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Abstract

We prove the existence of a new class of entire, positive solutions for the classical elliptic problem
�u− u+ up = 0 in R

2, when p > 2. The solutions we construct are obtained by perturbing the function

k∑
j=1

w
(
dist(·, γj )

)
,

where k � 1, w is the unique even, positive, non-constant solution of w′′ −w+wp = 0 in R and where the
curves γj are the graphs of the functions f1, . . . , fk which are solutions of the Toda system

c2f ′′
j = efj−1−fj − efj−fj+1

with f0 ≡ −∞ and fk+1 ≡ +∞. This result provides a surprising link between the solutions of the Toda
system and entire solutions of the above semilinear elliptic equation.
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1. Introduction

This paper is concerned with the existence of entire, positive solutions of the classical semi-
linear elliptic problem

�u− u+ up = 0, (1.1)

in R
N , where p > 2. Eq. (1.1) arises for instance in the study of standing-wave for the standard

nonlinear Schrödinger equation

iψt =�yψ + |ψ |p−1ψ,

where typically p = 3 and where one looks for solutions of the form ψ(t,x) = e−it u(x). This
problem also arises as a nonlinear model in Turing’s biological theory of pattern formation [41]
such as the Gray–Scott or Gierer–Meinhardt systems [18,17].

The solutions of (1.1) which are positive and decay to zero at infinity are well understood. In
particular, it is well known that, provided

1<p <

{
N+2
N−2 if N � 3,

+∞ if N = 1,2,

problem (1.1) has a positive, radially symmetric solution which tends to 0 at infinity, which is
usually called the ground state. We refer to [40,3] for a proof. This solution is unique [24] and
any positive solution of (1.1) which vanishes at infinity must be radially symmetric about some
point [16].

In the last two decades, problem (1.1) and its variations have been broadly treated in the PDE
literature. The variations are mostly of two types: either (1.1) is changed into a non-autonomous
problem with a potential depending on the space variable, or (1.1) is considered in a bounded
domain under suitable boundary conditions. Typically, in both versions a small parameter is in-
troduced so that (1.1) can be understood as a singular perturbation problem. We refer the reader
to [2,6,7,10–12,15,19,20,25,27,28,35–37] and references therein. Many constructions in the lit-
erature refer to multi-bump solutions which are built out of a perturbation of the superposition
of finitely many scaled copies of the ground state. Usually the location of the points where the
copies of the ground state are centered is determined by the critical points of some function
involving the geometry of the underlying domain.

Much less is known about solutions to this equation which are defined in the entire space and
which do not tend to 0 at infinity. Entire solutions of (1.1) are known to be bounded thanks to
[38]. Observe that the radially symmetric solution of (1.1) in R

N can be trivially extended as
a solution of (1.1) which is defined in R

N+1 and which only depends on N variables. Starting
from this solution, a new class of entire, positive solutions has been discovered by N. Dancer [8],
these solutions will be described in the next section. In [26], A. Malchiodi has constructed entire,
positive solutions of (1.1) by perturbing infinitely many ground states periodically arranged along
a finite number of half lines meeting at a point. In contrast, the solutions we construct in the
present paper are obtained by perturbing finitely many copies of the ground state in dimensionN ,
which are trivially extended in dimension N + 1 to be independent of the last variable. The
solutions of A. Malchiodi and our solutions are qualitatively different but they belong to the
same general class of entire solutions of (1.1). We shall comment on this later on.
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1.1. Dancer’s solutions of the nonlinear Schrödinger equation

For the sake of simplicity, we now restrict our attention to the two-dimensional case (N = 2)
and we consider the existence of entire, positive solutions of (1.1). To begin with, we recall the
existence of the one-dimensional bump, which we will denote in the sequel by w, namely the
unique positive solution of

w′′ −w+wp = 0, (1.2)

which is defined on R, tends to 0 at ±∞ and which is normalized so that w′(0)= 0.
Using the function w, we can define a positive, entire solution of (1.1) by extending trivially

w in one space variable. With slight abuse of notation we still denote this solution by w. If we
agree that x= (x, z) denotes a point in R

2, then

w(x)=w(x).

More generally, we can also define a family of positive, entire solutions of Eq. (1.1) by

x �→w(a · x− c),

where a ∈ R
2 has norm equal to 1 and where c ∈ R. By analogy with the above terminology,

we will name these solutions single bump-lines. A natural question is the classification of the
entire solutions of (1.1). Unfortunately (or fortunately) the 2-dimensional family of functions
described above does not exhaust the set of entire solutions of (1.1) in R

2. Even though these
solutions were found to be isolated in a uniform topology by J. Busca and P. Felmer in [5], a
new class of solutions was discovered by N. Dancer in [8] using a bifurcation argument. This
new class of solutions forms a 4-parameter family of entire, positive solutions of (1.1) which
are singly periodic. Let us briefly review their construction since they play a central role in our
analysis: We consider solutions of (1.1) which are T -periodic in the z-variable, namely

u(x, z+ T )= u(x, z), (1.3)

for all (x, z) ∈ R
2 and we regard T > 0 as a bifurcation parameter. Obviously, the function w,

which only depends on z, is T -periodic for any value of T > 0. The nonlinear equation (1.1)
linearized about w is given by

L := ∂2
x + ∂2

z − 1 + pwp−1(x).

The spectrum of the operator

L0 := ∂2
x − 1 + pwp−1(x), (1.4)

is well understood and will be described more carefully in the next sections. It is known that
−L0 has a unique negative eigenvalue λ1, which corresponds to the bottom of the spectrum,
with associated (positive) eigenfunction which will be denoted by Z (and which is normalized to
have L2-norm equal to 1). Also, 0 is always an eigenvalue of −L0 with associated eigenfunction
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given by w′ (this reflects the fact that Eq. (1.2) is autonomous) and all other eigenvalues are
positive. Now, observe that, as long as

0< T < T1 := 2π√
λ1
,

the operator L has a one-dimensional L∞-kernel spanned by the function w′. When T = T1 the
L∞- kernel also includes the linear combinations of

(x, z) �→Z(x) cos
(√
λ1z

)
and (x, z) �→ Z(x) sin

(√
λ1z

)
.

Working in the class of functions which are even with respect to both x and z and which are T
periodic in z, Crandall–Rabinowitz Bifurcation Theorem can be successfully applied to prove the
existence of a smooth branch of solutions of (1.1) bifurcating at T = T0. The solutions belonging
to the bifurcated branch will be denoted by u(·; ε), where ε ∈ R is close to 0 (when ε = 0,
u(·; ε) coincides withw). They depend smoothly on ε. Each u(·; ε) is an entire, bounded solution
of (1.1) which is even with respect to x and z and periodic in z, with fundamental period Tε
smoothly depending on ε. Moreover, the period Tε can be expanded as

Tε = 2π√
λ1

+ O(ε),

as ε tends to 0.
The solutions u(·; ε) belonging to the branch of bifurcated solutions are uniformly close to w

and, as ε tends to 0, their asymptotic form can be expanded as

u(x, z; ε)=w(x)+ εZ(x) cos

(
2π

Tε
z

)
+ e−|x|OL∞(R2)

(
ε2).

The notation OL∞(R2)(ε
2) above refers to the fact that this function is bounded by a constant

times ε2 in L∞-norm. Obviously, the group of isometries acts on the set of solutions of (1.1)
and, since wε is not invariant anymore under translations along the z-axis we find that

(x, z) �→ u(x, z+ ϕ; ε), (1.5)

is also a solution of (1.1), for all ϕ ∈ R. Roughly speaking, the parameter ε represents the ampli-
tude and the parameter ϕ the phase shift of the oscillations superposed over w. At this time we
introduce the parameters

δ := ε cos

(
2π

Tε
ϕ

)
and τ := ε sin

(
2π

Tε
ϕ

)
. (1.6)

Note that ε and ϕ are (in some sense) polar coordinates in the plane of parameters (δ, τ ) in a
neighborhood of 0 in R

2. Finally, we define the function wδ,τ by

wδ,τ (x, z) := u(x, z+ ϕ; ε). (1.7)

In what follows, we refer to the functions wδ,τ as Dancer’s solution of parameter δ and τ .
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1.2. The statement of the main result

As already mentioned, the purpose of this paper is to construct a new type of positive, entire
solutions of (1.1) in R

2 which have multiple ends asymptotic to properly translated and rotated
copies of Dancer’s solutions. To start with, we give a precise definition of what we mean by a
multiple end solution of (1.1).

Definition 1.1. For all k � 1, we say that an entire solution u of (1.1) has 2k ends if there exist a
compact K ⊂ R

2, constants C, c > 0 and, for all j = 1, . . . ,2k, an oriented half line

Λj := {
x ∈ R

2
∣∣ a⊥

j · x + bj = 0, aj · x> 0
}
,

with aj ∈ S1 ⊂ R
2, a constant bj ∈ R and parameters δj , τj ∈ R, such that

∥∥∥∥∥ec|x|
(
u−

2k∑
j=1

uj

)∥∥∥∥∥
L∞(R2\K)

� C, (1.8)

where

uj (x) :=wδj ,τj
(
a⊥
j · x + bj ,aj · x

)
,

and where ⊥ denotes the rotation by π/2 in R
2. The linesΛj are called the ends of the solution u.

In order to construct 2k-ended solutions, the idea is to look for solutions of (1.1) which are
close to the function

k∑
j=1

w
(
dist(·, γj )

)
,

where γj are embedded curves which are asymptotic to oriented half lines at infinity. We assume
that, for j = 1, . . . , k, the curve γj is the graph of the function fj over the z-axis

γj := {
(x, z) ∈ R

2
∣∣ x = fj (z)

}
.

It turns out that, in order for the construction to be successful, the functions fj which define the
curves γj have to be chosen very carefully and in fact they are related to a nonlinear second order
system of differential equations (a Toda system) which is given by

c2
pf

′′
j = efj−1−fj − efj−fj+1 , (1.9)

for j = 1, . . . , k, where we agree that f0 ≡ −∞ and fk+1 ≡ +∞ and where cp > 0 is an explicit
positive constant which will be specified later on (see (4.44) for a precise definition of cp). This
Toda system is a classical model describing the scattering of k particles distributed on a straight
line, which interact only with their closest neighbors with forces depending exponentially on
their mutual distances. A complete analysis of the Toda system can be found for instance in [22,
34] and, in Section 2, we will recall the main results needed for our analysis.
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Observe that, if f := (f1, . . . , fk) is a solution of this system, then for all α > 0, fα :=
(fα,1, . . . , fα,k) defined by

fα,j (z) := fj (αz)− 2

(
j − k + 1

2

)
logα, (1.10)

is also a solution of (1.9). In our construction, we will exploit this scaling property of the Toda
system. The corresponding graphs will be denoted by γα,j .

As we will see later, the functions fj are asymptotically linear at infinity. In fact, for each
solution, there exists a±

j , b
±
j ∈ R and θ > 0 such that

fj (z)= a±
j z+ b±

j + O
(
(cosh z)−θ

)
, (1.11)

at ±∞ (with upper index + when z > 0 and upper index − when z < 0).
Keeping the above definition in mind, our main result reads:

Theorem 1.1. Assume that N = 2 and p > 2. Given k � 2, for any sufficiently small number
α > 0, there exists a 4k parameter family of multiple end solutions of Eq. (1.1) with 2k ends
which are asymptotic to the 2k half lines Λ+

j (α) (resp. Λ−
j (α)) , for j = 1, . . . , k. Moreover

there exists a κ > 0 such that these half-lines, which depend on α, are the graphs of the functions

z �→ α
(
a±
j + O

(
ακ

))
z+ b±

j − 2

(
j − k+ 1

2

)
logα + O

(
ακ

)
,

for z > 0 and upper index + (resp. z < 0 and upper index −), where the a±
j and b±

j are the
coefficients which appear in the asymptotics of a solution of the Toda system. Along the end
Λ±
j (α) the solution is asymptotic to some Dancer’s solution whose parameters (δ±j (α), τ

±
j (α))

are close to 0, depend on α and vary from end to end.

We can be more specific about the form of the solutions of (1.1) whose existence is claimed
in Theorem 1.1. To do so, it is convenient to agree that χ+ (resp. χ−) is a smooth cutoff function
defined on R which is identically equal to 1 for z > 1 (resp. for z < −1) and identically equal
to 0 for z <−1 (resp. for z > 1) and additionally χ− + χ+ ≡ 1. With these cutoff functions at
hand, we define the 4-dimensional space

D := Span
{
z �→ χ±(z), z �→ zχ±(z)

}
, (1.12)

and, for all μ ∈ (0,1) and all θ ∈ R, we define the space C 2,μ
θ (R) of C 2,μ functions h which

satisfy

‖h‖C 2,μ
θ (R)

:= ∥∥(cosh z)θh
∥∥

C 2,μ(R)
<∞.

It turns out that the asymptotic profiles of our solutions are determined by k curves

γα,j = {
x = fα,j (z)+ hα,j (αz)

}
.
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Here fα,j is the scaling (1.10) of fj , j = 1, . . . , k. Since fj is a solution to the Toda system (1.9)
then in particular formula (1.11) holds, that is, functions fα,j are asymptotically linear. Functions

hα,j ∈ C 2,μ
θ (R)⊕D representing small perturbations satisfy

‖hα,j‖C 2,μ
θ (R)⊕D � Cακ

with some constants θ, κ > 0. In all we obtain that the asymptotic form of the ends outside of a
compact set is given by the graphs of the half-lines Λ±

j (α), as claimed in the theorem.
The description of the asymptotics of the solutions we construct depend on 8k parameters.

Indeed, the description of an end, which is an oriented half line, requires two parameters and
the description of Dancer’s solution to which our solution is asymptotic along an end, requires
the knowledge of two parameters which are Dancer’s parameter and the phase shift of the end
(expressed here and in what follows in terms of (δ, τ )). The proof of the above theorem starts
with building an approximate solution

k∑
j=1

w
(
dist(·, γα,j )

)
,

where γα,j are the graphs of the functions fα,j . Next, we allow some more flexibility in our
approximate solution by introducing 8k parameters which account for small modifications of the
approximate solutions away from a (large) compact set. In particular, we allow to translate and
rotate slightly the ends of the curves γα,j and, at the same time, at each end we changew into any
Dancer’s solutionwδ,τ with small parameters. As we will see in the proof, we will have to fix half
of these parameters leaving the other half free. This implies that the solutions we construct belong
to some 4k-dimensional family of solutions. This dimension count is in agreement with the result
in [23] which computes the dimension of the space of 2k-ended, positive, entire solutions of (1.1).

