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Abstract. We consider the elliptic problem ∆u + up = 0, u > 0 in an
exterior domain, Ω = R

N \ D under zero Dirichlet and vanishing con-
ditions, where D is smooth and bounded, and p is supercritical, namely
p > N+2

N−2 . We prove that this problem has infinitely many solutions with

slow decay O(|x|−
2

p−1 ) at infinity. In addition, a fast decay solution ex-
ists if p is close enough to the critical exponent. If p differs from certain
sequence of resonant values which tends to infinity, then the Dirichlet
problem is also solvabe in a bounded domain Ω with a sufficiently small
spherical hole.

Keywords. Critical Sobolev exponent, supercritical elliptic problems,
exterior domains.

1. Introduction and statement of the main results

A basic model of nonlinear elliptic boundary problem is the Lane-Emden-
Fowler equation,

∆u+ up = 0 , u > 0 in Ω , (1.1)

u = 0 on ∂Ω , (1.2)

where Ω is a domain with smooth boundary in R
N and p > 1. Discovered by

Lane, an astrophysicist, in the mid 19th century, the role of this and related
equations has been broad outside and inside mathematics. While simple
looking, the structure of the solution set of this problem may be surprisingly
complex. Much has been learned over the last decades, particularly thanks
to the development of techniques from the calculus of variations, see [23],
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but many basic issues remain far from understood. Among those, solvability
above criticality is a paradigm of the difficulties arising in solving nonlinear
elliptic PDEs. A central, intriguing characteristic of this problem is the role
played by the critical exponent p = N+2

N−2 in the solvability question. When
Ω is bounded and 1 < p < N+2

N−2 , compactness of Sobolev’s embedding yields
a solution as a minimizer of the variational problem

inf
u∈H1

0 (Ω)\{0}

∫
Ω |∇u|2

(∫
Ω |u|p+1

) 2
p+1

.

When p ≥ N+2
N−2 , compactness is lost, and this minimization procedure fails,

as existence does in general: Pohozaev [21] discovered in 1965 that no solu-
tion exists if the domain is strictly star-shaped. In 1975, Kazdan and Warner
[15] observed that in strong contrast, if Ω is an annulus, Ω = {a < |x| < b},
compactness holds for any p > 1 within the class of radial functions, and a
solution can again be found variationally, regardless the value of p. On the
other hand, the question of solvability in a non-symmetric annular domain
for powers above critical remains notoriously open until today.

The critical case p = N+2
N−2 can still be handled by variational ar-

guments, since the loss of compactness of Sobolev’s embedding is well-
understood. In the classical paper [3], Brezis and Nirenberg considered the
critical case p = N+2

N−2 and proved that compactness, and hence solvabil-
ity, is restored by the addition of a suitable linear term. Coron [4] used
a variational approach to prove that (1.1)–(1.2) is solvable for p = N+2

N−2

if Ω exhibits a small hole. Rey [22] established existence of multiple solu-
tions if Ω exhibits several small holes. Bahri and Coron [1] established, by
deep topological analysis, that solvability holds for p = N+2

N−2 whenever Ω
has a non-trivial topology. The question by Rabinowitz, stated by Brezis
in [2], whether the presence of non-trivial topology in the domain suffices
for solvability in the supercritical case p > N+2

N−2 , was answered negatively
by Passaseo [19] by means of an example for N ≥ 4 and p > N+1

N−3 . If Ω
is a Coron’s type domain, namely one with a sufficiently small hole, then
solvability persists slightly above the critical exponent, say p = N+2

N−2 + ε for
all small ε > 0. In such a case, a solution with a two-bubble pattern which
blows-up as ε→ 0+ is present, see [8, 9].

Except for results in domains involving symmetries or exponents close
to critical, e.g. [8, 9, 13, 18, 20], solvability of (1.1)–(1.2) in the supercritical
case has been a widely open matter, particularly since variational machinery



Vol. 74 (2006) Nonlinear Elliptic Problems Above Criticality 315

no longer applies, at least in its naturally adapted way for subcritical or
critical problems.

Methods other than variational analysis are therefore required. In this
paper we survey recent progress in the resolution of supercritical problems.
We shall concentrate next in Problem (1.1)–(1.2) for exponents p above
critical in a exterior domain. Let D be a bounded domain with smooth
boundary. We consider the problem of finding classical solutions of the
problem

∆u+ up = 0 , u > 0 in R
N \ D̄ , (1.3)

u = 0 on ∂D , lim
|x|→+∞

u(x) = 0 (1.4)

where p > N+2
N−2 . The supercritical case is meaningful in this problem since

Pohozaev’s identity does not pose obstructions for its solvability. To fix
ideas, let us consider case the simple case of D = B(0, 1) and look for
radially symmetric solutions to the problem u = u(r), r = |x|. The equation

∆u+ up = 0 (1.5)

then corresponds to the ODE

u′′ +
N − 1
r

u′ + up = 0 . (1.6)

This equation can be analyzed through phase plane analysis after a trans-
formation introduced by Fowler [12] in 1931: v(s) = r

2
p−1u(r), r = es, which

transforms equation (1.6) into the autonomous ODE

v′′ + αv′ − βv + vp = 0 (1.7)

where

α = N − 2 − 4
p− 1

, β =
2

p− 1

(

N − 2 − 2
p− 1

)

. (1.8)

