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Abstract. We study entire solutions of the Allen-Cahn equation which are defined in the
3-dimensional Euclidean space and which are invariant under screw-motion. In particular, we
discuss the existence and non existence of nontrivial solutions whose nodal set is a helicoid
of R

3.

1. Introduction and statement of the main results

In this short note, we are interested in entire solutions of the Allen-Cahn equation

�u − F ′(u) = 0, (1.1)

which are defined in R
n, with n ≥ 1. Here F ′ is the derivative of the function

F which is usually referred to as a double well potential. More precisely, we will
assume that t �→ F(t) is an even, positive function which is at least of class C2 and
which has only two distinct nondegenerate absolute minima at the points ±t∗ ∈ R,

where t∗ > 0. Hence, for all t ∈ R,

F(t) ≥ F(t∗),

with equality if and only if t = t∗. We further assume that

F ′′(0) < 0 and F ′′(0) t ≤ F ′(t), (1.2)

for all t ≥ 0. We define

λ∗ := π√−F ′′(0)
.
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Remark 1.1. A typical example of such a double well potential is given by

F(t) := 1

4
(1 − t2)2, (1.3)

in which case t∗ = 1, F ′′(0) = −1 and λ∗ = π.

In recent years, there has been many important results on the existence of non-
trivial entire solutions of (1.1) and also trying to understand the classification of
such solutions. As far as the existence of solutions is concerned, there are two com-
pletely different approaches: the use of the variational structure of (1.1) as in [5] or
[1] ; or perturbation results based on the implementation of an infinite dimensional
Liapunov-Schmidt reduction argument as in [7], [8], [9] or [10]. The former is
usually simpler and takes advantage of the symmetries of the solutions constructed
while the latter produces solutions with less (or even without any) symmetry but is
technically more involved. Since we do not use this latter approach in this paper, we
will not comment on it further and refer the interested reader to the above mentioned
papers.

The variational method has already been successfully implemented to prove the
existence of solutions of the Allen-Cahn equation whose nodal set is the minimal
cone

C := {(x, y) ∈ R
2m : |x | = |y|} ⊂ R

2m,

where m ≥ 1. We refer to [1] and [2] for more information about these solutions
which are usually referred to as the saddle type solutions. In dimension 2, the
method extends to produce solutions which are invariant under dihedral symmetry
[6]. In this short note, we use once more a variational argument to produce new
solutions of (1.1). The arguments are by now standard so we only insist on the
important points which are specific to our construction.

Since we will mainly be working in dimension 3, it will be convenient to iden-
tify R

3 with C × R. Given λ > 0, the helicoid Hλ is defined to be the minimal
surface which can be parameterized by

R × R � (t, θ) �−→
(

t eiθ ,
λ

π
θ

)
∈ C × R,

and, we define the screw motion of parameter λ, acting on C × R, by

σαλ (z, t) =
(

eiα z, t + λ

π
α

)
,

for all α ∈ R. Clearly, Hλ is invariant under the action of σαλ , for all α ∈ R.

Our main result is the construction of nontrivial entire solutions of the Allen-
Cahn Eq. 1.1 which are defined in R

3 and whose zero set is equal to Hλ, provided
λ is chosen large enough. More precisely we prove the:
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Theorem 1.1. Assume that (1.2) holds and that λ > λ∗. Then, there exists a solu-
tion of the Allen-Cahn Eq. 1.1 which is bounded and whose zero set is equal to Hλ.
This solution is invariant under the screw motion of parameter λ, namely

u ◦ σαλ = u,

for all α ∈ R.

We also prove that the above result is, in some sense, sharp. Indeed, we have
the:

Theorem 1.2. Assume that (1.2) holds and that λ ∈ (0, λ∗]. Then, there are no
nontrivial bounded solution of the Allen-Cahn Eq. 1.1 whose zero set is equal to
Hλ.