We will comment now on the relation between our result and the recent construction of an-
other family of entire solutions of (1.1) by Malchiodi [26]. His solutions are qualitatively very
distinct from ours, however they form a part of the same general class of multiple end entire
solutions. Indeed, away from a compact set, both constructions yield solutions which, along a
set of oriented half lines, are asymptotic to a finite number of simply periodic solutions of (1.1).
These periodic solutions are of two different types. While the ends of the solutions found in
the present paper resemble Dancer’s solutions, the ends of the solutions constructed in [26] are
asymptotic to infinitely many copies of the radially symmetric ground state. There is on the other
hand a strong evidence [1,4] that both types of asymptotic behavior can be seen as “extremes” of
a two-parameter family of solutions of (1.1). In view of this fact our solutions and those found
in [26] correspond to different parts of the compactification of the associated moduli spaces of
solutions of (1.1). A geometric analogue of this (which we will explore in the next section) fur-
ther suggests that, if they have the same number of ends, these solutions may belong to the same
component of the moduli space.

To complete our discussion in this section, let us mention that a similar construction has been
obtained by the authors of the present paper for the Allen–Cahn equation

�u+ u− u3 = 0,

in R
2 [14]. In this case, Toda’s system also plays a central role in the construction but, in contrast

with the analysis of the present paper, the profile which is used to construct the approximate
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solutions is neutrally stable and as a result there is no bifurcation phenomena which would lead
to simply periodic solution as in the case for (1.1). In particular there are no analogues of Dancer’s
solutions and this simplifies considerably the technical analysis.

1.3. Geometric counterpart of the Dancer solution

One of the striking features of the existence result in Theorem 1.1, which is a purely PDE
result, is that its counterparts can be found in geometric framework. To illustrate this, we will
concentrate on what is perhaps the most appealing one: the analogy between the theory of com-
plete constant mean curvature surfaces in Euclidean 3-space and the theory of entire solutions
of (1.1). For simplicity we will restrict ourselves to constant mean curvature surfaces in R

3 which
have embedded coplanar ends. In the following we will draw parallels between these geometric
objects and some solutions of (1.1).

Embedded constant mean curvature surfaces of revolution were found by Delaunay in the mid
19th century [9]. They constitute a smooth one-parameter family of singly periodic surfaces Dt ,
for t ∈ (0,1], which interpolate between the cylinder D1 = S1(1)× R and the singular surface
D0 := limt→0Dt , which is the union of infinitely many spheres of radius 1/2 centered at each of
the points (0,0, n), n ∈ Z. The Delaunay surface Dt can be parametrized by

Xt(x, z)= (
ϕ(z) cosx,ϕ(z) sinx,ψ(z)

) ∈Dt ⊂ R
3,

for (x, z) ∈ R × R/2πZ. Here the function ϕ is the smooth solution of

(
ϕ′)2 +

(
ϕ2 + t

2

)2

= ϕ2,

and the function ψ is defined by

ψ ′ = ϕ2 + t

2
.

As already mentioned, when t = 1, the Delaunay surface is nothing but a right circular cylin-
der D1 = S1(1)× R, with the unit circle as the cross section. This cylinder is clearly invariant
under the continuous group of vertical translations, in the same way that the single bump-line
solution of (1.1) is invariant under a one parameter group of translations. It is then natural to
agree on the correspondence between

The cylinder
D1 = S1 × R

←→ The single bump line
(x, z) �→w(x)

Let us denote by w2 the unique radially symmetric, decaying solution of (1.1). Inspection of
the other end of the Delaunay family, namely when the parameter t tends to 0, suggests the
correspondence between

The sphere
S1(1/2)

←→ The radially symmetric solution
(x, z) �→w2

(√
x2 + z2

)
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It is tempting to extend this correspondence for the whole range of the Delaunay parameter by
associating the “intermediate” Delaunay surfaces with the Dancer solutions. To do this, first of
all, we need to find a curve in the function space that would represent these solutions. However,
since we do not have any explicit formula for the Dancer solution it is not immediately obvious
how this curve should be defined. A natural possibility is to built a one parameter family solution
of (1.1) by using the variational structure of the problem as follows: let ST = R × (0, T ) and
consider a least energy (mountain pass) solution in H 1(ST ) for the energy

1

2

∫
ST

|∇u|2 + 1

2

∫
ST

u2 − 1

p+ 1

∫
ST

u
p+1
+ ,

for T > 0. We denote the least energy solution by uT . Let us summarize what has been proven
about it as T varies between T = 0 and T = ∞ in [4]. In general the curve T �→ uT is analytic
except for possibly finitely many T (see also [1] for related results). After translating and reflect-
ing with respect to line z= T/2, it can be shown that for all T > 0, uT > 0 must be even in x and
with respect to the line z= T/2, it has a maximum located at (0, T /2) and it is non-increasing in
x, z away from it. Moreover when T < T1 the least energy solution is precisely the homoclinic
while for T > T1 it must depend on 2 variables in a non-trivial way, and as long as T −T1 is small
it is the bifurcating solution described above. For T sufficiently large the least energy solution is
unique and as T → ∞ it converges uniformly over compacts to w2.

To give further credit to this correspondence, let us recall that the Jacobi operator about the
cylinder D1 corresponds to the linearized mean curvature operator when nearby surfaces are
considered as normal graphs over D1. In the above parameterization, the Jacobi operator reads
J1 = (∂2

x +∂2
z +1). In this geometric context, it plays the role of the linear operator Lwhich is the

linearization of (1.1) about the single bump-line solution w. Hence we have the correspondence

The Jacobi operator
J1 = (

∂2
x + ∂2

z + 1
) ←→ The linearized operator

L= ∂2
x + ∂2

z − 1 + pwp−1

Notice that the emergence of the family of Delaunay surfaces due to the loss of stability of a
cylinder when its height varies is the analogue to the emergence of the Dancer solutions through
a bifurcation from the homoclinic branch at T = T1.

In our construction bounded elements of the kernel of the linearized operator L play a crucial
role. As we will see they correspond to the natural invariances of the problem: two translations
and the derivative of the solution with respect to the Dancer parameter ε = T −T1 taken at ε = 0.
Viewed this way they turn out to have the same geometric interpretation as the bounded elements
in the kernel of the Jacobi operator J1, which again correspond to translations (3 this time) and
the derivative with respect to the Delaunay parameter. Considering, more generally, the elements
of the kernel with at most polynomial growth we have in the case of the homoclinic additionally
one more function that corresponds to the rotational invariance of the operator and in the case
of D1 two more functions which represent the rotations of the surface about the two coordinate
axes that are orthogonal to the axis of the cylinder. Counting gives the 4-dimensional kernel of
geometric eigenfunctions for the homoclinic and the 6-dimensional kernel in the case of D1,
but the difference comes from the number degrees of freedom in R

2 versus R
3. This geometric

eigenfunctions are commonly called the geometric Jacobi fields.
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With these analogies in mind, we can now translate our main result into the constant mean
curvature surface framework. The result of Theorem 1.1 corresponds to the connected sum of
finitely many copies of the cylinder S1(1)× R which have a common plane of symmetry. The
connected sum construction is performed by inserting small catenoidal necks between two con-
secutive cylinders and this can be done in such a way that the ends of the resulting surface
are coplanar. Such a result, in the context of constant mean curvature surfaces, follows at once
from [31]. It is observed that, once the connected sum is performed the ends of the cylinder have
to be slightly bent and moreover, the ends cannot be kept asymptotic to the ends of right cylinders
but have to be asymptotic to Delaunay ends, in agreement with the result of Theorem 1.1.

In fact in [31] a 4k parameter family of constant mean curvature surfaces whose ends are
asymptoticly Delaunay is constructed.

There is yet another difference between the two cases which indeed is much more substantial.
The Toda system which governs the location of the multiple bump lines does not have a counter-
part in the connected sum construction of the constant mean curvature surfaces. This difference
is due to the strong interactions between the bump lines in the context of semilinear elliptic
equations.

Another (older) construction of complete noncompact constant mean curvature surfaces was
performed by N. Kapouleas [21] (see also [30,32]) starting with finitely many halves of Delaunay
surfaces with parameter t close to 0 which are connected to a central sphere. The corresponding
solutions of (1.1) have recently been constructed by A. Malchiodi in [26].

It is well known that the story of complete constant mean curvature surfaces in R
3 parallels

that of complete locally conformally flat metrics with constant, positive scalar curvature. There-
fore, it is not surprising that there should be a correspondence between these objects in conformal
geometry and solutions of (1.1). For example, Delaunay surfaces and Dancer solutions should
now be replaced by Fowler solutions which correspond to constant scalar curvature metrics on
the cylinder R×Sn−1 which are conformal to the product metric dz2 +gSn−1 , when n� 3. These
are given by

v
4

n−2
(
dz2 + gSn−1

)
,

where z �→ v(z) is a smooth positive solution of

(
v′)2 − v2 + n− 2

n
v

2n
n−2 = −2

n
τ 2.

When τ = 1 and v ≡ 1 the solution is a straight cylinder while as τ tends to 0 the metrics
converge on compacts to the round metric on the unit sphere. The connected sum construction
for such Fowler type metrics was carried out by R. Mazzeo, D. Pollack and K. Uhlenbeck [33]
(where it is called the dipole construction). N. Kapouleas’ construction mentioned above is due
to R. Schoen [39] (see also R. Mazzeo and F. Pacard [29,30]).

2. The Toda system and its linearization

2.1. The Toda system

In the sequel we will consider vector valued smooth functions g : R �→ R
k . To measure the

size of such functions we will use weighted Hölder spaces C�,μ(R;R
k) with the norm:
θ
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‖g‖C�,μ
θ (R;Rk)

= ∥∥(cosh z)θg
∥∥

C�,μ(R;Rk)
.

In this paper the Toda system (1.9) plays a crucial role and thus we will begin with outlining
the basic theory of this system and its linearization, see [22,34] for details. It is convenient to
consider our problem in a slightly more general framework than that of the system (1.9). Given
functions qj (z),pj (z), j = 1, . . . , k, we define the Hamiltonian

H =
k∑

j=1

p2
j

2
+ V, V =

k−1∑
j=1

e(qj−qj+1).

We consider the following Toda system

dqj

dz
= pj ,

dpj

dz
= − ∂H

∂qj
,

qj (0)= q0j , pj (0)= p0j , j = 1, . . . , k. (2.1)

Observe that the center of mass moves with constant velocity and the momentum remains con-
stant because, if

k∑
j=1

q0j = q̄,

k∑
j=1

p0j = p̄, (2.2)

then from
∑k

j=1 q
′′
j (z)= 0 it follows that:

k∑
j=1

q0j (z)= p̄z+ q̄.

We will now give a more precise description of these solutions and in particular their asymp-
totic behavior as z→ ±∞. To this end we will often make use of classical results of Kostant [22]
and in particular we will use the explicit formula for the solutions of (2.1) (see formula (7.7.10)
in [22]).

We will first introduce some notation. Given numbers w1, . . . ,wk ∈ R such that

k∑
j=1

wj = 0, and wj >wj+1, j = 1, . . . , k, (2.3)

we define the matrix

w0 = diag(w1, . . . ,wk).

Next, given numbers g1, . . . , gk ∈ R such that
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k∏
j=1

gj = 1, and gj > 0, j = 1, . . . , k, (2.4)

we define the matrix

g0 = diag(g1, . . . , gk).

The matrices w0 and g0 can be parameterized by the following two sets of parameters

cj =wj −wj+1, dj = loggj+1 − loggj , j = 1, . . . , k. (2.5)

Furthermore, we define functions Φj(g0,w0; z), z ∈ R, j = 0, . . . , k, by

Φ0 =Φk ≡ 1,

Φj (g0,w0; z)= (−1)j (k−j)
∑

1�ii<···<ij�k
ri1...ij (w0)gi1 . . . gij exp

[−z(wi1 + · · · +wij )
]
, (2.6)

where ri1...ij (w0) are rational functions of the entries of the matrix w0. It is proven in [22] that
all solutions of (2.1) are of the form

qj (z)= logΦj−1(g0,w0; z)− logΦj(g0,w0; z), j = 1, . . . , k. (2.7)

Namely, given initial conditions in (2.1) there exist matrices w0 and g0 satisfying (2.3)–(2.4) and
the solution is given by (2.7). According to Theorem 7.7.2 of [22], the following holds

q ′
j (+∞)=wk+1−j , q ′

j (−∞)=wj , j = 1, . . . , k. (2.8)

We introduce the variables

uj = qj − qj+1. (2.9)

In terms of u = (u1, . . . , uk−1) the system (2.1) becomes

u′′ +Meu = 0,

uj (0)= q0j − q0j+1, u′
j (0)= p0j − p0j+1, j = 1, . . . , k− 1, (2.10)

where

M =

⎛
⎜⎜⎜⎜⎝

2 −1 0 · · · 0
−1 2 −1 · · · 0

. . .

0 · · · 2 −1
0 · · · −1 2

⎞
⎟⎟⎟⎟⎠ , eu =

⎛
⎝ eu1

...

euk−1

⎞
⎠ .

As a consequence of (2.6) all solutions of (2.10) are given by
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uj (z)= qj (z)− qj+1(z)

= −2 logΦj(g0,w0; z)+ logΦj−1(g0,w0; z)+ logΦj+1(g0,w0; z). (2.11)

Conversely, given a solution u of (2.10) and p̄, q̄ ∈ R, the functions

qj = 1

k

(
j−1∑
i=0

iui −
k−j∑
i=0

iuk−i

)
+ p̄z+ q̄, (2.12)

for j = 1, . . . , k (we agree that u0 = uk ≡ 0), are solutions of (2.1) satisfying (2.2).
We will need the following result which is proven in [13]:

Lemma 2.1. Let w0 be such that

min
j=1,...,k−1

(wj −wj+1)= ϑ > 0. (2.13)

Then there holds

uj (z)=
{−ck−j z− dk−j + τ+

j (c)+ O(e−ϑ |z|), as z→ +∞, j = 1, . . . , k − 1,

cj z+ dj + τ−
j (c)+ O(e−ϑ |z|), as z→ −∞, j = 1, . . . , k − 1,

(2.14)

where τ±
j (c) are smooth functions of the vector c = (c1, . . . , ck−1).

To find a family of solutions of the Toda system (1.9) starting from a solution of (2.1) we
calculate the functions qj using (2.12) and set

fj (z)= qj (z)+
(
j − k+ 1

2

)
log

1

cp
. (2.15)

Observe that as a consequence of Lemma 2.1 we get that there exist wj ,gj , j = 1, . . . , k such
that (2.3) and (2.4) hold,

min
j=1,...,k

(wj −wj+1)= ϑ > 0,

and functions fj satisfy

∥∥f ′′
j

∥∥
C 0,μ
ϑ (R;Rk)

:= ∥∥f ′′
j (cosh z)ϑ

∥∥
C 0,μ(R;Rk)

� C,

fj (z)= a±,j z+ b±,j + O
(
(cosh z)−ϑ

)
, z→ ±∞. (2.16)

We also have, taking ϑ smaller if necessary:

min
j

|a±,j − a±,j−1| � ϑ. (2.17)
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2.2. The linearized Toda system

Given a solution of the Toda system (1.9) we will consider its linearization:

cph′′ + Nh = p, h = (h1, . . . , hk), N = (N1, . . . ,Nk)
T , (2.18)

where

Nj = −efj−1−fjej−1 + [
efj−1−fj + efj−fj+1

]
ej − efj−1−fjej+1, (2.19)

and ej are the vectors of the canonical basis in R
k . Thanks to the results of Lemma 2.1 and in

particular estimates (2.16), (2.17) the rows of the matrix N decay exponentially as |z| → ∞. Also
we observe that the set of fundamental solutions of the system (2.18) is given by the following
2k functions:

v�j = ∂cj f, j = 1, . . . , k− 1, v�k = ∂p̄f,

v�j = ∂dj f, j = 1, . . . , k − 1, v�k = ∂q̄ f,

where cj , dj are the parameters given in the statement of Lemma 2.1 and p̄, q̄ are the parameters
in (2.2). The kernel of the system (2.18) is given by

K = span
{
v�j ,v

�
j

}
.

