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Abstract

Let Ω be a bounded domain in R
N , N � 2, with smooth boundary ∂Ω . We construct positive weak

solutions of the problem �u + up = 0 in Ω , which vanish in a suitable trace sense on ∂Ω , but which are
singular at prescribed isolated points if p is equal or slightly above N+1

N−1 . Similar constructions are carried

out for solutions which are singular at any given embedded submanifold of ∂Ω of dimension k ∈ [0,N −2],
if p equals or it is slightly above N−k+1

N−k−1 , and even on countable families of these objects, dense on a given

closed set. The role of the exponent N+1
N−1 (first discovered by Brezis and Turner [H. Brezis, R. Turner,

On a class of superlinear elliptic problems, Comm. Partial Differential Equations 2 (1977) 601–614]) for
boundary regularity, parallels that of N

N−2 for interior singularities.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and statement of main results

Let Ω be a bounded domain in R
N , N � 2 with smooth boundary ∂Ω . A model of nonlinear

elliptic boundary value problem is the classical Lane–Emden–Fowler equation,
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⎧⎨
⎩

�u + up = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

(1.1)

where p > 1. We are interested in finding solutions to this problem which are smooth in Ω and
equal to 0 almost everywhere on ∂Ω with respect to the (N − 1)-dimensional measure. More
precisely, we want to study solutions to problem (1.1) which satisfy the boundary condition in a
suitable trace sense, while not necessarily in a continuous fashion.

Following Brezis and Turner [3] and Quittner and Souplet [9], we will say that a positive
function u ∈ C∞(Ω) is a very weak solution of problem (1.1) if

u and dist(x, ∂Ω)up ∈ L1(Ω)

and if ∫
Ω

(
u�v + upv

)
dx = 0 for all v ∈ C2(Ω̄) with v = 0 on ∂Ω .

From the results in [3,9], it follows that if p satisfies the constraint

1 < p <
N + 1

N − 1
(1.2)

then a very weak solution u is actually in H 1
0 (Ω), and it is a weak solution in the usual variational

sense:

u ∈ H 1
0 (Ω) and

∫
Ω

(∇u∇v − upv
)
dx = 0 for all v ∈ H 1

0 (Ω).

Elliptic regularity then yields u ∈ C2(Ω̄), so that u solves (1.1) in the classical sense. As it is
well known, a constrained minimization procedure involving Sobolev’s embedding implies the
existence of a weak-variational solution to (1.1) for 1 < p < N+2

N−2 . A natural question is then
whether very weak solutions of (1.1) are classical within a broader range of exponents than (1.2).
Partially answering this question negatively, Souplet [10] constructed an example of a positive
function a ∈ L∞(Ω) such that problem (1.1), with up replaced by a(x)up for p > N+1

N−1 , has a
very weak solution which is unbounded, developing a point singularity on the boundary. Thus,
as far as boundary regularity of very weak solutions is concerned, the exponent p = N+1

N−1 is
critical. In the same spirit, we would also like to mention the recent paper by McKenna and
Reichel [7] where very weak solutions on Lipschitz domain are considered and where critical
exponents depending on the local behavior of the boundary are defined, see also Beresticky,
Capuzzo-Dolcetta and Nirenberg [1].

The aim of this paper is to construct solutions to problem (1.1) with prescribed singularities
on the boundary. To state an important special case of our main results we need a definition:

Definition 1.1. Let u(x) be a function defined in Ω and y ∈ ∂Ω . We say that

u(x) → � as x → y nontangentially



M. del Pino et al. / Journal of Functional Analysis 253 (2007) 241–272 243
if

lim
Γα(y)�x→y

u(x) = � for all α ∈
[

0,
π

2

)
,

where Γα(y) denotes the cone with vertex y, and angle α with respect to its axis, the inner normal
to ∂Ω at y.

Our main result reads:

Theorem 1.1. There exists a number pN > N+1
N−1 such that, given p ∈ [N+1

N−1 ,pN) and given
points y1, y2, . . . , yk ∈ ∂Ω , there exist very weak solutions u to problem (1.1) such that u ∈
C2(Ω̄ \ {y1, . . . , yk}) and

u(x) → +∞ as x → yi nontangentially, for all i = 1, . . . , k.

Before proceeding, let us comment briefly on the result. First of all, the solutions we obtain
are not unique and in fact, it will be clear from their construction that they belong to a smooth k-
dimensional family of solutions sharing the same properties, where k is the number of punctures
of the boundary. Our result holds for all exponents slightly larger than or equal to N+1

N−1 but we

conjecture that the result should hold for p ∈ [N+1
N−1 , N+2

N−2 ). Finally, let us mention that the study
of the behavior near an isolated boundary singularity of any positive solution of (1.1) when the
exponent p � N+1

N−1 was recently achieved by Bidaut-Véron–Ponce–Véron in [2] and this result
is in agreement with our result.

1.1. The parallel with p = N
N−2 and interior singularities

The role of the exponent p = N+1
N−1 for solutions with boundary singularities parallels that

of p = N
N−2 for solutions to problem (1.1) with interior singularities. Let us recall that if u ∈

Lp(Ω) is a positive distributional solution of (1.1) and 1 < p < N
N−2 , then u is smooth in Ω . On

the other hand, for p � N
N−2 , distributional solutions of (1.1) with prescribed interior singularities

are studied and built for example in [4–6,8].
Basic cells in those constructions are radially symmetric singular solutions u(x) = u(|x|) for

the equation

�u + up = 0. (1.3)

Whenever p > N
N−2 , the function

u0(x) = cp,N |x|− 2
p−1 , cp,N =

(
2

p − 1

(
N − 2 − 2

p − 1

)) 1
p−1

, (1.4)

is an explicit singular solution of (1.3) in R
N \ {0}. If, in addition, N

N−2 < p < N+2
N−2 , the phase

plane analysis for the ODE corresponding to radial solutions of (1.3), yields the existence of a
singular positive solution u1 which shares the behavior of u0 near the origin
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u1(x) = cp,N |x|− 2
p−1

(
1 + o(1)

)
as x → 0, (1.5)

and has a fast decay behavior at infinity

u1(x) = |x|−(N−2)
(
1 + o(1)

)
as |x| → +∞ (1.6)

(note that N − 2 > 2
p−1 ). The scalings uλ(x) = λ

2
p−1 u1(λx) with λ > 0 are then solutions of

(1.3) that all have the same behavior near the origin but which converge uniformly to 0 on any
compact subset of R

N \ {0}, as λ → ∞. Thus, given points

y1, y2, . . . , yk ∈ Ω,

the function

u∗(x) =
k∑

i=1

uλ(x − yi)

constitutes, for large λ > 0, a “good approximation” to a singular solution of problem (1.1).
Linear theory and perturbation arguments lead to establish the presence of an actual solution to
(1.1) near u∗, see [6]. When p = N

N−2 a similar construction can be carried out, see [8]. The
basic cell u1 corresponds in this case to a positive radial solution u1 of Eq. (1.3) in B(0,1) with

u1(x) = cN |x|−(N−2) log
(
1/|x|)− N−2

2
(
1 + o(1)

)
as x → 0, (1.7)

where cN > 0 only depends on N � 3. In this case the scalings uλ(x) = λ
N−2

2 u1(λx) all have
the same behavior as u1 at the origin, and they approach zero uniformly on compact subsets
of R

N \ {0}, as λ → 0+.

1.2. The basic cells: singular solutions on a half-space

In the construction of the solutions predicted by Theorem 1.1 we will follow a scheme similar
to that described above for interior singularities. Basic cells will now be positive solutions of
Eq. (1.3) defined on the half-space,

R
N+ := {

x = (x1, . . . , xN): xN > 0
}

which vanish on its boundary and have a singularity at the origin. Such solutions are of course
not radial, and ODE analysis does not apply anymore. Thus, we consider the following two
problems:

⎧⎪⎨
⎪⎩

�u + up = 0 in R
N+ \ {0},

u > 0 in R
N+ ,

u = 0 on ∂R
N+ \ {0},

(1.8)

for p > N+1 , and

N−1
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⎧⎪⎨
⎪⎩

�u + u
N+1
N−1 = 0 in B+,

u > 0 in B+,

u = 0 on ∂R
N+ ∩ B̄+ \ {0},

(1.9)

where B+ = R
N+ ∩ B(0,1).

Our purpose is to find families of solutions uλ of the above problems with analogous behavior
to the radial singular ones previously described. Let us consider first the case p > N+1

N−1 . The role
of the explicit radial solution u0 in (1.4) is now played by one found by separation of variables:
Let us denote by SN−1+ the half sphere

SN−1+ := {
z = (z1, . . . , zN) ∈ SN−1: zN > 0

}
.

Looking for a solution of problem (1.8) of the form

u0(x) = |x|− 2
p−1 φp(zN), with z = x

|x| , (1.10)

we arrive at the problem on the half sphere,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(�SN−1 + N − 1)φp − p + 1

p − 1

(
N − p + 1

p − 1

)
φp + φ

p
p = 0 in SN−1+ ,

φp > 0 in SN−1+ ,

φp = 0 on ∂SN−1+ .

