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We consider the Yamabe equation �u + n(n−2)
4 |u| 4

n−2 u = 0 in R
n ,

n � 3. Let k � 1 and ξk
j = (e

2 jπ i
k ,0) ∈ R

n = C × R
n−2. For all large

k we find a solution of the form uk(x) = U (x) −∑k
j=1 μ

− n−2
2

k U ×
(μ−1

k (x − ξ j)) + o(1), where U (x) = ( 2
1+|x|2 )

n−2
2 , μk = cn

k2 for n � 4,

μk = c
k2(log k)2 for n = 3 and o(1) → 0 uniformly as k → +∞.
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1. Introduction and statement of main results

This paper deals with the construction of finite energy solutions to the Yamabe equation in R
n ,

�u + γ |u|p−1u = 0 in R
n, (1.1)

where n � 3 and p is the critical Sobolev exponent p = n+2
n−2 , and the constant γ > 0 is chosen (for

normalization purposes) as

γ = n(n − 2)

4
.

By finite energy solutions of problem (1.1) we mean critical points of the functional

J (u) = 1

2

∫
Rn

|∇u|2 − γ

p + 1

∫
Rn

|u|p+1, u ∈ D1,2(
R

n),
where D1,2(RN ) = {u ∈ L p+1(RN )/∇u ∈ L2(RN )}.

It has been known after the work by Obata [14] that the only finite energy positive solutions
to (1.1) are given by the family of functions

μ− n−2
2 U
(
μ−1(x − ξ)

)
, U (x) =

(
2

1 + |x|2
) N−2

2

, ξ ∈ R
n, μ > 0 (1.2)

corresponding to the extremals for the critical Sobolev embedding [1,17]. These functions are indeed
all positive solutions of (1.1), even without the finite energy requirement, see Caffarelli, Gidas and
Spruck [6]. Finite energy sign-changing solutions to (1.1) are only partly understood. Radially sym-
metric ones for instance do not exist as it readily follows from Pohozaev’s identity [15]. On the other
hand, via stereographic projection to Sn Eq. (1.1), which is conformally invariant becomes

�Sn v + γ
(|v| 4

n−2 v − v
)= 0 in Sn, (1.3)

see for instance [16,9]. Ding [8] found that compactness of critical Sobolev’s embedding holds within
functions of the form

v(x) = v
(|x1|, |x2|

)
, x = (x1, x2) ∈ Sn ⊂ R

n+1 = R
k × R

n+1−k, k � 2,

so that infinitely many solutions of this form exist, for any n � 3, thanks to Ljusternik–Schnirelmann
theory. No qualitative features of these solutions other than their radial symmetry are known. See
also [10].

Using a different method, we have built in [7] sequences of sign changing solutions for prob-
lem (1.3) for n � 4 without radial symmetry. These solutions have large energy and exhibit concentra-
tion patterns of their energy densities along special submanifolds of Sn . They can be visualized as a
large number of bubbles of the form (1.2) with small scaling parameters μ. Among the possible con-
centration sets included are great circles in Sn and higher-dimensional sets such as the Clifford torus

1√
2

S1 × 1√
2

S1 ×{0} ⊂ Sn ⊂ R
n+1 for n � 5. The construction in [7] does not include the 3-dimensional

case.
The purpose of this paper is to devise an approach which provides examples of non-radial so-

lutions in all dimensions n � 3, at the same time providing fine knowledge on the core asymptotic
behavior. We will concentrate on the simplest case considered in [7]: solutions of (1.3) concentrating
on a great circle. We construct for any n � 3 a solution to Eq. (1.1) which looks like the soliton U
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crowned with k negative spikes arranged on a regular polygon with radius 1, and precisely described in our
main result:

Theorem 1. Let n � 3 and write R
n = C×R

n−2 and let ξk
j = (e

2 jπ i
k ,0), j = 1, . . . ,k. Then for any sufficiently

large k there is a finite energy solution of the form

uk(x) = U (x) −
k∑

j=1

μ
− n−2

2
k U

(
μ−1

k (x − ξ j)
)+ o(1),

where

μk = cn

k2
for n � 4, μk = c

k2(log k)2
for n = 3.

Moreover,

J (uk) = (k + 1) J (U ) + O (1). (1.4)

Here O (1) remains bounded and o(1) → 0 uniformly as k → +∞.

The proof of this result consists of linearizing the equation around a first approximation and devis-
ing an invertibility theory for the linearized operator which takes advantage of the symmetry of the
configuration, and reduces the problem to just slightly adjusting the scaling parameter μk . The ba-
sic outline is similar to that in [7], but with the main ingredient worked out in a different way:
in order to cover the lower-dimensional case, the invertibility theory for the linearization needs to
involve norms which describe in more accurate way the behavior of the error of approximation
and the corresponding remainders. In this way, together with covering the case n = 3, the above
result describes a more precise asymptotic behavior for n � 4 than that in the parallel construc-
tion [7].

We believe that the approach devised in this paper may also be applicable to cover lower dimen-
sions in higher-dimensional lattices, for instance for n = 4 in the Clifford torus. We will not treat these
issues in this paper but just concentrate in the simplest case of the crown solution. We point out that
the idea of using the (large) number of bubbles as a parameter of the problem has been previously
developed by Wei and Yan in [18] for critical problems with the presence of weights. The possibil-
ity of concentration of positive solutions on lattices is discussed in [13]. Finally, we point out that
sign-changing, non-radial solutions were found in [4,5] in the subcritical range while in the critical
exponent case and n = 3 the topology of lower energy level sets was analyzed in [2,3]. The result de-
scribed here is the first semi-explicit construction, with an approach which naturally yields spectral
information on the linearization. Such properties for finite-energy solutions may be important for in-
stance in understanding the long-term dynamics in the corresponding Schrödinger equations, a topic
of recent high interest, see [11,12].

The rest of the paper will be devoted to the proof of Theorem 1.

2. First approximation and the error

In this section we construct a first approximation to find a solution to our problem (1.1). As men-
tioned in the introduction, it is known that all positive solutions of (1.1) are given by the family

wμ(y − ξ), ξ ∈ R
n, μ > 0, where wμ(y) := μ− n−2

2 U
(
μ−1 y

)
, (2.1)

with U defined in (1.2). Eq. (1.1) is invariant under Kelvin’s transform. This means that if u(y) solves
(1.1) in R

n , then so does
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û(y) := |y|2−nu
(|y|−2 y

)
in R

n \ {0}.
The solution U in (1.2) has the characteristic of being invariant under this transformation. We may

wonder, more generally when the function wμ(y − ξ) satisfies this property. As simple algebra shows,
this happens if and only if

|ξ |2 + μ2 = 1.

We build an approximation U∗ to a solution of (1.1) as follows. Let k be a large positive integer
and let us select k points ξ1, . . . , ξk with

|ξ j|2 = 1 − μ2

where μ > 0 is a small number which we write in the form

μ = δ
2

n−2

k2
for n � 4, μ = δ2

k2(log k)2
for n = 3. (2.2)

In what follows we assume that δ is a parameter with uniform lower and upper bounds δ0, δ1,

0 < δ0 � δ � δ1 (2.3)

for k large. Moreover, we assume that the points ξ j are arranged symmetrically, as the vertices of a
planar regular polygon.

We denote points y ∈ R
n , n � 3, as

y = ( ȳ, y′), ȳ = (y1, y2), y′ = (y3, . . . , yn).

Using complex notation for ȳ variables, we then assume

ξ j =
√

1 − μ2
(
e

2π( j−1)
k i,0, . . . ,0

)
, j = 1, . . . ,k.