Notice that the functions v�j are linearly growing, while v�j are bounded as |z| → ∞. In fact from
Lemma 2.1 it follows:

v�j (z)= a�±,j z+ b�±,j + O
(
(cosh z)−ϑ

)
,

v�j (z)= b�±,j + O
(
(cosh z)−ϑ

)
. (2.20)

Let χ+, χ− be smooth cutoff functions such that χ+(z) = 1, z > 1, χ+(z) = 0, z < 0,
χ−(z) = χ+(−z) and finally χ+ + χ− ≡ 1. We will define a 4k-dimensional deficiency space
by

D = span
{
χ±v�j , χ

±v�j
}
.

Let us observe that the kernel K of the linearized Toda system is a 2k subspace of D. Therefore,
we can certainly decompose

D = K ⊕ E, (2.21)

where E is a complement of K in D. With this decomposition at hand, we have the following
result which follows from standard arguments in ordinary differential equations.
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Lemma 2.2. Assume that θ > 0. Then the mapping

T : C 2,μ
θ

(
R;R

k
)⊕ E → C 0,μ

θ

(
R;R

k
)
,

v �→ cpv′′ + Nv,

is an isomorphism.

The proof of this lemma can be found in [14].

2.3. Another important ODE

We will finish this section with a discussion of a simple problem which, however not directly
related to the Toda system considered above, plays an important role in the sequel. The problem
we have in mind is the following:

e′′ + κ2e= g,
∥∥(cosh z)θg

∥∥
C 0,μ(R)

<∞. (2.22)

We are interested in solutions of this problem which decay exponentially at both ±∞. It is clear
that if we define

e(z)= − 1

κ
cos(κz)

z∫
−∞

g(ζ ) sin(κζ ) dζ + 1

κ
sin(κz)

z∫
−∞

g(ζ ) cos(κζ ) dζ, (2.23)

then this function is the unique solution which decays exponentially at −∞. If we assume that
in addition

∞∫
−∞

g(ζ ) sin(κζ ) dζ = 0,

∞∫
−∞

g(ζ ) cos(κζ ) dζ = 0, (2.24)

then we have

∥∥(cosh z)θ e
∥∥

C 2,μ(R)
<∞, (2.25)

as required. The necessity of imposing the extra condition (2.24) has important consequences
on our construction of solutions of (1.1) with multiple bump lines. As we will see it is precisely
because of (2.24) that we can fix arbitrarily the amplitudes and phase shifts of only 2k ends (say
all lower ends if we chose so) of the bump lines and we need to adjust suitably the amplitudes
and the phase shifts of the remaining 2k ends (say upper ends) and thus we have only 2k (and not
4k as one might expect) free parameters corresponding to the amplitudes and the phase shifts.
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3. The approximate solution

3.1. Local coordinates near model bump lines

We will fix from now on a solution f of the Toda system sharing the properties described in
the previous section. We will also choose v ∈ E . We will assume that

‖v‖E � ακ1 , (3.1)

where κ1 > 0 is a small number to be chosen later on. With these two functions at hand we define
for each j = 1, . . . , k the model for a bump line to be the curve:

γ̄α,j = {
x = (x, z) ∈ R

2
∣∣ x = fα,j (z)+ vj (αz)

}
,

where fα = (fα,1, . . . , fα,k) is the rescaled solution of the Toda system, see (1.10).
We will introduce local coordinates associated with each γ̄α,j . For the sake of convenience

we will denote f̄α(z) = fα(z) + v(αz). We will fix the orientation of γ̄α,j in such a way that
the pair of vectors (Tα,j ,Nα,j ), where the unit tangent Tα,j = 1√

1+α(f̄ ′
α,j )

2
(αf̄ ′

α,j ,1) and the

unit normal Nα,j = 1√
1+(αf̄ ′

α,j )
2
(1,−αf̄ ′

α,j ) are negatively oriented (and the functions f̄ ′
α,j are

evaluated at αz). Let zj be the arc length on γ̄α,j , i.e.

zj =
z∫

0

√
1 + α2

(
f̄ ′
α,j

)2
(αζ ) dζ, (3.2)

and let qα,j = qα,j (zj ) be the corresponding arc length parametrization.
As it turns out the true asymptotic behavior of the bump line is not exactly linear but it has an

extra exponentially small correction. This correction is an unknown to be determined, and in fact
this is one of the most important steps in this paper which involves the linearized Toda system
discussed in the previous section. To describe this perturbation we let h = (h1, . . . , hk) to be a
fixed function such that

‖h‖C 2,μ
θ (R;Rk)

� ακ2 , (3.3)

with some small parameter κ2. In the sequel we will use the function h of the stretched argument
αz, namely we will write h(αz). To measure the size of this function it is more suitable to use the
weights of the form (cosh z)θα rather than (cosh z)θ . Thus we will see norms like ‖ · ‖C�,μ

θα (R;Rk)
.

In general we have the following relations:

‖h‖C�,μ
θα (R;Rk)

� ‖h‖C�,μ
θ (R;Rk)

, ‖h‖C�,μ
θ (R;Rk)

� α−�−μ‖h‖C�,μ
θα (R;Rk)

. (3.4)

These relations will be used for the function h as well as for several similar type functions ap-
pearing below without special mention to them. Thus for instance from (3.3) and (3.4) it follows:

‖h‖ 2,μ k � ακ2 .
Cθα (R;R )



1478 M. del Pino et al. / Advances in Mathematics 224 (2010) 1462–1516
A neighborhood of the curve γ̄α,j can be parametrized in the following way:

x =Xα,j (xj ,zj )= qα,j (zj )+
(
xj + hj (αzj )

)
Nα,j (zj ). (3.5)

Notice that tj = xj + hj (αzj ) is simply the signed distance to γ̄α,j . For this reason our local
coordinates can be seen as shifted with respect to the Fermi coordinates of the curve γ̄α,j .

The distance function is not a smooth function in the whole R
2 however we observe that given

fα,v there exists a maximal subset of R
2 in which tj is a smooth function for j = 1, . . . , k. Using

the asymptotic (linear) behavior of fα(z),v(αz) and estimate (3.1) it is not hard to prove that this
set contains the set:

Vς =
{

x = (x, z)

∣∣∣ |x| � ς

α

√
1 + z2

}
,

with certain small constant ς . Indeed, the Fermi coordinates are defined as long as the map
(tj ,zj ) �→ x is one-to-one. Using the fact that the curvature of each γ̄α,j ,

kα,j (zj )∼ α2(coshzj )
−ϑα,

and also the asymptotic behavior as |zj | → ∞:

γ̄α,j (zj )∼
(

O(α)|zj | + O
(

log
1

α

)
,zj

(
1 + O

(
α2))),

one can show that for each small ςj and each sufficiently small α the Fermi coordinates are well
defined around γ̄α,j (zj ) as long as:

|tj | � ςj

α

√
1 + z2

j . (3.6)

Noting that the distance between γ̄α,j and any other curve, say γ̄α,i , behaves like

dist
(
γ̄α,j (zj ), γ̄α,i

) ∼ O(α)|zj | + O
(

log
1

α

)
,

we conclude that the constant ς in the definition of the set Vς can be taken as small as we wish
and also, using (3.3), that it can be chosen in such a way that:

x ∈ Vς �⇒ |xj | =
∣∣tj − hj (αzj )

∣∣ � ςj

α

√
1 + z2

j , x =Xα,j (xj ,zj ). (3.7)

To accomplish this it suffices to take Vς to be the intersection of all the sets where (3.6) is
satisfied.

In the sequel we will use convenient notation: for a given function f :Vς → R we set:

X∗ f (xj ,zj )= (f ◦Xα,j )(xj ,zj ). (3.8)
α,j
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We will also need a simple relation between the coordinates xj and xi , which follows from the
definition of the curves γ̄α,j together with elementary geometry. By definition of the coordinates
(3.5) we get:

xi =
[
qα,j (zj )− qα,i(zi )

](
1 + O

(
α2))+ O

(
ακ2

)+ xj
(
1 + O

(
α2)),

zi = zj
(
1 + O

(
α2))+ O(α)(xj − xi )+ O

(
α1+κ2

)
. (3.9)

Since

qα,i(zj )− qα,i(zi )= O(α)(zj − zi ),

in Vς we have

xj − xi = 2(i − j) log
1

α
+ O

(
α2)xj + O(α)zj + O

(
ακ2

)
, (3.10)

zi − zj = O
(
α2)zj + O

(
α log

1

α

)
+ O

(
α3)xj (3.11)

as α tends to 0.

3.2. Laplacian in the local coordinates

It will be useful to have the expression of the Laplacian in the coordinates defined in (3.5).
Let kα,j be the curvature of the curve γ̄α,j , which in its natural parametrization is given by:

kα,j = α2f̄ ′′
α,j (αz)

(1 + α2(f̄ ′
α,j (αz))

2)
3
2

, zj =
z∫

0

√
1 + α2

(
f̄ ′
α,j (αζ )

)2
dζ. (3.12)

We define the function Aj by

Aj := 1 − (xj + hj )kα,j .

With this notation the following expression for the Laplacian is easy to derive:

�= 1

Aj

{
∂xj

(
A2
j + α2(h′

j )
2

Aj
∂xj

)
− ∂zj

(
αh′

j

Aj
∂xj

)
− ∂xj

(
αh′

j

Aj
∂zj

)
+ ∂zj

(
1

Aj
∂zj

)}
.

This formula can be written in the form:

�= ∂2
xj + ∂2

zj + a11,j ∂
2
xj + a12,j ∂xjzj + a22,j ∂

2
zj + b1,j ∂xj + b2,j ∂

2
zj , (3.13)

where:
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a11,j = α2(h′
j )

2

A2
j

, a12,j = −2αh′
j

A2
j

, a22,j = 1 −A2
j

A2
j

,

b1,j = 1

A3
j

(−kα,jA2
j − α2h′′

jAj + α2(h′
j

)2
kα,j − α(xj + hj )h

′
j k

′
α,j

)
,

b2,j = 1

A3
j

(
(hj + xj )k

′
α,j

)
. (3.14)

The reader should keep in mind that functions hj , kα,j are taken as functions of αzj . Additionally
we recall that

kα,j = O C 2,μ
θα (R)

(
α2), k′

α,j = O C 2,μ
θα (R)

(
α3),

and consequently, taking into account (3.7), we have:

a11,j = O C 0,μ
θα (R)

(
α2), a12,j = O C 0,μ

θα (R)
(α), a22,j = O C 0,μ

θα (R)

(
α2(1 + |xj |

))
,

b1,j = O C 0,μ
θα (R)

(
α2(1 + |xj |

))
, b2,j = O C 0,μ

θα (R)

(
α3(1 + |xj |

))
. (3.15)

3.3. Asymptotic formulas for the homoclinic and the Dancer solution

In this section we will list some well known or standard properties of the functions we will
use in the sequel. We will use them without making any special reference since there are rather
ubiquitous. First we recall that for the homoclinic solution defined in (1.2) we have:

w(x)= e−|x| + O
(
e−2|x|), as |x| → ∞.

Second, let us recall that the linearized operator

L0 = ∂2
x − 1 + pwp−1, (3.16)

has a unique principal eigenvalue λ1 > 0 with corresponding eigenfunction Z(x) > 0. In fact we
have

λ1 = 1

4
(p− 1)(p+ 3), Z = w(p+1)/2√∫

R
wp+1

,

and in particular

Z(x)= e−
p+1

2 |x| + O
(
e−(p+1)|x|), as |x| → ∞.

It is also known that λ2 = 0 and the corresponding eigenfunction is w′ while the rest of the
spectrum is strictly negative.
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Finally, using the results of [8] and the standard facts about the bifurcating solutions, with the
aid of barriers, we find that the Dancer solution wδ,τ has an expansion of the form

wδ,τ (x, z)=w(x)+ δZ(x) cos
(√
λ1z

)+ τZ(x) sin
(√
λ1z

) + O
((|δ|2 + |τ |2)e−|x|),

for all small δ, τ . This estimate is valid uniformly in x ∈ R and in z belonging to some interval
whose length is equal to a period of wδ,τ .

3.4. Definition of the approximate solution

Before giving a precise definition of the approximate solution let us explain the ingredients
from which it is built. Considering just one of the bump lines we require that its lower and upper
ends be asymptotic to two (possibly distinct) Dancer solutions. These two functions are “glued”
together using some cutoff function. Let us observe that the amplitudes and the phase shifts of
the ends do not change along the end of the bump line but instead are fixed. This is possible
because the ends, whose shape is determined through the Toda system, are asymptotically linear.
However, in the middle the bump line is curved and there the amplitude and the phase shift
must be allowed to vary. This is quite analogous to bending of a corrugated, plastic pipe which
“wrinkles”, is stretched on the outside but piled up on the inside. To achieve this extra degree of
freedom a function, whose local form is given by ej (αzj )Z(xj ) is added to our approximation.
Comparing with the asymptotic formula for the Dancer solution we see that this form of the extra
correction to the approximate solution is natural.

Let us be more precise now. We will consider vector functions e ∈ C 2,μ
θ (R;R

k) with the prop-
erty:

‖e‖C 2,μ
θ (R;Rk)

� α2+κ3 (3.17)

where κ3 is a small number to be chosen later on. In addition we will use 4k real parameters
δ± = (δ±,1, . . . , δ±,k) and τ± = (τ±,1, . . . , τ±,k), such that with some small κ4:

‖δ±‖ + ‖τ±‖ � α1+κ4 . (3.18)

Denoting by w the homoclinic solution, by wδ,τ the Dancer solution of (1.1) and by Z the
principal eigenvector of the operator L0 defined in (3.16) we define (using the notation (3.8)) the
functions:

X∗
α,jw±,j (xj ,zj )=wδ±,j ,τ±,j (xj ,zj ),

X∗
α,jw0,j (xj ,zj )=w(xj ),

X∗
α,jZj (xj ,zj )= Z(xj ). (3.19)

Now, let Ξ± � 0, Ξ0 � 0 be cutoff functions such that

Ξ+(t)+Ξ0(t)+Ξ−(t)= 1, ∀t ∈ R,

suppΞ+ = (1,∞), suppΞ0 = (−2,2), suppΞ− = (−∞,−1),
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and let

X∗
α,jΞ±,j (xj ,zj ) :=Ξ±(αzj ), X∗

α,jΞ0,j (xj ,zj ) :=Ξ0(αzj ).