(1.11)

Here �SN−1 designates the Laplace–Beltrami operator in SN−1+ . Observe that N − 1 is the first
eigenvalue of −�SN−1 on the half sphere and under Dirichlet boundary conditions. The corre-
sponding eigenfunction is given by

ϕ1(z) =
( ∫

SN−1+

z2
N dσ

)− 1
2

zN .

Solvability of (1.11) can be understood from two different complementary points of view. In
the considered range of exponents, N − p+1

p−1 > 0, and the application of the mountain pass
lemma yields the existence of a solution to this problem, provided that p is subcritical in dimen-
sion N − 1, namely p < N+1

N−3 when N � 4. When p tends from above to N+1
N−1 , this solution

converges uniformly to 0. Alternatively, in this regime, a standard application of Crandall–
Rabinowitz local bifurcation theorem yields that this solution defines a continuous branch in p

with asymptotic behavior

φp(z) = c̄p,NzN

(
1 + o(1)

)
, as p ↓ N + 1

N − 1
, (1.12)

where c̄p,N > 0 tends to 0 as p tends to N+1
N−1 . Even though φp is well defined for all p ∈

(N+1 , N+1 ), the function u0 does not suffice for the construction of approximate solutions to

N−1 N−3
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prove Theorem 1.1 for all p in this range since, when p is not close to N+1
N−1 , the solution u0

associated to φp does not decay fast enough at infinity. Therefore, in order to be able to prove the
result of Theorem 1.1 for all value of p, we need an analogue of the radial function u1 in (1.5)–
(1.6), namely a solution which behaves like u0 near the origin but which has a fast decay at infin-
ity. We are able to prove that this solution, which interpolates between u0 near 0 and Poisson’s
kernel x 
→ |x|1−NzN near infinity, does indeed exist provided that p is sufficiently close to N+1

N−1 .

Proposition 1.1. There exists a number pN > N+1
N−1 , such that for all p ∈ (N+1

N−1 ,pN), there exists
a solution u1 to problem (1.8) such that

u1(x) = |x|− 2
p−1 φp(zN)

(
1 + o(1)

)
as x → 0,

where φp solves (1.11), and

u1(x) = |x|1−NzN

(
1 + o(1)

)
as |x| → +∞ .

In addition, we have the pointwise estimate

|u1| � c|x|− 2
p−1 ‖φp‖C2(SN−1+ )

(1.13)

for some constant c > 0 which does not depend on p.

This solution has indeed “fast decay” at infinity since N − 1 > 2
p−1 when p > N+1

N−1 . Observe

that the scalings uλ(x) = λ
2

p−1 u1(λx) define a family of solutions to problem (1.8) which have a
common, λ-independent behavior at the origin, but which converge uniformly to 0 on compact
subsets of R

N+ \ {0}, as λ → ∞.
The result of Propositions 1.1 and the parallel with the radial case and p close to N

N−2 , to
which the ODE phase plane analysis applies, lead us naturally to several questions concerning
the existence of solutions of �u + up = 0 on the punctured half space R

N+ − {0} with Dirichlet
boundary data.

Open problem 1. We believe that the solution u1 which has been obtained in Proposition 1.1 for
p close to N+1

N−1 should actually exist for all p ∈ (N+1
N−1 , N+2

N−2 ). This would be important since it

would allow one to extend the result of Theorem 1.1 to the full range p ∈ (N+1
N−1 , N+2

N−2 ).

Open problem 2. When p = N+2
N−2 , we believe that there exists a one parameter family of solu-

tions of (1.8) of the form

u(x) = |x| 2−N
2 v

(− log |x|, z)
where t 
→ v(t, ·) is periodic, not constant. This one-parameter family of solutions corresponds
to the well-know periodic solutions for the singular Yamabe problem (corresponding to singular
radially symmetric solutions of (1.8)).
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Open problem 3. When p > N+2
N−2 , N � 3, we believe that there exists a smooth solution of �u+

up = 0 defined on R
N+ which is equal to 0 on ∂R

N+ and which is asymptotic to u0 in (1.10) at ∞.
This solution should correspond to the smooth radially symmetric solution of the same equation

which is defined on the whole space and decays like |x|− 2
p−1 at infinity, when p > N+2

N−2 .

Open problem 4. Are there singular solutions of (1.8) when p � N+1
N−3 , N � 4? In this regime

separation of variables in general fails. Some partial answer to this question is given in [2] where

it is proven that (1.8) has no positive solution of the form u(x) = |x|− 2
p−1 w(z).

When p = N+1
N−1 there is no solution to problem (1.11) and thus separation of variables fails.

On the other hand, we have an exact analogue of the radial solution of (1.7), as described by the
following result.

Proposition 1.2. There exists a solution u1 of problem (1.9) such that

u1(x) = c̄N |x|1−N log
(
1/|x|) 1−N

2 zN

(
1 + o(1)

)
as x → 0,

where c̄N > 0 only depends on N � 2.

We observe that in this case the functions uλ(x) = λN−1u1(λx) satisfy that uλ(x) → 0 uni-
formly on compact subsets of R

N+ \ {0}, as λ → 0+.

1.3. Solutions with prescribed singular set: general statements

In reality, the profiles given by the above results can also be used to approximate solutions
to problem (1.1) whose singular set is a smooth k-dimensional submanifold of ∂Ω with 1 �
k � N − 2. For instance, for p close from above to N−k+1

N−k−1 , if x′ 
→ u1(x
′), x′ ∈ R

N−k+ is the

solution of (1.8) given by Proposition 1.1, then ũ(x) = u1(x
′) solves the same problem in R

N+ ,
but this time with a singular set given by a k-dimensional subspace. In the same spirit, we have
the following result whose analogue for interior singularities can be found in [6,8].

Theorem 1.2. Let 0 � k � N − 2 and let pN−k be the number given by Proposition 1.1 with N

replaced by N − k. Given p such that

N − k + 1

N − k − 1
� p < pN−k,

and given a k-dimensional submanifold S embedded in ∂Ω , there exist infinitely many (very)
weak solutions to problem (1.1) such that u ∈ C2(Ω̄ \ S), and

u(x) → +∞ as x → y nontangentially, for all y ∈ S.

When k = 0, we agree that S is a finite set of isolated points, so that Theorem 1.1 becomes a
particular case of the result of Theorem 1.2. As already mentioned, the solutions found in Theo-
rem 1.1 arise in continua and depend on as many real parameters as the number of punctures. By
contrast, when k � 1, the solutions we construct in Theorem 1.2 belong to infinite-dimensional
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families. Since this is not essential to the paper, we shall not prove this point here. The construc-
tion actually allows much more: For instance, when p = N+1

N−1 or slightly larger than this value,
the number of points of the singular set S ⊂ Ω can be taken to infinite (countable), to total a
dense subset of any given closed set A of ∂Ω , and A can be properly called the singular set
of the solution. In fact, since the solutions we are interested in are smooth in Ω , it is natural to
define the singular set of a very weak solution u of (1.1) as the complement in ∂Ω of the set of
points y ∈ ∂Ω in a neighborhood of which u is smooth. Observe that, by definition, the singular
set of u is a closed subset of ∂Ω . We have the validity of the following general result.

Theorem 1.3. Let 0 � k � N − 2, and N−k+1
N−k−1 � p < pN−k. Assume that A of ∂Ω is a nonempty

closed subset which contains a sequence of k-dimensional embedded submanifolds Si , i ∈ N,
which are mutually disjoint and for which S := ⋃

i Si is dense in A. Then, there exist positive
very weak solutions of problem (1.1) whose singular set is exactly A, and such that

u(x) → +∞ as x → y nontangentially, for all y ∈ S.

In addition u ∈ W
1,q

0 (Ω) for any 1 < q < N
p−1
p+1 .

Let us emphasize that according to this last result, when p is larger than but close enough to
N+1
N−1 , there are infinitely many very weak solutions of (1.1) whose singular set is any prescribed

closed subset of ∂Ω and which belong to W
1,q

0 (Ω) for any 1 < q < N
p−1
p+1 . Therefore, even

though these solutions are not identically equal to 0 at each point of ∂Ω , we can say that they
are equal to 0 on ∂Ω in an appropriate sense of traces.

The proof of these results relies on two ingredients: one is the construction of the basic cells of
Propositions 1.1 and 1.2, which we carry out in Section 2. The other ingredient is the analysis of
invertibility of Laplace’s operator for right-hand sides that involve singular behavior near a point
or an embedded manifold of the boundary. After this analysis, which is carried out in Section 3,
the proof of Theorem 1.2 then follows from a fixed point argument. The result of Theorem 1.3 is
a consequence of an inductive construction taken to the limit under suitable control.

