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We consider the problem of existence of entire solutions to the
Allen–Cahn equation Δuþ u − u3 ¼ 0 in RN , usually regarded as
a prototype for the modeling of phase transition phenomena. In
particular, exploiting the link between the Allen–Cahn equation
andminimal surface theory in dimensionsN ≥ 9, we find a solution,
u, with ∂xN

u > 0, such that its level sets are close to a nonplanar,
minimal, entire graph. This counterexample provides a negative
answer to a celebrated question by Ennio de Giorgi [De Giorgi E
(1979) Proceedings of the International Meeting on Recent Meth-
ods in Nonlinear Analysis (Rome, 1978), 131–188, Pitagora, Bolog-
na]. Our results suggest parallels of De Giorgi’s conjecture for finite
Morse index solutions in two and three dimensions and suggest a
possible program of classification of all entire solutions.

The Allen–Cahn equation in RN is the semilinear elliptic
problem

Δuþ u − u3 ¼ 0 in RN: [1]

Originally formulated in the description of biphase separation in
fluids and ordering in binary alloys (1), Eq. 1 has received exten-
sive mathematical study. It is a prototype for the modeling of
phase transition phenomena in a variety of contexts.

Introducing a small positive parameter ε and writing
vðxÞ ≔ uðε−1xÞ, we get the scaled version of [1],

ε2Δvþ v − v3 ¼ 0 in RN: [2]

On every bounded domain Ω ⊂ RN , [1] is the Euler–Lagrange
equation for the action functional

JεðvÞ ¼
Z
Ω

ε

2
j∇vj2 þ 1

4ε
ð1 − v2Þ2:

Observe that the constant functions v ¼ �1 minimize Jε. They
are idealized as two stable phases of a material in Ω. It is of inter-
est to analyze configurations in which the two phases coexist.
These states are represented by stationary points of Jε, or solu-
tions vε of Eq. 2, that aside from a small set take values close to
+1 in a subregion of Ω and −1 in its complement. Modica and
Mortola (2) and Modica (3), established that a family of local
minimizers vε of Jε for which

supε>0 JεðvεÞ < þ∞ [3]

must satisfy, after passing to a subsequence,

vε → χΛ − χΩ \ Λ in L1
locðΩÞ; [4]

as ε → 0. Here Λ is an open subset of Ω with Γ ¼ ∂Λ ∩ Ω having
minimal perimeter. Therefore, Λ is a (generalized) minimal sur-
face. Moreover, as ε → 0

JεðvεÞ →
2

3

ffiffiffi
2

p
Hn−1ðΓÞ: [5]

The hypersurface Γ is close to the nodal set of vε [or more gen-
erally, for a given λ ∈ ð−1; 1Þ, to any level set ½vε ¼ λ� for small ε].

Scaling back into Eq. 1, it is then plausible to conjecture that a
relation between the level sets of u and the minimal surface ε−1Γ
should exist, at least when u corresponds to a local minimizer of
the energy on each given compact set.

What condition guarantees that u is a locally minimizing (or
stable) solution to the Allen–Cahn equation? For a solution u
of [1], this condition is implied by the fact that the linearized op-
erator Δþ ð1 − 3u2Þ satisfies the maximum principle. Because
the directional derivatives e·∇u lie in the kernel of this operator,
the assumption that the solution is monotone in some direction,
say uxN > 0 is sufficient for this condition. De Giorgi’s conjecture,
which we state below, is partly motivated by the above facts.

For N ¼ 1 the function

wðtÞ ≔ tanh
�

tffiffiffi
2

p
�

connects the stable values −1 and +1 in a monotone fashion and
solves [1]:

w 0 0 þ w − w3 ¼ 0; wð�∞Þ ¼ �1; w 0 > 0.

This solution generates a class of solutions to [Allen–Cahn
equation (AC)] in the following manner: For any p; ν ∈ RN ,
jνj ¼ 1, the functions

uðxÞ ≔ wðzÞ; z ¼ ðx − pÞ·ν

solve Eq. 1. Here, the variable z ¼ represents the normal coor-
dinate to the hyperplane through p in the direction of its unit
normal ν. A question is whether or not there exist solutions con-
necting the values −1 and 1 monotonically along some direction,
which are different from these trivial ones.