Observe that, in this result, we do not assume that the solution is invariant under
screw motion. In the last section of this note, we will derive some precise asymp-
totics for the solutions constructed in Theorem 1.1.

We briefly comment on the possibility to extend our result to higher dimensional
Euclidean spaces. According to [4], there is an analogue of the helicoid in any odd
dimension. Given m ≥ 1 and λ > 0, we can define the (2m + 2)-dimensional
helicoid Hλ in R

2m+3 to be the hypersurface parameterized by

R × R × (Sm × Sm) −→ R
2m+3

(t, θ, (ζ1, ζ2)) �−→
(

t (cos θ ζ1 − sin θ ζ2), t (sin θ ζ1 + cos θ ζ2),
λ

π
θ

)
(1.4)

The interested reader will check that, with this definition of the higher dimensional
helicoid, the above results extend in higher dimensions and lead to solutions of the
Allen-Cahn equation whose zero set is Hλ provided λ > λ∗,while there is no such
a solution when λ ≤ λ∗.

As will become clear from the construction, the key point in the proof of
Theorem 1.1 is the existence of a nontrivial minimizer for the one dimensional
Allen-Cahn functional on the interval [0, λ], for λ > λ∗, while the proof of The-
orem 1.2 relies on the fact that 0 is the only minimizer of the one dimensional
Allen-Cahn functional on the interval [0, λ], for λ ≤ λ∗.

2. Preliminary results

Given λ > 0, we consider the Allen-Cahn Eq. 1.1 defined in the interval [0, λ],
with 0 Dirichlet boundary values. This reduces to the study of the autonomous
second order ordinary differential equation

v̈ − F ′(v) = 0, (2.1)

with v(0) = v(λ) = 0, where · denotes the differentiation with respect to the
variable s ∈ [0, λ]. The energy associated to this equation reads

E̊(v) :=
λ∫

0

(
v̇2

2
+ F(v)

)
ds,

and is well defined for functions v ∈ H1
0 ([0, λ]).
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For the sake of completeness, we recall the proof of the following simple and
standard result concerning minimizers of E̊ . The arguments used in the proof of
this result will be essential in our analysis:

Lemma 2.1. Assume that λ > λ∗ is fixed. Then, there exists a nontrivial positive
solution of (2.1) which is a minimizer of E̊ in H1

0 ([0, λ]). Assume that λ ≤ λ∗ is
fixed. Then, there are no positive solution of (2.1) and the trivial solution 0 is the
unique minimizer of E̊ in H1

0 ([0, λ]).
Proof. Obviously 0 is always a solution of (2.1). So the question is whether it is a
minimizer of the energy or not.

Let

φ(s) := sin
(π
λ

s
)
,

be an eigenfunction associated to the first eigenvalue of −∂2
s over [0, λ], with 0

boundary conditions. We just use a small multiple of φ as a test function to prove
that 0 is not a minimizer when λ > λ∗. Indeed, we have

E̊(0) = λ F(0),

while, Taylor’s expansion of F implies

E̊(ε φ) = λ F(0)+ ε2

2

λ∫
0

(φ̇2 + F ′′(0) φ2) ds + O(ε4)

= λ F(0)+ ε2

4
λ

((π
λ

)2 + F ′′(0)
)

+ O(ε4)

< E̊(0),

for ε > 0 small provided λ > λ∗. Therefore, when λ > λ∗, we get a nontriv-
ial minimizer of the energy E̊, which by standard arguments can be chosen to be
positive.