2. The half-space case: proofs of Propositions 1.1 and 1.2

It is natural and convenient to look for solutions of (1.8) or (1.9) of the form

u(x) = |x|− 2
p−1 φ

(− log |x|, z),
where we recall that z = x

|x| , so that the equation �u + up = 0 reads in terms of the function φ

defined for t ∈ R and z ∈ SN−1+ , as

∂2
t φ −

(
N − 2

p + 1

p − 1

)
∂tφ − p + 1

p − 1

(
N − p + 1

p − 1

)
φ + (�SN−1 + N − 1)φ + φp = 0. (2.1)

2.1. Proof of Proposition 1.2

When p = N+1 , under the change of functions performed above, problem (1.9) becomes:

N−1
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⎧⎪⎪⎨
⎪⎪⎩

∂2
t φ + N∂tφ + (�SN−1 + N − 1)φ + φ

N+1
N−1 = 0 in (t∗,∞) × SN−1+ ,

φ > 0 in (t∗,∞) × SN−1+ ,

φ = 0 on (t∗,∞) × ∂SN−1+ .

(2.2)

We allow here t∗ > 0 to be a parameter, which we will choose later to be large. To get a solution
of problem (1.9) we actually need t∗ = 0, but (2.2) being autonomous, this can be subsequently
achieved by applying a suitable translation in the t-variable.

For notational convenience, we set

N(φ) = ∂2
t φ + N∂tφ + (�SN−1 + N − 1)φ + |φ|N+1

N−1 .

The idea is to look for a solution of (2.2) as a perturbation of an approximate solution. There-
fore, we set

φ(t, z) = φ0(t, z) + ψ(t, z), (2.3)

where the “approximate solution” φ0 is defined by

φ0(t, z) = at−
N−1

2 ϕ1(z).

Here a > 0 is parameter which has to be determined so that the function N(φ0) decays fast
enough as t tends to ∞ (in a sense to be made precise later on). As in the introduction, ϕ1 denotes
the first eigenfunction of −�SN−1 on the half sphere, which is associated to the eigenvalue N −1
and which is normalized so that its L2-norm is equal to 1. Explicitly,

ϕ1(z) =
( ∫

SN−1+

z2
N dσ

)−1/2

zN .

We now explain how to choose the parameter a. We compute

N(φ0) =
(

a
N+1
N−1 ϕ

N+1
N−1
1 − N(N − 1)

2
aϕ1

)
t−

N+1
2 + a

N2 − 1

2
t−

N+3
2 ϕ1.

We choose the constant a > 0 such that the function a
N+1
N−1 ϕ

N+1
N−1
1 − N(N−1)

2 aϕ1 is L2-orthogonal
to the function ϕ1. Namely

a
2

N−1

∫
SN−1+

ϕ
2N

N−1 dσ = N(N − 1)

2
.

If we insert φ = φ0 + ψ in (2.2), we find that we still have to solve the equation

N(φ0) + ∂2
t ψ + N∂tψ + (�SN−1 + N − 1)ψ + N + 1

φ
2

N−1
0 ψ +Q(ψ) = 0 (2.4)
N − 1
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on (t∗,∞) × SN−1+ , with

ψ = 0 on (t∗,∞) × ∂SN−1+ .

Here, we have defined

Q(ψ) = |φ0 + ψ |N+1
N−1 − φ

N+1
N−1
0 − N + 1

N − 1
φ

2
N−1
0 ψ.

We further decompose

ψ(t, z) = ψ1(t, z) + f2(t)ϕ1(z), (2.5)

where (t, z) 
→ ψ1(t, z) is L2-orthogonal to ϕ1 for each t > t∗.
Let Π⊥ denote the L2-orthogonal projection over the orthogonal complement to ϕ1, namely

Π⊥(h)(t, z) = h(t, z) −
( ∫

SN−1+

h(t, ·)ϕ1 dσ

)
ϕ1(z).

Projecting (2.4) over the L2-orthogonal complement of ϕ1 and over the space spanned by ϕ1,
we find out that the equation we have to solve reduces to the coupled system in (ψ1, f2) given
by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
∂2
t + N∂t + (�SN−1 + N − 1)

)
ψ1 = N1(ψ1, f2),(

∂2
t + N∂t + N(N + 1)

2

1

t

)
f2 = N2(ψ1, f2),

ψ1 = 0 on (t∗,∞) × ∂SN−1+ ,

(2.6)

where

N1(ψ1, f2) = −Π⊥
(

N(φ0) + N + 1

N − 1
φ

2
N−1
0 (ψ1 + f2ϕ1) +Q(ψ1 + f2ϕ1)

)
,

N2(ψ1, f2) = −
∫

SN−1+

(
N(φ0) + N + 1

N − 1
φ

2
N−1
0 ψ1 +Q(ψ1 + f2ϕ1)

)
ϕ1 dσ. (2.7)

To obtain this, we have used the fact that

N + 1

N − 1

∫
SN−1+

φ
2

N−1
0 ϕ2

1 dσ = N(N + 1)

2

1

t
,

by definition of a.
The rational in the resolution of problem (2.6) is simple: we look for a solution ψ = ψ1 +

f2ϕ1 which is small compared with φ0. To do so, we will construct right-inverses for the linear
operators defined by the left-hand sides of the equations in (2.6). Then, for sufficiently large t∗,
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we will obtain the resolution of the system via a contraction mapping principle. Observe that so
far we have not imposed boundary conditions at t = t∗. We will invert the linear operator in ψ1,
for the right-hand sides L2-orthogonal to ϕ1 for all t , imposing Dirichlet boundary condition at
t = t∗. The choice of inverse for the ODE operator in f2 will be basically explicit, and will not
require imposing boundary conditions. In the next two lemmas we construct these inverses. It
turns out that the natural environment to carry out these inversions is L∞-weighted spaces.

Thus we now consider the linear problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
∂2
t + N∂t + (�SN−1 + N − 1)

)
ψ = h in (t∗,∞) × SN−1+ ,

ψ = 0 on ∂
(
(t∗,∞) × SN−1+

)
,∫

SN−1+

ψ(t, ·)ϕ1 dσ = 0 for all t > t∗,
(2.8)

for h such that

∫
SN−1+

h(t, ·)ϕ1 dσ = 0 for all t > t∗. (2.9)

Let d : SN−1+ → (0,∞) denote the distance to ∂SN−1+ . We have

Lemma 2.1. Given σ ∈ R, there exists tσ � 1 and for all t∗ � tσ , there exists a continuous linear
operator

T1 : t−σ L∞(
(t∗,∞) × SN−1+

) → t−σ L∞(
(t∗,∞) × SN−1+

)
such that, if tσ h ∈ L∞((t∗,∞) × SN−1+ ) satisfies (2.9), then T1(h) is a solution of (2.8). In
addition,

∥∥tσ d−1T1(h)
∥∥

L∞ � cσ

∥∥tσ h
∥∥

L∞ (2.10)

for some constant cσ > 0 which does not depend on t∗ > tσ .

Observe that (2.10) implies the pointwise estimate

∣∣T1(h)(t, z)
∣∣ � c̃σ

∥∥tσ h
∥∥

L∞ t−σ ϕ1(z).

Next, we consider the linear problem

(
∂2
t + N∂t + N(N + 1)

2

1

t

)
f = g in (t∗,∞). (2.11)

We have the
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Lemma 2.2. Given σ �= N+1
2 , there exists tσ and, for all t∗ > tσ , there exists a continuous linear

operator

T2 : t−σ−1L∞(
(t∗,∞)

) → t−σ L∞
σ

(
(t∗,∞)

)
such that, if tσ+1g ∈ L∞((t∗,∞)), then T2(g) is a solution of (2.11). In addition,

∥∥tσ T2(g)
∥∥

L∞ � cσ

∥∥tσ+1g
∥∥

L∞

for some constant cσ > 0 which does not depend on t∗ > tσ .

Before proceeding into the proofs of these lemmas, let us conclude the result.

Conclusion of the proof of Proposition 1.2. Let us fix in the above lemmas any number σ such
that

N − 1

2
< σ <

N + 1

2

and t∗ larger than both tσ appearing in the above statements. We obtain a solution of problem
(2.6) as a solution of a fixed point problem

(ψ1, f2) = M(ψ1, f2)

where we have defined

M(ψ1, f2) = (
T1

(
N1(ψ1, f2)

)
, T2

(
N2(ψ1, f2)

))
. (2.12)

We consider the space of functions

(ψ,f ) ∈ L∞([t∗,∞) × SN−1+
) × L∞([t∗,∞)

)
for which the norm

∥∥(ψ,f )
∥∥

μ
= ∥∥tσ d−1ψ

∥∥
L∞ + μ

∥∥tσ f
∥∥

L∞

is finite. Here μ � 1 is a positive number which we will fix later on and we recall that d =
SN−1+ → (0,∞) denotes the distance to ∂SN−1+ .