Since α and β are positive for p > N+2
N−2 , the Hamiltonian energy

E(v) =
1
2
v̇2 +

1
p+ 1

vp+1 − β

2
v2

strictly decreases along trajectories. Using this it is easy to see the existence
of a heteroclinic orbit which connects the equilibria (0, 0) and (0, β

1
p−1 ) in

the phase plane (v, v′). These equilibria correspond respectively to a saddle
point and an attractor. A solution v(s) of (1.7) corresponding this orbit
satisfies v(−∞) = 0, v(+∞) = β

1
p−1 and w(r) = r

− 2
p−1 v(log r) solves (1.6)
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and is bounded at r = 0. Then all radial solutions of (1.5) defined in all
R
N have the form

wλ(x) := λ
2

p−1w(λ|x|), λ > 0. (1.9)

We denote in what follows by w(x) the unique positive radial solution

∆w + wp = 0 in R
N , w(0) = 1. (1.10)

Coming back to the analysis for (1.7), we see in phase plane (v, v′) the
presence of a continuum of orbits that begin on the axis v = 0 as close to
the equilibrium (0, 0) as we please, which eventually end in the attractor
(0, β

1
p−1 ). If v(s) is a solution associated to one of these orbits, then a

suitable translation makes it defined in [0,∞) with v(0) = 0. Its associated
u(r) then satisfies u(1) = 0 and represents a positive solution of problem
(1.3)–(1.4) with D = B(0, 1). The closer the starting point of the orbit is
taken from (0, 0), the smaller the associated v(s) gets on compact subsets
of (0,∞), at the same time getting close to the heteroclinic, more precisely
the solution u(|x|) is close to some wλ for small λ > 0. The solutions u
built this way are small in their entire domain and all have the uniform
slow decay

u(x) = β
1

p−1 |x|−
2

p−1 (1 + o(1)) as |x| → ∞,

with β given by (1.8). This analysis establishes the existence of a one-
parameter, asymptotically vanishing continuum of radial solutions of prob-
lem (1.3)–(1.4) with D = B(0, 1) with slow decay.

We establish in Theorem 1.1 below that the above mentioned phenom-
enon is very robust. In fact, we have, for arbitrary domain D the existence
of this continuum of slow decay solutions, in particular proving the striking
fact that the supercritical exterior problem (1.3)–(1.4) is always solvable.

Theorem 1.1 ([6, 7]). For any p > N+2
N−2 there is a continuum of solutions

uλ, λ > 0, to Problem (1.3)–(1.4), such that

uλ(x) = β
1

p−1 |x|−
2

p−1 (1 + o(1)) as |x| → ∞ (1.11)

and uλ(x) → 0 as λ→ 0, uniformly in R
N \ D.

In the radial case, the analysis explained above makes it natural to seek
for a solution uλ in the form of a small perturbation of wλ. This naturally
leads to construct an inverse of the linearized operator ∆+pwp−1

λ . in R
N \D

under Dirichlet boundary conditions. Since wλ itself is small on bounded
sets for small λ, such an inverse can be found as a small perturbation of
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an inverse of this operator in entire R
N . By scaling, it suffices to carry out

that analysis for λ = 1. This inverse indeed exists for p ≥ N+1
N−3 , however if

N+2
N−2 < p < N+1

N−3 the linearized operator is not surjective, having a range
orthogonal to the generators of translations. This suggests that a further
adjustment of the location of the origin may produce a family of solutions
as in Theorem 1.1. As we shall see, this is indeed the case.

The invertibility analysis for p ≥ N+1
N−3 is in strong analogy with one

carried out in [17] in the construction of singular solutions with prescribed
singularities for N

N−2 < p < N+2
N−2 in bounded domains. At the radial level,

supercritical and subcritical in this range are completely dual: In equation
(1.7) β remains positive but α becomes negative. The effect of this is basi-
cally to make the phase portraits equivalent, just with arrows inverted in
the orbits, with obvious dual consequences. For instance, inner-subcritical
in a ball has a classical solution, which in the phase diagram is represented
by the unstable manifold of (0, 0). Correspondingly, in the supercritical
case, to the orbit representing the stable manifold of (0, 0), it corresponds
to the unique solution w∗ to the exterior problem with fast decay, namely
w∗ satisfies

∆w∗ + wp∗ = 0 , w∗ > 0 in R
N \ B̄1(0) , (1.12)

w∗ = 0 on ∂B1(0) , lim sup
|x|→+∞

|x|2−Nw∗(x) < +∞ , (1.13)

We do not know if for arbitrary D a solution with this property in R
N \ D

actually exists. We are able to establish that this is the case for supercritical
powers sufficiently close to critical.

Theorem 1.2 ([7]). There exists a number p0 > N+2
N−2 such that for any

N+2
N−2 < p < p0, problem (1.3)–(1.4) has a fast decay solution.

Given that we are finding solutions in exterior domains which decay
at infinity, it is reasonable to ask whether we can also find solutions in
bounded domains with small holes. We consider next Problem (1.1)–(1.2)
for exponents p above critical in a Coron’s type domain: one exhibiting a
small hole. Thus we assume in what follows that the domain Ω has the form

Ω = D \Bδ(Q) (1.14)

where D is a bounded domain with smooth boundary, Bδ(Q) ⊂ D and
δ > 0 is to be taken small. Thus we consider the problem of finding classical
solutions of

∆u+ up = 0 , u > 0 in D \Bδ(Q) , (1.15)
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u = 0 on ∂D ∪ ∂Bδ(Q) . (1.16)
Our main result states that there is a sequence of resonant exponents,

N + 2
N − 2

< p1 < p2 < p3 < · · · , with lim
k→+∞

pk = +∞ (1.17)

such that if p is supercritical and differs from all elements of this sequence
then Problem (1.3)–(1.4) is solvable whenever δ is sufficiently small.