We will introduce the following convenient notation:

wj =Ξ+,jw+,j +Ξ0,jw0,j +Ξ−,jw−,j . (3.20)

Given these notations we will define the approximate solution of (1.1) in Vς by:

w̄(x)=
k∑

j=1

wj + ej (αzj )Zj . (3.21)

Notice that w̄ depends on the parameters fα , v, h, e, δ±, τ±. We will not emphasize this depen-
dence unless necessary. Taking now a smooth cutoff function ης supported in Vς and such that
ης ≡ 1 in Vς

2
we define the global approximate solution of (1.1) by:

w := ης

(
k∑

j=1

wj + ej (αzj )Zj

)
= ης w̄. (3.22)

4. Proof of Theorem 1.1

4.1. Reduction to the nonlinear projected problem

For the proof of the theorem it is convenient to modify (1.1) slightly. As customary we will
consider initially

�u− u+ u
p
+ = 0, (4.1)

where u+ is the positive part of u. The modification of the nonlinearity has no effect on the
preceding considerations. Also, once the existence of a solution of (4.1) is established, as an
immediate consequence of the maximum principle we will obtain the existence for (1.1) as well.

Let ρ be a cutoff function such that

ρ(s)=
{

1, |s| � 3
4 ,

0, |s|> 7
8 .

(4.2)

We define:

X∗
α,j ρj = ρ

(
xj

log 1
α

)
. (4.3)

Finally, we define the function w′
0,j by:

X∗ w′ =w′(xj ),
α,j 0,j
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where w is the homoclinic solution of (1.1).
We look for a solution of (4.1) in the form u= w+ ϕ where ϕ is a function to be determined.

Denoting by S(u) the nonlinear Schrödinger operator in (4.1) we expand:

S(w+ ϕ)= Lϕ + S(w)+N(ϕ),

where S(w) is defined in (4.15) and

Lϕ =�ϕ − ϕ + pwp−1ϕ,

N(ϕ)= (w+ ϕ)
p
+ − wp − pwp−1ϕ.

This way our problem can be written in the form:

Lϕ + S(w)+N(ϕ)= 0,

and in principle it should be possible to reduce it to a fixed point problem for the nonlinear
function

ϕ + L
−1(S(w)+N(ϕ)

) = 0,

provided that the operator L
−1 is, in a suitable sense, uniformly bounded. But this is of course

what we do not expect in general since in some sense L is a small perturbation, at least near a
fixed bump line, of the operator

L= ∂2
x + ∂2

z − 1 + pwp−1,

which has bounded kernel spanned by the functionsw′(x), andZ(x) cos(
√
λ1z),Z(x) sin(

√
λ1z).

To deal with this (indeed fundamental) difficulty we will reduce the problem to the following
projected nonlinear problem:

Lϕ + S(w)+N(ϕ)+
k∑

j=1

cjw
′
0,j ρj +

k∑
j=1

djZjρj = 0. (4.4)

In the following sections we will describe:

(1) how to solve (4.4) for the unknowns ϕ and c = (c1, . . . ,ck), d = (d1, . . . ,dk) with given
fixed parameters v, h, e, δ±, τ±, and

(2) we will show how to adjust these parameters to achieve c≡ 0, d≡ 0.

This clearly will yield a solution to (4.1) (and (1.1)) as described in Theorem 1.1.
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4.2. The decomposition procedure

In this section we explain how to decompose the projected nonlinear problem into k+ 1 cou-
pled equations. The advantage of this procedure is that we can deal separately with k problems,
each of which is associated with a single bump line, and an extra (k+ 1)st problem that accounts
for a cumulative, far field behavior of the bump lines.

To begin with we need to introduce cutoff functions χ , χj , j = 1, . . . , k, as follows:

χ(s)=
{

1, |s| � 7
8 ,

0, |s|> 15
16 .

(4.5)

We define:

X∗
α,jχj = χ

(
xj

log 1
α

)
. (4.6)

Comparing this with the definition of the cutoff functions ρ, ρj in (4.2)–(4.3) we see that

χjρj = ρj , χjχi = 0, j �= i. (4.7)

This last statement follows from the fact that the distance between any two model bump lines is
at least like 2 log 1

α
+ O(1) and the definition of χj .

We look for a solution of (4.4) in the form

ϕ =
k∑

j=1

φjρj +ψ. (4.8)

It is straightforward to check that this function is the solution if we require that functions φj ,
j = 1, . . . , k, and ψ satisfy the following system of equations:

χjLφj + cjw
′
0,j χj + djZjχj = χj

(
S(w)+N

)− χj (L −�+ 1)ψ, (4.9)

(�− 1)ψ =
(

1 −
k∑
i=1

ρi

)(
S(w)+N

)−
k∑
i=1

[
L(φiρi)− ρiLφi

]

−
(

1 −
k∑
i=1

ρi

)
(L −�+ 1)ψ, (4.10)

where N = N(
∑k

j=1 φjρj + ψ). Indeed, multiplying (4.9) by ρj , using (4.7) and adding all
the equations we get (4.4). This is a coupled system however the coupling terms are of lower
order (in α). Additionally the linear operator on the right-hand side of (4.9) expressed in the
local coordinates is a small perturbation of the basic linearized operator L already seen above.
We will take advantage of these facts in what follows.

We further recast (4.9)–(4.10). Clearly φj is a solution of (4.9) if
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[
∂2
xj + ∂2

zj + g′
p(w0,j )

]
X∗
α,jφj =X∗

α,j kj −X∗
α,j

(
cjw

′
0,j χj

)−X∗
α,j (djZjχj ), (4.11)

where

X∗
α,j kj =X∗

α,j

[
χj

(
S(w)+N)

)]−X∗
α,j

(
χj (L −�+ 1)ψ

)
−X∗

α,j

(
χjLφj

)+ (
X∗
α,jχj

)[
∂2
xj + ∂2

zj + g′
p(w0,j )

]
X∗
α,jφj . (4.12)

Again this follows easily from (4.7). We observe that (4.11) can be seen as an equation in
(xj ,zj ) ∈ R

2. In particular functionsX∗
α,jφj , as solutions of (4.11) are defined for all (xj ,zj ) ∈

R
2, although in reality these variables correspond to the local coordinates of γ̄α,j in a subset of

R
2 only. It is important to remember that this subset contains support of χj .
Let us now consider Eq. (4.10). Denoting φ = (φ1, . . . , φk) and the right-hand side of (4.10)

by Q=Q(φ,ψ) we can write:

(�− 1)ψ =Q(φ,ψ). (4.13)

This way (4.9)–(4.10) is reduced to the system of equations given by (4.11) and (4.13). This is
a nonlinear system for the unknowns φj , j = 1, . . . , k, and ψ with functions cj and dj to be
determined as well. Because (4.11) carries all long range interactions between the bump lines
we will refer to it and its modifications as the interaction system. Eq. (4.13) will be called the
background equation.

4.3. The error of the initial approximation

Let us analyze the right-hand sides of the (4.11), (4.13). We introduce the following weighted
Hölder norms:

‖φ‖C�,μ
σ,a (R

2)
= sup

x∈R2

(
(coshx)σ (cosh z)a‖φ‖C�,μ(B1(x))

)
. (4.14)

The error of the global approximation w is defined by:

S(w)=�w− w+ wp. (4.15)

This function depends in particular on the parameters v, h, e, δ±, τ±, and although this depen-
dence is usually not emphasized sometimes it will be necessary to denote:

S(w)= S(w;v,h, e, δ±,τ±).

We always assume that these parameters satisfy the estimates (3.1), (3.3), (3.17) and (3.18) with
some fixed κi > 0, i = 1, . . . ,4. In particular we notice that the most involved is the dependence
of the error on h through the local variables (xj ,zj ). We will go back to this issue in more details
later.

We state the main result of this section.
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Proposition 4.1. The function S(w;v,h, e, δ±,τ±) is a continuous function of its parameters
and for each sufficiently small α the following estimate holds:

∥∥X∗
α,j

(
χjS(w)

)∥∥
C 0,μ
σ,θα(R

2)
� Cα2, (4.16)

where 0< σ <min{p− 2,1}, θ ∈ (0, ϑ) and ϑ is the constant defined in (2.13). Moreover S(w)
is a Lipschitz function of its parameters h, e, and denoting S(�) = S(w;v,h(�), e(�), δ±,τ±),
�= 1,2, we have:

∥∥X(1)∗
α,j

(
χ
(1)
j S(1)

)−X
(2)∗
α,j

(
χ
(2)
j S(2)

)∥∥
C 0,μ
σ,θα(R

2)

� C
(
α2

∥∥h(1) − h(2)
∥∥

C 2,μ
θα (R

k;R) +
∥∥e(1) − e(2)

∥∥
C 2,μ
θα (R

k;R)
)
. (4.17)

Observe that we regard the functions X∗
α,j (χjS(w)) as defined on the whole plane R

2. This
is correct since these functions are supported in the region where the local coordinates are well
defined.

The proof of this lemma is fairly technical but standard (see [13,14] for similar results) and it
is postponed to Section 5. We should make a comment regarding the Lipschitz property (4.17).
We observe that expressing the error S(�) in local variables (xj ,zj ) we have to use relations
(3.9) to express variables (xi ,zi ) in terms of (xj ,zj ). These relations involve the components
of the function h(�) as lower-order terms. Using the Implicit Function Theorem one can prove
that in fact local coordinates with respect to different bump lines are C 2,μ functions of the local
coordinates of one fixed line.

So far we have estimated the error near the bump lines. Another proposition is needed to
estimate the norm in the complement of the sets suppρj . Recall that we have S(w)≡ 0 in R

2 \Vς .
We will denote

V o
ς = Vς \

k⋃
j=1

suppρj .

Proposition 4.2. Under the hypothesis of the previous proposition we have for each j = 1, . . . , k:

∥∥(coshzj )
θαS(w)

∥∥
C 0,μ(V oς )

� Cα2+ 3
4σ . (4.18)

Similarly to (4.17) we have

∥∥S(1) − S(2)
∥∥

C 0,μ(V oς )
� Cα

3
4σ

[
α2

∥∥h(1) − h(2)
∥∥

C 2,μ
θα (R

k;R) +
∥∥e(1) − e(2)

∥∥
C 2,μ
θα (R

k;R)
]
. (4.19)

We prove this result in Section 5. Here we comment only that in Proposition 4.2 we consider
the error as a function of the variable x ∈ R

2 and the weight function depends in particular on z,
since zj = zj (z) by its definition as the arc length parameter of γ̄α,j .
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4.4. Existence of the background function

In order to solve the system (4.11)–(4.13) we will use the Banach fixed point theorem. A con-
venient way to implement it is to solve first (4.13) with given φ. To accomplish this we need to
make some assumptions regarding the initial size of the functions φj . We will assume from now
on that the functions φj are chosen so that, given σ and θ as in Proposition 4.1, we have

∥∥X∗
α,jφj

∥∥
C 2,μ
σ,θα(R

2)
<∞, j = 1, . . . , k. (4.20)

We assume above that X∗
α,jφj is a function defined in the whole plane and the weight functions

are taken with respect to the variables (xj ,zj ). We have the following lemma:

Lemma 4.1. Assuming that (4.20) holds there exists a unique solution of (4.13) such that for all
j = 1, . . . , k we have:

∥∥(coshzj )
θαψ

∥∥
C 2,μ(R2)

� Cα
3
4σ

(
α2 +

k∑
j=1

∥∥X∗
α,jφj

∥∥
C 2,μ
σ,θα(R

2)

)
. (4.21)

In addition ψ is a continuous function of the parameters v, h, e, δ±, τ± and a Lipschitz function
of φ and also of the parameters h, e and the following estimates hold:

∥∥(coshzj )
θα

(
ψ
(
φ(1)

)−ψ
(
φ(2)

))∥∥
C 2,μ(R2)

� Cα
3
4σ

k∑
j=1

∥∥X∗
α,j

(
φ
(1)
j − φ

(2)
j

)∥∥
C 2,μ
σ,θα(R

2)
, (4.22)

and

∥∥(coshzj )
θα

(
ψ
(
h(1), e(1)

)−ψ
(
h(1), e(1)

))∥∥
C 2,μ(R2)

� Cα
3
4σ

(
α2‖h1 − h2‖C 2,μ

θα (R
k;R) + ‖e1 − e2‖C 2,μ

θα (R
k;R)

)
. (4.23)

The proof of this lemma is postponed to Section 6.

4.5. Invertibility of the basic linearized operator

We will develop now the main functional analytic tool needed to solve the system of
Eqs. (4.11). Let us recall the definition of the basic linearized operator L in (3.16):

L= ∂2
x + ∂2

z − 1 + pwp−1.

We will consider the problem of existence of the unique solution of

Lφ = h in R
2, (4.24)
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which additionally satisfies:

∫
R

w′(x)φ(x, z) dx = 0 =
∫
R

Z(x)φ(x, z) dx. (4.25)

We will assume below that∫
R

w′(x)h(x, z) dx = 0 =
∫
R

Z(x)h(x, z) dx, (4.26)

and

∥∥(coshx)σ (cosh z)ah
∥∥

C 0,μ(R2)
<∞. (4.27)

Proposition 4.3. There exists an a0 > 0 such that given h satisfying (4.26)–(4.27) with σ ∈ (0,1),
a ∈ [0, a0), there exists a unique bounded solution φ = Th to problem (4.24) which defines a
bounded linear operator of h in the sense that∥∥(coshx)σ (cosh z)aφ

∥∥
C 2,μ(R2)

� C
∥∥(coshx)σ (cosh z)ah

∥∥
C 0,μ(R2)

,

and φ satisfies additionally the orthogonality conditions (4.25).

The proof of this proposition is postponed to Section 7.
We will use the above theory to deal with the system of nonlinear and nonlocal equa-

tions (4.11).

4.6. Existence of solutions to the interaction system

Given what we said above we will describe the procedure that will give the solution of (4.11).
By what we said in previous section we are reduced to considering the following fixed point
problem

X∗
α,jφj = T

(
X∗
α,j kj −X∗

α,j

(
cjw

′
0,j χj

)−X∗
α,j (djZjχj )

)
, (4.28)

where cj and dj must chosen in such a way that the orthogonality conditions in (4.26) are
satisfied. These conditions read in this case:

cj

∫
R

X∗
α,j

((
w′

0,j

)2
χj

)
dxj =

∫
R

X∗
α,j

(
kjw

′
0,j

)
dxj ,

dj

∫
R

X∗
α,j

(
Z2χj

)
dxj =

∫
R

X∗
α,j (kjZ)dxj . (4.29)

Let us make a comment about the structure of the system (4.28). Of course it can be written,
alternatively as a system of PDEs:
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[
∂2
xj + ∂2

zj + g′
p

(
w(xj )

)]
X∗
α,jφj =X∗

α,j kj −X∗
α,j

(
cjw

′
0,j χj

)−X∗
α,j (djZχj ). (4.30)

This system is coupled only through the background function ψ (hidden in X∗
α,j kj ) considered

in each equation restricted to the set suppχj . As given in Lemma 4.1 this function is a function
of x = (x, z) ∈ R

2. Since we can express these variables in terms of the local coordinates in
suppχj ⊂ Vς we are justified in writing something like X∗

α,j (χjψ). Similar observation applies
to other functions appearing on the right-hand side of (4.30). The key point is that functions
X∗
α,j kj are supported in Vς where the local coordinates of all curves γ̄α,j are well defined.
We will examine the size of the functions X∗

α,j kj in the weighted Hölder norms.