Provided

|f2| � t−
N−1

2 and |ψ1| � t−
N−1

2 ϕ1

the following pointwise estimates hold

∣∣N1(ψ1, f2)
∣∣ � c

(
t−

N+1
2 + t−1|ψ1| + t−1|f2|

)
,∣∣N2(ψ1, f2)

∣∣ � c
(
t−

N+3
2 + t−1|ψ1| + t

N−3
2 |f2|2

)
, (2.13)
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where the constant c > 0 only depends on N . The first estimate follows at once from Taylor’s
expansion of the nonlinearity at first-order. To obtain the second estimate, we have used Taylor’s

expansion of the nonlinearity up to second-order. Observe that |ψ1| + |f2ϕ1| � t− N−1
2 ϕ1 for t

large enough and hence, we are entitled to use Taylor’s expansion to estimate the nonlinearity.
We assume that ‖(ψ1, f2)‖μ � μ � 1. It follows from these pointwise estimates that

∥∥tσ N1(ψ1, f2)
∥∥

L∞ � ct
σ− N+1

2∗ ,∥∥t1+σ N2(ψ1, f2)
∥∥

L∞ � c
(
t
σ− N+1

2∗ + μ + t
N−1

2 −σ
∗

)
, (2.14)

for some constant c > 0 only depending on N , provided t∗ is chosen large enough. These point-
wise estimates, together with Lemmas 2.1 and 2.2, yield

∥∥M(ψ1, f2)
∥∥

μ
� c̃

(
t
σ− N+1

2∗ + μt
N−1

2 −σ
∗ + μ2),

for some constant c̃ > 0 only depending on N and σ , provided ‖(ψ1, f2)‖μ � μ � 1 and t∗ is
chosen large enough.

Now, we choose μ sufficiently small so that c̃μ < 1
4 . For all t∗ sufficiently large, the operator

M sends the ball ‖(ψ1, f2)‖μ � μ into itself. Similar estimates show that (reducing μ if nec-
essary) M is a contraction mapping with this norm inside this region, for all t∗ large enough.
We leave the details to the reader. Hence there is a fixed point (ψ1, f2) in this ball. The solution
obtained this way renders the function

φ = φ0 + ψ1 + f2ϕ1

positive in (t∗,+∞) × SN−1+ , provided t∗ is chosen large enough. This is then a solution of
problem (2.2) and this completes the proof of Proposition 1.2. �

Next we carry out the proofs of the lemmas.

Proof of Lemma 2.1. Let us consider first the case σ = 0, so that h is bounded. Without loss
of generality, we can assume that t∗ = 0. We check that problem (2.8) has at most one bounded
solution. This can be shown for instance expanding a bounded solution of the equation with h = 0
in eigenfunctions of the Laplace–Beltrami operator with zero boundary conditions on SN−1+ . The
coefficients in this expansion will be functions of t which correspond to bounded solution of
certain homogeneous ODE’s which only have the zero solution as a bounded solution. Thus, we
only have to prove the existence of the solution. To do so, let us consider, for any given number
t̄ > 0, the problem

{(
∂2
t + N∂t + (�SN−1 + N − 1)

)
ψ = h in (0, t̄) × SN−1+ ,

ψ = 0 on ∂
(
(0, t̄) × SN−1+

)
.

(2.15)

This problem is uniquely solvable since it is just a rephrasing of a Dirichlet problem for the
Laplacian in a half-annular region. Let us denote by ψ = ψt̄ its unique solution. By assumption,
h(t, ·) is L2-orthogonal to ϕ1 for all t ∈ (0, t̄), and hence, so is ψ .

It suffices to check that there exists a constant c > 0 independent of t̄ � 1 such that
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‖ψ‖
L∞([0,t̄]×SN−1+ )

� c‖h‖
L∞([0,t̄]×SN−1+ )

. (2.16)

Indeed, once this estimate is proven, we can use elliptic estimates together with Ascoli’s theorem
to show that, as t̄ tends to ∞, the sequence of functions ψt̄ converges uniformly to a function ψ

solution of (2.8) which satisfies

‖ψ‖
L∞([0,∞)×SN−1+ )

� c‖h‖
L∞([0,∞)×SN−1+ )

.

Elliptic estimates then imply that

‖∇ψ‖
L∞([0,∞)×SN−1+ )

+ ‖ψ‖
L∞([0,∞)×SN−1+ )

� c‖h‖
L∞([0,∞)×SN−1+ )

. (2.17)

Observe that the bound on the gradient of ψ(t, ·) together with the fact that ψ(t, ·) vanishes
on ∂SN−1+ imply that

∥∥d−1ψ
∥∥

L∞([0,∞)×SN−1+ )
� c‖h‖

L∞([0,∞)×SN−1+ )
, (2.18)

where we recall that d : SN−1+ → (0,∞) denotes the distance to ∂SN−1+ . The orthogonality con-
ditions on ψ pass certainly to the limit, and existence of a solution with the desired properties
thus follows.

It remains to prove the uniform estimate (2.16). We argue by contradiction. Since the result is
certainly true when t̄ remains bounded, we assume that there exists a sequence t̄ = t̄i tending to
∞, functions h = hi and ψi corresponding solutions to problem (2.15) for which

‖ψi‖L∞([0,t̄i ]×SN−1+ )
= 1 and lim

i→∞‖hi‖L∞([0,t̄i ]×SN−1+ )
= 0.

We choose ti ∈ (0, t̄i ) where ‖ψi‖L∞([0,t̄i ]×SN−1+ )
is achieved and define

ψ̃i(t, z) = ψi(t + ti , z).

It is easy to check that both sequences (ti)i and (t̄i − ti )i remain bounded away from 0. Using
elliptic estimates together with Ascoli’s theorem, we can extract from (ψ̃i)i some subsequence
which converges uniformly on compact sets to ψ̃ , a bounded solution of

(
∂2
t + N∂t + (�SN−1 + N − 1)

)
ψ̃ = 0 (2.19)

which is either defined on (t0,∞) × SN−1+ , on (−∞, t0) × SN−1+ or on (−∞,∞) × SN−1+ . Fur-
thermore,

‖ψ̃‖L∞ = 1, (2.20)

with ψ̃ having 0 boundary data whenever a boundary data is needed (i.e. t0 is finite). Further-
more ψ̃(t, ·) is L2-orthogonal to ϕ1, for all t . Eigenfunction decomposition of ψ̃(t, ·) for the
Laplace–Beltrami operator yields that there is a nontrivial bounded solution of (2.19) and this
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contradicts (2.20). When σ = 0, this completes the proof of the uniform estimate, and thus ex-
istence of a unique bounded solution of (2.8) with the desired estimate follows. This solution of
course defines a linear operator on bounded h.

To establish the result for σ �= 0 and t∗ > 0 is sufficiently large, let us write

h = t−σ h̃ and ψ = t−σ ψ̃,

so that h̃ is bounded. Solvability of (2.8) reduces to

(
∂2
t + N∂t + (�SN−1 + N − 1)

)
ψ̃ +

(
σ(σ + 1)

t2
− Nσ

t

)
ψ̃ − 2σ

t
∂t ψ̃ = h̃. (2.21)

We can estimate ∥∥∥∥
(

σ(σ + 1)

t2
− Nσ

t

)
ψ̃ − 2σ

t
∂t ψ̃

∥∥∥∥
L∞([t∗,∞)×SN−1+ )

� ct−1∗
(‖∇ψ̃‖

L∞([t∗,∞)×SN−1+ )
+ ‖ψ̃‖

L∞([t∗,∞)×SN−1+ )

)
,

for some constant c > 0 depending on σ . For all t∗ large enough, the resolution of (2.21) with the
desired bound then follows from that of (2.8) with σ = 0 together with a direct linear perturbation
argument. This finishes the proof. �
Proof of Lemma 2.2. Observe that there exist w1,w2, two linearly independent solutions of the
homogeneous problem

∂2
t w + N∂tw + N(N + 1)

2

w

t
= 0,

whose asymptotic behaviors at ∞ are given by

w1(t) = t−
N+1

2
(
1 + o(1)

)
and w2(t) = t

N+1
2 e−Nt

(
1 + o(1)

)
.

The function t 
→ eNt (∂tw1w2 −∂tw2w1) is easily seen to be constant and evaluation at ∞ shows
that it is equal to N . When σ < N+1

2 , a solution of (2.11) is given by

G(g)(t) = 1

N

(
w1(t)

t∫
t∗

w2(s)e
Nsg(s) ds − w2(t)

t∫
t∗

w1(s)e
Nsg(s) ds

)
,

and one checks directly that

∥∥tσ G(g)
∥∥

L∞((t∗,+∞))
� c

∥∥t1+σ g
∥∥

L∞((t∗,+∞))
,

for some constant c > 0, independent of t∗, chosen large enough. This follows at once from the
computation



256 M. del Pino et al. / Journal of Functional Analysis 253 (2007) 241–272
t∫
t∗

eNss−τ ds =
[

1

N
eNss−τ

]t

t∗
+ τ

N

t∫
t∗

eNss−τ−1 ds

� 1

N
eNt t−τ + τ

Nt∗

t∫
t∗

eNss−τ ds

for all t � t∗ > 0, and hence,

t∫
t∗

eNss−τ ds � t∗
Nt∗ − τ

eNt t−τ

provided Nt∗ − τ > 0. When σ > N+1
2 , a similar estimate can be obtained starting from the

formula

G(g)(t) = − 1

N

(
w1(t)

∞∫
t

w2(s)e
Nsg(s) ds + w2(t)

t∫
t∗

w1(s)e
Nsg(s) ds

)
.