In 1978, De Giorgi (4) made the following celebrated
conjecture.

De Giorgi’s Conjecture. Let u be a bounded solution of equation

Δuþ u − u3 ¼ 0 in RN;

which is monotone in one direction, say uxN > 0. Then, at least
when N ≤ 8, there exist p; ν such that

uðxÞ ¼ w½ðx − pÞ·ν�:

This conjecture is equivalent to the following:

At least when N ≤ 8, all level sets of u, ½u ¼ λ� must be
hyperplanes.

An intriguing feature of this statement is its presumed space
dependence. Because uxN > 0, the level sets ½u ¼ λ� are graphs of
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functions of the firstN − 1 variables. The rationale behind De Gior-
gi’s statement is that these graphs should behave like minimal hyper-
surfaces that are graphs of entire functions. Indeed, De Giorgi’s
conjecture is intimately related to Bernstein’s Problem for entire
minimal graphs, which are surfaces in RN of the form

Γ ¼ f½x 0; Fðx 0Þ� ∈ RN−1 × R∕x 0 ∈ RN−1g;

where F solves the minimal surface equation

∇·
�

∇Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j∇Fj2

p �
¼ 0 in RN−1: [6]

Note that any affine function is an obvious solution of this equation,
representing a hyperplane.

Bernstein’s Problem. Is it true that all entire minimal graphs are
hyperplanes?

In 1917, Bernstein (5) proved the validity of this fact forN ¼ 2. In
1962, Fleming (6) provided a proof for N ¼ 3 and conjectured its
validity in all dimensions. In 1965, De Giorgi (7) proved it for
N ¼ 4, in 1966 Almgren (8) proved it for N ¼ 5, and in 1968
Simons (9), did so for N ¼ 6; 7; 8. Strikingly, in 1969, Bombieri,
De Giorgi, and Giusti (BDG) (10) found that Fleming’s conjecture
was false forN ≥ 9 exhibiting a counterexample (the BDG surface).

The construction in ref. 10 begins with an example of a minimal
and local area minimizing cone in dimension N ¼ 8 found by
Simons (9). The Simons cone in R8 is a surface of the form
juj ¼ jvj, ðu; vÞ ∈ R4 × R4 and the solution in ref. 10 depends of
two radial variables ðjuj; jvjÞ only and is a function of the form
Fðjuj; jvjÞ for F : R2 → R. Moreover, it is assumed a priori that
Fðjuj; jvjÞ > 0 for jvj > juj and Fðjuj; jvjÞ ¼ −Fðjvj; jujÞ. In ref. 10
ingenious explicit super and subsolutions for Eq. 6 written in the
radial variables are found and they lead to the existence result.

The BDG surface plays a crucial role in the construction of a
counterexample to the De Giorgi conjecture and in ref. 11 we need
to improve the result of ref. 10 to find very precise information about
the asymptotic behavior of the BDG graph at infinity. Introducing
polar coordinates

juj ¼ r cos θ; jvj ¼ r sin θ; θ ∈ ð0; π
2
Þ;

the barriers in ref. 10 can be refined to yield quite accurate asymp-
totics for F for large r. We established in ref. 11 that there exists a
function gðθÞ such that g > 0 in ðπ

4
; π
2
Þ and with gðπ

4
Þ ¼ 0 ¼ g 0ðπ

2
Þ,

such that for θ ∈ ðπ
4
; π
2
Þ we have, for 0 < σ < 1,

r3gðθÞ ≤ Fðr; θÞ ≤ r3gðθÞ þAr−σ as r → þ∞: [7]

The function g is a solution of the second order ODE obtained when
formally substituting F ¼ r3gðθÞ in Eq. 6 and letting r → þ∞.
Although proving that r3gðθÞ is a subsolution is relatively straightfor-
ward, finding the supersolution with the right asymptotic behavior is
nontrivial.