To prove that there are no positive solution when λ ≤ λ∗,we just multiply (2.1)
by φ and integrate by parts the result over [0, λ]. We get

λ∫
0

φ

(
F ′(v)+

(π
λ

)2
v

)
ds = 0,

which immediately implies that v ≡ 0 when λ ≤ λ∗ since we have assumed that
F ′(u) ≥ F ′′(0) u for all u ≥ 0. ��

As a by product of the proof of this result, if v denotes the positive minimizer
of E̊, we have the inequality

E̊(v) < E̊(0) = λ F(0), (2.2)

when λ > λ∗. Observe that v depends on λ but we have chosen not to make this
apparent in the notations.
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3. The existence of a solution when λ > λ∗

In this section, it is convenient to use cylindrical coordinates (r, θ, t) ∈ [0,∞) ×
S1 × R to parameterize R

3. We look for a solution of (1.1) which is defined in R
3

and which is invariant under the action of the screw motion σαλ for all α ∈ R. That
is, given λ > 0, we assume that

u(r, θ, t) = u

(
r, θ + α, t + λ

π
α

)
,

for all α ∈ R. Observe that this implies that

u(r, θ, t) = u(r, θ, t + 2 λ),

and also that

u(r, θ, t) = u

(
r, 0, t − λ

π
θ

)
.

We further assume that

u(r, θ,−t) = −u(r, θ, t).

Assuming that the solution u we are looking for satisfies all these invariances, in
order to construct u, it is enough to know the function U defined in [0,∞)×[0, λ] by

U (r, s) := u(r, 0, s).

Observe that, if the function U is positive in (0,∞) × (0, λ) and vanishes on the
boundary of [0,∞) × [0, λ], then the zero set of the function u is exactly the
helicoid Hλ.

In terms of the function U, the Allen-Cahn equation reduces to

∂2
r U + 1

r
∂r U +

(
1 + λ2

π2 r2

)
∂2

s U − F ′(U ) = 0, (3.1)

and the Allen-Cahn energy reads

E(U ) := 1

2

∫ (
|∂r U |2 +

(
1 + λ2

π2 r2

)
|∂sU |2

)
r drds +

∫
F(U ) r drds,

where the domain of integration is the infinite half strip [0,∞)× [0, λ].
To prove the existence of U, solution of (3.1) which vanishes on the boundary

of the infinite half strip [0,∞)× [0, λ], we use a variational argument which has
already been used in [5] and [1]. Given R > 0, we define

SR := [0, R] × [0, λ],
and we denote by ER the corresponding energy of a function U defined on SR .

For all R > 0, we minimize ER in H1
0 (SR) (the measure used to define H1

0 (SR) is
r dr ds and we assume 0 boundary data on ∂SR except on the part of the boundary
where r = 0 since this space is modeled on the space of function which cylindrical
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symmetry). Classical results in the calculus of variations imply that the minimum
is achieved by a function UR ∈ H1

0 (SR) whose energy is finite. Moreover, we can
assume without loss of generality that UR takes values in [0, 1]. One checks that
UR is a solution of (3.1) which extends as a solution of (2.1) in the right cylinder
of radius R. Observe that some care is needed to check that we indeed have a
solution of (2.1) close to the axis of the cylinder but this is standard and we refer for
example to [1] for details. Next, elliptic estimates allows one to pass to the limit in
the sequence UR for a sequence of R tending to ∞. Let us call U the limit function.
The function U ≥ 0 and is a solution of (3.1) which extends to a solution of (2.1).
Therefore, it remains to prove that U is positive in the infinite strip (0,∞)× (0, λ).

Proposition 3.1. Assume that (1.2) holds and that λ > λ∗, then U is not identically
equal to 0 and in fact U > 0 in (0,∞)× (0, λ).

Proof. We argue by contradiction. Assume that λ > λ∗ and that U ≡ 0 then, given
R0 > 0,UR converges uniformly to 0 on SR0 , for a sequence of R tending to
infinity.