This completes the proof of the result. �
2.2. Proof of Proposition 1.1

Recall that, when p ∈ (N+1
N−1 , N+1

N−3 ) the Mountain Pass Lemma yields the existence of φp ,
a nontrivial positive solution of (1.11). This solution then induces a solution

up(x) = |x|− 2
p−1 φp(z), (2.22)

of problem (1.8), for which the emphasize the dependence on p. We have to show that there
exists a solution of (1.8) which is asymptotic to up near 0 and it is asymptotic to

u∞(x) = |x|1−NzN,

at infinity. Alternatively, we have to find a solution of (2.1) which is close to φp at +∞ and
converges to 0 (at a precise rate) at −∞. Again this will be performed by first constructing an
approximate solution and then applying some perturbation result. We define

N̄(φ) = ∂2
t φ + A∂tφ + (�SN−1 + B)φ + |φ|p,

where

A = −
(

N − 2
p + 1

)
and B = − 2

(
N − 2p

)
.

p − 1 p − 1 p − 1
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In the range of interest, namely p ∈ (N+1
N−1 , N+2

N−2 ), we have A > 0 and B < N − 1. Moreover,

B = N − 1 when p = N+1
N−1 . Since we are interested in the case where p is close to N+1

N−1 it will
be convenient to define

ε = N − 1 − B = p + 1

p − 1

(
N − p + 1

p − 1

)
.

One should keep in mind that A,B and ε do depend on p even though this does not appear in
the notation.

We first proceed with the construction of the approximate solution. Given γ > 0 (to be chosen
later on), we define a∞ by

γ a
p−1∞ = ε.

We look for a positive function a which is a solution of

∂2
t a + A∂ta − εa + γ ap = 0 (2.23)

which converges to 0 as t tends to −∞ and converges to a∞ as t tends to +∞. Observe that,
when p ∈ (N+1

N−1 , N+2
N−2 ) the coefficients A and ε are positive and, therefore, in this range, classical

ODE techniques yield the existence of a, a positive heteroclinic solution of (2.23) tending to 0
at −∞ and tending to a∞ as t tends to +∞. The equation being autonomous the function a is
not unique and a can be normalized so that a(0) = 1

2a∞. The informations we will need on the
function a are collected in the following results.

Lemma 2.3. The following pointwise estimates hold

ap+1 � p + 1

2γ
εa2 and (∂ta)2 � εa2.

Proof. The estimates follow at once from the fact that

t 
→ (∂ta)2 − εa2 + 2γ

p + 1
ap+1

decreases with t if a is a solution of (2.23). The solution we are interested in tends to 0 at −∞
therefore,

(∂ta)2 + 2γ

p + 1
ap+1 � εa2

for this solution. This completes the proof. �
For the next results, we need to distinguish between the solutions of (2.23) corresponding to

different values of p. Therefore, we set a = ap for the solution of (2.23) normalized as above.
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Lemma 2.4. Given a sequence ti ∈ R and a sequence pi tending to N+1
N−1 , the sequence of func-

tions api
(ti)

−1api
(ti + ·) converges uniformly on compacts to the constant function 1.

Proof. The claim follows at once from the result of the previous lemma which implies that
(∂t loga)2 � ε. �

We define

δ− = 1

2

(√
A2 + 4ε − A

)
and δ̄+ = 1

2

(√
A2 − 4(p − 1)ε − A

)
and

ãp = ap

a∞
.

Precise estimates concerning the behavior of ap as p tends to N+1
N−1 which will be needed are

included in the following lemma whose proof is rather technical and postponed to Appendix A.

Lemma 2.5. There exists c > 1, t̄ > 0 and pN > N+1
N−1 such that, for p ∈ (N+1

N−1 ,pN) we have

1

2
eδ−t � ãp � eδ−t (2.24)

if εt � −t̄ , and

1

2
eδ̄+t � 1̃ − ãp � 2eδ̄+t (2.25)

for εt � t̄ . Finally,

1

c
εãp(1 − ãp) � ∂t ãp � cεãp(1 − ãp), (2.26)

for all t ∈ R.

The approximate solution φ̄0 to our problem is defined by

φ̄0(t, z) = a(t)ϕ1(z),

where the function a is the solution of (2.23) described above when parameter γ > 0 is chosen
to be

γ =
∫

SN−1+

ϕ
p+1
1 dσ.

Observe that, with these choices,
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N̄(φ̄0) = ap
(
ϕ

p

1 − γ ϕ1
)

(2.27)

is L2-orthogonal to ϕ1 for each t .
We now turn to the study of the operator

L̄p = ∂2
t + A∂t + (�SN−1 + N − 1 − ε) + pφ̄

p−1
0

which is the nonlinear operator N̄ linearized about φ̄0. We have the validity of the following
result.

Lemma 2.6. There exists a (unique) continuous operator

Ḡp : apL∞(
R × SN−1+

) → apL∞(
R × SN−1+

)
,

such that for each a−pf ∈ L∞(R × SN−1+ ), the function ψ = Ḡp(f ) is the unique solution
of L̄pψ = f with 0 Dirichlet boundary data which satisfies

∥∥a−pd−1Ḡp(f )
∥∥

L∞ � cε−1
∥∥a−pf

∥∥
L∞ .

If in addition f (t, ·) is L2-orthogonal to ϕ1 for a.e. t , then we have

∥∥a−pd−1Ḡp(f )
∥∥

L∞ � c
∥∥a−pf

∥∥
L∞

where we recall that d : SN−1+ → (0,∞) denotes the distance to ∂SN−1+ .

Proof. Let us observe that δ(δ − N) < 0 if δ ∈ (0,N) is fixed. Therefore, we can define ϕ∗ to be
the unique, positive solution of

{−(
�SN−1 + N − 1 + δ(δ − N)

)
ϕ∗ = 1 in SN−1+ ,

ϕ∗ = 0 on ∂SN−1+ .

A direct computation shows that

L̄p

(
e−δtϕ∗

) = −(
1 +O(ε)

)
e−δt , (2.28)

as p tends to N+1
N−1 . This implies that, provided ε is small enough, the function (t, z) 
→ e−δtϕ∗(z)

can be used as a barrier to show that, given a function f such that a−pf ∈ L∞(R × SN−1+ ) and
given t1 < −1 < 1 < t2, we can solve the equation

L̄pψ = f

in (t1, t2) × SN−1+ , with 0 boundary conditions.
Let us first restrict our attention to the case where the function f satisfies
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∫
SN−1+

f (t, ·)ϕ1 dσ = 0, (2.29)

for a.e. t ∈ R. In this case, the proof follows very closely the proof of Lemma 2.1, the only
difference being that the exponent p is now larger than, but close to N+1

N−1 .
We claim that, there exists a constant c > 0 (independent of f and t1 < −1 < 1 < t2) such

that, for p close enough to N+1
N−1 and for we have

∥∥a−pψ
∥∥

L∞ � c
∥∥a−pf

∥∥
L∞ . (2.30)

As in the proof of (2.16), we argue by contradiction and we assume that, for a sequence pi

tending to N+1
N−1 , there exists t1,i < −1 < 1 < t2,i , a sequence of functions fi satisfying (2.29)

and a sequence of solutions ψi of Lpi
ψi = fi satisfying

∥∥a−pi ψi

∥∥
L∞ = 1,

while

∥∥a−pi fi

∥∥
L∞ = 0.

We denote by t̄i a point where ‖a−pi ψi‖L∞({t̄i }×SN−1+ )
= 1 and we set

ψ̄i(t, z) = a−pi (t̄i )ψi(t + t̄i , z).

Using elliptic estimates together with Ascoli’s theorem, we can extract subsequences so that the
sequence of functions ψ̄i converges on compacts to ψ̄ solution of

∂2
t ψ̄ + N∂t ψ̄ + (�SN−1 + N − 1)ψ̄ = 0,

with 0 Dirichlet boundary data. In addition using Lemma 2.4 we see that

‖ψ̄‖L∞ = 1

and also that ū satisfies (2.29). Depending on the behavior of the sequences t1,i − t̄i and t2,i − t̄i

the function ψ̄ is defined on (t̄1, t̄2) × SN−1+ where −∞ � t̄1 < −1 < 1 < t̄2 � +∞. A contra-
diction follows at once from the eigenfunction expansion of ψ̄ in the z variables.

Now that (2.30) has been proven, we may use elliptic estimates together with Ascoli’s Theo-
rem to pass to the limit as t1 tends to −∞ and t2 tends to +∞ and get the existence of a solution
of L̄pψ = f which is defined in R × SN−1+ and satisfies

∥∥a−pψ
∥∥

L∞ � c
∥∥a−pf

∥∥
L∞

provided f satisfies (2.29). Elliptic regularity then also implies that ‖a−p∇ψ‖L∞ � c‖a−pf ‖L∞
which immediately yields

∥∥a−pd−1ψ
∥∥ ∞ � c

∥∥a−pf
∥∥ ∞
L L
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since ψ has 0 boundary data. This completes the proof of the result in the case where the func-
tion f (t, ·) is L2-orthogonal to ϕ1, for a.e. t .