Lemma 4.2. We assume that

∥∥X∗
α,jφj

∥∥
C 2,μ
σ,θα(R

2)
� α

3
4σ . (4.31)

With the notations of Proposition 4.1 the following estimate holds for j = 1, . . . , k:

∥∥X∗
α,j kj

∥∥
C 0,μ
σ,θα(R

2)
� Cα2 +Cα

3
8σ

k∑
i=1

∥∥X∗
α,iφi

∥∥
C 2,μ
σ,θα(R

2)
. (4.32)

Moreover, functions X∗
α,j kj are Lipschitz as functions of φ and we have

∥∥X∗
α,j kj

(
φ(1)

)−X∗
α,j kj

(
φ(2)

)∥∥
C 0,μ
σ,θα(R

2)

� Cα
3
8σ

k∑
j=1

∥∥X∗
α,jφ

(1)
j −X∗

α,jφ
(2)
j

∥∥
C 2,μ
σ,θα(R

2)
. (4.33)

We will prove this lemma in Section 8.
We now turn our attention to functions cj , dj given by (4.29). It is easy to see that we have

in fact:

‖cj‖C 0,μ
θα (R)

+ ‖dj‖C 0,μ
θα (R)

� C
∥∥X∗

α,j kj
∥∥

C 0,μ
σ,θα(R

2)
, (4.34)

and consequently,

∥∥X∗
α,j

(
cjw

′
0,j χj

)∥∥
C 0,μ
σ,θα(R

2)
+ ∥∥X∗

α,j (djZχj )
∥∥

C 0,μ
σ,θα(R

2)

� C
∥∥X∗

α,j kj
∥∥

C 0,μ
σ,θα(R

2)

� Cα2 +Cα
3
8σ

k∑
i=1

∥∥X∗
α,iφi

∥∥
C 2,μ
σ,θα(R

2)
,

by (4.32). The Lipschitz property of the functions cj , dj in terms of the unknowns φj is also
clear. Using these facts, the results of Lemma 4.2 and (4.28) we can apply Banach contraction
mapping theorem to conclude:
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Proposition 4.4. The interaction system (4.28)–(4.29) has a unique solution φ = (φ1, . . . , φk)

such that

k∑
j=1

∥∥X∗
α,jφj

∥∥
C 2,μ
σ,θα(R

2)
� Cα2. (4.35)

The proof of this proposition is rather straightforward. We need to set up the fixed point
scheme for the operator defined in (4.28) in the space of functions φ : (R2)k → R

k with the
weighted norm defined, component by component, as in the statement of the proposition. We do
this in the set of functions satisfying in addition (4.31). Observe that while X∗

α,j kj depends on
the component functions of φ the coupling between the equation is only through the operator ψ ,
which is nonlocal but easy to handle thanks to Lemma 4.1. We leave the details of the proof to
the reader.

In the sequel we will need one more property of the solution of the interaction system. We
observe that X∗

α,jφj is a function of the parameters v, h, e, δ±, τ±. As for the nature of the
dependence of X∗

α,jφj on these parameters we have:

Lemma 4.3. The solution of the system (4.28)–(4.29) is a continuous function of the parameters
v, h, e, δ±, τ± and a Lipschitz function of h, e. Moreover we have:

∥∥X(1)∗
α,j φj

(
h(1), e(1)

)−X
(2)∗
α,j φj

(
h(2), e(2)

)∥∥
C 2,μ
σ,θα(R

2)

� Cα2
∥∥h(1) − h(2)

∥∥
C 2,μ
θα (R

k;R) +C
∥∥e(1) − e(2)

∥∥
C 2,μ
θα (R

k;R). (4.36)

To prove Lemma 4.3 we observe that the operator defined in (4.28) is a uniform contraction
in the set of functions satisfying (4.31) as long as (3.1), (3.3), (3.17) and (3.18) are satisfied. In
addition for each fixed φ the right-hand side of (4.28) is a continuous function of the parameters
v, h, e, δ±, τ± and Lipschitz function of h, e. This follows from Proposition 4.1, Lemma 4.1.
From the Banach contraction mapping theorem we conclude that (4.36) holds.

We will finish this section with the discussion of the rate of decay of ϕ, the solution of (4.4)
which is given by (4.8), namely

ϕ =
k∑

j=1

φjρj +ψ,

in terms of the original variables x = (x, z) rather than the local variables. We observe that
whenever

∥∥X∗
α,j (ρjφj )

∥∥
C 2,μ
σ,θα(R

2)
� Cα2,

then

‖ρjφj‖C 2,μ
σ∗,θ∗α(R

2)
� Cα2−σ∗(k+1) (4.37)

since, thanks to (3.5), we have:
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x = xj
(
1 + O

(
α2))+ zj O(α)+ 2

(
j − k + 1

2

)
log

1

α
. (4.38)

Of course in (4.37) we must take σ∗ < σ and θ∗ < θ . Estimate of a similar type can be shown for
the background function ψ as well, by a slight modification of the proof of Lemma 4.1 (see also
Remark 6.1 in Section 6). Thus taking σ∗ sufficiently small we get:

‖ϕ‖C 2,μ
σ∗,θ∗α(R

2)
� Cα,

which is the estimate we claimed in the statement of Theorem 1.1 (see (1.8) in Definition 1.1).

4.7. Derivation of the reduced equations

In order to finish the proof of Theorem 1.1 we need to adjust the (so far undetermined) pa-
rameters v, h, e, δ±, τ± in such a way that cj = 0, dj = 0. In other words, according to (4.29),
we need to solve: ∫

R

X∗
α,j

(
kjw

′
0,j

)
dxj = 0, (4.39)

∫
R

X∗
α,j (kjZj ) dxj = 0. (4.40)

We will refer to (4.39) as the reduced system. We will first show that it is equivalent to a nonlinear
and nonlocal system of second order in variables h = (h1, . . . , hk) and e = (e1, . . . , ek). This is a
system of 2k equations with 2k unknowns. At main order, the first k equations which determine
h have the form of the linearized Toda system discussed already in Section 2. In particular a
solution which decays exponentially exists only if we can choose suitably the unknown function
v = (v1, . . . , vk). On the other hand, at main order, the system for e consists of decoupled linear
equations of the form considered in Section 2.3. As already mentioned, each of the k equations
requires 2 extra solvability conditions if we seek solutions in the exponentially decaying class.
These requirements lead to 2k constraints on 4k parameters δ±, τ±. Considering (4.39) we have
the following

Proposition 4.5. Eq. (4.39) is equivalent to the following system of equations:

cp(h + v)′′ + N(h + v)= P, h = (h1, . . . , hk), v = (v1, . . . , vk), (4.41)

and N = (N1, . . . ,Nk)
T , where

Nj = −efj−1−fjej−1 + [
efj−1−fj + efj−fj+1

]
ej − efj−fj+1ej+1, (4.42)

and where ej are the vectors of the canonical basis in R
k . The function P satisfies:

‖P‖C 0,μ
θ (R;Rk)

� Cαν1, (4.43)

where we choose
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ν1 = min

{
1 −μ,2κ1 −μ,2κ2 −μ,1 + κ4 −μ,κ2 + κ4 −μ,

3

4
σ −μ

}
,

provided that (3.1), (3.3), (3.17) and (3.18) are satisfied. The constant cp is defined by

cp =
∫

R
(w′)2 dx

−p ∫
R
wp−1w′ex dx

> 0. (4.44)

In addition P is a continuous function of v, h, e, δ±, τ± and a Lipschitz function of h, e and we
have:

∥∥P
(
h(1), e(1); ·)− P

(
h(2), e(2); ·)∥∥C 0,μ

θ (R;Rk)

� Cαν1−μ(∥∥h(1) − h(2)
∥∥

C 0,μ
θ (R;Rk)

+ ∥∥e(1) − e(2)
∥∥

C 0,μ
θ (R;Rk)

)
. (4.45)

Proof. It is not hard to show that the main order terms in the projection of the function X∗
α,j kj

onto w′
0,j come from the projection of X∗

α,j (χjS(w)). Accepting this fact for now (in Section 9
we will provide some more details to justify this claim) we will focus on computing the asymp-
totic form of this term. In order to make the calculations more accessible we will assume that
k = 2. This way we are able to emphasize the important points without obscuring them with com-
plicated notations. We will compute first the projection of X∗

α,1(χ1S(w)) onto w′
0,1. Expressing

� in local coordinates, using the notation (3.13)–(3.14), and neglecting the lower-order terms (in
α) we get∫

R

X∗
α,1

(
χ1S(w)w

′
0,1

)
dx1 ∼

∫
R

b1,1(∂x1w0,1)
2 dx1 + p

∫
R

w
p−1
0,1 w0,2∂x1w0,1 dx1. (4.46)

In Section 9 we will show that the difference between the left and the right member in (4.46) is
negligible. Now to compute the integrals we use (3.14) to get:∫

R

b1,1(∂x1w0,1)
2 dx1

=
∫
R

(∂x1w0,1)
2[−kα,1A−1

1 − α2h′′
1A

−2
1 + α2(h′

1

)2
kα,1 − α(x1 + h1)h

′
1k

′
α,1

]
dx1

= −α2(f ′′
1 + h′′

1

)∫
R

(
w′)2

dx + O C 0,μ
θ (R)

(
α3−μ)(‖h1‖2

C 2,μ
θ (R)

+ ‖f1‖2
C 3,μ
θ (R)

)
(4.47)

where we use (3.12) to replace kα,1 by f ′′
1 . Notice that the exponential weights we take are like

(cosh z)θ . In other words, in estimating P we take C 0,μ
θ (R) norm instead of C 0,μ

θα (R), which is
the norm in which we have actually measured the errors. This entails loss of a power of α hence
the remainder is a factor of α3−μ. This small detail, which we have already mentioned in (3.4)
will be present in all subsequent calculations. Finally we remind the reader that, in the above, all
functions of the arc length z1 are taken of the scaled argument αz1.

To compute the second term in (4.46) we will use a refinement of (3.9) which reads:
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x2 = [
qα,1(z1)+ h1(αz1)− qα,2(z1)− h2(αz1)

](
1 + O

(
α2−μ))

+ O
(
α2−μ)z1 + O

(
α2−μ log

1

α

)
+ x1

(
1 + O

(
α2−μ)). (4.48)

Using this we can write:

∫
R

w
p−1
0,1 w0,2∂x1w0,1 dx1

=
∫
R

wp−1(x1)w
′(x1)w

(
x1 + q̃α,1(z1)− q̃α,2(z1)

)
dx1

+
∫
R

wp−1(x1)w
′(x1)

[
w(x2)−w

(
x1 + q̃α,1(z1)− q̃α,2(z1)

)]
dx1, (4.49)

where q̃α,j (z1) = qα,j (z1) + hj (αz1). To evaluate the first integral above we observe that its
leading order terms come from integration over the set where |x1| � 3

2 log 1
2 , which means x2 <

− 1
2 log 1

α
+ O(1). Using the asymptotic formula

w(x)= e−|x| + O
(
(coshx)−2),

and denoting:

c1 =
(
p

∫
R

wp−1(x)w′(x)ex dx
)
,

we get:

∫
R

wp−1(x1)w
′(x1)w

(
x1 + q̃α,1(z1)− q̃α,2(z1)− h2(αz1)

)
dx1

= c1 exp
(
q̃α,1(z1)− q̃α,2(z1)

)(
1 + O C 2,μ

θ (R)

(
α

3
2 −μ))

= c1α
2ef1(αz1)−f2(αz1) + c1α

2ef1(αz1)−f2(αz1)
(
h1(αz1)+ v1(αz1)− h2(αz1)− v2(αz1)

)
+ O C 2,μ

θ (R)

(
α2+ν1

)
. (4.50)

The second term in (4.49) can be estimated in a similar way. Notice that since w′(x) < 0, x > 0
therefore the factor c1 = p

∫
R
wp−1(x)w′(x)ex dx < 0.

In combining (4.47), (4.49) and (4.50) we use the fact that f is a solution of the Toda system
(1.9). In this manner we get:

cp(h1 + v1)
′′ + ef1−f2(h1 + v1 − h2 − v2)= O 0,μ

(
αν1

)
.
Cθ (R)
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Analogous calculations can be done of course for the projection onto w′
0,2. This gives the as-

sertion of the proposition, (4.43), except for the detailed calculations which we will discuss in
Section 9.

Finally, for the continuity and the Lipschitz property (4.45) of P we observe that the former
follows from the corresponding statements for S(w), ψ and φ, see Proposition 4.1, Lemmas 4.1,
4.3 respectively. The details are somewhat tedious but at the same time standard. �

We will now turn our attention to the second projected equation (4.40). We have:

Proposition 4.6. Formula (4.40) is equivalent to the following system of equations:

e′′ + λ1

α2
e = Q, (4.51)

where

‖Q‖C 0,μ
θ (R;Rk)

� Cαν1 . (4.52)

In addition statement (4.45) holds, with obvious modifications, for Q in place of P.

Proof. We will again present simply the main point in the proof and postpone some details to
Section 9. We consider the leading order term in (4.40)

∫
R

X∗
α,j

(
χjS(w)

)
X∗
α,jZj dxj

∼
∫
R

[
∂2
xj + ∂2

zj + g′
p

(
w(xj )

)](
ej (αzj )Z(xj )

)
χjZ(xj ) dxj . (4.53)

The terms that we have neglected above are of smaller order, and in fact they satisfy an estimate
similar to (4.52) but with an extra factor α2. We have in particular interaction terms similar to
the ones considered in (4.49) but with Z(xj )Z(xi ) in place of the products w0,jw0,i . Because
we have Z(x)∼ e−ap |x|, as |x| → ∞ with ap � 3

2 we can neglect them in this case.
To calculate the right-hand side of (4.53) we use the fact that Z is the principal eigenfunction

of ∂2
xj + g′

p(w(xj )). This gives immediately

∫
R

X∗
α,j

(
χjS(w)

)
X∗
α,jZj dxj ∼ (

α2e′′j (αzj )+ λ1ej (αzj )
)( ∫

R

χZ2 dx

)
.