We compute

ER(0) = λ

2
F(0) R2.

Since UR minimizes the energy and converges uniformly to 0 in SR0 , we have

ER0(V ) ≥ ER0(0),

for any test function V which vanishes on the boundary of SR0 . To define an appro-
priate test function, we first cook up some cutoff function η which is identically
equal to 0 when r ∈ [0, 1/2] ∪ [R0 − 1/2, R0] and identically equal to 1 when
r ∈ [1, R0 − 1]. We can also assume that the gradient of η remains bounded
uniformly in R0, as R0 tends to infinity. We define

V (r, s) = η(r) v(s),

where v is the unique solution of the Allen-Cahn equation in [0, λ] which mini-
mizes E̊ .

A simple computation yields

ER0(V ) = R2
0

2

λ∫
0

(
v̇2

2
+ F(v)

)
ds + O(R0).

Hence we have the inequality

1

2
E̊(v) R2

0 + O(R0) ≥ λ

2
F(0) R2

0 .

Therefore, choosing R0 large enough, we reach a contradiction if

λ F(0) > E̊(v),
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but this is precisely the inequality (2.2) which holds when λ > λ∗. Therefore we
conclude that U is not identically equal to 0.

Also, by construction, U ≥ 0 and Hopf Lemma implies that U > 0 in (0,∞)×
(0, λ). ��
Remark 3.1. In general, we can write

u(r, θ, s) = U

(
r, θ, s + λ

π
θ

)
,

where U is a function of r ∈ R
∗ (observe that here r ∈ R

∗ = R\{0} and not
r ∈ (0,∞) as usual), θ ∈ S1 and s ∈ R. In which case the Allen-Cahn equation
becomes

∂2
r U + 1

r
∂r U + 1

r2 ∂
2
θU + 2λ

πr2 ∂s∂θU +
(

1 + λ2

π2r2

)
∂2

s U − F ′(U ) = 0.

Let us comment on the modifications which are needed to handle the higher
dimensional cases. When m ≥ 1, the construction of a nontrivial bounded solution
of the Allen-Cahn Eq. (1.1) in dimension R

2m+3 whose level set is equal to the
(2m + 2)-dimensional helicoid Hλ which has been defined in (1.4), follows very
closely the line of the above construction, after taking into account the following
facts.

Let (X,Y, Z) ∈ R
m+1 × R

m+1 × R = R
2m+3 and parametrize this space as

follows

X = t (cos θ ζ1 − sin θ ζ2), Y = t (sin θ ζ1 + cos θ ζ2), Z = s,

where (t, θ, ζ1, ζ2, s) ∈ R × R × Sm × Sm × R.

Given λ > 0, we look for solutions to

�u − F ′(u) = 0,

in R
2m+3 which are rotationally invariant in the ζ1 and ζ2 variables, that is

u(t, θ, τζ1, ζ2, s) = u(t, θ, ζ1, ζ2, s), u(t, θ, ζ1, τζ2, s) = u(t, θ, ζ1, ζ2, s),

for any rotation τ ∈ O(m). Thus in particular we get that

u(t, θ, ζ1, ζ2, s) = u(t, θ, p∗, p∗, s),

where p∗ denotes the north pole in Sm . Furthermore, as in the case of the 2-dimen-
sional helicoid, we assume that

u(t, θ, ζ1, ζ2, s) = u

(
t, θ + α, ζ1, ζ2, s + λ

π
α

)
,

for all α ∈ R and

u(t, θ, ζ1, ζ2,−s) = −u(t, θ, ζ1, ζ2, s).
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If u satisfies these invariances, in order to construct u, it is enough to look for a
function U which is defined in [0,∞)× [0, λ] by

U (r, s) := u(r, 0, p∗, p∗, s).

If in addition we assume that the function U is positive in (0,∞) × (0, λ) and
vanishes on the boundary of [0,∞)× [0, λ], we get a solution of the Allen-Cahn
equation whose zero set is exactly the helicoid Hλ. If λ > λ∗, the proof of the
existence of U follows to the one already performed for the 2-dimensional helicoid
Hλ. When λ ≤ λ∗ the nonexistence follows as in the two dimensional case. We
leave the details to the reader.