For De Giorgi’s conjecture, many contributions have been made
since it was formulated. In particular the conjecture was proven to be
true for N ¼ 2 by Ghoussoub and Gui (12) in 1998, and by Am-
brosio and Cabré (13) for N ¼ 3 in 1999. In 2009, Savin (14)
proved that De Giorgi’s conjecture is true for 4 ≤ N ≤ 8 under
the additional assumption

lim
xN→�∞

uðx 0; xNÞ ¼ �1 for all x 0 ∈ RN−1:

The latter assumption is indeed a posteriori satisfied by the solution.
If the limits above are assumed to exist uniformly in x 0, then the

claim that u ¼ wðxNÞ is known as Gibbons’ conjecture, and it
has been proven in all dimensions and without the monotonicity hy-
pothesis. In fact, different approaches have been given by Barlow
et al. (15), Berestycki et al. (16), Caffarelli and Córdoba (17), and
Farina (18). In refs. 15 and 17, it is proven that the conjecture is true
for any solution that has one level set, which is globally a Lipschitz
graph. Without monotonicity or uniformity in limits, the one-dimen-
sional symmetry of the solution is not true. This fact is, for instance,
clearly reflected in the entire planar solutions built in ref. 19 with any
given finite number of nearly parallel nodal lines.

It is illustrative to review the proof of De Giorgi’s conjecture for
N ¼ 2 in ref. 12. Let us set ϕ ¼ ux1

ux2
, which is well-defined because

ux2 > 0. Then ϕ satisfies the equation

∇·ðu2
x2∇ϕÞ ¼ 0.

Let ηðsÞ be a smooth cut-off function with ηðsÞ ¼ 1 for s < 1 and
¼0 for s > 2, and set ηRðxÞ ¼ ηðjxj∕RÞ for R > 0. Testing this equa-
tion against ϕη2R and integrating we find thatZ

R2

j∇ϕj2η2Ru2
xN ¼ −2

Z
R2

ηR∇ηR∇ϕϕu2
xN

≤ C
�Z

fR<jxj<2Rg
j∇ϕj2η2Ru2

xN

�1
2

;

where C is a constant dependent on uniform bounds for u and ∇u
(which exist by the boundedness assumption and standard elliptic
estimates). Letting R → ∞, the above formula clearly implies that
∫ R2 j∇ϕj2u2

xN < þ∞. Applying the formula a second time with R →
∞ we find that this integral actually equals zero. Hence ϕ ¼
α ¼ constant and ∇u·ð1; −αÞ ¼ 0. This result implies that all level
sets must be parallel lines as desired. The higher dimensional cases
are more difficult to handle and the full result for dimensions 4 ≤
N ≤ 8 remains open.

A counterexample to De Giorgi’s conjecture in dimension N ≥ 9
was believed to exist for a long time, possibly by De Giorgi himself.
Partial progress in this direction was made by Jerison and Monneau
(20) and by Cabré and Terra (21). See also the survey article by Far-
ina and Valdinoci (22). The following result disproves De Giorgi’s
conjecture in dimension 9 (hence in any dimension higher than 9).

Theorem 1.Let Γ be a BDGminimal graph in R9 and let ν be its unit
normal. Set Γε ≔ ε−1Γ. There exists an ε0 > 0 such that for all
ε ∈ ð0; ε0Þ, there exists a bounded solution uε of (AC), monotone
in the x9-direction, with

uεðxÞ ¼ wðζÞ þOðεÞ; x ¼ yþ ζνðεyÞ; y ∈ Γε; jζj <
δ
ε
;

and lim
x9→�∞

uðx 0; x9Þ ¼ �1 for all x 0 ∈ R8:

Note that our result provides not just one example of a solution
that violates De Giorgi’s conjecture in dimensions N ≥ 9, but a one
parameter family parameterized by ε. This construction is possible
because the dilated minimal graphs Γε are themselves minimal
graphs. In fact, the key idea of our work is that a connection between
the minimal surface theory in RN and the entire solutions of the
Allen–Cahn equation can be made in the limit ε → 0. One can spec-
ulate that the family of solutions fuεg can be continued for values of
ε > ε0. Then, the nodal sets of such solutions will no longer be close
to minimal surfaces.

The main ingredients in the proof of this above result will be
described next. Details can be found in ref. 11.