We write

U j(y) := wμ(y − ξ j), j = 1, . . . ,k,

and consider the function

U∗(y) := U (y) −
k∑

j=1

U j(y). (2.4)

For a large number k, which at the same time makes the concentration parameter μ very small, we
have that U∗ defines a rather good approximation to a solution of (1.1), which is in addition invariant
under Kelvin’s transform:

U∗(y) = |y|2−nU∗
(|y|−2 y

)
.
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Next we derive some estimates on the error of approximation, defined as

E := �U∗ + γ |U∗| 4
n−2 U∗. (2.5)

A basic issue is to measure the size of the error near and far from the concentration points ξ j .
For reasons that will become apparent later, it is convenient to do this measurement using the

following norm: Let us fix a number q > n
2 and consider the weighted Lq norm

‖h‖∗∗ = ∥∥(1 + |y|)n+2− 2n
q h
∥∥

Lq(Rn)
. (2.6)

To be more precise, we will estimate the ‖ · ‖∗∗-norm of the error term E first in the exterior region⋂k
j=1{|y − ξ j | >

η
k }, then in the interior regions {|y − ξ j | <

η
k }, for any j = 1, . . . ,k. Here η > 0 is a

positive and small constant, independent of k. We will do it in what is left of this section.

In the exterior region. Observe first that

γ −1 E =
∣∣∣∣∣U −

k∑
j=1

U j

∣∣∣∣∣
p−1(

U −
k∑

j=1

U j

)
− U p −

k∑
j=1

U p
j .

For y ∈⋂k
j=1{|y − ξ j | > η

k } we can estimate

∣∣E(y)
∣∣� C

[
1

(1 + |y|2)2
+
∣∣∣∣∣

k∑
j=1

μ
n−2

2

|y − ξ j|n−2

∣∣∣∣∣
4

n−2
](

k∑
j=1

μ
n−2

2

|y − ξ j|n−2

)

� C
μ

n−2
2

(1 + |y|2)2

k∑
j=1

1

|y − ξ j|n−2
.

Now we compute the weighted Lq norm above for this quantity. We get, for n � 4,

∥∥(1 + |y|)n+2− 2n
q E1
∥∥

Lq(
⋂k

j=1{|y−ξ j |> η
k })

� Cμ
n−2

2

k∑
j=1

( ∫
|y−ξ j |> η

k

(1 + |y|)(n+2)q−2n

(1 + |y|2)2q

1

|y − ξ j|(n−2)q
dy

) 1
q

� Cμ
n−2

2 k

( 1∫
η
k

tn−1

t(n−2)q
dt

) 1
q

� C
μ

n−2
2 kn−2

k
n
q −1

� Ck1− n
q . (2.7)

On the other hand, if n = 3, we get

∥∥(1 + |y|)n+2− 2n
q E
∥∥

Lq(
⋂k

j=1 |x−ξ j |> η
k )

� C

log k
, (2.8)

where C depends on η and on positive upper and lower bounds for the parameter δ.
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In the interior regions. Now, if |y − ξ j | < η
k for some j ∈ {1, . . . ,k} fixed, we have

γ −1 E = p

(
U j + s

(
−
∑
i �= j

U i + U

))p−1(
−
∑
i �= j

U i + U

)
− U p +

∑
i �= j

U p
i . (2.9)

Note that very close to ξ j , U j = O (μ− n−2
2 ). More in general taking η small, we have that U j

dominates globally the other terms. Note that in particular

∑
i �= j

μ
n+2

2

|ξ j − ξi|n+2
∼ kn+2μ

n+2
2 = O (1) for any n � 3.

It is convenient to measure the error after a change of scale. Define

Ẽ j(y) := μ
n+2

2 E(ξ j + μy), |y| < η

μk
.

We observe that

μ
n−2

2 U j(ξ j + μy) = U (y) and Ui(y) = μ− n−2
2 U
(
μ−1(y − ξi)

)
.

Thus

μ
n−2

2 Ui(ξ j + μy) = U
(

y − μ−1(ξi − ξ j)
)
.

Notice also that

μ−1|ξi − ξ j| ∼ μ−1

k
| j − i|

hence for i �= j and |y| < η
μk we estimate

U
(

y − μ−1(ξi − ξ j)
)
� cμn−2kn−2

| j − i|n−2
.

Therefore we obtain that for some s ∈ (0,1)

γ −1 Ẽ j(y) = p

(
U (y) + s

(
−
∑
i �= j

U
(

y − μ−1(ξi − ξ j)
)+ μ

n−2
2 U (ξ j + μy)

))p−1

×
(

−
∑
i �= j

U
(

y − μ−1(ξi − ξ j)
)+ μ

n−2
2 U (ξ j + μy)

)

+
∑
i �= j

U p(y − μ−1(ξi − ξ j)
)− μ

n+2
2 U p(ξ j + μy). (2.10)
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Hence we can estimate for |y| < η
μk and when n � 4

∣∣Ẽ j(y)
∣∣� C

[
μ

n−2
2

1 + |y|4 + μ
n+2

2

]
. (2.11)

We compute now

∥∥(1 + |y|)n+2− 2n
q Ẽ j(y)

∥∥
Lq(|y|<ημ

− 1
2 )

� Cμ
n−2

2
∥∥(1 + |y|)n−2− 2n

q
∥∥

Lq(|y|<ημ
− 1

2 )
.

Since

∥∥(1 + |y|)n−2− 2n
q
∥∥q

Lq(|y|<ημ
− 1

2 )
∼

ημ
− 1

2∫
0

(1 + r)(n−2)q−n−1 dr � Cμ− (n−2)q−n
2

it follows that, for n � 4,

∥∥(1 + |y|)n+2− 2n
q Ẽ j(y)

∥∥
Lq(|y|<ημ

− 1
2 )

� C
1

k
n
q
. (2.12)

When n = 3, one gets the estimate

∥∥(1 + |y|)n+2− 2n
q Ẽ j(y)

∥∥
Lq(|y|< η

μk )
� C

1

k log k
. (2.13)

3. A linear result

We consider the operator L0 defined as

L0(φ) := �φ + pγ U p−1φ. (3.1)

It is well known that the set of bounded solutions of the homogeneous equation L0(φ) = 0 is spanned
by the n + 1 functions

Z	 = ∂y	
U , 	 = 1, . . . ,n and Zn+1 = y · ∇U + n − 2

2
U .

This section is devoted to establish an invertibility theory for

L0(φ) = h(y) in R
n. (3.2)

To do so, let us introduce the norm

‖φ‖∗ := ∥∥(1 + |y|n−2)φ∥∥L∞(Rn)
. (3.3)

We have the following result.
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Lemma 3.1. Assume that n
2 < q < n in the definition of the norm ‖ · ‖∗∗ in (2.6). Let h(y) be a function such

that ‖h‖∗∗ < +∞, and ∫
Rn

Z	h = 0 for all 	 = 1, . . . ,n + 1. (3.4)

Then Eq. (3.2) has a unique solution φ with ‖φ‖∗ < +∞, such that∫
Rn

U p−1 Z	φ = 0 for all 	 = 1, . . . ,n + 1.

Moreover, there is a constant C depending only on q and n such that

‖φ‖∗ � C‖h‖∗∗. (3.5)

Proof. Let us consider the subspace

H =
{
φ ∈ D1,2(

R
n)/∫

Rn

U p−1 Z	φ = 0 for all 	 = 1, . . . ,n + 1

}
.