Theorem 1.3 ([11]). There exists a sequence of the form (1.17) such that
if p > N+2

N−2 and p �= pj for all j, then there is a δ0 > 0 such that for any
δ < δ0, Problem (1.15)–(1.16) possesses at least one solution.

In the background of our result is problem (1.12). The solutions we
find have a profile similar to w suitably rescaled. More precisely, Let us
observe that

wδ(x) = δ
− 2

p−1w(δ−1|x−Q|) (1.18)

solves uniquely the same problem with B1(0) replaced with Bδ(Q). The
idea is to consider wδ as a first approximation for a solution of Problem
(1.1)–(1.2), provided that δ > 0 is chosen small enough. What we shall
prove is that an actual solution of the problem, which differs little from wδ
does exist. To this end, it is necessary to understand the linearized operator
around wδ.

The rest of this paper presents the main elements involved in the proofs
of the above results. Full details are provided in the articles [6, 7, 11].

2. The Proof of Theorem 1.1 for p ≥ N+1
N−3

2.1. The fixed point argument

We look for a solution of Problem (1.3)–(1.4) of the form u = ηwλ + φ,
where η is a smooth cut-off function with η(x) = 0 for |x| ≤ R, η(x) = 1
for |x| ≥ R+ 1 and D ⊂ B(0, R). This u solves (1.3)–(1.4) if φ satisfies






∆φ+ pwp−1
λ φ = N(φ) + E in R

N \ D̄
φ = 0 on ∂D

φ(x) → 0 as |x| → +∞
(2.1)

where

N(φ) = −(ηwλ + φ)p + (ηwλ)p + p(ηwλ)p−1φ+ p(1 − ηp−1)wp−1
λ φ,
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and

E = −∆(ηwλ) − (ηwλ)p.

We write the above problem in fixed point form on the basis of the existence
of a right inverse for the linear operator ∆ + pwp−1

λ in suitable weighted
L∞-spaces. Thus we consider the linear problem






∆φ+ pwp−1
λ φ = h in R

N \ D̄
φ = 0 on ∂D

φ(x) → 0 |x| → +∞,

(2.2)

and the norms

‖φ‖∗,λ = λσ sup
|x|≤ 1

λ

|x|σ |φ(x)| + λ
2

p−1 sup
|x|≥ 1

λ

|x|
2

p−1 |φ(x)|

‖h‖∗∗,λ = λσ sup
|x|≤ 1

λ

|x|2+σ |h(x)| + λ
2

p−1 sup
|x|≥ 1

λ

|x|2+
2

p−1 |h(x)|.

We have the validity of the following result.

Lemma 2.1. Assume that N ≥ 4 and p ≥ N+1
N−3 . Then there exists a constant

C > 0 such that for all sufficiently small λ > 0 and all h with ‖h‖∗∗,λ <
+∞, Problem (2.2) has a solution φ = Tλ(h) such that Tλ is a linear map
and

‖Tλ(h)‖∗,λ ≤ C‖h‖∗∗,λ.

By this result, we have a solution to (2.1) if φ solves the fixed point
problem

φ = Tλ(N(φ) + E). (2.3)

We can check the estimates

‖N(φ)‖∗∗,λ ≤ C(λ2‖φ‖∗,λ + λ−
2

p−1‖φ‖2
∗,λ + λ−2‖φ‖p∗,λ), (2.4)

and

‖E‖∗∗,λ ≤ Cλ
2

p−1
+σ
. (2.5)

Let φ0 = Tλ(E). From Lemma 2.1, and (2.5), we get ‖φ0‖∗,λ ≤ Cλ
2

p−1
+σ.

Let us write φ = φ0 + φ1. Then solving equation (2.3) is equivalent to
solving the fixed point problem φ = Tλ(N(φ0 + φ)). We consider the set

F = {φ ∈ L∞(RN \ D) / ‖φ‖∗,λ ≤ ρλ
2

p−1 }
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where ρ > 0 is going to be fixed independently of λ, and the operator

A(φ) = Tλ(N(φ0 + φ)).

Next we show that A has a fixed point in F . For φ ∈ F we have

‖A(φ)‖∗,λ ≤ C‖N(φ0 + φ)‖∗∗,λ (2.6)

≤ C(λ2‖φ0 + φ‖∗,λ + λ
− 2

p−1‖φ0 + φ‖2
∗,λ + λ−2‖φ0 + φ‖p∗,λ).

(2.7)

Thus for a fixed sufficiently small ρ and all small λ we get

‖A(φ)‖∗,λ ≤ Cλ
2

p−1 (ρλ2 + λ2σ + λpσ + ρ2 + ρp) ≤ ρλ
2

p−1 . (2.8)

Hence A(F) ⊂ F for all small λ.