The Proof of Theorem 1: Let Γ be a hypersurface embedded in
RN and let ν be the unit normal chosen so that ν9 > 0. Points
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of space, which are near Γ can be described by the local system of
coordinates

x ¼ yþ zνðyÞ; y ∈ Γ; jzj < δ:

The following expression for the Laplacian in these coordinates
holds,

Δx ¼ ∂zz þ ΔΓ z −HΓ zðyÞ∂z: [8]

Here

Γz ≔ fyþ zνðyÞ∕y ∈ Γg;

ΔΓ z is the Laplace–Beltrami operator on Γz and HΓ zðyÞ its mean
curvature. Let k1;…; kN−1 be the principal curvatures of Γ. Then,
it is also known that

HΓ z ¼ ∑
N−1

i¼1

ki
1 − zki

: [9]

Now, similar relations hold if we consider the dilated surfaces Γε

instead of Γ, for instance,

x ¼ yþ ζνðεyÞ; y ∈ Γε; jζj < δ∕ε;

kε;iðyÞ ¼ εkεðεyÞ, etc. The change of variables described above
is a diffeomorphism, ϕε, of a neighborhood of Γε onto a set
Γε × ð−δ∕ε; δ∕εÞ. In what follows we will abuse the notation
and denote functions of the variable x ∈ R9 and of the local vari-
ables ðy; ζÞ ¼ ϕεðxÞ by the same symbol, for instance given
u : R9 → R we write uðy; ζÞ when x is close to Γε, instead of
u ∘ ϕ−1

ε ðy; ζÞ. Thus, letting f ðuÞ ¼ u − u3 and SðuÞ ¼ Δuþ f ðuÞ
the Allen–Cahn equation near Γε becomes

SðuÞ ¼ ΔΓ ζ
ε
u − εHΓ ζ

ε
ðεyÞ∂ζuþ ∂ 2

ζ uþ f ðuÞ ¼ 0.

The solution we seek, at least near Γε, should be of the following
form:

uεðxÞ ¼ w½ζ − εhðεyÞ� þ ϕ; x ¼ yþ ζνðεyÞ;

where the function, h, defined on Γ, is left as a parameter to be
adjusted and the function, ϕ, which should be small for ε. Set
rðy 0; y9Þ ¼ jy 0j and ωr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
. We assume a priori that

∥ω3
r D2

Γh∥CσðΓÞ þ ∥ω2
r DΓh∥L∞ðΓÞ þ ∥ωrh∥L∞ðΓÞ ≤ M

for some large, fixed number M. Let us change variables to
t ¼ ζ − εhðεyÞ, and write, again abusing notation,

uðy; tÞ ≔ uðxÞ x ¼ yþ ½tþ εhðεyÞ�νðεyÞ:

The equation becomes

SðuÞ ¼ ∂ttuþ ΔΓ ζ
ε
u − εHΓ εζ ðεyÞ∂tu

þ ε4j∇Γ εζhðεyÞj2∂ttu − 2ε3h∇Γ εζhðεyÞ; ∂t∇Γ εζui
− ε3ΔΓ εζhðεyÞ∂tuþ f ðuÞ ¼ 0.

Consequently, we look for solution, uε, of the form

uεðt; yÞ ¼ wðtÞ þ ϕðt; yÞ

for a small function ϕ. The equation in terms of ϕ becomes

∂ttϕþ ΔΓε
ϕþ Bϕþ f 0½wðtÞ�ϕþNðϕÞ þE ¼ 0; [10]

where B is a small linear second order operator, and

E ¼ S½wðtÞ�; NðϕÞ ¼ f ðwþ ϕÞ − f ðwÞ − f 0ðwÞϕ ≈ f 0 0ðwÞϕ2:

The error of approximation is then given by the quantity

E ¼ ε4j∇Γ εζhðεyÞj2w 0 0ðtÞ − ½ε3ΔΓ εζhðεyÞ þ εHΓ εζ ðεyÞ�w 0ðtÞ;

where

εHΓ εζ ðεyÞ ¼ ε2½tþ εhðεyÞ�jAΓðεyÞj2

þ ε3½tþ εhðεyÞ�2 ∑
8

i¼1

k3
i ðεyÞ þ⋯:

A crucial fact for estimating the size of this error is the follow-
ing result of L. Simon (23): ki ¼ Oðr−1Þ as r → þ∞. In particular

jEðy; tÞj ≤ Cε2rðεyÞ−2:

So far we have reduced our original problem to the Eq. 10 only
near Γε, namely for jtj < δε−1. To address this problem, we intro-
duce a gluing procedure, which reduces the full problem to

∂ttϕþ ΔΓεϕþ Bϕþ f 0ðwÞϕþNðϕÞ þE ¼ 0 in R × Γε;
[11]

where E and B are the same as before, but cutoff for jtj > δ∕ε,
andN is accordingly modified by the addition of a small nonlocal
operator of ϕ.