Formula (4.51) follows after dividing by α2. The proof of the Lipschitz property is left to the
reader. �

Now we recall that from our considerations in Section 2.3 it follows that problem (4.51) is
solvable in the class of exponentially decaying functions if in addition to (4.40) the following
conditions hold:
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∫
R

∫
R

X∗
α,j (kjZ)Z(xj ) cos

(√
λ1zj

)
dxj dzj = 0,

∫
R

∫
R

X∗
α,j (kjZ)Z(xj ) sin

(√
λ1zj

)
dxj dzj = 0. (4.54)

We will now show that (4.54) leads to conditions on δ± and τ±. Let us denote the first integral
above by Υj . We have (see Section 9 for details):

Υj =
∫
R

∫
R

X∗
α,j

(
χjS(wj )

)
Z(xj ) cos

(√
λ1zj

)
dxj dzj + O

(
α1+ν1

)
,

where wj is defined in (3.20). With the notation (3.13)–(3.14) we get

X∗
α,j

(
S(wj )

) ∼ [
∂2
xj + ∂2

zj

]
wj + gp(wj ), (4.55)

where the neglected terms give at the end contributions of order O(α1+ν1) to Υj .
It is not hard to see that, after neglecting lower-order terms (cf. considerations in Section 5,

(5.1) and also Section 9), the following holds

[
∂2
xj + ∂2

zj

]
wj + gp(wj )∼ α2[Ξ ′′+,jw+,j +Ξ ′′

0,jw0,j +Ξ ′′−,jw−,j
]

+ 2α
[
Ξ ′+,j ∂zj w+,j +Ξ ′

0,j ∂zj w0,j +Ξ ′−,j ∂zj w−,j
]

= α2[Ξ ′′+,j (w+,j −w0,j )+Ξ ′′−,j (w−,j −w0,j )
]

+ 2α
[
Ξ ′+,j ∂zj w+,j +Ξ ′−,j ∂zj w−,j

]
.

We note that by (3.3) we have:

∂zj w±,j ∼ √
λ1Z

[−δ±,j sin
(√
λ1zj

)+ τ±,j cos
(√
λ1zj

)]
,

w±,j −w0,j ∼ Z
[
δ±,j cos

(√
λ1zj

)+ τ±,j sin
(√
λ1zj

)]
,

where the neglected parts are of order O C∞(R2)((|δ±,j |2 +|τ±,j |2)(coshxj )−1) and consequently
their contribution is relatively smaller. Denoting

Θ±,j = [
δ±,j cos

(√
λ1zj

)+ τ±,j sin
(√
λ1zj

)]
, ζ0 =

∫
R

χZ2, (4.56)

we calculate:

Υj ∼ ζ0

∫
R

[
α2Ξ ′′+,jΘ+,j + 2αΞ ′+,jΘ ′+,j

]
cos

(√
λ1zj

)
dzj

+ ζ0

∫ [
α2Ξ ′′−,jΘ−,j + 2αΞ ′−,jΘ ′−,j

]
cos

(√
λ1zj

)
dzj
R
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= √
λ1ζ0(τ+,j − τ−,j ).

Similar calculations can be done for the second integral in (4.54). Denoting it by Λj we can
summarize our considerations as follows:

Lemma 4.4. With the notation introduced above it holds:

Υj = √
λ1ζ0(τ+,j − τ−,j )+ O

(
α1+ν1

)
,

Λj = √
λ1ζ0(δ+,j − δ−,j )+ O

(
α1+ν1

)
. (4.57)

For future reference we will denote:

Ῡj = Υj −√
λ1ζ0(τ+,j − τ−,j ),

Λ̄j =Λj −√
λ1ζ0(δ+,j − δ−,j ),

and Υ = (Ῡ1, . . . , Ῡk) and Λ = (Λ̄1, . . . , Λ̄k).

4.8. Solution of the reduced system

We will now complete the proof of Theorem 1.1. To this end we have to solve the following
system of equations (see Propositions 4.5, 4.6 and Lemma 4.4):

cp(h + v)′′ + N(h + v)= P(v,h, e, δ±,τ±), (4.58)

e′′ + λ1

α2
e = Q(v,h, e, δ±,τ±), (4.59){√

λ1ζ0(τ+ − τ−)= Υ (v,h, e, δ±,τ±),√
λ1ζ0(δ+ − δ−)= Λ(v,h, e, δ±,τ±).

(4.60)

Proposition 4.7. System (4.58)–(4.60) has a 2k parameter family of solutions in the sense that
for each choice of k components of the vector (δ−, δ+) ∈ R

2k , and k components of the vec-
tor (τ−,τ+) ∈ R

2k this system has a solution for the remaining 2k components of (δ−, δ+),
(τ−,τ+) and the functions v, h, e.

Proof. First we choose κi , μ ∈ (0,1), and 0< σ <min{p− 2,1} in such a way that

min

{
1 −μ,2κ1 −μ,2κ2 −μ,1 + κ4 −μ,κ2 + κ4 −μ,

3

4
σ −μ

}
= ν1 >max{κi}.

Second we fix k components of (δ−, δ+) ∈ R
2k . For simplicity we assume that the fixed com-

ponents correspond to the lower ends of the bump lines, however it is easy to see that any
combination of k ends will do. We will denote them by δ−. Similarly we fix τ−. We assume
that the fixed vectors satisfy

‖δ−‖ + ‖τ−‖ � 1
α1+κ4 (4.61)
2
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(cf. (3.18)). Now we will solve the system using a fixed point argument following the three steps
below.

Step 1. We fix ṽ, h̃, ẽ, δ̄, τ̄ satisfying, respectively, (3.1), (3.3), (3.17) and (4.61). We set δ̃+ = δ̄+
δ− and τ̃+ = τ̄ + τ− and use these functions and parameters, together with δ−,τ− to calculate
the right-hand sides of Eqs. (4.58)–(4.60) above. We observe that these functions satisfy the
assertions of Proposition 4.5, Proposition 4.6 and Lemma 4.4. In particular they are Lipschitz as
functions of h̃ and ẽ and continuous as functions of ṽ and δ̃+, τ̃+.

Step 2. Next, we use the Banach contraction mapping theorem to solve (4.58)–(4.60) for h and e.
We observe that as a result we get the following system:

cp(h + v)′′ + N(h + v)= P(ṽ,h, e, δ−,τ−, δ− + δ̄,τ− + τ̄ ),{√
λ1ζ0τ = Υ (ṽ,h, e, δ−,τ−, δ− + δ̄,τ− + τ̄ ),√
λ1ζ0δ = Λ(ṽ,h, e, δ−,τ−, δ− + δ̄,τ− + τ̄ ).

Using the theory developed in Section 2 we find in addition that

‖h‖C 2,μ
θ (R;Rk)

� C‖P‖C 0,μ
θ (R;Rk)

� Cαν1 ,

‖e‖C 2,μ
θ (R;Rk)

� Cα2‖Q‖C 0,μ
θ (R;Rk)

� Cα2+ν1 , (4.62)

and that v, δ, τ satisfy

‖v‖E � Cαν1,

‖δ‖ + ‖τ‖ � Cα1+ν1 . (4.63)

Step 3. We notice that the map

(v, δ,τ ) : E × R
k × R

k → E × R
k × R

k,

(ṽ, δ̄, τ̄ ) �→ (v, δ,τ ),

is continuous and, because of the choice of ν1 and (4.63), we can use Brower’s theorem to find a
fixed point of this map. In summary we obtain a solution to (4.58)–(4.60) as claimed. �

We recall that in the statement of Theorem 1.1 we assert the existence of 4k parameter family
of solutions. So far we have only exhibited a 2k parameter family of solutions of the system
(4.58)–(4.60) however the missing 2k parameters are easy to find. Indeed at the beginning of our
considerations we have chosen a solution of the Toda system (1.9) represented by f. Of course
this solution depends on 2k real parameters representing its initial conditions. These, together
with the choice of 2k Dancer parameters give the 4k parameter family of solutions.
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5. Proof of Propositions 4.1 and 4.2

5.1. Evaluation of the error in the case of two bump lines

In order to make the argument more transparent we will consider the special case of two bump
lines, i.e. k = 2. Recall that we have gp(t)= −t + t

p
+, p > 2. Let us consider the error restricted

to the set:

U1 := {x1 + x2 � 0} ∩ Vς
2
.

In this set it is convenient to write (with the notation (3.20)):

S(w)=�(w1 + w2)+ gp(w1)+ gp(w2)︸ ︷︷ ︸
E1

+ [
�+ g′

p(w1 + w2)
]
(e1Z1 + e2Z2)︸ ︷︷ ︸

E2

+ gp(w1 + w2 + e1Z1 + e2Z2)− gp(w1)− gp(w2)− g′
p(w1 + w2)(e1Z1 + e2Z2)︸ ︷︷ ︸

E3

.

To estimate the first term we notice that using Taylor’s expansion we get

wpj =Ξ+,jwp+,j +Ξ0,jw
p

0,j +Ξ−,jwp−,j
+ (

w0,j +Ξ+,j (w+,j −w0,j )+Ξ−,j (w−,j −w0,j )
)p

−Ξ+,j
(
w0,j + (w+,j −w0,j )

)p −Ξ0,jw
p

0,j −Ξ−,j
(
w0,j + (w−,j −w0,j )

)p
=Ξ+,jwp+,j +Ξ0,jw

p

0,j +Ξ−,jwp−,j
+ O C 0,μ(U1)

((|δ±,j |2 + |τ±,j |2
)
(coshxj )

−2(coshzj )
−ϑα),

since the 0 th- and the 1st-order term in (w±,j − w0,j ) in the two middle lines cancel out, and
the equality wpj =w

p
±,j holds whenever Ξ±,j = 1. Using this and denoting by Pj the differential

operator (�− ∂2
xj − ∂2

zj ) we can write:

E1 =
2∑

j=1

[
Pj (Ξ+,jw+,j )+ Pj (Ξ0,jw0,j )+ Pj (Ξ−,jw−,j )

]

+ 2
2∑

j=1

[∂zj Ξ+,j ∂zj w+,j + ∂zj Ξ0,j ∂zj w0,j + ∂zj Ξ−,j ∂zj w−,j ]

+
2∑

j=1

[
∂2
zj Ξ+,jw+,j + ∂2

zj Ξ0,jw0,j + ∂2
zj Ξ−,jw−,j

]
+ O C∞(R)

((|δ±,,j |2 + |τ±,j |2
)
(coshxj )

−2(coshzj )
−ϑα). (5.1)

We observe that the term involving Pj above is, because of (3.15), of order α2 and in addition
it decays in x1 and zj exponentially, like (coshxj )−σ (coshzj )−θα , for any σ < 1. This claim
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follows from the asymptotic form of the Dancer solution and also from estimates (3.3), (3.18).
Similar estimates can be proven for the two following terms since for example we have

∂zj Ξ+,j (αzj )= αΞ ′+,j (αzj ), ∂2
zj Ξ+,j (αzj )= α2Ξ ′′+,j (αzj )

and δ±,j , τ±,j ∼ α1+κ4 , while on the other hand ∂zj w0,j = 0. Thus we get:

‖E1‖C 0,μ
σ,θα(U1)

� Cα2. (5.2)

The second term E2 satisfies an estimate of the same type by (3.17). We observe also that for any
σ < 1:

‖E1‖C 0,μ
θα (U1∩V oς ) � Cα2+ 3

4σ , (5.3)

since in U1 ∩ V o
ς we have |x1| � 3

4 log 1
α

. It is important that in (5.3) we take the exponential
weight in the norm only in the z1 direction. Again, the same estimate is true for E2.

Finally, we estimate the term E3. It is not hard to see that the leading order in E3 comes from
the first three terms in its definition and thus we have:

E3 ∼ gp(w1 + w2)− gp(w1)− gp(w2)

= pwp−1
1 w2 − wp2 + p(p− 1)

2

(
ζw1 + (1 − ζ )w2

)p−2
w2

2

∼ pwp−1
1 w2,

with some ζ ∈ (0,1). The last relation is easily justified, since in U1 we have w1 � w2. We need
to consider the product wp−1

1 w2. We use (3.9) to express x2 in terms of x1 to get, as z1 → ±∞:

x2 = x1 + (a±,1 − a±,2)αz1 − 2 log
1

2
+ (x1 + z1)O

(
α2)+ O(1),

where the coefficients a±,j satisfy (2.17). From this we find:

|w1w2| � Cα2(coshx1)
cα2
(coshz1)

−ϑα+cα2
, (5.4)

with some c > 0. In all we have then, with 0< σ < p− 2:

∣∣wp−1
1 w2

∣∣ � Cα2(coshx1)
−σ (coshz1)

−θα, (5.5)

hence, with θ < ϑ ,

‖E3‖C 0,μ
σ,θα(U1)

� Cα2. (5.6)

From this, we obtain (4.16) in the set U1 ∩ suppχ1. Exactly same argument can be carried out in
the set
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U2 := {x1 + x2 > 0} ∩ Vς
2
.

It is also easy to see from the above considerations that S(w) is continuous as a function of its
parameters.

To obtain (4.18) restricted to the set U1 ∩V o
ς we observe that as x1 >

3
4 log 1

α
in U1 ∩V o

ς from
(5.5) we get:

∥∥wp−1
1 w2

∥∥
C 0,μ
θα (U1∩V oς ) � Cα2+ 3

4σ .

Finally in the complement of U1 ∪ U2 in Vς we have for instance the following terms to
estimate for each j = 1,2:

∂2
xj

(
X∗
α,j ης

)(
X∗
α,jwj

)+ 2∂xj
(
X∗
α,j ης

)
∂xj

(
X∗
α,jwj

)
� Ce−|xj | = Ce−σ |xj |e−(1−σ)|xj |.

In the support of ∂2
xj (X

∗
α,j ης ), ∂xj (X

∗
α,j ης ) we have

|xj | � ς

2α

√
1 + |zj |2,

hence we can estimate, with some constants C1,C2 depending on σ and ς :

e−(1−σ)|xj | � e−
C1
α e−

C2
α

|zj | � Cα2e−θα|zj |,

provided that α is taken sufficiently small. It follows from this that

∣∣∂2
xj

(
X∗
α,j ης

)(
X∗
α,jwj

)∣∣+ ∣∣2∂xj (X∗
α,j ης

)
∂xj

(
X∗
α,jwj

)∣∣ � Cα2e−σ |xj |e−θα|zj |. (5.7)

We obtain (4.18) noting that in V o
ς we have

|xj | � 3

4
log

1

α
. (5.8)

(Notice that the estimate (4.18) does not carry any weight in xj .)
To show the Lipschitz property (4.17) we observe that the dependence on the function h

appears in the expression for the operator Pj above and also in the nonlinearity because of
formula (3.9), through terms of order ακ2 . In particular the leading order term in S(·,h(1)) −
S(·,h(2)) comes from estimating an expression similar to (5.4). This gives the factor α2 in the
first line in the estimate (4.17). As for the Lipschitz dependence on e we observe that the leading
order term in S(·, e(1))− S(·, e(2)) comes from the linear term (in e) denoted above by E2. Thus
the second part of estimate (4.17) follows. We omit somewhat tedious details. Again using (5.8)
we conclude that (4.19) holds.
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5.2. The error in the general case

In the general case S(w), i.e. when k > 2 and p > 2 we consider the following subsets of R
2:

Uj := {xj + xj−1 � 0} ∩ {xj + xj+1 � 0} ∩ Vς
2
,

U1 := {x1 � 0} ∩ {x1 + x2 � 0} ∩ Vς
2
,

Uk := {xk + xk−1 � 0} ∩ {xk � 0} ∩ Vς
2
.