On the other hand, we also have that A is a contraction mapping in
F . Let us take φ1, φ2 in F . It is straightforward to check that

‖A(φ1) −A(φ2)‖∗,λ ≤ C (ρ+ λ2) ‖φ1 − φ2 ‖∗,λ . (2.9)

Thus A is a contraction mapping in F , and hence a fixed point in this
region indeed exists. The solutions uλ built this way satisfy the requirement
of Theorem 1.1. �

2.2. The proof of Lemma 2.1
The proof is based on a similar result valid in entire R

N : Let us consider
the problem

∆φ+ pwp−1
λ φ = h in R

N . (2.10)

Lemma 2.2. Assume N ≥ 4 and p ≥ N+1
N−3 . For 0 < σ < N−2 there exists a

constant C > 0 such that for any λ > 0 and h with ‖h‖∗∗,λ < +∞, equation
(2.10) has a solution φ = Tλ(h) such that Tλ defines a linear map and

‖Tλ(h)‖∗,λ ≤ C‖h‖∗∗,λ.

Before proving this we proceed to the

Proof of Lemma 2.1. We shall solve (2.2) by writing φ = ηϕ + ψ where η
is a smooth cut-off function with

η(x) = 0 for |x| ≤ R0, η(x) = 1 for |x| ≥ R0 + 1

and R0 > 0 is fixed so that D ⊆ BR0 . We also set ζ(x) = η(x/2), so that
ηζ = ζ.
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To find a solution of (2.2) it is sufficient to solve the following system

∆ϕ+ pwp−1
λ ϕ = −pζwp−1

λ ψ + ζh in R
N (2.11)






∆ψ + p(1 − ζ)wp−1
λ ψ = −2∇η∇ϕ− ϕ∆η + (1 − ζ)h in R

N \ D̄
ψ = 0 on ∂D

ψ(x) → 0 |x| → +∞.

(2.12)

We assume ‖h‖∗∗,λ <∞. Let us consider the Banach space X consisting of
functions ϕ such that ‖ϕ‖∗,λ <∞ and that are Lipschitz on E = B2R0 \BR0

equipped with the norm

‖ϕ‖X = ‖ϕ‖∗,λ + ‖∇ϕ‖L∞(E).

Given ϕ ∈ X we solve first (2.12) and denote by ψ(ϕ, h) the solution,
which is clearly linear in its argument. Then note that ζψ is well defined
in R

N and that |ψ| ≤ C
|x|N−2 for large |x| so hence the right hand side of

(2.11) has a finite ‖ ‖∗∗,λ norm. We obtain a solution to the system, which
defines a linear operator in h, if we solve the fixed point problem

ϕ = Tλ(−pζwp−1
λ ψ(ϕ, h) + ζh ) ≡ F (ϕ) .

where Tλ is the operator in Propoposition 2.2. Then we have the estimate

‖F (ϕ)‖∗,λ ≤ C ‖ − pζwp−1
λ ψ + ζh‖∗∗,λ ≤ C(‖ζwp−1

λ ψ‖∗∗,λ + ‖h‖∗∗,λ).
(2.13)

But

‖ζwp−1
λ ψ‖∗∗,λ = λσ sup

R1≤|x|≤ 1
λ

(
|x|2+σwλ(x)p−1|ψ(x)|

)

+ λ
2

p−1 sup
|x|≥ 1

λ

(
|x|2+σ+ 2

p−1wλ(x)p−1|ψ(x)|
)
.

Using equation (2.12) and the fact that wλ(x) → 0 uniformly on compact
sets we have

|ψ(x)| ≤ C

|x|N−2
(‖ϕ‖X + ‖h‖∗∗,λ). (2.14)

Using this, and the asymptotic behavior of w(x) we then obtain the estimate

‖ζwp−1
λ ψ‖∗∗,λ ≤ Cλγ(‖ϕ‖X + ‖h‖∗∗,λ).
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where γ = min(2 + σ,N − 2). This together with (2.13) yields

‖F (ϕ)‖∗,λ ≤ C(λγ‖ϕ‖X + ‖h‖∗∗,λ). (2.15)

While, using elliptic estimates, we get

‖∇F (ϕ)‖L∞(E) ≤ C(‖F (ϕ)‖∗,λ + ‖h‖∗∗,λ + λγ(‖ϕ‖X + ‖h‖∗∗,λ)).

This and (2.15) imply that

‖F (ϕ)‖X ≤ C(λγ‖ϕ‖X + ‖h‖∗∗,λ).

It follows that for sufficiently small λ, F defines a contraction mapping of
the region

{ϕ ∈ X | ‖ϕ‖X ≤ 2C‖h‖∗∗,λ}.
A unique fixed point thus exists in this region, which inherits a solution
with the required properties. The proof of Lemma 2.1 is concluded. �

2.3. The proof of Lemma 2.2
By scaling out λ and using the definitions of the norms, we just need to
prove the result for λ = 1. We denote the norms involved simply by ‖ · ‖∗
and ‖ · ‖∗∗. Let us consider h with ‖h‖∗∗ < +∞ and decompose it in the
form

h(x) =
∞∑

k=0

hk(r)Θk(θ), r > 0, θ ∈ SN−1 (2.16)

where Θk, k ≥ 0 are eigenfunctions of the Laplace-Beltrami operator in
SN−1, normalized so that they constitute an orthonormal system in L2

(SN−1). We take Θ0 to be a positive constant, associated to the eigenvalue
0 and Θi, 1 ≤ i ≤ N is an appropriate multiple of xi

|x| which has eigenvalue
λi = N − 1, 1 ≤ i ≤ N . We recall that the set of eigenvalues is given by
{j(N − 2 + j) | j ≥ 0}.