Although it is not apparent in the way [11] is written, we have
two unknown functions ϕ and h to determine and we find them in
two steps, which constitute an infinite dimensional Lyapunov–
Schmidt reduction. This procedure resembles in principle the
approach in ref. 24, and also has common features with ref. 25.
However, the difference and the major difficulty comes from
the fact that neither the manifold R × Γε, nor its minimal subma-
nifold f0g × Γε are compact. More specifically, the steps of the
Lyapunov–Schmidt reduction are the following:

Step 1: Given the parameter function h, find a function ϕ in
R × Γε, which is a solution to the problem

∂ttϕþ ΔΓε
ϕþ Bϕþ f 0½wðtÞ�ϕþNðϕÞ þE ¼ cðyÞw 0ðtÞZ

R
ϕðt; yÞw 0ðtÞdt ¼ 0 for all y ∈ Γε: [12]

Note that the map h ↦ ϕ defines a nonlinear and nonlocal
operator ϕ ¼ ϕðhÞ.

Step 2: Find a function h such that for all y ∈ Γε,

cðyÞ ≔ 1R
R w 02dt

Z
R
fEþ BϕðhÞ þN½ϕðhÞ�gw 0dt ¼ 0.

To carry out Step 1 we solve first the linear problem

∂ttϕþ ΔΓε
ϕþ f 0½wðtÞ�ϕ ¼ gðt; yÞ − cðyÞw 0ðtÞ in R × ΓεZ

R
ϕðy; tÞw 0ðtÞdt ¼ 0 in Γε; cðyÞ ≔

R
R gðy; tÞw 0ðtÞdtR

R w 02dt
: [13]

Our claim is that there is a unique bounded solution ϕ ≔ AðgÞ if g
is bounded. Moreover, for any ν ≥ 0 we have
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∥½1þ rðεyÞ�νϕ∥∞ ≤ C∥½1þ rðεyÞ�νg∥∞:

The proof of this claim is quite simple when Γε is replaced by R.
Because Γε ≈R8, locally uniformly as ε → 0, the claim will follow
from the analogous statement for the linear model problem: The
equation

∂ttϕþ Δyϕþ f 0½wðtÞ�ϕ ¼ gðt; yÞ − cðyÞw 0ðtÞ in R9Z
R
ϕðy; tÞw 0ðtÞdt ¼ 0 in R8; cðyÞ ≔

R
R gðy; tÞw 0ðtÞdtR

R w 02dt

[14]

has a unique bounded solution ϕ if g is bounded, and

∥ϕ∥∞ ≤ C∥g∥∞: [15]

Let us first prove [15]. If the estimate is not true, there exist
sequences fϕng, fgng such that

∂ttϕn þ Δyϕn þ f 0½wðtÞ�ϕn ¼ gnðt; yÞ;
Z
R
ϕnðy; tÞw 0ðtÞdt ¼ 0;

while at the same time ∥ϕn∥∞ ¼ 1, ∥gn∥∞ → 0.
Using maximum principle and local elliptic estimates, we may

assume that ϕn → ϕ� uniformly over compact sets, where

∂ttϕ� þ Δyϕ� þ f 0½wðtÞ�ϕ� ¼ 0;
Z
R
ϕ�ðy; tÞw 0ðtÞdt ¼ 0.

Now, we claim that the above ϕ� ¼ 0, which is a contradiction
with the normalization ∥ϕn∥∞ ¼ 1.

To establish this claim we need the following spectral gap
estimate: Let

L0ðpÞ ≔ p 0 0 þ f 0½wðtÞ�p:

Then there is a γ > 0 such that if p ∈ H 1ðRÞ and ∫ Rpw
0dt ¼ 0

then

−
Z
R
L0ðpÞpdt ¼

Z
R
½jp 0j2 − f 0ðwÞp2�dt ≥ γ

Z
R
p2dt:

Using the maximum principle, we find jϕ�ðy; tÞj ≤ Ce−jtj. Set
φðyÞ ¼ ∫ Rϕ

2� ðy; tÞdt. Then

ΔyφðyÞ ¼ 2

Z
R
ϕ�Δϕ�ðy; tÞdtþ 2

Z
R
j∇yϕ�ðy; tÞj2dt

≥ −2
Z
R
ϕ�∂ttϕ� þ f 0ðwÞϕ2�dt

¼ 2

Z
R
½j∂tϕ�j2 − f 0ðwÞϕ2� �dt ≥ γφðyÞ;

whence

− ΔyφðyÞ þ γφðyÞ ≤ 0

and as φ ≥ 0 and is bounded, this inequality implies φ ≡ 0. Hence
ϕ� ¼ 0, a contradiction. This result proves [15].