4. The nonexistence result

In this section, we obtain a nonexistence result for solutions of the Allen-Cahn
equation whose zero set is a helicoid. The proof of the following result is very
reminiscent of the proof of the famous de Giorgi conjecture in dimension 2 :

Theorem 4.1. Assume that (1.2) holds and that λ ≤ λ∗. Then, there are no non-
trivial, bounded solution to the Allen-Cahn equation whose zero set is the helicoid
Hλ.

Proof. We use Remark 3.1 and write u(r, θ, t) = U (r, θ, t + λ
π
θ).We test the equa-

tion satisfied by U against the function U η2 where η is a cutoff function which only
depends on r and which is defined so that η ≡ 1 for r ≤ R and η ≡ 0 for r ≥ 2R.
Moreover, we assume that |∇η| ≤ C R−1 for some constant C > 0 independent of
R ≥ 2. We obtain

∫ (
|∂rU |2 + 1

r2

(
∂θ + λ

π
∂sU

)2

+ |∂sU |2 + F ′(U )U

)
η2 r dr dθ ds

=
∫

U ∂rU η ∂rη rdr dθ ds,

where this time, the integrals are understood over [0,∞)× S1 × [0, λ].
We make use of the assumption that F ′(t)t ≥ F ′′(0) t2 for any t ∈ R, together

with the fact that λ ≤ λ∗, to get

λ∫
0

(|∂sU |2 + F ′(U )U ) ds ≥
λ∫

0

(|∂sU |2 + F ′′(0)U 2) ds ≥ 0.

Therefore, we can write

∫
|∂r U |2 η2 r dr dθ ds ≤

∫
U ∂r U η ∂rη rdr dθ ds.
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Using Cauchy-Schwarz inequality, we conclude that

∫
|∂rU |2 η2 r dr dθ ds ≤

⎛
⎜⎝

∫
r∈[R,2R]

|∂rU |2 η2 r dr dθ ds

⎞
⎟⎠

1/2

×
⎛
⎜⎝

∫
r∈[R,2R]

|∂rη|2 U 2 r dr dθ ds

⎞
⎟⎠

1/2

. (4.1)

Observe that the second integral is bounded (this is where we use the fact that our
domain is two dimensional). This immediately implies that

∫
r∈[0,R]

|∂r U |2 η2 r dr dθ ds,

is bounded independently of R. Letting R tend to infinity, we conclude that
∫

|∂rU |2 r dr dθ ds ≤ C,

in particular, there exists a sequence R j tending to +∞ such that

lim
j→+∞

∫
r∈[R j ,2R j ]

|∂rU |2 η2 r dr dθ ds = 0.

Using once more (4.1), we conclude that
∫

|∂rU |2 r dr dθ ds ≤ 0,

which completes the proof of the result. ��
Remark 4.1. A similar non existence result for nontrivial bounded solutions to the
Allen-Cahn Eq. (1.1) in R

2m+3 whose zero level set is the (2m + 2)-dimensional
helicoid Hλ readily follows using similar arguments.

5. Asymptotic behavior of the solution U

In this last section, we derive some precise asymptotics for the solutions whose
existence is guaranteed by Theorem 1.1. We know from Lemma 2.1 that for all
λ > λ∗, there exists v a non trivial minimizer of E̊ on [0, λ]. We further assume
from now on that

v is the only positive minimizer of E̊ on [0, λ]. (5.1)
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Example 5.1. In the case where

F(t) := 1

4
(1 − t2)2,

we have already seen that λ∗ = π. It follows from [3] that the period function
for solutions of (1.1) is monotone. More precisely, for all t ∈ (0, 1) there exists a
unique positive solution of

v̈ − F ′′(v) = 0

such that v(0) = t and v̇(0) = 0 and the result of [3] implies that the first positive
zero of this solution, is a strictly monotone function of t which tends to 0 as t tends
to 0 and which tends to +∞ as t tends to 1. In particular, this implies that for each
λ > 0 there exists a unique positive solution of

v̈ − F ′′(v) = 0,

such that v(0) = v(λ) = 0.