We now turn to the general case, namely, we do not assume anymore that f satisfies (2.29).
We look for a solution of L̄pu = f of the form

u(t, z) = u⊥(t, z) + h(t)ϕ1(z)

where u⊥ solves

L̄pu⊥ = f − L̄p(hϕ1) (2.31)

and h solves the ordinary differential equation

∂2
t h + A∂th − εh + γpap−1h =

∫
SN−1+

f (t, ·)ϕ1 dσ

so that the right-hand side of (2.31) satisfies (2.29). The solution of this problem is explicitly
given by

h(t) = w(t)

t∫
−∞

w−2(s)e−As

( s∫
−∞

w(ζ )eAζ f̃ (ζ ) dζ

)
ds

where w = ∂ta. Using the estimates of Lemma 2.5, we find that

∥∥a−ph
∥∥

L∞ � cε−1
∥∥a−pf

∥∥
L∞ .

The proof of the result in the general case then follows at once from the collection of these
results. �
Conclusion of the proof of Proposition 1.1. To find a solution of problem (1.8), we write

φ = φ̄0 + ψ

and we let Ḡp be the operator defined in Lemma 2.6. To conclude the proof, it is enough to find
a function ψ solution of the fixed point problem

ψ = −Ḡp

(
N̄(φ̄0) + Q̄(ψ)

)
, (2.32)

in the space apdL∞(R × SN−1+ ), where

Q̄(ψ) = |φ̄0 + ψ |p − φ̄
p

0 − pφ̄
p−1
0 ψ.

Also, we need to check that φ > 0, but we will see that the solution we obtain is much smaller
than φ̄0 and this will immediately guarantee that φ > 0.

We set
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M̄(ψ) = −Ḡp

(
N̄(φ̄0) + Q̄(ψ)

)
.

Thanks to the careful choice of γ , the function N̄(φ̄0) is L2 orthogonal to ϕ1 for each t and
according to Lemma 2.6 we have

∥∥a−pd−1M̄(0)
∥∥

L∞ � c
∥∥a−pN̄(φ̄0)

∥∥
L∞ � c0. (2.33)

It is easy to see that there exists c > 0 such that, for all p close enough to N+1
N−1∥∥a−pd−1(M̄(ψ2) − M̄(ψ1)

)∥∥
L∞ � cε2

∥∥a−pd−1(ψ2 − ψ1)
∥∥

L∞ (2.34)

for all ψ2,ψ1 ∈ apdL∞(R × SN−1+ ) satisfying

∥∥a−pd−1ψi

∥∥
L∞ � 2c0,

where c0 is the constant which appears in (2.33).
Using the above estimates and the result of Lemma 2.6, the existence of a solution to the fixed

point problem (2.32) can then be obtained by contraction mapping principle in the ball of radius
2c0 in the space apdL∞(R × SN−1+ ), provided that p is chosen larger than (but close enough to)
N+1
N−1 . We will denote by ψp this fixed point.

Observe that |ψp| � aϕ1 is p is close enough to N+1
N−1 . Therefore, φ = φ̄0 + ψp is positive.

This completes the proof of Proposition 1.1. �
3. The bounded domain case: proofs of Theorems 1.2 and 1.3

The proof of our main results relies on two basic ingredients: One is the, already established,
existence of the “basic cells” given by Propositions 1.1 and 1.2 which we will use to construct
approximations to singular solutions. Another important ingredient, on which we elaborate in
the next two subsections, is the analysis of invertibility of Laplace’s operator, for the right-hand
sides exhibiting a controlled singular behavior on a given embedded submanifold of ∂Ω , in the
same spirit to that of Lemma 2.6. Then we will use a fixed point scheme analogous to that in the
proof of Proposition 1.1 to perturb the approximate solutions.

Let Ω be a smooth bounded domain of R
N and S be a smooth embedded submanifold

of ∂Ω ⊂ R
N with dimension k � N − 2. We define

n = N − k.

We start by setting up a suitable description of the space and Laplacian operator in natural coor-
dinates associated to S. While the analysis below is done for k � 1, it applies equally well to the
point-singularity case k = 0, being actually simpler.

3.1. Local coordinate system

In a neighborhood of a point p0 of S, we choose sections Ek+1, . . . ,EN−1 of NS forming an
orthonormal frame the normal bundle of S in ∂Ω . We define Fermi coordinates in some tubular
neighborhood of S in ∂Ω by using the exponential map
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F(p;xk+1, . . . , xN−1) = Exp∂Ω
p

(
N−1∑

j=k+1

xjEj

)
,

for p ∈ S in a neighborhood of p0 and x̄ = (xk+1, . . . , xN−1) in some neighborhood of 0 in R
n−1.

In these coordinates, the induced metric g̊ on ∂Ω can be expanded as

g̊ = gRn−1 + gS +O
(|x̄|),

where gS denotes the induced metric on S.
Finally, to parameterize a neighborhood of a point of ∂Ω in Ω , we denote by EN the normal

(inward pointing) vector field about ∂Ω and define

F̄ (q;xN) = q + xNEN(q)

for q ∈ ∂Ω in a neighborhood of a p0 and xN � 0 in some neighborhood of 0. In these coordi-
nates, the Euclidean metric in Ω can be expanded as

gRN = dx2
N + g̊ +O(xN).

Collecting these two expansions, we conclude that the Laplacian can be expanded as

�RN = �NS +O
(|x̃|)∇2 +O(1)∇ (3.1)

where x̃ = (xk+1, . . . , xN) and �NS = �Rn + �S is the Laplace–Betrami operator on NS, the
normal bundle of S.

3.2. Analysis of the Laplacian in weighted spaces

We want to prove, in the current setting, a result in the spirit as that of Lemma 2.6. To do
this, we need to define weighted spaces on Ω̄ \ S, which have a controlled blow up rate as S

is approached. Unlike those in Lemma 2.6, we now have to choose Hölder spaces, since they
are more suitable to handle with linear perturbations which are second-order operators. Let us
define, for R > 0, half “balls” and “annuli”

B+(R) := {
(p,X) ∈ NS: |X| ∈ (0,R), X · EN > 0

}
and

A+(R1,R2) := {
(p,X) ∈ NS: |X| ∈ (R1,R2), X · EN > 0

}
.

In other words, B+(R) is roughly the “half” of a tubular neighborhood of radius R of the man-
ifold S, or just a half ball in case that S reduces to a isolated points. We consider the following
weighted space of functions defined on B̄+(R) \ S.
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Definition 3.1. The space C�,α
δ (B̄+(R) \ S) is the space of functions u ∈ C�,α

loc (B̄+(R) \ S) for
which the norm

‖u‖C�,α
δ (B̄+(R)\S)

= sup
p∈S

sup
r∈(0,R/2]

r−δ
∥∥u

(
ExpS

p(r·), r·)∥∥C�,α(B̄(1)×(B̄+(2)−B+(1)))
,

is finite.

In other words, if (x̂, x̃) = (x1, . . . , xN) are local coordinates on B+(R), C�,α
δ (B̄+(R) \ S) =

|x̃|δ C̃�,α(B̄+(R) \ S), when, to evaluate the norm in C̃�,α(B̄+(R) \ S) partial derivatives
are computed with respect to the vector fields |x̃|∂xj

instead of ∂xj
. In particular functions

in C�,α
δ (B̄+(R) \ S) are bounded by a constant times |x̃|δ and have their �̃th-order partial deriva-

tives with respect to the vector fields ∂xj
, bounded by a constant times |x̃|δ−�̃, for �̃ � � + α.

We consider now the linear problem

{
�NSu = |x̃|−2f in B̄+(R) \ S,

u = 0 on ∂B̄+(R) \ S.
(3.2)

We have the validity of the following result.

Lemma 3.1. Assume that δ ∈ (1 − n,1). For all R > 0, there exists a unique operator

Gδ,R : C0,α
δ

(
B̄+(R) \ S

) → C2,α
δ

(
B̄+(R) \ S

)
,

such that, for each f ∈ C0,α
δ (B̄+(R) \ S), the function Gδ,R(f ) is a solution of problem (3.2).

Moreover, the norm of Gδ,R is bounded by a constant c > 0 which does not depend on R.

Proof. First we solve for each r ∈ (0,R/2) the problem

{
�NSu = |x̃|−2f in A+(r,R),

u = 0 on ∂A+(r,R),
(3.3)

and call ur its unique solution.
Since δ ∈ (1 − n,1), we can define ϕ∗ to be the unique, positive solution of

{−(
�Sn−1 + n − 1 + (δ − 1)(δ + n − 1)

)
ϕ∗ = 1 in Sn−1+ ,

ϕ∗ = 0 on ∂Sn−1+ .