Given [15], the existence of a solution ϕ of the linear model
problem [14] is now established by a variational scheme. To this
end let us initially take g compactly supported and let H be the
space of all ϕ ∈ H 1ðR9Þ withZ

R
ϕðy; tÞw 0ðtÞdt ¼ 0 for all y ∈ R8:

Clearly H is a closed subspace of H 1ðRNÞ. The problem is, as
follows: ϕ ∈ H and

∂ttϕþ Δyϕþ f 0½wðtÞ�ϕ ¼ gðt; yÞ − w 0ðtÞ
R
R gðy; τÞw 0ðτÞdτR

R w 02dτ

can be written variationally as that of minimizing the energy

IðϕÞ ¼ 1

2

Z
R9

j∇yϕj2 þ j∂tϕj2 − f 0ðwÞϕ2 þ
Z
R9

gϕ; ϕ ∈ H:

Thanks to the spectral gap estimate the functional I is coercive
in H. Existence in the general case follows by the L∞-a priori
estimate and approximations.

Accepting that we have the above result not only for the linear
model problem [14] but also for the linear problem [13], we can
write the problem [12] as a fixed point problem:

ϕ ¼ A½BϕþNðϕÞ þE�:

The contraction mapping principle implies the existence of a un-
ique solution ϕ ≔ ϕðhÞ with ∥ω3

r ϕ∥∞ ¼ Oðε2Þ.
Finally, we carry out Step 2. We need to find h such thatZ

R
fEþ BϕðhÞ þN½ϕðhÞ�gðε−1y; tÞw 0ðtÞdt ¼ 0 ∀y ∈ Γ:

Because

−Eðε−1y; tÞ ¼ ε2tw 0ðtÞjAΓðyÞj2 þ ε3t2w 0ðtÞ∑
8

j¼1

kjðyÞ3

þ ε3½ΔΓhðyÞ þ jAΓðyÞj2hðyÞ�w 0ðtÞ þ…;

where… represent smaller terms, the problem we need to solve is
of the form

ΔΓhþ jAΓj2h ¼ c∑
8

i¼1

k3
i þ gðyÞ þNðhÞ in Γ; [16]

where NðhÞ is a small operator and g is a small function. We re-
cognize the operator on the right-hand side as the Jacobi opera-
tor of Γ, denoted later by JΓðhÞ.

An important ingredient of the analysis is the following claim:
Let 0 < σ < 1. Then if ∥ð1þ r4þσÞeg∥L∞ðΓÞ < þ∞ there is a un-
ique solution h ¼ TðegÞ to the problem

JΓ½h� ≔ ΔΓhþ jAΓðyÞj2h ¼ egðyÞ in Γ

with

∥ð1þ rÞ2þσh∥L∞ðΓÞ ≤ C∥ð1þ rÞ4þσeg∥L∞ðΓÞ:

We want to solve [16] using a fixed point formulation for the
operator T above. Making suitable assumptions on h and calcu-
lating the function g in [16] we conclude that eg ¼ gþNðhÞ
satisfies the hypothesis of the claim above, namely it is of order
Oðr−4−σÞ and consequently the function T½gþNðhÞ� is well-
defined. However we only have

∑
8

i¼1

k3
i ¼ Oðr−3Þ;

and we need some extra arguments to deal with the equation of
the form
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JΓ½h� ¼ ∑
8

i¼1

k3
i :

At this point we take full advantage of the improved asymptotic
estimate (Eq. 7) for the BDG surface. Using this expansion we
can perform fairly direct computations for the principal curva-
tures ki and conclude the following two key facts:

1. There is a smooth function p, such that pðπ
2
− θÞ ¼ −pðθÞ

for all θ ∈ ð0; π
4
Þ, and

∑
8

i¼1

kiðyÞ3 ¼
pðθÞ
r3

þOðr−4−σÞ:

2. There exists a smooth function h0ðr; θÞ, such that h0 ¼ Oðr−1Þ
and for some σ > 0,

JΓ½h0� ¼
pðθÞ
r3

þOðr−4−σÞ as r → þ∞:

Our [16] finally becomes a problem for h ¼ h0 þ h1, where

h1 ¼ T½Oðr−4−σÞ þNðh0 þ h1Þ�;

which we can solve for h1 ¼ Oðr−2−σÞ, using the contraction
mapping principle, keeping track of Lipschitz dependence in h
of the objects involved in NðhÞ.
Beyond De Giorgi’s Conjecture
Loosely speaking, the method of construction of solutions
described so far applies to finding an entire solution uε to Δuþ
u − u3 ¼ 0 with a transition set near Γε ¼ ε−1Γ, whenever Γ is a
minimal hypersurface embedded in RN , that splits the space into
two components, and for which enough control at infinity is pre-
sent to invert its Jacobi operator globally. Indeed the main diffi-
culty in ref. 11 is the invertibility of the Jacobi operator of the
BDG surface. However, in some situations the Jacobi operator
is fairly easy to handle and then more can be said about the solu-
tions of the Allen–Cahn equation in the context of their relation
with the underlying minimal surface.

Finite Morse Index Solutions. The assumption of monotonicity in
one direction for the solution u in De Giorgi’s conjecture implies
a form of stability, namely locally minimizing character for u
when compactly supported perturbations are considered in the
energy. Indeed, the linearized operator L ¼ Δþ ð1 − 3u2Þ, satis-
fies maximum principle becauseLðZÞ ¼ 0 forZ ¼ ∂xN u > 0. This
fact implies the stability of u, in the sense that its associated quad-
ratic form, namely the second variation of the corresponding en-
ergy,

Qðψ; ψÞ ≔
Z
R3

j∇ψj2 þ ð3u2 − 1Þψ 2 [17]

satisfies Qðψ; ψÞ > 0 for all ψ ≠ 0 smooth and compactly sup-
ported. Stability of u is not only necessary but indeed sufficient
for De Giorgi’s statement to hold in dimension N ¼ 2, as
observed by Dancer (26). This question is open for 3 ≤ N ≤ 7,
and so is the corresponding stable Bernstein problem in
that range.

Recently, stable solutions with nonplanar level sets in dimen-
sions N ≥ 8 have been found in ref. 27. This result uses the ex-
istence of a foliation by minimal surfaces asymptotic to minimal
cones in dimensions N ≥ 8.

Motivated by this result we would like to consider the problem
of existence of entire solutions to the Allen–Cahn equation to-
gether with the question of their stability/instability. To be more

precise we need the concept of the Morse index mðuÞ, defined as
the maximal dimension of a vector space, E, of compactly sup-
ported functions such that

Qðψ; ψÞ < 0 for all ψ ∈ E \ f0g:

Considering the simplest case of RN , withN ¼ 3, it seems nat-
ural to associate complete, embedded minimal surfaces Γ with
finite Morse index, and solutions of [1]. The Morse index of
the minimal surface Γ, iðΓÞ, has a similar definition relative to
the quadratic form for its Jacobi operator JΓ ≔ ΔΓ þ jAΓj2,
namely iðΓÞ is the largest dimension for a vector spacedE of com-
pactly supported smooth functions in Γ withZ

Γ
j∇kj2dV −

Z
Γ
jAΓj2k2dV < 0 for all k ∈ E \ f0g:

We point out that for complete, embedded surfaces, in R3, finite
index is equivalent to finiteness of the total curvatureZ

Γ
jKjdV < þ∞;

where K denotes Gauss curvature of the manifold.
Given these definitions, we have the validity of the following

result (28):

Theorem 2. Let Γ be a complete, embedded minimal surface in R3

with finite total curvature. Assume additionally that Γ is nondegene-
rate, namely its bounded Jacobi fields originate only from rigid
motions, and further let Γε ¼ ε−1Γ be a dilation of this surface. Then
for all small ε > 0, there is a solution, uε, to [1] whose asymptotic
behavior near Γε is given by

uεðxÞ ≈ wðtÞ; x ¼ yþ tνεðyÞ;

where νε is the unit normal to Γε and t is the signed distance from Γε.