We look for a solution φ to (2.10) in the form

φ(x) =
∞∑

k=0

φk(r)Θk(θ) . (2.17)

Then φ satisfies (2.10) if and only if

φ′′k +
N − 1
r

φ′k +
(

pwp−1 − λk
r2

)

φk = hk, for all r > 0, for all k ≥ 0.

(2.18)
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To construct solutions of this ODE we need to consider two linearly inde-
pendent solutions z1,k, z2,k of the homogeneous equation

φ′′k +
N − 1
r

φ′k +
(

pwp−1 − λk
r2

)

φk = 0, r ∈ (0,∞). (2.19)

Once these generators are identified, the general solution of the equation
can be written through the variation of parameters formula as

φ(r) = z1,k(r)
∫
z2,khkr

N−1dr − z2,k(r)
∫
z1,khkr

N−1dr

where the symbol
∫

designates arbitrary antiderivatives, which we will spec-
ify in the choice of the operators. It is helpful to recall that if one solution
z1,k to (2.19) is known, a second, linearly independent solution can be found
in any interval where z1,k does not vanish as

z2,k(r) = z1,k(r)
∫
z1,k(r)−2r1−Ndr . (2.20)

One can get the asymptotic behaviors of any solution z as r → 0 and as
r → +∞ by examining the indicial roots of the associated Euler equations.
It is known that r2w(r)p−1 → β as r → +∞ where

β =
2

p− 1

(

N − 2 − 2
p− 1

)

.

Thus we get the limiting equation, for r → ∞,

r2φ′′ + (N − 1)rφ′ + (pβ − λk)φ = 0, (2.21)

while as r → 0,

r2φ′′ + (N − 1)rφ′ − λkφ = 0. (2.22)

In this way the respective behaviors will be ruled by z(r) ∼ r−µ as r → +∞
where µ solves

µ2 − (N − 2)µ+ (pβ − λk) = 0

while as r → 0 µ satisfies

µ2 − (N − 2)µ− λk = 0.

Next we shall construct each of the φk’s in the expansion (2.17), in such a
way that they define bounded linear operators of hk in the norms consid-
ered. This method is reminiscent to that in [17], see also [16].
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2.3.1. The construction of φ0.

Lemma 2.3. Let k = 0 and p > N+2
N−2 . Then equation (2.18) has a solution

φ0 which depends linearly on h0 and satisfies

‖φ0‖∗ ≤ C‖h0‖∗∗. (2.23)

Proof. For k = 0 the possible behaviors at 0 for a solution z(r) to (2.19)
are simply

z(r) ∼ 1, z(r) ∼ r2−N

while at +∞ this behavior is more complicated. The indicial roots of (2.22)
are given by

µ0± =
N − 2

2
± 1

2

√
(N − 2)2 − 4pβ.

The situation depends of course on the sign of D = (N − 2)2 − 4pβ. It is
observed in [14] that D > 0 if and only if N > 10 and p > pc where we set

pc =

{
(N−2)2−4N+8

√
N−1

(N−2)(N−10) if N > 10

∞ if N ≤ 10.

Thus when p < pc, µ0± are complex with negative real part, and the be-
havior of a solution z(r) as r → +∞ is oscillatory and given by

Z(r) = O(r−
N−2

2 ).

When p > pc, we have µ0+ > µ0− > 2
p−1 .

Independently of the value of p, we have that the function

z1,0 = rw′ +
2

p− 1
w

satisfies equation (2.19) for k = 0. Using asymptotic formulae derived for
w in [14], we find the estimates

if p < pc : |z1,0(r)| ≤ Cr
N−2

2 (2.24)

if p = pc : z1,0(r) = cr−
N−2

2 log r (1 + o(1)) (2.25)

if p > pc : z1,0(r) = cr−µ0− (1 + o(1)) , (2.26)

where c �= 0.
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Case p < pc. We define z2,0(r) for small r > 0 by

z2,0(r) = z1,0(r)
∫ r

r0

z1,0(s)−2s1−N ds (2.27)

where r0 is small so that z1,0 > 0 in (0, r0) (which is possible because z1,r ∼
1 near 0). Then z2,0 is extended to (0,+∞) so that it is a solution to the
homogeneous equation (2.19) (with k = 0) in this interval. As mentioned
earlier z2,0(r) = O(r−

N−2
2 ) as r → +∞.

We define

φ0(r) = z1,0(r)
∫ r

1
z2,0h0s

N−1 ds− z2,0(r)
∫ r

0
z1,0h0s

N−1 ds,

and omit a calculation that shows that this expression satisfies (2.23).

Case p ≥ pc. In this case we let

φ0(r) = −z1,0(r)
∫ r

1
z1,0(s)−2s1−N

∫ s

0
z1,0(τ)h0(τ)τN−1 dτ ds,

which is justified because when p ≥ pc we have z1,0(r) > 0 for all r > 0,

which follows from the fact that λ �→ λ
2

p−1w(λr) is increasing for λ > 0,
see [14]. Again, a calculation using now (2.25) and (2.26) shows that φ0

satisfies the estimate (2.23). �

2.3.2. The construction of φk, 1 ≤ k ≤ N . All these modes are equivalent,
so we only consider k = 1. We have the following result.