Since, by (3.22), w= w̄ in Vς
2

we can write

S(w)=
k∑

j=1

χUj S(w̄)+
(

1 −
k∑

j=1

χUj

)
S(ης w̄), (5.9)

where χUj denotes the characteristic function of the set Uj .
We fix a j and consider the error restricted to the set Uj . Setting for convenience gp(t) =

−t + t
p
+ and using the notation (3.20) we have in Uj :

S(w̄)=�wj + gp(wj )︸ ︷︷ ︸
E1,j

+�
(
ej (αzj )Zj

)+ g′
p(wj )

(
ej (αzj )Zj

)
︸ ︷︷ ︸

E2,j

+
∑
i �=j

�wi + gp(wi )︸ ︷︷ ︸
E1,i

+
∑
i �=j

�
(
ei(αzi )Zj

)+ g′
p(wi )

(
ei(αzj )Zi

)
︸ ︷︷ ︸

E2,i

+ gp

(
k∑
i=1

wi + ei(αzi )Zj

)
−

k∑
i=1

gp(wi )−
k∑
i=1

g′
p(wi )

(
ei(αzj )Zi

)
︸ ︷︷ ︸

E3

. (5.10)

All the terms above can be estimated using the argument used as in the case of two lines noting
that the error due to the interactions between the bump lines is the biggest when the closest
neighbors are considered. Another observation is that in the Taylor expansion of the nonlinear
function gp(w), p > 2 around wj all components with powers higher than 2 give rise to terms
that are negligible. We leave the details to the reader.

6. The background equation: Proof of Lemma 4.1

Let us consider first the following problem:

(�− 1)ψ = h in R
2, (6.1)

where h ∈ C 0,μ(R2) is such that

∥∥(coshzj )
θαh

∥∥
0,μ 2 <∞, (6.2)
C (R )
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for j = 1, . . . , k (here zj = zj (z) via (3.2)). Since by assumption h ∈ C 0,μ(R2) as well, by the
maximum principle and elliptic regularity theory we get the existence of a unique solution ψ
such that

‖ψ‖C 2,μ(R2) � C‖h‖C 0,μ(R2).

We will now prove:

∥∥(coshzj )
θαψ

∥∥
C 2,μ(R2)

� C
∥∥(coshzj )

θαh
∥∥

C 0,μ(R2)
. (6.3)

As we will see (4.21) will follow from this. Using (3.2) we see that functions of the form:

ψθα,ν = (coshzj )
−θα + ν

[
cosh

(
x

2

)
+ cosh

(
z

2

)]
,

with ν � 0 and α sufficiently small are positive supersolutions for �− 1 in R
2. In fact:

(�− 1)ψθα,ν � −1

4
ψθα,ν.

Considering now the function

ωθα,ν,M =M
∥∥(coshzj )

θαh
∥∥

C 0,μ(R2)
ψθα,ν −ψ,

where M will be chosen large enough, we get:

(�− 1)ωθα,ν,M � −M
4

∥∥(coshzj )
θαh

∥∥
C 0,μ(R2)

ψθα,ν + h

� −M
4

∥∥(coshzj )
θαh

∥∥
C 0,μ(R2)

ψθα,ν + ∥∥(coshzj )
θαh

∥∥
C 0,μ(R2)

(coshzj )
−θα

� 0

for M fixed large enough. By letting ν → 0 we get the upper bound:

ψ(coshzj )
θα � C

∥∥(coshzj )
θαh

∥∥
C 0,μ(R2)

.

The lower bound and the rest of the proof of (6.3) follow by a straightforward argument and are
left to the reader.

Next we need to examine the size of the function Q and also its dependence on φ and h, e
and other parameters. We will now assume φ to be given and of finite C 2,μ

σ,θα(R
2) norm. We will

show that

∥∥(coshzj )
θαQ

∥∥
C 0,μ(R2)

� Cα2+ 3
4σ +Cα

3
4σ

k∑
j=1

∥∥X∗
α,jφj

∥∥
C 0,μ
σ,θα(R

2)

from which, using (6.3) the required estimate will follow. In the remainder of the proof we will
use the fact that in the support of the function Q we have
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|xj | � 3

4
log

1

α

(cf. (5.8)) to estimate terms whose norm (including the exponential weight in xj ) is bounded (see
for example the proof of estimate (4.18)). We observe that the first term on the right-hand side
above comes from (1 − ∑k

i=1 ρi)S(w) and has already been estimated in (4.18). To estimate the
remaining terms involved inQ we observe that they depend on the functions φ and ψ , see (4.10).
For example, using the fact that the derivatives of the functions ρj are supported in the set where

3

4
log

1

α
� |xj | � log

1

α
,

we get for all j = 1, . . . , k

∥∥(coshzj )
θα

[
L(φjρj )− ρjLφj

]∥∥
C 0,μ(R2)

� Cα
3
4σ

∥∥X∗
α,jφj

∥∥
C 2,μ
σ,θα(R

2)
.

Finally we will use (5.8) and the fact that L −�+ 1 = pwp−1
+ with p > 2 to get:

∥∥∥∥∥(coshzj )
θα

[(
1 −

k∑
i=1

ρi

)
(L −�+ 1)ψ

]∥∥∥∥∥
C 0,μ(R2)

� Cα
3
4σ

∥∥(cosh z)θαψ
∥∥

C 2,μ(R2)
.

Summarizing, we have found:

∥∥Q(φ,ψ)(coshzj )
θα

∥∥
C 0,μ(R2)

� Cα
3
2σ

∥∥(coshzj )
θαψ

∥∥
C 2,μ(R2)

+Cα
3
4σ

[
α2 +

k∑
j=1

∥∥X∗
α,jφj

∥∥
C 2,μ
σ,θα(R

2)

]
. (6.4)

Now assuming that φ is given, using (6.1)–(6.3) and a standard fixed point argument we find a
ψ =ψ(φ) that satisfies (4.13). Moreover we have:

∥∥ψ(φ)(coshzj )
θα

∥∥
C 2,μ(R2)

� Cα
3
4σ

[
α2 +

k∑
j=1

∥∥X∗
α,jφj

∥∥
C 2,μ
σ,θα(R

2)

]
. (6.5)

Since the function Q(φ,ψ) is a uniform contraction (as a function of ψ ) and is continuous (as
function of its parameters, assuming of course that φ is continuous), we conclude that ψ is a
continuous function of v, h, e, δ±, τ±. It is also easy to see that ψ(φ) is Lipschitz as a function
of φ and in fact we have:

∥∥(coshzj )
θα

[
ψ
(
φ(1)

)−ψ
(
φ(2)

)]∥∥
C 2,μ(R2)

� Cα
3
4σ

k∑
j=1

∥∥X∗
α,j

(
φ
(1)
j − φ

(2)
j

)∥∥
C 2,μ
σ,θα(R

2)
. (6.6)

The final estimate in Lemma 4.1, namely (4.23) follows from (4.19).
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Remark 6.1. We observe that a slight modification of the proof of (6.3) gives

‖ψ‖C 2,μ
σ,α (R

2)
� C‖h‖C 0,μ

σ,a (R
2)
. (6.7)

In the case at hand we have, with σ∗ < σ , θ∗ < θ

‖Q‖C 0,μ
σ∗,θ∗α(R

2)
� Cα

3
4σ−σ∗(k+1)

[
α2 +

k∑
j=1

∥∥X∗
α,jφj

∥∥
C 2,μ
σ,θα(R

2)

]
,

because of (4.38). Therefore when φ is the true solution of (4.4) we get:

‖Q‖C 0,μ
σ∗,θ∗α(R

2)
� Cα2−σ∗(k+1),

which is an estimate similar to (4.37).

7. A priori estimates and invertibility of the basic linear operator

7.1. Non-degeneracy of the homoclinic

In this section we will consider first the following linearized operator

L0φ = ∂2
xφ + g′

p(w)φ, g′
p(w)= pwp−1 − 1.

We recall some well-known facts about L0. First notice that L0w
′ = 0. Second we observe that

λ1 = 1

4
(p− 1)(p+ 3), Z = w(p+1)/2√∫

R
wp+1

,

correspond, respectively, to the principal eigenvalue and eigenfunction of L0. Except for λ1 > 0
and λ2 = 0 the rest of the spectrum of L0 is negative. This means in particular that there exists a
positive constant γ0 such that

〈
L0φ,φ

〉
� γ0‖φ‖2

L2(R)
, (7.1)

whenever

〈
φ,w′〉 = 0 = 〈φ,Z〉.

From (7.1) it also follows that there exists a γ > 0 such that:

〈
L0φ,φ

〉
� γ

(‖φx‖2
L2(R)

+ ‖φ‖2
L2(R)

)
. (7.2)

As another consequence of these facts we observe that problem

L0φ − ξ2φ = h, (7.3)
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is uniquely solvable whenever ξ �= ±√
λ1, 0 for h ∈ L2(R). Actually, rather standard argument,

using comparison principle and the fact that L0 is of the form

L0φ = ∂2
xφ − φ + q(x)φ,

∣∣q(x)∣∣ � Ce−c|x|,

can be used to show that whenever h is for instance a compactly supported function then the
solution of (7.3) is an exponentially decaying function.

Let us consider now the basic linearized operator

Lφ = L0φ + ∂2
z φ,

defined in the whole plane (x, z) ∈ R
2. Using (7.1) we get that

〈
Lφ,φ

〉
� γ0‖φ‖2

L2(R2)
, (7.4)

whenever ∫
R

φ(x, z)w′(x) dx = 0 =
∫
R

φ(x, z)Z(x)dx for all z.

Equation Lφ = 0, has 3 obvious bounded solutions

w′(x), Z(x) cos
(√
λ1z

)
, Z(x) sin

(√
λ1z

)
.

Our first result reads:

Lemma 7.1. Let φ be a bounded solution of the problem

Lφ = 0 in R
2. (7.5)

Then φ(x, z) is a linear combination of the functions w′(x), Z(x) cos(
√
λ1z), and

Z(x) sin(
√
λ1z).

Proof. Let assume that φ is a bounded function that satisfies

∂2
z φ + φxx + (

pwp−1 − 1
)
φ = 0. (7.6)

Let us consider the Fourier transform of φ(x, z) in the z variable, φ̂(x, ξ) which is by definition
the distribution defined as

〈
φ̂(x, ·),μ〉

R
= 〈
φ(x, ·), μ̂〉

R
=

∫
R

φ(x, ξ)μ̂(ξ) dξ,

where μ is any smooth rapidly decaying function of ξ . Let us consider a smooth rapidly decreas-
ing function ψ of the two variables (x, ξ). Then from Eq. (7.6) we find∫ 〈

φ̂(x, ·), ∂2
xψ − ξ2ψ + (

pwp−1 − 1
)
ψ
〉
R
dx = 0.
R
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Let ϕ(x) and μ(ξ) be smooth and compactly supported functions such that{√
λ1,−

√
λ1,0

}∩ supp(μ)= ∅.
Then we can solve the equation

ψxx − ξ2ψ + (
pwp−1 − 1

)
ψ = μ(ξ)ϕ(x), x ∈ R,

uniquely for a smooth, rapidly decreasing function ψ(x, ξ) such that ψ(x, ξ) = 0 whenever
ξ /∈ supp(μ). We conclude that ∫

R

〈
φ̂(x, ·),μ〉

R
ϕ(x)dx = 0,

so that for all x ∈ R, 〈φ̂(x, ·),μ〉R = 0, whenever {√λ1,−√
λ1,0}∩supp(μ)= ∅, in other words

supp
(
φ̂(x, ·)) ⊂ {√

λ1,−
√
λ1,0

}
.

By distribution theory we find that φ̂(x, ·) is a linear combination (with coefficients depending
on x) of derivatives up to a finite order of Dirac masses supported in {√λ1,−√

λ1,0}. Taking
inverse Fourier transform, we get that

φ(x, z)= p0(z, x)+ p1(z, x) cos
(√
λ1z

)+ p2(z, x) sin
(√
λ1z

)
,

where pj are polynomials in z with coefficients depending on x. Since φ is bounded these poly-
nomials are of zero order, i.e. pj (z, x)≡ pj (x), and the bounded functions pj must satisfy the
equations

L0p0 = 0, L0p1 − λ1p1 = 0, L0p2 − λ1p2 = 0,

and the desired result follows. �
7.2. A priori estimates for the basic linearized operator

The linear theory used in this paper is based on a priori estimates for the solutions of the
following problem

Lφ = h in R
2. (7.7)

The results of Lemma 7.1 imply that such estimates without imposing extra conditions on φ
may not exist. The form of the bounded solutions of Lφ = 0 and (7.4) suggest the following
orthogonality conditions:∫

R

φ(x, z)w′(x) dx = 0 =
∫
R

φ(x, z)Z(x)dx for all z ∈ R. (7.8)

With these restrictions imposed we have the following result concerning a priori estimates for
this problem.
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Lemma 7.2. Assuming that φ is a bounded solution of (7.7) satisfying (7.8) we have

‖φ‖L∞(R2) � C‖h‖L∞(R2).

Proof. We will argue by contradiction. Assuming the opposite means that there are sequences
φn, hn such that

‖φn‖L∞(R2) = 1, ‖hn‖L∞(R2) → 0,

and

Lφn = hn in R
2, (7.9)∫

R

φn(x, z)w
′(x) dx = 0 =

∫
R

φn(x, z)Z(x)dx for all z ∈ R. (7.10)

Let us assume that (xn, zn) ∈ R
2 is such that

∣∣φn(xn, zn)∣∣ → 1.

We claim that the sequence xn is bounded. Indeed, if not, using the fact that Lφ = �φ − φ +
O(e−c|x|)φ and employing elliptic estimates we find that the sequence of functions

φ̃n(x, z)= φn(xn + x, zn + z),

converges, up to a subsequence, locally uniformly to a solution φ̃ of the equation

�φ̃ − φ̃ = 0 in R
2,

whose absolute value attains its maximum at (0,0). This implies φ̃ ≡ 0, so that xn is indeed
bounded. Let now

φ̃n(x, z)= φn(x, zn + z).

Then φ̃n converges uniformly over compacts to a bounded, nontrivial solution φ̃ of

Lφ̃ = 0 in R
2,∫

R

φ̃(x, z)w′(x) dx = 0 =
∫
R

φ̃(x, z)Z(x)dx for all z ∈ R.