Moreover the Morse indices of uε and Γε are equal: mðuεÞ ¼
iðΓεÞ.

For example, nondegeneracy and Morse index are known for
the catenoid and the Costa–Hoffmann–Meeks surfaces [found in
refs. 29 and 30, see Nayatani (31) and Morabito (32)]. In the case
of the catenoid, the solution found is radially symmetric in two of
its variables and mðuεÞ ¼ 1. For the Costa–Hoffman–Meeks sur-
face with genus ℓ ≥ 1, we have mðuεÞ ¼ 2ℓ þ 3. We note finally
that iðΓÞ ¼ iðΓεÞ, for all ε > 0.

An Examplewith Infinite Total Curvature.The condition of finiteness
of the total curvature of a minimal surface is by no means neces-
sary for the existence of solutions of [1] whose zero level sets are
close to this surface. The helicoid is a classical embedded minimal
surface whose total curvature is infinite: This surface, dependent
on a parameter λ, can be described as

Hλ ¼ fðr cos θ; r sin θ; zÞ ∈ R3∕z ¼ λ
π
θg:

The following result holds ref. 33:

Theorem 3.

1. If λ > π, then there exists a solution to the Allen–Cahn equa-
tion in R3 whose zero level set is exactly Hλ.

2. If λ ≤ π then any solution which vanishes onHλ must be iden-
tically zero.
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This theorem, unlike those previously discussed, is not an
asymptotic result: λ corresponds precisely to a dilation parameter
of a fixed helicoid.

Toward a Classification of Entire Solutions. Complementing the pre-
ceding discussion we observe that the relation between the mini-
mal surface theory and the theory of entire solutions of [1] in R3

is more complicated then it seems at first sight. In fact, whereas
one can expect that given an embedded minimal surface, it is pos-
sible to find solutions to the Allen–Cahn equation whose zero
level set is close to a dilation of this surface, there are known ex-
amples of solutions to [1] whose level set neither is embedded,
nor minimal.

Indeed it is shown in ref. 34 that inR2 there exists the so-called
saddle solution to [1], whose zero level set coincides with the
straight lines jxj ¼ jyj. Asymptotically, along these lines, the sad-
dle solution resembles the heteroclinic profile of the one-dimen-
sional solution of the Allen–Cahn equation. In ref. 19, for each
sufficiently small α > 0 another type of two-dimensional solution
is found, these are even functions of the variables ðx; yÞ, and their
zero level set in the first quadrant is asymptotically a straight line
whose angle with the x axis is precisely α. We denote these solu-
tions by uα and note that the saddle solution mentioned above
consequently should be denoted by uπ∕4. Moreover in ref. 35 it
is established that uα for α small, and uπ∕4 belong to the same
connected component M of the moduli space of solutions of [1]
in R2. Clearly every solution in M can be trivially extended to a
solution in R3, thus giving a family of solutions whose zero level
set is neither embedded, nor minimal, as we have anticipated.

All solutions in M have finite Morse index (it is expected that
their Morse index is 1, see refs. 36–38) when considered as solu-
tions in R2, but the Morse index of their extensions to R3 is in-
finite. It looks like the finiteness of the Morse index is then an
important criterion from the point of view of classification of
the entire solutions of [1] and plays a similar role as the condition
of the finiteness of the total curvature in the theory of the mini-
mal surfaces (37). Thus, in analogy with De Giorgi’s conjecture, it
seems plausible that qualitative properties of embedded minimal
surfaces with finite Morse index should hold for the level sets of
finite Morse index solutions of Eq. 1, provided that these sets are
embedded manifolds outside a compact set. The following result
would be a step in the direction of classification of the simplest
class of unstable solutions:

A bounded solution, u, of [1] in R3, with iðuÞ ¼ 1, and ∇u ≠ 0

outside a bounded set, must be axially symmetric, namely radially
symmetric in two variables.

An example of a solution satisfying the above is given in ref. 28
(in Theorem 2, take Γ to be a catenoid). If proven, the above
conjecture would correspond to the famous result by Schoen
(38), which says, if iðΓÞ ¼ 1 and Γ has embedded ends, then it
must be a catenoid.
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