Observe that for h as in the statement of the lemma,

‖h‖
L

2n
n+2 (Rn)

� C
∥∥(1 + |y|)n+2− 2n

q h
∥∥

Lq(Rn)
, (3.6)

as a direct consequence of Holder inequality

∫
Rn

|h|r �
( ∫

Rn

|h|q(1 + |y|)(n+2)q−2n
) r

q
( ∫

Rn

(
1 + |y|)−2n

) q−r
q

,

with r = 2n
n+2 . Let us consider the problem of finding a function φ ∈ H such that

∫
Rn

∇φ∇ψ − p

∫
Rn

U p−1φψ +
∫
Rn

hψ = 0 for all ψ ∈ H, (3.7)

which makes sense because of (3.6) and Sobolev’s embedding. Since the orthogonality conditions (3.4)
hold, we easily check that a solution of problem (3.7) produces a weak solution of (3.2).

Now, for f ∈ L
2n

n+2 (Rn), let us denote by φ = A( f ) ∈ H the unique solution of the problem∫
Rn

∇φ∇ψ +
∫
Rn

f ψ = 0 for all ψ ∈ H, (3.8)

given by Riesz’s theorem. Then A defines a continuous linear map between L
2n

n+2 (Rn) and H . Problem
(3.7) can be formulated as

φ − A
(

pγ U p−1φ
)= A(h), φ ∈ H . (3.9)
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The map φ ∈ H → U p−1φ ∈ L
n
2 (Rn) is easily seen to be compact, thanks to local compactness of

Sobolev’s embeddings and the fact that U p−1 = O (|y|−4).
Hence, Fredholm’s alternative applies to problem (3.9): for f = 0, (3.9) reduces to L0(φ) = 0 with

φ ∈ H . Elliptic regularity yields that φ is also bounded, and hence it is a linear combination of the
functions Z	 . Then, the definition of H implies that necessarily φ = 0. We conclude that problem (3.9)
is uniquely solvable in H for any h. Besides,

‖∇φ‖L2(Rn) + ‖φ‖
L

2n
n−2 (Rn)

� C
∥∥(1 + |y|)n+2− 2n

q h
∥∥

Lq(Rn)
.

It remains to prove that φ satisfies the estimate (3.14). Being φ solution to (3.9), local elliptic estimates
yield

∥∥D2φ
∥∥

Lq(B1)
+ ‖Dφ‖Lq(B1) + ‖φ‖L∞(B1) � C

∥∥(1 + |y|)n+2− 2n
q h
∥∥

Lq(Rn)
.

Now, let us consider Kelvin’s transform of φ,

φ̃(y) = |y|2−nφ
(|y|−2 y

)
.

Then we check that φ̃ satisfies the equation

�φ̃ + pγ U p−1(y)φ̃ = h̃ in R
n \ {0}, (3.10)

where h̃(y) = |y|−n−2h(|y|−2 y). We observe that

‖h̃‖Lq(|y|<2) = ∥∥|y|n+2− 2n
q h
∥∥

Lq(|y|> 1
2 )

� C
∥∥(1 + |y|)n+2− 2n

q h
∥∥

Lq(Rn)
,

and

‖∇φ̃‖L2(Rn) + ‖φ̃‖
L

2n
n−2 (Rn)

= ‖∇φ‖L2(Rn) + ‖φ‖
L

2n
n−2 (Rn)

.

Then we get, from elliptic estimates applied to Eq. (3.10),

∥∥D2φ̃
∥∥

Lq(B1)
+ ‖Dφ̃‖Lq(B1) + ‖φ̃‖L∞(B1) � C‖h̃‖Lq(B2) � C

∥∥(1 + |y|)n+2− 2n
q h
∥∥

Lq(Rn)
.

But

‖φ̃‖L∞(B1) = ∥∥|y|n−2φ
∥∥

L∞(Rn\B1)
,

and we also check that

∥∥|y|n+1− 2n
q Dφ

∥∥
Lq(Rn\B1)

� C
[∥∥D2φ̃

∥∥
Lq(B1)

+ ‖Dφ̃‖Lq(B1)

]
.

Combining the above estimates, relation (3.14) follows. The proof is concluded. �
For later purpose we consider now the following perturbation of problem (3.2):

L0(φ) + a(y)φ = g(y) +
n+1∑

c	U p−1 Z	 in R
n (3.11)
	=1
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where ∫
Rn

U p−1 Z	φ = 0 for all 	 = 1, . . . ,n + 1 (3.12)

and

c	

∫
Rn

U p−1 Z 2
	 =
∫
Rn

(
a(y)φ − g(y)

)
Z	φ = 0 for all 	 = 1, . . . ,n + 1. (3.13)

Lemma 3.2. Let 2 < ν < n. There exist numbers δ, C > 0 depending on ν,n such that the following holds:
If g and φ are such that ‖(1 + |y|ν)g‖∞ < +∞, ‖(1 + |y|ν−2)φ‖∞ < +∞, and ‖(1 + |y|2)a‖∞ < δ, and
(3.11)–(3.13) are satisfied, then

∥∥(1 + |y|ν−2)φ∥∥∞ � C
∥∥(1 + |y|ν)g∥∥∞. (3.14)

Proof. By contradiction, let us assume the existence of functions φn , an , gn and constants cn
	 such that

(3.11)–(3.13) hold, and

∥∥(1 + |y|ν)gn
∥∥∞ → 0,

∥∥(1 + |y|ν−2)φn
∥∥∞ = 1,

∥∥(1 + |y|2)an
∥∥∞ → 0.

Clearly we have that ‖(1 + |y|ν)anφn‖∞ → 0, and also that by their definition that cn
	 → 0, so that

with no loss of generality we may assume that an
	 ≡ 0, and cn

	 = 0. We claim first that

‖φ‖∞ → 0.

Indeed, otherwise there are numbers γ , R > 0 and points xn such that

∣∣φn(xn)
∣∣� γ , |xn| � R.

Passing to a subsequence, and using local elliptic estimates, we find that φn converges locally uni-
formly over compact sets to a bounded function φ0 �= 0 with

L0(φ0) = 0 and
∫
Rn

U p−1φ Z	 = 0 for all 	

which gives φ0 = 0, a contradiction.
Since ν < N we have that for some constants d0, R0 we have

−L0
(|y|2−ν

)
> d0|y|−ν for all |y| > R0.

Therefore if we let

hn(y) = (d−1
0

∥∥|y|ν gn
∥∥∞ + ‖φn‖∞Rν−2

0

)|y|2−ν

maximum principle yields

∣∣φn(y)
∣∣� hn(y) for all |y| > R0.
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From here we obtain that actually

∥∥(1 + |y|ν−2)φn
∥∥∞ → 0,

a contradiction that finishes the proof. �
4. A gluing procedure

To prove our result Theorem 1 we will show that problem (1.1) admits a solution of the form

u(y) = U∗(y) + φ(y)

where φ is a function small when compared with U∗ . Then Eq. (1.1) gets rewritten in terms of φ as

�φ + pγ |U∗|p−1φ + E + γ N(φ) = 0 (4.1)

where E is defined in (2.5) and

N(φ) = |U∗ + φ|p−1(U∗ + φ) − |U∗|p−1U∗ − p|U∗|p−1φ.