Lemma 2.4. Let k = 1 and p ≥ N+1
N−3 . Then equation (2.18) has a solution

φ1 which defines a linear operator of h1 and satisfies

‖φ1‖∗ ≤ C‖h1‖∗∗. (2.28)

Proof. In this case the indicial roots that govern the behavior of the so-
lutions z(r) as r → +∞ of the homogeneous equation (2.19) are given by
µ1 = 2

p−1 +1 and µ2 = N − 3− 2
p−1 . Since we are looking for solutions that

decay at a rate r−
2

p−1 as r → +∞ we will need N − 3 − 2
p−1 ≥ 2

p−1 , which
is equivalent to the hypothesis p ≥ N+1

N−3 . On the other hand the behavior
near 0 of z(r) can be z(r) ∼ r or z(r) ∼ r1−N .

Similarly as in the case k = 0 we have a solution to (2.19), namely
z1(r) = −w′(r) and luckily enough it is positive in all (0,+∞). With it we
can build

φ1(r) = −z1(r)
∫ r

1
z1(s)−2s1−N

∫ s

0
z1(τ)h1(τ)τN−1 dτ ds. (2.29)
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From this formula and using p ≥ N+1
N−3 we obtain (2.28). �

2.3.3. The construction of φk, k > N .

Lemma 2.5. Let k > N and p > N+2
N−2 . If ‖hk‖∗∗ <∞ equation (2.18) has a

unique solution φk with ‖φk‖∗ <∞ and there exists Ck > 0 such that

‖φk‖∗ ≤ Ck‖hk‖∗∗. (2.30)

Proof. Let us write Lk for the operator in (2.18), that is,

Lkφ = φ′′ +
N − 1
r

φ′ +
(

pwp−1 − λk
r2

)

φ.

This operator satisfies the maximum principle in any interval of the form
(δ, 1

δ ), δ > 0. Indeed let z = −w′, so that z > 0 in (0,+∞) and it is a
supersolution, because

Lkz =
N − 1 − λk

r2
z < 0 in (0,+∞), (2.31)

since λk ≥ 2N for k ≥ 2. To prove solvability of (2.18) in the appropriate
space we construct a supersolution ψ of the form

ψ = C1z + v, v(r) =
1

rσ + r
2

p−1

,

Choosing C1 sufficiently large, we can check that

Lkψ ≤ −cmin(r−σ−2, r−
2

p−1
−2) in (0,+∞).

for some c > 0.

Given hk with ‖hk‖∗∗ <∞, by the method of sub and supersolutions,
there exists, for any δ > 0 a unique solution φδ of the two-point boundary
value problem

Lkφδ = hk in (δ, 1
δ )

φδ(δ) = φδ(1
δ ) = 0.

This solution satisfies the bound

|φδ| ≤ Cψ ‖hk‖∗∗ in (δ, 1
δ ).

Using standard estimates we have that, up to subsequences, φδ → φk as
δ → 0 uniformly on compact subsets of (0,+∞) where φk is a solution of
(2.18) which satisfies

|φk| ≤ Cψ ‖hk‖∗∗ in (0,∞).
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The maximum principle yields that the solution to (2.18) bounded in this
way is actually unique, and thus defines the desired linear operator. �

2.3.4. Conclusion of the construction. Let m > 0 be an integer. By Lem-
mas 2.3, 2.4 and 2.5 we see that if ‖h‖∗∗ < ∞ and its Fourier series (2.16)
has hk ≡ 0 ∀k ≥ m there exists a solution φ to (2.10) that depends linearly
with respect to h and moreover

‖φ‖∗ ≤ Cm‖h‖∗∗.

We can prove that the constant Cm may actually be taken uniform in
m. Indeed, an indirect argument, based upon standard elliptic estimates,
allows us to end up with the situation that there exists a nonzero, bounded
function φ which satisfies the equation ∆φ+ pwp−1φ = 0 and which has no
Fourier components in its first few Fourier components. Arguing mode by
mode, we see that φ must be identically zero. This shows that the solution
φ defined by (2.17) defines an operator in h with the desired property. �

3. The proof of Theorem 1.1 when N+2
N−2 < p < N+1

N−3

The proof presented in the previous section fails only in one step: in the
construction of φk for 1 ≤ k ≤ N . Formula (2.29) for φ1 does not de-
fine a solution which decays like r−

2
p−1 unless h1 satisfies the orthogonality

condition
∫ ∞

0
w′(τ)h1(τ)τN−1 dτ = 0. (3.1)

This implies the following: Let us write

Zi =
∂w

∂xi
. (3.2)

Then if N+2
N−3 < p < N+1

N−3 and 0 < σ < N − 2, there is a linear operator
φ = T (h) defined for h with ‖h‖∗∗ <∞, with the property that for certain
unique scalars c1, . . . , cN ,

∆φ+ pwp−1φ = h+
N∑

i=1

ciZi in R
N , (3.3)

and ‖φ‖∗ ≤ C‖h‖∗∗,. It turns out that this operator is also bounded in a
variation of these norms which allows a singularity at a point different from
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the origin. We have that given Λ > 0 there is a C > 0 such that for all
ξ ∈ R

N with |ξ| ≤ Λ we have that ‖φ‖∗,ξ ≤ C‖h‖∗∗,ξ, where

‖φ‖∗,ξ = sup
|x−ξ|≤1

|x− ξ|σ|φ(x)| + sup
|x−ξ|≥1

|x− ξ|
2

p−1 |φ(x)|

‖h‖∗∗,ξ = sup
|x−ξ|≤1

|x− ξ|2+σ|h(x)| + sup
|x−ξ|≥1

|x− ξ|2+
2

p−1 |h(x)|.