Lemma 7.1 then implies φ̃ ≡ 0, a contradiction and the proof is concluded. �
Using Lemma 7.2 we can also find a priori estimates with norms involving exponential

weights. When the weights involve only the x variable we have the following a priori estimates.
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Lemma 7.3. Assuming that ‖(coshx)σ h‖C 0,μ(R2) <+∞, σ ∈ [0,1), then a bounded solution φ
of (7.7)–(7.8) satisfies ∥∥(coshx)σφ

∥∥
C 2,μ(R2)

� C
∥∥(coshx)σ h

∥∥
C 0,μ(R2)

. (7.11)

Proof. We already know that

‖φ‖L∞(R2) � C
∥∥(coshx)σ h

∥∥
C 0,μ(R2)

.

We set φ̃ = φ‖(coshx)σ h‖−1
C 0,μ(R2)

. Then we have

Lφ̃ = h̃, where
∥∥(coshx)σ h̃

∥∥
C 0,μ(R2)

= 1,

and also ‖φ̃‖L∞(R2) � C. Let us fix a number R0 > 0 such that for x > R0 we have

pwp−1(x) <
1 − σ 2

2
,

which is always possible since w(x)=O(e−c|x|). For an arbitrary number ρ > 0 let us set

φ̄(x, z)= ρ
[
cosh(z/2)+ eσx

]+Me−σx,

where M will be fixed large enough. Then we find that,

Lφ̄ � −M(1 − σ 2)

4
e−σx for x > R0.

Thus

Lφ̄ � h̃ for x > R0,

if

M(1 − σ 2)

4
�

∥∥(coshx)σ h̃
∥∥

C 0,μ(R2)
= 1.

If we also assume that M is chosen so that

Me−σR0 � ‖φ̃‖∞,

we conclude from maximum principle that φ̃ � φ̄. Letting ρ → 0 we get (since M can be fixed
independent on ρ),

φ̃ �Me−σx for x > 0,

hence

φ �M
∥∥(coshx)σ h

∥∥
0,μ 2 e

−σx for x > 0.
C (R )
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In a similar way we obtain the lower bound

φ � −M∥∥(coshx)σ h
∥∥

C 0,μ(R2)
for x > 0.

Finally, for x < 0 a similar argument yields∥∥(coshx)σφ
∥∥
L∞(R2)

� C
∥∥(coshx)σ h

∥∥
C 0,μ(R2)

.

The required estimate now follows from local elliptic estimates and the proof is concluded. �
When we also take into account the exponential decay in the z variable we have the following

a priori estimates.

Lemma 7.4. There exists a0 > 0 such that assuming ‖(coshx)σ (cosh z)ah‖C 0,μ(R2) <+∞, σ ∈
(0,1), a ∈ [0, a0), for any bounded solution φ of problem (7.7)–(7.8) we have∥∥(coshx)σ (cosh z)aφ

∥∥
C 2,μ(R2)

� Cσ
∥∥(coshx)σ (cosh z)ah

∥∥
C 0,μ(R2)

.

Proof. We already know that∥∥(coshx)σφ
∥∥

C 2,μ(R2)
� C

∥∥(coshx)σ (cosh z)ah
∥∥

C 0,μ(R2)
.

Then we may write

ψ(z)=
∫
R

φ2(x, z) dx,

and differentiate twice weakly to get

ψ ′′(z)= 2
∫
R

(∂zφ)
2 dx + 2

∫
R

φzzφ dx.

We have ∫
R

∂2
z φ dx =

∫
R

(∂xφ)
2 dx +

∫
R

(
1 − pwp−1)φ2 dx +

∫
R

hφ. (7.12)

Because of the orthogonality conditions (7.8) we also have by (7.2) that,∫
R

(∂xφ)
2 dx +

∫
R

(
1 − pwp−1)φ2 dx � γ

∫
R

(
(∂xφ)

2 + φ2)dx, γ > 0.

Hence we find that for a certain constant C > 0

ψ ′′(z)� γ

4
ψ(z)−C

∫
h2(x, z) dx,
R
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so that

−ψ ′′(z)+ γ

4
ψ(z)� C

σ
e−2a|z|∥∥(coshx)σ (cosh z)ah

∥∥2
C 0,μ(R2)

.

Since we also know that ψ is bounded by:

∣∣ψ(z)∣∣ � C

σ

∥∥(coshx)σ (cosh z)ah
∥∥2

C 0,μ(R2)
,

we can use a barrier of the form ψ+(z) = M‖h‖2
σ,ae

−2az + ρe2az, with M sufficiently large

and ρ > 0 arbitrary, to get the bound 0 � ψ � ψ+ for z � 0 and any a <
√
γ

4 ≡ a0. A similar
argument can be used for z < 0. Letting ρ → 0 we get then∫

R

φ2(x, z) dx � Cσ e
−2a|z|∥∥(coshx)σ (cosh z)ah

∥∥
C 0,μ(R2)

, a < a0.

Elliptic estimates yield that for R0 fixed and large enough∣∣φ(x, z)∣∣ � Cσ e
−a|z|∥∥(coshx)σ (cosh z)ah

∥∥
C 0,μ(R2)

for |x|<R0.

The corresponding estimate in the complementary region can be found by barriers. For instance
in the quadrant {x > R0, z > 0} we may consider a barrier of the form

φ̄(x, z)=M
∥∥(coshx)σ (cosh z)ah

∥∥
C 0,μ(R2)

e−(σx+az) + ρe
x
2 + z

2 ,

with ρ > 0 arbitrarily small. Fixing M depending on R0 we find the desired estimate for
|(coshx)σ (cosh z)aφ| in this quadrant by letting ρ → 0. The argument in the remaining quad-
rants is similar. The corresponding bound for the C 2,μ(R2) weighted norm is then deduced from
local elliptic estimates. This concludes the proof. �
7.3. The existence result for the basic linearized operator: Proof of Proposition 4.3

Proof of Proposition 4.3. We will argue by approximations. Let us replace h in (4.24) by the
function h(x, z)χ(−R,R)(z) extended 2R-periodically to the whole plane. With this right-hand
side we can give to the problem (4.24) a weak formulation in the closed subspace H 1

R ⊂H 1(R2)

of functions which are 2R-periodic in z and which also satisfy the orthogonality conditions
in (4.24). To be more precise we say that φR is a weak solution of this problem if for

〈LφR,η〉 :=
∞∫

−∞

R∫
−R

∇ψ · ∇η dx dz+
∞∫

−∞

R∫
−R

(
1 − pwp−1)ψηdx dz,

we have

〈LφR,η〉 =
∞∫ R∫

hη dx dz
−∞ −R
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for all tests functions η ∈H 1(R2) which are 2R periodic and which satisfy

∫
R

w′(x)η(x, z) dx = 0 =
∫
R

Z(x)η(x, z) dx for all z ∈ (−R,R).

Because of the orthogonality conditions the bilinear form a(ψ,η)= 〈Lψ,η〉 is actually positive
definite in H 1

R and consequently there exists a unique φR ∈H 1
R which satisfies

a(φR,η)=
∞∫

−∞

R∫
−R

hη dx dz for all η ∈H 1
R.

Given that φR satisfies the orthogonality conditions we check that for any smooth, compactly
supported in (−R,R) function η̃(z) we have

a
(
φR,w

′(x)η̃(z)
) = 0 =

∞∫
−∞

R∫
−R

hw′(x)η̃(z) dx dz,

a
(
φR,Z(x)η̃(z)

) = 0 =
∞∫

−∞

R∫
−R

hZ(x)η̃(z) dx dz.

This proves that φR is the unique weak solution of LφR = h in the space of H 1(R2) functions
which are 2R periodic in z. Letting R → +∞ and using the uniform a priori estimates valid for
the approximations, this completes the proof of the proposition. �
8. Estimates for the interaction system

This entire section is devoted to the proof of Lemma 4.2.

Proof of Lemma 4.2. We will use the definition of X∗
α,j kj in (4.12) to estimate each term in

turn. First we observe

∥∥X∗
α,j

(
χjS(w)

)∥∥
C 0,μ
σ,θα(R

2)
� Cα2,

by (4.16). Next we will consider the nonlinear term in φj and ψ . By assumption

∥∥X∗
α,jφj

∥∥
C 2,μ
σ,θα

� α
3
4σ ,

therefore by (4.21) we have

∥∥(coshzj )
θαX∗

α,j (χjψ)
∥∥

C 2,μ(R2)
� Cα

3
4σ

(
α2 +

k∑∥∥X∗
α,jφj

∥∥
C 2,μ
σ,θα(R

2)

)
� Cα

3
2σ . (8.1)
i=1
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We will now estimate the nonlinear term, for which we get:

χjN = χjN

(
k∑
i=1

ρiφi +ψ

)
= χjN(ρjφj +ψ),

using (4.7). Let us observe that N is a “quadratic” function of its argument. Indeed, for p > 2 we
have for any t, s ∈ R, t � 0:

∣∣(s + t)
p
+ − tp − ptp−1s

∣∣ � Cmax
{
tp−2, |s|p−2}|s|2.

Then it follows:

∣∣X∗
α,j (χjN)

∣∣ � C
(∣∣X∗

α,jφj
∣∣2 + ∣∣X∗

α,j (χψ)
∣∣2).

We have in suppX∗
α,j (χj ):

|xj | � 15

16
log

1

α
, (8.2)

hence, by (8.1)

∥∥(coshxj )
σ (coshzj )

θαX∗
α,j (χjψ)

∥∥2
C 0,μ(R2)

� Cα− 15
8 σ

∥∥(coshzj )
θαX∗

α,j (χjψ)
∥∥2

C 0,μ(R2)

� Cα− 3
8σ

(
α2 +

k∑
i=1

∥∥X∗
α,iφi

∥∥
C 2,μ
σ,θα(R

2)

)2

.

Using this we find:∥∥X∗
α,j (χjN)

∥∥
C 0,μ
σ,θα(R

2)

� C

[
α4− 3

4σ + ∥∥X∗
α,jφj

∥∥2
C 2,μ
σ,θα(R

2)
+ α

3
8σ

(
k∑
i=1

∥∥X∗
α,iφi

∥∥
C 2,μ
σ,θα(R

2)

)]
. (8.3)

The next term we need to estimate is

X∗
α,j

(
χj (L −�+ 1)ψ

) =X∗
α,j

(
pχjw

p−1
+ ψ

)
.

Using the fact that X∗
α,j (χjw

p−1
+ ) is an exponentially decaying function (in xj ), we find

∥∥X∗
α,j

(
χjw

p−1
+ ψ

)∥∥
C 0,μ
σ,θα(R

2)
� C

∥∥(coshzj )
θαX∗

α,j (χjψ)
∥∥

C 0,μ(R2)

� α
3
4σ

(
α2 +

k∑
i=1

∥∥X∗
α,iφi

∥∥
C 2,μ
σ,θα(R

2)

)
. (8.4)

To estimate the last term we observe that using (3.15) we get:
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∥∥X∗
α,j

[
χj

(
�− ∂2

xj − ∂2
zj

)
φj

]∥∥ � Cα
∥∥X∗

α,jφj
∥∥

C 2,μ
σ,θα(R

2)
,

and also

∥∥X∗
α,j

[
χj

(
g′
p(w)− g′

p(w0,j )
)]
φj

∥∥ � Cα
∥∥X∗

α,jφj
∥∥

C 2,μ
σ,θα(R

2)
,

making use of (3.3), (3.17), (3.18). The proof of the Lipschitz property (4.33) is standard and is
left to the reader. �
9. The reduced problem: Error of the projections

In this section, we will fill in the details of the computations in Section 4.7. We will begin
with (4.39). We have computed the leading order of∫

R

X∗
α,j

(
χjS(w)w

′
0,j

)
dxj ,

which in particular gives rise to the Toda system, see (4.46)–(4.50). In particular we have ne-
glected terms denoted by Pj (Ξ±,jw±,j ), Pj (Ξ0,jw0,j ) in (5.1). Among these lower-order terms
we will concentrate on one typical term, namely, using the notation (3.13)–(3.14) and (4.56),∫

R

a12,jΞ±,j χj
(
∂2
xj ,zj w±,j

)
w0,j dxj ∼ −α√λ1h

′
jΘ

′±,jΞ±,j
∫
R

w′Z′ dx.

Now we observe that

∥∥α√λ1h
′
jΘ

′±,jΞ±,j
∥∥

C 0,μ
θ (R)

� Cα2+κ2+κ4−μ � Cα2+ν1 ,

as long as (3.3) and (3.18) hold. Another important term comes from

X∗
α,j

(
χj (L −�+ 1)ψ

) ∼X∗
α,j

(
pχj (wj )

p−1
+ ψ

)
. (9.1)

Using Lemma 4.1 we get∥∥∥∥
∫
R

X∗
α,j

(
χj (wj )

p−1
+ ψ

)
w′

0,j dxj

∥∥∥∥
C 0,μ
θ (R)

� Cα2+ 3
4σ−μ � α2+ν1 .

Other calculations can be done in a similar way.
To see a representative term (slightly different than the ones we have seen above) in (4.40)

we will recall the definition of kj (4.12) and in particular consider the component of kj which
depends linearly on the unknown function φj , namely:

−X∗
α,j (χjLφj )+

(
X∗
α,jχj

)[
∂2
xj + ∂2

zj + g′
p(w0,j )

]
X∗
α,jφj .

Although perhaps not immediately obvious but rather straightforward is the following relation
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∫
R

[−X∗
α,j

(
χjL(φj )

)+ (
X∗
α,jχj

)[
∂2
xj + ∂2

zj + g′
p(w0,j )

]
X∗
α,jφj

]
Z(xj ) dxj

∼
∫
R

X∗
α,j

(
χj

(
g′
p(w0,j )− g′

p(wj )
)
φj

)
Z(xj ) dxj .

Then we get

∥∥∥∥
∫
R

X∗
α,j

(
χj

(
g′
p(w0,j )− g′

p(wj )
)
φj

)
Z(xj ) dxj

∥∥∥∥
C 0,μ
θ (R)

� Cα3+κ4−μ � Cα2+ν1 .

Let us now consider some of the terms we have neglected while considering Υj . One of them
is

∣∣∣∣
∫
R

∫
R

X∗
α,j

(
χj

(
g′
p(w0,j )− g′

p(wj )
)
φj

)
Z(xj ) cos

(√
λ1zj

)
dxj dzj

∣∣∣∣
� Cα1+κ4‖φj‖C 2,μ

σ,θα(R
2)

∫
R

(cosh z)−θα dz

� Cα2+κ4 .

Another term, of a similar type, is (cf. (9.1)):

∣∣∣∣
∫
R

∫
R

X∗
α,j

(
χj (wj )

p−1
+ ψ

)
Z(xj ) cos

(√
λ1zj

)
dxj dzj

∣∣∣∣
� C

∥∥ψ(coshzj )
θα

∥∥
C 0,μ(R2)

∫
R

(cosh z)−θα dz

� Cα1+ 3
4σ .

These terms are bounded by α1+ν1 for sufficiently small α. The rest of the calculations follow
the same scheme and are omitted.
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