In this section we prove the existence of a function φ solution to (4.1).
Let ζ j be a cut-off function defined as follows. Let ζ(s) be a smooth function such that ζ(s) = 1

for s < 1 and ζ(s) = 0 for s > 2. We also let ζ−(s) = ζ(2s). Then we set

ζ j(y) =
{

ζ(kη−1|y|−2|(y − ξ |y|)|) if |y| > 1,

ζ (kη−1|y − ξ |) if |y| � 1,

in such a way that

ζ j(y) = ζ j
(

y/|y|2).
We consider in addition the cut-off functions ζ−

j (y), defined as above with ζ replaced by ζ− .
A function φ of the form

φ =
k∑

j=1

φ̃ j + ψ

is a solution of problem (4.1) if we can solve the following coupled system of elliptic equations in
φ̃ = (φ̃1, . . . , φ̃k) and ψ :

�φ̃ j + pγ |U∗|p−1ζ jφ̃ j + ζ j

[
pγ |U∗|p−1ψ + E + γ N

(
φ̃ j +

∑
i �= j

φ̃i + ψ

)]
= 0, j = 1, . . . ,k,

(4.2)
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�ψ + pγ U p−1ψ +
[

pγ
(|U∗|p−1 − U p−1)(1 −

k∑
j=1

ζ j

)
+ pγ U p−1

k∑
j=1

ζ j

]
ψ

+ pγ |U∗|p−1
∑

j

(1 − ζ j)φ̃ j +
(

1 −
k∑

j=1

ζ j

)(
E + γ N

(
k∑

j=1

φ̃ j + ψ

))
= 0. (4.3)

To solve this system (4.2)–(4.3) we will solve first problem (4.3) for given φ̃ j ’s of a special form
that we describe next. We assume that

φ̃ j
(

ȳ, y′)= φ̃1
(
e

2π j
k i ȳ, y′), j = 1, . . . ,k − 1. (4.4)

On the other hand, we assume that φ̃1 is even in the variables y2, . . . , yn , namely

φ̃1(y1, . . . , y j, . . . , yn) = φ̃1(y1, . . . ,−y j, . . . , yn), j = 2, . . . ,n, (4.5)

and invariant under Kelvin’s transform:

φ̃1(y) = |y|2−nφ̃1
(|y|−2 y

)
. (4.6)

We also assume that

‖φ1‖∗ � ρ where φ1(y) := μ
n−2

2 φ̃1(ξ1 + μy), (4.7)

for a ρ fixed, but sufficiently small. The following result holds.

Lemma 4.1. There exist constants k0 , C , ρ0 , such that for all k � k0 the following holds: Let φ̃ j , j = 1, . . . ,k
satisfy conditions (4.4)–(4.7), with ρ < ρ0 . Then there exists a unique solution ψ = Ψ (φ1) to Eq. (4.3), that
satisfies the symmetries

ψ( ȳ, y3, . . . , y	, . . . , yn) = ψ( ȳ, y3, . . . ,−y	, . . . , yn), 	 = 3, . . . ,n, (4.8)

ψ
(

ȳ, y′)= ψ
(
e

2π j
k i ȳ, y′), j = 1, . . . ,k − 1, (4.9)

ψ(y) = |y|2−nψ̃
(|y|−2 y

)
, (4.10)

and such that

‖ψ‖∗ � C

k
n
q −1

+ C‖φ1‖2∗ if n � 4 (4.11)

and

‖ψ‖∗ � C

log k
+ C‖φ1‖2∗ if n = 3. (4.12)

Moreover, the operator Ψ satisfies the Lipschitz condition

∥∥Ψ (φ1
1

)− Ψ
(
φ2

1

)∥∥∗ � C
∥∥φ1

1 − φ2
1

∥∥∗.
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Proof. Let us write Eq. (4.3) in the form

�ψ + pγ U p−1(y)ψ + γ V (y)ψ + pγ |U∗|p−1
∑

j

(1 − ζ j)φ̃ j + M(ψ) = 0 (4.13)

where

V (y) := p
(|U∗|p−1 − U p−1)(1 −

k∑
j=1

ζ j

)
︸ ︷︷ ︸

V 1(y)

+ pU p−1
k∑

j=1

ζ j

︸ ︷︷ ︸
V 2(y)

, (4.14)

and

M(ψ) :=
(

1 −
k∑

j=1

ζ j

)(
E + γ N

(
k∑

j=1

φ̃ j + ψ

))
. (4.15)

The desired result will be a consequence of a corresponding linear result and an application of the
contraction mapping principle. Thus we consider first the linear problem

�ψ + pγ U p−1(y)ψ = h in R
n, (4.16)

where h is a function that satisfies symmetries (4.8), (4.9), and

h(y) = |y|−n−2h
(|y|−2 y

)
, (4.17)

and in addition such that ‖h‖∗∗ < +∞.

Claim. Eq. (4.16) has a unique bounded solution ψ = T (h) that satisfies symmetries (4.8), (4.9), (4.10). More-
over, there is a constant C , dependent only on q and n such that

‖ψ‖∗ � C‖h‖∗∗. (4.18)

To prove this claim we will apply Lemma 3.1. We will check that under the symmetries assumed
we have that ∫

Rn

Z	h = 0 for all 	 = 1, . . . ,n + 1. (4.19)

For l = 3, . . . ,n, this is a consequence of the oddness of Zl and assumption (4.5) on h. Now, we
consider the vector integral

I =
∫
Rn

h

[
Z1
Z2

]
dy = cn

∫
Rn

h(y)

(1 + |y|2) n
2

ȳ dy.

Changing the variables ȳ into e
2π
k i z̄ and using the symmetry (4.9) we get the identity

e
2π
k i I = I,

which yields I = 0, since k � 2.
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Define now for λ > 0

I(λ) = λ
n−2

2

∫
Rn

U (λy)h(y)dy.

Changing variables y into y|y|−2 yields I(λ) = I(λ−1), and hence
∫

Rn h Zn+1 = ∂λ I(λ)|λ=1 = 0. Given
the orthogonality conditions checked above, Lemma 3.1 then yields the existence of a unique solution
to Eq. (4.16) such that

∫
Rn

U p−1 Z	ψ = 0 for all 	 = 1, . . . ,n + 1, (4.20)

and in addition, estimate (4.18) holds. Now, the functions

ψ	(y) := ψ( ȳ, y3, . . . ,−y	, . . . , yn), 	 = 3, . . . ,n

also solve (4.16) and satisfy relations (4.20). Hence ψ = ψ	 , and thus ψ satisfies symmetries (4.8).
The same argument applies to the functions

ψ12(y) := ψ
(
e

2π
k i ȳ, y3, . . . ,−y	, . . . , yn

)
and

ψn+1(y) = |y|2−nψ
(|y|−2 y

)
,

therefore giving the symmetries (4.9) and (4.10). The proof of the claim is complete.
Let us go back to problem (4.13). Let T be the linear operator defined in the claim. Then we write

our problem in fixed point form as

ψ = −T

(
V ψ + pγ |U∗|p−1

∑
j

(1 − ζ j)φ̃ j + M(ψ)

)
=: M(ψ), ψ ∈ X, (4.21)

where X is the space of continuous functions ψ with ‖ψ‖∗ < +∞ that satisfy symmetries (4.8), (4.9)
and (4.10). Indeed, we readily check that if ψ satisfies those properties then V ψ + M(ψ) inherits
symmetries (4.8), (4.9), and (4.10), so that the operator M is well defined.

We will see that the operator M is a contraction mapping in the ‖ ‖∗ norm, in a small ball
centered at the origin in X .

With reference to (4.14), we check that

∣∣V 1(y)
∣∣� p(p − 1)

∣∣∣∣∣U − s
k∑

i=1

Ui

∣∣∣∣∣
p−2( k∑

i=1

|Ui|
)

� C U p−2
k∑

i=1

μ
n−2

2

|y − ξi|n−2
.