We now assume that λ > λ∗ and that U is the solution defined in the previous
section and we derive some precise asymptotics for the function U as r tends to
infinity.

First, we prove the following general result :

Lemma 5.1. Assume that (1.2) and (5.1) hold. Any positive, bounded solution Ū
of the Allen-Cahn equation which is defined in a strip R × [0, λ], vanishes on
the boundary of this strip and which is minimizing, depends only on one variable.
Hence Ū ≡ 0 when λ ≤ λ∗ and Ū = v when λ > λ∗.

Proof. We choose L > 0. On the piece of strip

SL := [−L , L] × [0, λ],
the function Ū is a minimizer of the energy with respect to functions which have
the same boundary values as Ū on ∂SL .

Recall that v is defined to be the minimizer of E̊ on [0, λ]. We compare the
energy of Ū on SL with the energy of a test function v̄ which is identically equal to
v on [−L + 1, L − 1] × [0, λ] (namely v̄(t, s) = v(s) on this set) and which inter-
polates between v and Ū in the sets [−L ,−L +1]× [0, λ] and [L −1, L]× [0, λ],
so that v̄ has the same boundary data as Ū on ∂SL . It is easy to check that one can
define such a test function v̄ so that its energy on SL is bounded by 2 L E̊(v)+C, for
some constant C > 0 independent of L ≥ 2. Since Ū is a minimizer, we conclude
that ∫

SL

1

2
|∂r Ū |2dsdr +

∫
SL

(
1

2
|∂sŪ | + F(U )

)
ds dr ≤ 2 L E̊(v)+ C,

where C > 0 does not depend on L ≥ 2.
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Now, since v is the minimizer of E̊, we have

E̊(v) ≤
λ∫

0

(
1

2
|∂sŪ | + F(U )

)
ds.

Integrating this inequality over r ∈ [−L , L], we conclude that

2 L E̊(v) ≤
∫
SL

(
1

2
|∂sŪ | + F(U )

)
dr ds.

Therefore, ∫
SL

|∂r Ū |2dsdr ≤ 2 C,

for some constant C > 0 which does not depend on L ≥ 2. Letting L tend to
infinity, we conclude that ∫

R×[0,λ]
|∂r Ū |2dsdr ≤ 2 C.

Now, we make use of the fact that ∂r Ū satisfies

�∂r Ū − F ′′(Ū ) ∂r Ū = 0,

and vanishes on the boundary of the infinite strip. In particular, this implies that∫
R×[0,λ]

(|∇∂r Ū |2 + F ′′(Ū ) |∂r Ū |2) dr ds = 0.

Moreover, since Ū is a minimizer we have

Q(W ) :=
∫

R×[0,λ]
(|∇W |2 + F ′′(Ū )W 2) dr ds ≥ 0,

for any function W having compact support in R × (0, λ). Classical arguments
imply that ∂r Ū does not change sign in R × (0, λ) and in fact is either identically
equal to 0 or does not vanish in R × (0, λ). Indeed, from the above, we see that
∂r Ū is a minimizer of the quadratic form Q and hence so is |∂r Ū |. Therefore, |∂r Ū |
is a solution of (−�+ F ′′(Ū )) |∂r Ū | = 0 and elliptic regularity then implies that
|∂r Ū | is a smooth function. Finally, Hopf maximum principle implies that either
∂r Ū ≡ 0 or |∂r Ū | does not vanish in R × (0, λ) and hence ∂r Ū does not change
sign.

This analysis implies that (r, s) �→ Ū (r, s) is a monotone function of r. Now,
since Ū is bounded, we conclude that, as r tends to +∞, the function r �−→ Ū (r, ·)
converges uniformly (in C2 topology) to some function V which only depends on
s over [−1, 1] × [0, λ]. Certainly V is a solution of (2.1) and hence since we have
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assumed that this equation has only one positive solutions either V = v or V = 0.
A similar arguments holds as r tends to −∞.