A direct computation shows that

�NS
(|x̃|δϕ∗

) = −|x̃|δ−2, (3.4)

and the maximum principle employed as in the proof of Lemma 2.6, yields the a priori bound

|ur | � c‖f ‖ 0,α ¯ |x̃|δ,
Cδ (B+(R)\S)
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where c > 0. Then, elliptic estimates applied on geodesic balls of radius r centered at distance
2r from S give the following bound on the gradient of u

|∇ur | � c‖f ‖C0,α
δ (B̄+(R)\S)

|x̃|δ−1,

for some c > 0. Using Arzela’s theorem, we conclude that, for a sequence of radii tending to 0,
the sequence ur converges to a function u which satisfies

|u| � c‖f ‖C0,α
δ (B̄+(R)\S)

|x̃|δ,

and solves (3.2). Again, elliptic estimates applied on geodesic balls of radius r centered at dis-
tance 2r from S yield the bound

‖u‖C2,α
δ (B̄+(R)\S)

� c‖f ‖C0,α
δ (B̄+(R)\S)

,

for some constant c > 0. Uniqueness of the limit u is easy to get and we leave it to the reader.
The proof is concluded. �

Next we will extend the previous result to the entire domain Ω̄ \ S. To do so, we consider a
smooth, positive function

γ : Ω̄ \ S → (0,∞),

which in the above defined local coordinates coincides with |x̃| in a neighborhood of S in Ω̄ .
This function will play the role of the function |x̃| defined in B̄+(R) \ S. For R small enough,
we isometrically identify B̄+(R) \ S with its image in Ω by the exponential map. Accordingly,
we define weighted Hölder spaces in Ω̄ \ S as follows.

Definition 3.2. We let the space C�,α
δ (Ω̄ \ S) be that of functions u ∈ C�,α

loc (Ω̄ \ S) for which the
norm

‖u‖C�,α
δ (Ω̄\S)

= ‖u‖C�,α
δ (B̄+(R)\S)

+ ‖u‖C�,α(Ω̄\B+(R/2)),

is finite.

We consider now the problem

{
�RN u = γ −2f in Ω \ S,

u = 0 on ∂Ω \ S.
(3.5)

We have the following result, extension of Lemma 3.1.

Lemma 3.2. Assume that δ ∈ (1 − n,1). There exists a unique operator

Gδ : C0,α
δ (Ω̄ \ S) → C2,α

δ (Ω̄ \ S),

such that, for each f ∈ C0,α
δ (Ω̄ \ S), the function Gδ(f ) is a solution of problem (3.5).
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Proof. The proof follows from Lemma 3.1, expansion (3.1) and a linear perturbation argument.
First, we claim that the result of Lemma 3.1 remains true in B̄+(R) \ S if the operator �NS is
replaced by �RN and if R is chosen small enough. Indeed, we have from (3.1) and Proposition 3.1

∥∥γ 2(�RN − �NS) ◦ Gδ,R(f )
∥∥
C0,α

δ (B̄+(R)\S)
� cR‖f ‖C0,α

δ (B̄+(R)\S)
.

The claim follows at once from a perturbation argument, provided that R is fixed small enough.
We denote by Ḡδ,R the right inverse for � in B̄+(R) \ S.

We consider a cut-off function ηR which is equal to 1 in B̄+(R/2) \ S and equal to 0 in
Ω̄ \ B̄+(R). We define

f̃ := f − γ 2�RN (ηRu1),

where u1 = Ḡδ,R(f ). Observe that this function is supported in Ω̄ \ B+(R/2). We have that
f̃ ∈ C0,α(Ω̄) and

‖f̃ ‖C0,α(Ω̄) � c‖f ‖C0,α
δ (Ω̄\S)

for some constant c > 0.
Finally, we can solve

{
�RN u2 = γ −2f̃ in Ω,

u2 = 0 on ∂Ω.

We have the bound

‖u2‖C2,α(Ω̄) � c‖f̃ ‖C0,α(Ω̄\S).

The desired result then follows by letting the solution of (3.5) be u = u1 + u2. �
3.3. Proof of Theorems 1.1, 1.2 and 1.3

We are now in a position to provide the proof of Theorems 1.2 and 1.3. The argument goes
along the same lines as that in the proof of Proposition 1.1, now with Lemma 3.2 playing the role
of Lemma 2.6.

We keep the notations of the previous sections as far as local coordinates close to S are con-
cerned.

Proof of Theorem 1.2 (and Theorem 1.1) in the case where p = n+1
n−1 . We assume that S is

either a finite number of points of ∂Ω , in which case k = 0, or an embedded k-dimensional
submanifold of ∂Ω , for k � N − 2. For all ε > 0 small enough, we define

uε = ηRεn−1u1(εx̃),

where u1 is the solution provided by Proposition 1.3 and ηR is a cut-off function which equals
1 in B̄+(R) and 0 in Ω̄ \ B+(2R). We assume that R > 0 is fixed small enough. Note that, we
have uε = 0 on ∂Ω \ S.



M. del Pino et al. / Journal of Functional Analysis 253 (2007) 241–272 267
The problem we want to solve then reads

{
�(uε + v) + |uε + v| n+1

n−1 = 0 in Ω ,

v = 0 on ∂Ω \ S,

where we also require that uε +v > 0 in Ω . Let us fix δ ∈ (1−n,2−n). By virtue of Lemma 3.2,
we can rewrite this equation as the fixed point problem

v = −Gδ

(
γ 2(�uε + |uε + v| n+1

n−1
))

. (3.6)

We have the validity of the following fact: there is a constant c0 > 0 such that

∥∥γ 2(�uε + u
n+1
n−1
ε

)∥∥
C0,α

δ (Ω̄\S)
� c0

(
log(1/ε)

) 1−n
2 . (3.7)

This result is a consequence of expansion (3.1) and a direct computation using the asymptotic
properties of u1 in Proposition 1.2.

Observe that we have chosen δ < 2 −n since γ 2(�uε +u
n+1
n−1
ε ) is bounded by a constant times

|x̃|2−n near S, and δ < 2 − n guarantees that this function belongs to C0,α
δ (Ω̄ \ S).

A second estimate we can directly check is the following: Assume that δ ∈ (1 − n,2 − n) is
fixed. There exists a constant c > 0 such that

∥∥γ 2(|uε + v2| n+1
n−1 − |uε + v1| n+1

n−1
)∥∥

C0,α
δ (Ω̄\S)

� c
(
log(1/ε)

)−1‖v2 − v1‖C0,α
δ (Ω̄\S)

(3.8)

for all v2, v1 ∈ C2,α
δ (Ω̄ \ S) satisfying

‖vi‖C2,α
δ (Ω̄\S)

� 2c0
(
log(1/ε)

) 1−n
2 .

The above estimates allow an application of contraction mapping principle in the ball of radius

2c0(log(1/ε))
1−n

2 in C2,α
δ (Ω̄ \ S) to predict existence of a solution to problem (3.6), which we

denote by vε .
Since δ > 1−n, we have |vε| � uε near S and hence the solution u = uε +vε is singular along

S and is positive near S. The maximum principle then implies that u > 0 in Ω . This completes
the proof of Theorem 1.2 in the case p = n+1

n−1 . �
When S is the union of several connected components, one can choose different concentration

parameters ε1, . . . , εk for each connected component as far as they are commensurable, namely

εj = aj ε

where aj > 0 are fixed and ε tends to 0. The result holds for any choice of the aj and this shows
that the set of solutions with fixed singular set S is at least k-dimensional, if k is the number of
connected components of S. More can be done when the dimension of S is positive since in this
case we can even choose ε to be a function on S. Namely



268 M. del Pino et al. / Journal of Functional Analysis 253 (2007) 241–272
ε(p) = a(p)ε

where a(p) is a smooth positive function on S and ε is small. It is easy to check that the proof
goes through in this case and also that two different functions give rise to two different solutions
and hence the space of solutions with fixed singular set is now infinite-dimensional.

The proof of Theorem 1.3 in the case where p = n+1
n−1 . This proof uses similar arguments

together with an induction process. By assumption, A is closed and contains a sequence of k-
dimensional mutually disjoint submanifolds Si , i ∈ N such that

⋃
i Si is dense in A. We define

inductively the sequence of functions ui which are solutions of

�ui + u
n+1
n−1
i = 0 (3.9)

in Ω , satisfy ui = 0 on ∂Ω −⋃i
j=0 Sj and are singular along

⋃i
j=0 Sj . Assume for example that

ui−1 has already been constructed, then, we define

ũi = ui−1 + ηRi+1ε
n−1
i u1(εi x̃Si

)

where u1 is the solution provided by Proposition 1.3, Ri is fixed small enough less than half
the distance from Si to

⋃i−1
j=0 Sj and εi > 0 is as small as we want. Here x̃Si

corresponds to the
variable x̃ associated to Si .