The existence of such an operator with similar bounds persists if one drills a
small hole in R

N and imposes Dirichlet boundary conditions on its bound-
ary. Let us consider, for given ξ the set

Dλ,ξ = {ξ + λz|z ∈ D}.

Then, let us consider the linear problem





∆φ+ pwp−1φ = h+
N∑

i=1

ciZi in R
N \ Dλ,ξ

lim
|x|→+∞

φ(x) = 0, φ = 0 on ∂Dλ,ξ.

(3.4)

We have the following result, whose proof can be carried out with arguments
similar to those in Lemma 2.1.

Lemma 3.1. Assume that N+2
N−2 < p < N+1

N−3 . Given Λ > 0 there is a C > 0
such that for all |ξ| ≤ Λ, all small λ > 0, and any h with ‖h‖∗∗,ξ < ∞,
Problem (3.4) has a solution φ = T (h) which depends linearly on h such
that

‖φ‖∗,ξ + max
1≤i≤N

|ci| ≤ C‖h‖∗∗,ξ .

In order to apply this result to solve Problem (1.3)–(1.4), we observe
first that a translation and a dilation makes it equivalent to






∆u+ up = 0 in R
N \ Dλ,ξ

lim
|x|→+∞

u(x) = 0, u = 0 on ∂Dλ,ξ
(3.5)

Let ϕλ(z) be the unique solution of

∆ϕλ = 0 in R
N \D, ϕλ(z) = w(ξ+λz) on ∂D, lim

|x|→+∞
ϕλ(x) = 0. (3.6)

Then ϕλ(z) = (w(ξ) +O(λ))ϕ0(z) where ϕ0 is the unique solution of

∆ϕ0 = 0 in R
N \ D, ϕ0(x) = 1 on ∂D, lim

|x|→+∞
ϕ0(x) = 0. (3.7)
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We also note that

lim
|x|→+∞

|x|N−2ϕ0(x) = f0 :=
1

(N − 2)|SN−1|

∫

RN\D
|∇ϕ0|2 > 0. (3.8)

The number
∫

RN\D |∇ϕ0|2 corresponds precisely to the capacity of D.

We look for a solution of the form u = w − ϕλ(
x−ξ
λ ) + φ, which yields

the following equation for φ

∆φ+ pwp−1φ = N(φ) + Eλ

where

Eλ = pwp−1ϕλ, N(φ) = −(w + φ− ϕλ)p + wp + pwp−1φ− pwp−1ϕλ.
(3.9)

We consider the intermediate linear problem





∆φ+ pwp−1φ = N(φ) + Eλ +
N∑

i=1

ciZi in R
N \ (Dλ,ξ)

φ = 0 on ∂Dλ,ξ, lim
|x|→+∞

φ(x) = 0.
(3.10)

This nonlinear problem can be solved via contraction mapping principle
based on the operator T above introduced in similar way as in the previous
section, to yield existence of a unique solution with

‖φλ‖∗,ξ + max
1≤i≤N

|ci(λ, ξ)| → 0 as λ→ 0,

uniformly on |ξ| ≤ Λ. Besides, the numbers ci(λ, ξ) define continuous func-
tions of ξ. We also have the estimate

‖φλ‖∗,ξ ≤ Cσλ
σ.

We recall that in the definition of the norms we are using an arbitrary σ
with 0 < σ < N − 2. The desired result will be concluded if we manage to
choose the point ξ in such a way that

ci(λ, ξ) = 0 for all i = 1, . . . , N.

Testing the equation against Zi, and using the above stated estimate for φ
we see that these numbers can be expanded as

ci(λ, ξ) =
∫

RN\Dλ,ξ

EλZi + λN−2o(1),
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where the quantity o(1) is uniform on |ξ| ≤ Λ. Now, we have that
∫

RN\Dλ,ξ

EλZi =
∫

RN\(Dλ,ξ)
ϕλ(xλ)wp−1(x+ ξ)

∂w

∂xi
(x+ ξ) + o(λN−2)

= λN−2 ( f0

∫

RN

|x|−(N−2)wp−1(x+ ξ)
∂w

∂xi
(x+ ξ) + o(1) ) .

Hence we obtain, setting

F (ξ) :=
f0

2

∫

RN

|x|2−Nw(x+ ξ)p dx.

that

c(ξ, λ) := (c1, . . . , cN ) = λN−2 (∇F (ξ) + o(1) )

where o(1) → 0 uniformly on |ξ| ≤ Λ. Observe that F is radial and has a
nondegenerate maximum at ξ = 0. It follows that the Brouwer degree of
c(ξ, λ) in a small ball around the origin is non zero. Hence there exists a
point ξ = ξλ, small with λ, that annihilates all ci’s simultaneously. This
concludes the proof of the theorem. �

4. Sketch of proof of Theorem 1.2

The proof of Theorem 1.2 is similar to that of Theorem 1.1 in the range
p < N+1

N−3 , except that we no longer have a continuum: the parameter λ
needs also adjustment. The basic object is now the positive solution of

∆w + w
N+2
N−2 = 0 in R

N , w(0) = 1,

given by

w(x) = cN

(
1

1 + |x|2

)N−2
2

,

which of course has fast decay. By abuse of notation, we use the same
nomenclature as in the previous section. The main difference arises in the
linearized problem: a solvability condition is required when working at mode
0 with fast decay solutions: The right hand sides must now be orthogonal
to the generator of dilations,

Z0(r) = rw′(r) + (N − 2)w(r), r = |x|.
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We still denote Zi = wxi . Appropriate norms are now

‖φ‖∗,ξ = sup
|x−ξ|≤1

|x− ξ|σ|φ(x)| + sup
|x−ξ|≥1

|x− ξ|N−2|φ(x)|

‖h‖∗∗,ξ = sup
|x−ξ|≤1

|x− ξ|2+σ |h(x)| + sup
|x−ξ|≥1

|x− ξ|N+2|h(x)|.