We have already proven that Ū is monotone in r (say for example that Ū is
increasing), then either Ū ≡ v, or Ū ≡ 0 or Ū is monotone increasing in r and
tends to 0, as r tends to −∞ and tends to v as r tends to +∞. In particular, since
v ≡ 0 when λ ≤ λ∗,we have proven that Ū ≡ 0 in this case. When λ > λ∗, thanks
to (2.2) we see that U cannot be a minimizer if Ū is close to 0 on some long enough
piece of strip. Therefore, the last two cases do not occur and this also completes
the proof of the result when λ > λ∗. ��

As a corollary, we get

Proposition 5.1. Assume that (1.2) and (5.1) hold. As r tends to ∞,U (r, ·) tends
to v uniformly on [0, λ].
Proof. We argue by contradiction. If, for some ε > 0 and for some sequence
r j tending to +∞ we have sups∈[0,λ] |U (r j , ·) − v| ≥ ε, then extracting subse-

quences one concludes that there exists a function Ũ which is defined on an infi-
nite strip and which is a positive solution of the Allen-Cahn equation. Moreover,
sups∈[0,λ] |Ũ (0, ·) − v| ≥ ε and Ũ is a minimizer (since it is the limit of a family
of minimizers). This certainly contradicts the result of the previous Lemma. ��

Let us now give further details about the asymptotic behavior of the solution U.
This requires yet some extra assumption which we now describe. Let us denote by
ψ1 a positive eigenfunction of −∂2

s + F ′′(v) on [0, λ] (here v is the positive solution
obtained in Lemma 2.1 which is assumed to be unique), which is associated to the
first eigenvalue λ1, i.e.

(−∂2
s + F ′′(v)) ψ1 = λ1 ψ1,

andψ1(0) = ψ1(λ) = 0.We know that λ1 ≥ 0 since v is a minimizer of the energy.
We further assume that

λ1 > 0. (5.2)

Example 5.2. Assume that

F ′′(t) t > F ′(t), (5.3)

for t > 0, then λ1 > 0. Indeed, multiply the equation satisfied by ψ1 by v and the
equation satisfied by v byψ1 and integrate the difference between 0 and λ.We find

λ1

λ∫
0

ψ1 v ds =
λ∫

0

(
F ′′(v) v − F ′(v)

)
ψ1 ds

and hence we conclude that λ1 > 0. Observe that (1.2) and (5.3) are compatible
and in fact the double well potential defined in (1.3) is an example of potential
which satisfies all our assumptions.
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We write

U (r, s) = v(s)+ φ(r, s).

We now prove the

Proposition 5.2. Assume that (1.2), (5.2) and (5.3) hold. Then, there exists a con-
stant C > 0 such that

|φ(r, s)| ≤ C

r2 ψ1(s).

Proof. Using both the equation satisfied by U and the ordinary differential equation
satisfied by v, we can rewrite the equation satisfied by φ as
(
∂2

r + 1

r
∂r +

(
1 + λ2

π2r2

)
∂2

s

)
φ − F ′(v + φ)+ F ′(φ) = − λ2

π2r2 ∂
2
s v. (5.4)

Is is easy to check that, provided C > 0 is chosen large enough and r ≥ R,
where R is fixed large enough, the function

(r, s) �−→ C ψ1(s) r−2 + ε ψ1(s) r,

is a supersolution for our equation, for all ε > 0. Moreover the operator which
appears on the left hand side of (5.4) satisfies the maximum principle in [R,+∞)×
[0, λ], provided R is chosen large enough. This implies that

|φ(r, s)| ≤ C

r2 ψ1(s)+ ε ψ1(s) r.

The estimate in the Proposition follows at once by letting ε tend to 0. ��
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