Thus, if |y − ξ j | > η
k for all j, we get

∣∣V 1ψ(y)
∣∣� C‖ψ‖∗U p−1(y)

k∑
j=1

μ
n−2

2

|y − ξ j|n−2
,
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and, as in the computation in (2.7), we obtain

‖V 1ψ‖∗∗ = ∥∥(1 + |y|)(n+2)− 2n
q V 1ψ

∥∥
Lq(Rn)

� c

k
n
q −1

‖ψ‖∗ for n � 4

and

‖V 1ψ‖∗∗ � c

log k
‖ψ‖∗ for n = 3.

Now,

‖V 2ψ‖∗∗ � C
∣∣{∣∣|y| − 1

∣∣< cμk
}∣∣‖ψ‖∗ � c

k
‖ψ‖∗,

hence, since q > n
2 ,

‖V ψ‖∗∗ � c

k
n
q −1

‖ψ‖∗ for all n � 4, ‖V ψ‖∗∗ � c

log k
‖ψ‖∗ if n = 3. (4.22)

We observe that

∣∣φ̃ j(y)
∣∣� C U (y)‖φ1‖∗

μ
n−2

2

|y − ξ j|n−2
.

For the moment we shall only assume that

‖ψ‖∗ + ‖φ1‖∗ � 2ρ

for a sufficiently small ρ .
Let us assume that |y − ξ j | > η

2k for all j. Then we find in this region

∣∣∣∣∣N
(

k∑
j=1

φ̃ j + ψ

)∣∣∣∣∣� C U p−2

(∣∣∣∣∣
k∑

j=1

φ̃ j

∣∣∣∣∣
2

+ |ψ |2
)

.

But

U p−2

∣∣∣∣∣
k∑

j=1

φ̃ j

∣∣∣∣∣
2

� C‖φ1‖2∗U p
k∑

j=1

μn−2

|y − ξ j|2(n−2)
, U p−2|ψ |2 � U p‖ψ‖2∗.

As a conclusion, using again the computation in (2.7), we find that

∥∥M(ψ)
∥∥∗∗ � c

k
n
q −1

+ c

k
n
q −1

‖φ1‖2∗ + c‖ψ‖2∗ for all n � 4 (4.23)

and, if n = 3,

∥∥M(ψ)
∥∥∗∗ � c + c ‖φ1‖2∗ + c‖ψ‖2∗. (4.24)
log k log k
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Given ψ1,ψ2 satisfying similar constraints, we also find,

∥∥M(ψ1) − M(ψ2)
∥∥∗∗ � Cρ‖ψ1 − ψ2‖∗. (4.25)

Using the above estimates, we readily see that if ρ is fixed sufficiently small, but k-independent,
then the operator M in (4.21) defines a contraction map in the set of functions ψ ∈ X with

‖ψ‖ � C
[‖φ1‖2 + k1− n

q
]
,

in dimension 4 or higher, and

‖ψ‖ � C
[‖φ1‖2 + (log k)−1],

if n = 3. The existence result of the lemma thus follows. The Lipschitz condition is straightforwardly
checked. �

Let us consider the operator Ψ (φ1) defined in the above lemma. Then all Eqs. (4.2) reduce to just
one, say that for φ̃1. Then we will find a solution to our problem if we solve

�φ̃1 + pγ |U∗|p−1ζ1φ̃1 + ζ1

[
pγ |U∗|p−1Ψ (φ1) + E + γ N

(
φ̃1 +

∑
i �=1

φ̃i + Ψ (φ1)

)]
= 0 in R

n.

(4.26)

We write this equation in the form

�φ̃1 + pγ |U1|p−1φ̃1 + ζ1 E + γ N (φ1) = 0 in R
n. (4.27)

A key observation we make is the following: if the symmetry assumptions (4.8), (4.9), (4.10) hold,
then thanks to the properties of Ψ (φ1) we find that the function

h̃(y) = ζ1 E + N (φ1)

satisfies the symmetries (4.8), (4.9) and the invariance

h̃(y) = |y|−n−2h
(|y|−2 y

)
. (4.28)

For a general function h̃(y) satisfying the above properties, we consider first the linear problem

�φ̃ + pγ U p−1
1 φ̃ + h̃(y) = cn+1U p−1

1 Z̃n+1 in R
n. (4.29)

where

Z̃n+1(y) := μ− n−2
2 Zn+1

(
μ−1(y − ξ1)

)
, cn+1 :=

∫
Rn h̃ Z̃n+1∫

Rn U p−1
1 Z̃ 2

n+1

.

We have the following result.
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Lemma 4.2. Let us assume that h̃ is even with respect to each of the variables y2, . . . , yn and that it satisfies
the invariance (4.28). We assume in addition that

h(y) := μ
n+2

2 h̃(ξ1 + μy) (4.30)

satisfies ‖h‖∗∗ < +∞. Then problem (4.29) has a unique solution φ̃ := T̃ (h̃) that is even with respect to each
of the variables y2, . . . , yn, invariant under Kelvin’s transform

φ̃(y) = |y|2−nφ̃
(|y|−2 y

)
, (4.31)

and with

φ(y) := μ
n−2

2 φ̃(ξ1 + μy) (4.32)

satisfying

∫
Rn

φU p−1 Zn+1 = 0, ‖φ‖∗ � C‖h‖∗∗.

Proof. With no loss of generality we may assume that

∫
Rn

h̃ Z̃n+1 = 0. (4.33)

Let us scale out μ and consider the equivalent problem, for φ and h given by (4.32) and (4.30),

�φ + pγ |U |p−1φ = h(y) in R
n. (4.34)

The evenness of h in the n − 1 last coordinates guarantees that we have

∫
Rn

h Z	 = 0, 	 = 2, . . . ,n + 1.

We need to show that condition (4.28) implies the solvability condition

∫
Rn

h Z1 = 0.

We have that

U1(y) = wμ(y − ξ1) where wμ(y) = μ− n−2
2 U
(
μ−1 y

)
,

ξ1 = (ξ1,0, . . . ,0). We let

I(t) =
∫

n

wμ(y − tξ1)h̃(y)dy
R
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and observe that

ξ1
∫
Rn

h Z1 = ∂t I(t)

∣∣∣∣
t=1

= −ξ1
∫
Rn

∂y1 wμ(y − ξ1)h(y)dy. (4.35)

After changing variables we obtain

I(t) =
∫
Rn

wμ

(|y|−2 y − tξ1
)
h̃
(|y|−2 y

)|y|−2n dy =
∫
Rn

wμ(t)
(

y − s(t)ξ1
)
h̃(y)dy

where

μ(t) = μt

μ2 + |ξ1|2t2
, s(t) = t

μ2 + |ξ1|2t2
.

