is negligible compared with the

other ones. Passing to the limit as a — +o00, with v :=1lim, ., av,, we find that v is given

by (4) and
d \? , dx"7 d—1
@ dpg= . v)d
(d— 1) JRdlvl Md OthRde( 1+|X|d%llX’ g X,

where Y := d%lev and where we have used the fact that

d(d— 1ag lim adJ |VF,%dx=1.
a——+00 Rd

Since the function Qg is quadratic, we obtain that

d2J||2d—JG dVd— dZJG(V)d
d—1 ]Rdv fa=0d RE d X’d—l v)ex=ad d—1 Rd dl%, Vv 6,

which corresponds precisely to equality in (7) since v given by (4) is such that v =0.

Equality in (3) is achieved by constants. The optimality of o4y amounts to estab-

lish that in the inequality

1
Qdlul > —,
aq

equality can be achieved along a minimizing sequence. Notice that

JgaHa(x, Vu) dx

Qqlul =
T Tog ([ dua)

if J udpLd =0.
R4

The reader is invited to check that lim,_,q Qgle vl = aid In dimension d=2, v is an eigen-
function associated to the eigenvalue problem: —Av = A;vuz, corresponding to the lowest
positive eigenvalue, A;. The generalization to higher dimensions is given by (4). Notice
that the function v is an eigenfunction of the linear form associated to Gg, in the space
L2(R% djug). This concludes the proof of Theorem 1.1.

Whether there are nontrivial optimal functions, that is, whether there exists a

nonconstant function u such that Qglul = aid, is an open question. At least the proof of
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Theorem 1.1 shows that there is a loss of compactness in the sense that the limit of ¢ v,

that is 0, is not an admissible function for 9.
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