Applying a perturbation argument as above, we can perturb ũi into a solution ui = ũi + vi of
(3.9) for some function vi ∈ C2,α

δ (Ω̄ \ ⋃i
j=0 Sj ). Taking εi small enough, we can ensure that

‖ui − ui−1‖L1(Ω) � 2−i , (3.10)∥∥dist(·, ∂Ω)
n−1
n+1 |ui − ui−1|

∥∥
L

n+1
n−1 (Ω)

� 2−i (3.11)

and

∥∥dist(·, ∂Ω)−δvi

∥∥
L∞(Ω)

� 2−i (3.12)

where δ ∈ (1 − n,2 − n) is fixed. Clearly (3.10) ensures that the sequence (ui)i converges
in L1(Ω) to a function u. Moreover (3.10) and (3.11) imply that u is a very weak solution
of (1.1). Finally, (3.12) implies that the nontangential limit of u at any point of

⋃∞
j=0 Sj is equal

to ∞. �
The proof of the Theorems in the case where p > n+1

n−1 . Let us briefly comment on the modi-
fications which are necessary to handle the case where p > n+1

n−1 is close to this value. As above

δ ∈ (1 − n,2 − n) is fixed and p is close enough to n+1
n−1 to ensure that

− 2

p − 1
< δ <

p − 3

p − 1

and n − p−3 � p−3 − δ > 0. This time we define

p−1 p−1
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uε = ηRε
− 2

p−1 u1(x̃/ε)

where ε is close to 0 and u1 is the solution obtained in Proposition 1.1 (instead of u1 being the
solution which is defined in Proposition 1.2) and we obtain (provided p is close enough to n+1

n−1 )

∥∥γ 2(�uε + up
ε

)∥∥
C0,α

δ (Ω̄\S)
� c

(
ε
n− p−3

p−1 + ε
p−3
p−1 −δ) � cpε

p−3
p−1 −δ

,

instead of (3.7), where cp > 0 tends to 0 as p tends to n+1
n−1 . While, using (1.13), we see that (3.8)

can be replaced by

∥∥γ 2(|uε + v2|p − |uε + v1|p
)∥∥

C0,α
δ (Ω̄\S)

� c‖φp‖C2(SN−1+ )
‖v2 − v1‖C0,α

δ (Ω̄\S)

for all ε small enough and for all v2, v1 ∈ C2,α
δ (Ω̄ \ S) satisfying

‖vi‖C2,α
δ (Ω̄\S)

� 2cpε
p−3
p−1 −δ

.

Above, the constant c > 0 does not depend on p and hence, to obtain a contraction mapping, it
is enough to take p close enough to n+1

n−1 to ensure that ‖φp‖C2(SN−1+ )
is as small as needed.

The remaining of the analysis is unchanged and we leave the details to the reader. The only
substantial difference between the case where p = n+1

n−1 and the case where p is larger than this

value is that, when p > n+1
n−1 is close to this value, in the proof of Theorem 1.3, in addition to

the properties (3.10) to (3.12) which ensure the convergence of the sequence of solutions in the
appropriate spaces, we may also ask that the sequence converges in W 1,q (Ω), for some q close
enough to 1. The proofs are concluded. �
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Appendix A

Proof of Lemma 2.5. Analysis at −∞. Recall that

δ− = 1

2

(√
A2 + 4ε − A

)
.

It follows from standard ODE techniques that there is a unique solution of (2.23) which can be
written as

âp = a∞eδ−t
(
1 + o(1)

)
,
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and which is defined in some interval (−∞,−t̂/ε), provided t̂ > 0 is fixed (independently
of p) large enough. Observe that âp and ap only differ by a shift of time, so the study of âp and
ap are equivalent. If we look for a solution of (2.23) of the form âp(t) = a∞(eδ−t + w) then w

is a solution of the fixed point problem

w = −εeδ−t

t∫
−∞

e−2δ−s−As

( s∫
−∞

eδ−ζ+Aζ
(
eδ−ζ + w(ζ )

)p
dζ

)
ds

for which it is easy to find a fixed point in the set of functions defined in (−∞,−t̂/ε) and
satisfying |w| � 1

2eδ−t , provided t̂ is fixed large enough (independently of p). Using the integral
equation satisfied by w, one immediately estimates the derivative of âp and check that

∂t âp = δ−a∞eδ−t
(
1 + o(1)

)
and this, together with the fact that δ− = ε + O(ε2) implies that (2.24) and (2.26) hold
in (−∞,−t̄/ε), at least for p close enough to N+1

N−1 , provided t̄ is fixed large enough.
Analysis at +∞. We define

δ̄± = 1

2

(−A ±
√

A2 − 4(p − 1)ε
)

to be the characteristic roots of

(
∂2
t + A∂t + (p − 1)ε

)
w = 0,

the homogeneous equation associated to the linearized ODE at a∞. Arguing as above, it is easy
to check that there exists a unique solution of (2.23) such that

āp = a∞
(
1 − eδ̄−t

(
1 + o(1)

))
which is defined in (t̄p,+∞) and satisfies āp(t̄p) = 0. Indeed, we look for a solution of the form

āp(t) = a∞(1 − eδ̄−t + w), we find out that w satisfies

(
∂2
t + A∂t + (p − 1)ε

)
w + εQ

(−eδ̄−t + w
) = 0

where Q(w) = |1 + w|p − 1 − pw. A solution of this equation can be obtained using a fixed
point argument and the integral formula

w = −εeδ̄+t

+∞∫
t

e−2δ̄+s−As

( +∞∫
s

eδ̄+ζ+Aζ Q
(−eδ̄−ζ + w(ζ )

)
dζ

)
ds.

We leave the details to the reader. It is easy to check that, in the plane (a, ∂ta), the curve described
by t 
→ āp(t) is close to the straight line ∂ta = N(a∞ − a), as p tends to N+1

N−1 , since δ̄− tends to

−N as p tends to N+1 .

N−1
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Using this information together with the phase plane analysis, we see that the solution ap

is trapped in the region described by a > 0, ∂ta > 0 and is below the curve {(āp(t), ∂t āp(t)):
t � t̃p}. In particular, this implies that ap < a∞ and also that ∂tap > 0, provided p is close
enough to N+1

N−1 . This already implies that (2.25) holds.
We are now in a position to give a precise expansion of the solution ap when t tends to ∞.

Assume that p is close enough to N+1
N−1 so that ap � a∞ and δ̄+ > δ̄−. Certainly, since ap �= āp it

can be expanded as

ap = a∞ − cpeδ̄+t
(
1 +O

(
e−ξpt

))
for some positive constants cp > 0 and ξp > 0, as t tends to +∞. Up to a shift of time, we can
replace ap by ãp which this time is normalized so that

ãp = a∞
(
1 − eδ̄+t

(
1 +O

(
e−ξpt

)))
at +∞. We now write ãp = a∞(1 − eδ̄+t + w) and choose t̃p such that

eδ̄+ t̃p = θ

where 0 < θ � 1 is fixed independently of p. Assume that, for t � t̃p ,

|w| � 1

2
eδ̄+t

and also that w tends to 0 faster than eδ̄+t as t → ∞. We write w as a solution of a fixed point
problem and with little work, we find that

w = εeδ̄−t

t∫
t̃p

e−2δ̄−s−As

( +∞∫
s

eδ̄−ζ+Aζ Q
(−eδ̄+ζ + w(ζ )

)
dζ

)
ds + λpeδ̄−t

where the constant λp has to be determined. Using the a priori bound in Lemma 2.3 which
implies that

(∂t ãp)2 � εã2
p,

we can estimate

|λp|eδ̄− t̃p � cε1/2

for some constant c > 0, independent of p. Therefore, we conclude that

ãp − a∞ = −a∞
(
eδ̄+t +O

(
epδ̄+t

) +O
(
λpeδ̄−t

))
,

and also that
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∂t ãp = −δ̄+a∞
(
eδ̄+t +O

(
epδ̄+t

) + (
δ̄+)−1O

(
λpeδ̄−t

))
,

for all t � 2t̃p . Observe that for t � 2t̃p we have

(
δ̄+)−1

λpeδ̄−t � eδ+t

provided ε is small enough (in other words, p close enough to N+1
N−1 ). The estimates for a∞ − ap

and ∂tap needed to prove (2.26) when t � t̄/ε (for some t̄ fixed large enough) follow at once from
the corresponding estimates which can be derived for ãp and ∂ãp , using the above expansions.
We leave the details to the reader.

Finally, when t ∈ [−t̄/ε, t̄/ε], we simply observe that we already know that

1

c
εa∞ � ap � c

1 + c
εa∞

in this range and also that 1
c̄
εa∞ � ∂tap(±t̄/ε) � c̄εa∞ by the previous analysis. We also ob-

serve that, if ∂tap achieves a local maximum or minimum in (−t̄/ε, t̄/ε), then ∂2
t ap = 0 at this

point and hence we obtain from (2.23) that

A∂tap = εap − γ a
p
p

at this point. Therefore, there exists c̃ > 0 independent of p such that

1

c̃
εa∞ � ∂tap � c̃εa∞,

for all t ∈ [−t̄/ε, t̄/ε], provided p is close to N+1
N−1 . This completes the proof of (2.26). �
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