Hence

∂t I(t)
∣∣
t=1 = μ̇(1)

∫
Rn

∂μwμ(y − ξ1)

∣∣∣∣
μ=1

h̃(y)dy − ṡ(1)ξ1

∫
Rn

∂y1 wμ(t)(y − ξ)h̃(y)dy. (4.36)

We readily check that

∫
Rn

∂μwμ(y − ξ1)

∣∣∣∣
μ=μ

h̃(y)dy =
∫
Rn

Zn+1(y)h(y)dy = 0

and ṡ(1) = 1 − 2|ξ1|2. Hence, using (4.35) and (4.36) we obtain

ξ1

∫
Rn

h Z1 = ξ1(1 − 2|ξ1|2
)∫
Rn

h Z1

hence
∫

Rn h Z1 = 0, as desired.
It follows from Lemma 3.1 that Eq. (4.34) possesses a unique solution φ1 with

∫
φ Z	 = 0 for all 	 = 1, . . . ,n + 1,

and ‖φ‖∗ � C‖h‖∗∗ . Arguing by uniqueness, as in the proof of Lemma 4.1, we find that φ̃ satisfies the
corresponding symmetries. The proof is complete. �

We use the above lemma to solve the corresponding projected version of (4.27),

�φ̃1 + pγ |U1|p−1φ̃1 + ζ1 E + γ N (φ1) = cn+1U p−1
1 Z̃n+1 in R

n, (4.37)

cn+1 :=
∫

Rn (ζ1 E + γ N (φ1)) Z̃n+1∫
n U p−1 Z̃ 2

. (4.38)

R 1 n+1
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Let T̃ be the linear operator predicted by Lemma 4.2. Then we can set up problem (4.37) as that
of solving the fixed point problem

φ̃1 = T̃
(
ζ1 E + γ N (φ1)

)=: M(φ1). (4.39)

We will solve this problem by means of contraction mapping principle. We recall that

N (φ1) := p
(|U∗|p−1ζ1 − |U1|p−1)φ̃1

+ ζ1

[
p|U∗|p−1Ψ (φ1) + N

(
φ̃1 +

∑
i �=1

φ̃i + Ψ (φ1)

)]
. (4.40)

In general, we denote

f̄ (y) = μ
n+2

2 f (ξ1 + μy).

Assume that n � 4. Let us consider first the linear term

f1(y) = pζ1
(|U∗|p−1 − |U1|p−1)φ̃1.

Then we have that for |y| < η
μk ,

∣∣ f̄1(y)
∣∣=
∣∣∣∣∣p
((

U (y) +
k∑

j=2

U
(

y + μ−1(ξ1 − ξ j)
)− μ

n−2
2 U (ξ1 + μy)

)p−1

− U p−1(y)

)
φ1(y)

∣∣∣∣∣.
We notice that, independently of small η, we have

k∑
j=2

U
(

y + μ−1(ξ1 − ξ j)
)
� Cμn−2kn−2

k∑
j=1

1

jn−2
,

and hence we find

∣∣ f̄1(y)
∣∣� Cμ

n−2
2 U (y)p−1‖φ1‖∗.

Just like in the computation dealing with estimate (2.11), we then find that

∥∥ f̄1(y)
∥∥∗∗ � Cμ

n
2q ‖φ1‖∗. (4.41)

Now, we consider the term

f2 = (ζ1 − 1)U p−1
1 φ̃1.

Now we have, for |y| > cμ− 1
2 ,

∣∣ f̄2(y)
∣∣� U p(y)‖φ1‖∗.
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Combining these estimates we find then that

‖ f̄2‖∗∗ � Cμ
n
2q ‖φ1‖∗. (4.42)

Now, let

f3 = ζ1 p|U∗|p−1Ψ (φ1).

Then, for |y| < ημ− 1
2 we obtain

∣∣ f̄3(y)
∣∣� C U p−1μ

n−2
2
∥∥Ψ (φ1)

∥∥∞ � C U p−1μ
n−2

2
(‖φ1‖2∗ + k1− n

q
)
.

Thus

‖ f̄3‖∗∗ � Cμ
n

2q
(‖φ1‖2∗ + k1− n

q
)
. (4.43)

Now, for

f4 = ζ1N

(
φ̃1 +

∑
i �=1

φ̃i + Ψ (φ1)

)
.

Let us notice that

N̄(φ) = (V∗ + φ̂)p − V p∗ − pV p−1∗ φ̂

where φ̂(y) := μ
n−2

2 φ(ξ1 + μy), and

V∗(y) = U (y) +
k∑

j=2

U
(

y + μ−1(ξ1 − ξ j)
)− μ

n−2
2 U (ξ1 + μy).

Thus for

φ = φ̃1 +
∑
i �=1

φ̃i + Ψ (φ1)

we get

∣∣ f̄4(y)
∣∣� C

[
U p−1μ

n−2
2 ‖φ1‖∗ + U p−1μ

n−2
2
(‖φ1‖2∗ + k1− n

q
)]

thus

‖ f̄4‖∗∗ � C
[
μ

n
2q ‖φ1‖∗ + μ

n
2q
[‖φ∗‖ + k1− n

q
]2]

. (4.44)

We recall that for the error f5 = ζ1 E we have already determined in (2.12) the estimate

‖ f̄5‖∗∗ � Cμ
n
2q . (4.45)
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A direct consequence of the fact that q < n and the validity of estimates (4.41)–(4.45) is that M
defined in (4.39) maps functions φ1 with ‖φ1‖∗ � cμ

n
2q in the same class of functions. Furthermore,

in a very similar way one proves the small Lipschitz character of the operators involved.
When n = 3, estimates (4.41)–(4.45) read respectively as follows

‖ f̄1‖∗∗,‖ f̄2‖∗∗ � C
1

k(log k)
‖φ1‖∗,

‖ f̄3‖∗∗ � C
1

k log k

(
‖φ1‖2∗ + 1

k log k

)
,

‖ f̄4‖∗∗ � C

[
1

k log k
‖φ1‖∗ + 1

log k

[
‖φ‖2∗ + 1

k log k

]]

and from (2.13)

‖ f̄5‖∗∗ � C
1

k log k
.

Besides, one can prove that the map M is a contraction in the set of functions φ1 with ‖φ1‖∗ �
c 1

k logk . Thus we conclude

Proposition 4.1. There exists a unique small solution φ1 = Φ(δ) to problem (4.37)–(4.38). This solution sat-
isfies

‖Φ‖∗ � Ck− n
q , ∀n � 4

and

‖Φ‖∗ � Ck−1(log k)−1 if n = 3.

We also have

∥∥N (Φ)
∥∥∗∗ � Ck− 2n

q ∀n � 4

and

∥∥N (Φ)
∥∥∗ � Ck−2(log k)−2 if n = 3.

Furthermore, there is a continuous dependence on δ on these operators.

5. Conclusion: Proof of Theorem 1

In this section we will adjust the parameter δ defined in (2.2), which we have so far left free be-
tween two uniform bounds (2.3), in such a way the constant cn+1 = cn+1(δ) in problem (4.37)–(4.38)
be equal to zero. Indeed this fact gives that the function

u(y) = U∗(y) + φ(y)

is the solution to problem (1.1) predicted by Theorem 1. In the above formula we recall that U∗ is the
function defined in (2.4) and φ is the function defined by
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φ =
k∑

j=1

φ j + ψ

with φ1 given by Proposition 4.1,

φ j( ȳ, y3, . . . , yn) = φ1
(
e

2π j
k i ȳ, y3, . . . , yn

)
, j = 2, . . . ,k

and ψ is given by Lemma 4.1.
Thus we need to choose δ such that

cn+1(δ) :=
∫

Rn (ζ1 E + γ N (φ1)) Z̃n+1∫
Rn U p−1

1 Z̃ 2
n+1

= 0.

This is equivalent to find δ such that

ĉn+1(δ) :=
∫
Rn

(
ζ1 E + γ N (φ1)

)
Z̃n+1 = 0.

In the rest of this section, with Θk(δ) we will denote a generic continuous function of the vari-
able δ, which is uniformly bounded as k → ∞.

Let n � 4. We claim that

ĉn+1(δ) = −An
δ

kn−2
[δan − 1] + 1

kn−1
Θk(δ) (5.1)

where

An = pγ

∫
RN

U p−1 Zn+1 dx and an = 2
n−2

2 ãn

with ãn the positive number defined as

lim
k→∞

1

kn−2

k∑
j=2

1

|ξ̂1 − ξ̂ j|n−2
= ãn,

where ξ̂1 = (1,0, . . . ,0) and ξ̂ j = e
2π( j−1)

k i ξ̂1.
Let now n = 3. We claim that

ĉn+1(δ) = −A3
δ

k log k
[δa3 − 1] + 1

k2(log k)2
Θk(δ) (5.2)

where

A3 = pγ

∫
N

U p−1 Z4 dx and a3 = √
2ã3
R
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with

lim
k→∞

1

k log k

k∑
j=2

1

|ξ̂1 − ξ̂ j|
= ã3 > 0.

We assume for the moment the validity of (5.1) and (5.2). By continuity, we have the existence of a
positive δ solution to

ĉn+1(δ) = 0.

Furthermore, δ = 1
an

+ O ( 1
k ) if the dimensions are greater or equal to 4 and δ = 1

a3
+ O ( 1

k log k ) if n = 3.
This proves the existence of the solutions predicted by Theorem 1.

In order to prove the key estimates (5.1) and (5.2) we write

ĉn+1(δ) =
∫
Rn

E Z̃n+1 +
∫
Rn

(ζ1 − 1)E Z̃n+1 +
∫
Rn

γ N (Φ) Z̃n+1.

Taking into account the definition of μ given in (2.2), it is easy to check that estimates (5.1) and (5.2)
are direct consequences of the following claims, to be established below.

Claim 1.

∫
Rn

E Z̃n+1 =
{−An

δ

kn−2 [δan − 1] + 1
kn−1 Θk(δ) if n � 4,

−A3
δ

k logk [δa3 − 1] + 1
k2(log k)2 Θk(δ) if n = 3,

(5.3)

where An and an are the positive constants defined in (5.1)–(5.2) and Θk(δ) is a continuous function of δ,
which is uniformly bounded as k → ∞.

Claim 2. For k large

∫
Rn

(ζ1 − 1)E Z̃n+1 =
{

k1−nΘk(δ) if n � 4,

k−2(log k)−2Θk(δ) if n = 3,
(5.4)

where Θk(δ) is a continuous function of the variable δ, which is uniformly bounded as k → ∞.

Claim 3. For k large

∫
Rn

N (Φ) Z̃n+1 =
{

k− 2n
q Θk(δ) if n � 4,

k−2 log−2 kΘk(δ) if n = 3,
(5.5)

where Θk(δ) is a continuous function of δ, which is uniformly bounded as k → ∞.

Claim 4. Assume n � 5. Estimate (5.5) can be improved as follows: for k large∫
Rn

N (Φ) Z̃n+1 = k3−n− n
q Θk(δ) (5.6)

where Θk(δ) is a continuous function of δ, which is uniformly bounded as k → ∞.
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Let us finally observe that an easy adaptation of the arguments used to prove estimates (5.3)–(5.6)
also gives the expansion of the energy contained in (1.4) in the statement of Theorem 1, which we
do not include in the paper.

The rest of this section is devoted to prove estimates (5.3)–(5.6).

Proof of Claim 1. Let η > 0 be a small number, independent of k. We write

∫
Rn

E Z̃n+1 =
∫
B1

E Z̃n+1 +
∫

Rn\⋃ j B j

E Z̃n+1 +
∑
j �=1

∫
B j

E Z̃n+1, (5.7)

where B j = B(ξ j,
η
k ).

The main contribution in the above integral is given by the first term
∫

B1
E Z̃n+1. After scaling

x = μy + ξ1 and denoting Ẽ j(y) = μ
n+2

2 E(ξ1 + μy), we get

∫
B1

E Z̃n+1 =
∫

B(0,
η
μk )

Ẽ1(y)Zn+1(y)dy.

In the region |y| � η
μk we use the expansion (2.10) and we obtain

∫
B(0,

η
μk )

Ẽ1(y)Zn+1(y)dy = −γ p
∑
j �=1

∫
B(0,

η
μk )

U p−1U
(

y − μ−1(ξ j − ξ1)
)

Zn+1

+ γ pμ
n−2

2

∫
B(0,

η
μk )

U p−1U (ξ1 + μy)Zn+1 dy

+ γ p

∫
B(0,

η
μk )

[(
U (y) + sV

)p−1 − U p−1]V (y)Zn+1 dy

+ γ
∑
i �=1

∫
B(0,

η
μk )

U p(y − μ−1(ξ j − ξ1)
)

Zn+1

− μ
n+2

2 γ

∫
B(0,

η
μk )

U p(ξ j + μy)Zn+1 (5.8)

where

V (y) =
(

−
∑
j �=1

U
(

y − μ−1(ξ j − ξ1)
)+ μ

n−2
2 U (ξ1 + μy)

)
.

We see that, for j �= 1,

∫
B(0,

η
μk )

U p−1U
(

y − μ−1(ξ j − ξ1)
)

Zn+1 = 2
n−2

2 C1μ
n−2 1

|ξ̂ j − ξ̂1|n−2

(
1 + (μk)2Θk(δ)

)
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where C1 = ∫
Rn U p−1 Zn+1 and ξ̂1 = (1,0, . . . ,0) and ξ̂ j = e

2π( j−1)
k i ξ̂1. Furthermore, a Taylor expansion

gives

μ
n−2

2

∫
B(0,

η
μk )

U p−1U (ξ1 + μy)Zn+1 dy = C1μ
n−2

2
(
1 + (μk)2Θk(δ)

)
.

On the other hand, the remaining terms in (5.8) are higher order. Indeed, we have∣∣∣∣
∫

B(0,
η
μk )

[(
U (y) + sV

)p−1 − U p−1]V (y)Zn+1 dy

∣∣∣∣�
∣∣∣∣∑

i �=1

∫
B(0,

η
μk )

U p(y − μ−1(ξ j − ξ1)
)

Zn+1

∣∣∣∣

� C
∑
i �=1

μn+2

|ξ̂1 − ξ̂i|n+2

∫
B(0,

η
μk )

1

(1 + |y|)n−2

� C(μk)−2
∑
i �=1

μn+2

|ξ̂1 − ξ̂i|n+2
,

and ∣∣∣∣μ n+2
2 γ

∫
B(0,

η
μk )

U p(ξ j + μy)Zn+1

∣∣∣∣� Cμ
n+2

2

∫
B(0,

η
μk )

1

(1 + |y|)n−2
� Cμ

n−2
2 k−2.

In the above estimates, C denotes a positive constant independent of k.
To estimate the second term in (5.7), by Holder inequality, we observe that∣∣∣∣

∫
Rn\⋃ j B j

E Z̃n+1

∣∣∣∣� C
∥∥(1 + |y|)n+2− 2n

q E
∥∥

Lq(Rn\⋃ B j)

∥∥(1 + |y|)−n−2+ 2n
q Z̃n+1

∥∥
L

q
q−1 (Rn\⋃ B j)

.

From the definition of Z̃n+1 in (4.29)

∥∥(1 + |y|)−n−2+ 2n
q Z̃n+1

∥∥
L

q
q−1 (Rn\⋃ B j)

� Cμ
n−2

2

( ∫
Rn\⋃ B j

[ |y − ξ1|2/n

(1 + |y|)n+2− 2n
q

] q
q−1
) q−1

q

� Cμ
n−2

2

( 1∫
η
k

tn−1

t(n−2)
q

q−1

dt

) q−1
q

� Cμ
n−2

2 kn−2k−n q−1
q .

Thus we conclude that ∣∣∣∣
∫

Rn\⋃ j B j

E Z̃n+1

∣∣∣∣� C
μn−2k2(n−2)

kn−1
(5.9)

since ‖(1 + |y|)n+2− 2n
q E‖Lq(Rn\⋃ B j) � Cμ

n−2
2 kn−2k1− n

q .
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Let us now fix j �= 1 and denote Ẽ j(y) = μ
n+2

2 E(ξ j + μy). Performing the change of variables
x = μy − ξ j ,

∣∣∣∣
∫
B j

E Z̃n+1

∣∣∣∣=
∣∣∣∣μ n−2

2

∫
B(0,

η
μk )

Ẽ j(y) Z̃n+1(μy + ξ j)dy

∣∣∣∣
� Cμ

n−2
2
∥∥(1 + |y|)n+2− 2n

q Ẽ j
∥∥

Lq(B(0,
η
μk ))

× ∥∥(1 + |y|)−n−2+ 2n
q μ− n−2

2 Zn+1
(

y + μ−1(ξ j − ξ1)
)∥∥

L
q

q−1 (B(0,
η
μk ))

.

Now

∥∥(1 + |y|)−n−2+ 2n
q μ− n−2

2 Zn+1
(

y + μ−1(ξ j − ξ1)
)∥∥

L
q

q−1 (B(0,
η
μk ))

� C
μ

n−2
2

|ξ j − ξ1|n−2

( η
μk∫

1

tn−1

t(n+2− 2n
q )

q
q−1

dt

) q−1
q

� C
μ

n−2
2

|ξ j − ξ1|n−2
(μk)

2− n
q .

Since in this region the error can be estimated as follows ‖(1 + |y|)n+2− 2n
q Ẽ j‖Lq(B(0,

η
μk )) �

C(μk)
−n+2+ n

q , we conclude that

∣∣∣∣∑
j �=1

∫
B j

E Z̃n+1

∣∣∣∣� μ
n−2

2

(μk)n−4

[
μn−2

∑
j �=1

1

|ξ j − ξ1|n−2

]
.

Thus we have that

∫
Rn

E Z̃n+1 = −γ pC1

[
2

n−2
2 μn−2

∑
j �=1

1

|ξ̂ j − ξ̂1|n−2
− μ

n−2
2

]

+
[
μn−2k2(n−2)

kn−1
+ k−2μn−2

∑
j �=1

1

|ξ̂ j − ξ̂1|n−2

]
Θk(δ),

where C1 = ∫
Rn U p−1 Zn+1 and Θk is a continuous function of the parameter δ, uniformly bounded as

k → ∞. This fact gives the validity of (5.3). �
Proof of Claim 2. We first observe that

∣∣∣∣
∫
Rn

(ζ1 − 1)E Z̃n+1

∣∣∣∣� C

∣∣∣∣
∫

|x−ξ1|> η
k

E Z̃n+1

∣∣∣∣.
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We now write ∫
|x−ξ1|> η

k

E Z̃n+1 =
( ∫
⋂k

j=1{|x−ξ j |> η
k }

+
∑
j �=1

∫
|x−ξ j |< η

k

)
E Z̃n+1.

In the region
⋂k

j=1{|x − ξ j | > η
k }, we already observed that

∣∣E(x)
∣∣� C

μ
n−2

2

(1 + |x|2)2

k∑
j=1

1

|x − ξ j|n−2
,

where C is a positive constant, independent of k. Furthermore, in this region, we have Z̃n+1(x) �

C μ
n−2

2

|x−ξ1|n−2 . Thus we can estimate

∫
⋂k

j=1{|x−ξ j |> η
k }

E Z̃n+1 � Ckμn−2

1∫
η
k

tn−1

t2n−4
dt � Ckμn−2kn−4

and we conclude that

∫
⋂k

j=1{|x−ξ j |> η
k }

E Z̃n+1 =
{ 1

kn−1 Θk(δ) if n � 4,

1
k2(log k)2 Θk(δ) if n = 3.

(5.10)

On the other hand, performing the change of variables μy = x − ξ j , we get∫
|x−ξ j |� η

k

E Z̃n+1 = μ
n+2

2

∫
|y|� η

kμ

E(ξ j + μy)Zn+1
(

y + μ−1(ξ j − ξ1)
)
.

We already observed that, for |y| � η
kμ , the error μ

n+2
2 |E(ξ j + μy)| � C μ

n−2
2

(1+|y|2)2 . Furthermore, in the

same region, |Zn+1(y + μ−1(ξ j − ξ1))| � C μn−2kn−2

| j−1|n−2 . Thus we have

∣∣∣∣∑
j �=1

∫
|x−ξ j |< η

k

E Z̃n+1

∣∣∣∣� Ckμ
n−2

2 (kμ)n−2
∫

|y|< η
kμ

1

(1 + |y|2)2
dy � C

μ
n−2

2

k
.

This last estimate, together with (5.10), concludes the proof of (5.4). �
Proof of Claim 3. Using the change of variables x = μy + ξ1,∫

Rn

N (φ1) Z̃n+1 dx =
∫
Rn

N (φ1)μ
− n−2

2 Zn+1
(
μ−1(x − ξ1)

)
dx

=
∫

n

μ
n+2

2 N (φ1)(μy + ξ1)Zn+1(y)dy.
R
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Thus we have

∣∣∣∣
∫
Rn

N (φ1) Z̃n+1 dx

∣∣∣∣� C
∥∥μ n+2

2 N (φ1)(μy + ξ1)
∥∥∗∗

( ∫
Rn

1

(1 + |y|)2n
dy

) q−1
q

�
{

Ck− 2n
q if n � 4,

Ck−2 log−2 k if n = 3,

where C is a positive constant independent of k. �
Proof of Claim 4. Assume n � 5. It is convenient to decompose

N (φ1) = Ñ (φ1) + N(φ̃1)

where

Ñ (φ1) = p
(|U∗|p−1ζ1 − U p−1

1

)
φ̃1 + pζ1|U∗|p−1Ψ (φ1)

+ N

(
φ̃1 +

∑
j �=1

φ̃ j + Ψ (φ1)

)
− N(φ̃1)

and

N(φ̃1) = |U∗ + φ̃1|p−1(U∗ + φ̃1) − |U∗|p−1U∗ − p|U∗|p−1φ̃1.

We have that

I :=
∫

RN

Ñ (φ1) Z̃n+1 = μ
n+2

2

∫
RN

Ñ (φ1)(ξ1 + μx)Zn+1(x)dx

so that, from the estimates found we readily check

|I| � Ck2−nk1− n
q

∫
Rn

U p−1|Zn+1|. (5.11)

On the other hand, if we let

II :=
∫

RN

N(φ̃1) Z̃n+1

we find that

|II| � ‖φ1‖∗
∫

n

U p−1|φ1||Zn+1|.

R
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Now, we notice from Eq. (4.37), that we can write

L0(φ1) + a(y)φ1 = g +
∑

	

c	U p−1 Z	 where a(y) = μ
n+2

2 γ N(φ̃1)(ξ1 + μy)

so that

∣∣a(y)
∣∣� C U p−1‖φ1‖∗, and

∣∣g(y)
∣∣� Cμ

n−2
2
(
1 + |y|)−4

.

Thus, applying Lemma 3.2 with ν = 4, assuming that n � 5, we find

∣∣φ1(y)
∣∣� Cμ

n−2
2
(
1 + |y|)−2

.

As a conclusion,

|II| � C‖φ1‖∗μ
n−2

2 � Ck2−n− n
q .

Combining this estimate with (5.11) we then find∣∣∣∣
∫

RN

N (φ1) Z̃n+1

∣∣∣∣� Ck2−nk1− n
q

and relation (5.6) is established. �
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