Now the following holds:

Lemma 4.1. Let p = N+2
N−2 + ε and Λ > 0. Then there is ε0 > such that for

|ξ| < Λ and ε, λ < ε0 there exists φ, solution of the problem





∆φ+ pwp−1φ = N(φ) +Eλ + c0Z0 +
N∑

i=1

ciZi in R
N \ (Dλ,ξ)

φ = 0 on ∂Dλ,ξ, lim
|x|→+∞

φ(x) = 0.
(4.1)

We have in addition

‖φλ‖∗,ξ + max
1≤i≤N

|ci(λ)| → 0 as λ→ 0,

and

‖φλ‖∗,ξ ≤ Cσλ
σ, for all 0 < λ, ε < ε0

where
0 < σ < N − 2. (4.2)

After this is proven, we need to set the N + 1 parameters ci(ξ, λ) = 0,
i = 0, 1, . . . , N . The computation of ci’s for i ≥ 1 is identical. On the other
hand, c0 is at main order the quantity

∫

RN

(Eλ)Z0 ∼ aλN−2 − bε,

for certain positive constants a and b. Thus the system essentially decouples
and one can find ξ as in the previous theorem, and now λ, a quantity of
order ε

1
N−2 . �

5. Sketch of the proof of Theorem 1.3

The proof of this result is similar in spirit to that of the previous theorems.
Now the basic point is to obtain a suitable invertibility theory for the
linearized operator ∆ + pwp−1 on R

N \ B1(0) where, again with abuse of
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notation, we are calling w the unique solution w∗ of Problem (1.12)–(1.13).
Thus, we consider the problem

∆φ+ pwp−1φ = h in R
N \ B̄1(0) , (5.1)

φ = 0 on ∂B1(0) , lim
|x|→+∞

φ(x) = 0 . (5.2)

5.1. Condition for non-resonance

We want to investigate under what conditions the homogeneous problem
with h = 0 in (5.1)–(5.2) admits only the trivial solution. To this end, we
consider the first eigenvalue of the problem

ψ′′ +
N − 1
r

ψ′ + pwp−1ψ + ν
ψ

r2
= 0 (5.3)

ψ(1) = 0, ψ(+∞) = 0 . (5.4)
This eigenvalue is variationally characterized as

ν(p) = inf
ψ∈E

∫ ∞
1 |ψ′|2rN−1dr − p

∫ ∞
1 wp−1|ψ|2rN−1dr

∫ ∞
1 ψ2rN−3dr

, (5.5)

with

E = {ψ ∈ C1[1,∞) / ψ(1) = 0,
∫ ∞

1
|ψ′

(r)|2rN−1dr < +∞}.

This quantity is well defined thanks to Hardy’s inequality,

(N − 2)2

4

∫ ∞

1
ψ2rN−3dr ≤

∫ ∞

1
|ψ′|2rN−1dr.

The number ν(p) is negative, since this Rayleigh quotient gets negative
when evaluated at ψ = w. An extremal is easily found, using the fast
decay of wp−1 = O(r−4). This extremal represents a positive solution to
problem (5.3)–(5.4) for ν = ν(p). Let us consider now Problem (5.1)–(5.2)
for h = 0, and assume that we have a solution φ. The symmetry of the
domain R

N \ B1(0) allows us to expand φ into spherical harmonics. We
write again φ as

φ(x) =
∞∑

k=0

φk(r)Θk(θ), r > 0, θ ∈ SN−1.

The components φk then satisfy the differential equations

φ′′k +
N − 1
r

φ′k +
(

pwp−1 − λk
r2

)

φk = 0, r ∈ (1,∞), (5.6)

φk(1) = 0, φk(+∞) = 0.
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Let us consider first the radial mode k = 0, namely λk = 0. We observe
that the function

Z1(r) = rw′(r) +
2

p− 1
w

satisfies

Z ′′
1 +

N − 1
r

Z ′
1 + pwp−1Z1 = 0, for all r > 1,

but Z1(1) �= 0. We notice that Z1 is one-signed for all large r. It follows
then that a second generator of the solutions of this ODE is given, for large
r, by the reduction of order formula,

Z2 = Z1(r)
∫ r

R

dr

rN−1Z2

but since at main order Z1(r) ∼ cr2−N we see that Z2(+∞) �= 0. Since φ0

is a linear combination of Z1 and Z2 it follows that the only possibility is
φ0 = 0. Let us consider now mode 1, namely k = 1, . . . , N − 1, for which
λk = (N − 1). In this case we also have an explicit solution which does not
vanish at r = 1 but it does at r = +∞. Simply Z1(r) = w′(r). But the
same argument as above gives us a second generator Z2(r) ∼ r as r → +∞,
hence again, the only possibility is that φk ≡ 0 for all k = 1, . . . , N .

Let us consider now modes N + 1 or higher. This case is harder. Not
only we do not have an explicit solution to the ODE to rely on, but it could
be the case that a non-trivial solution exists. Let us assume this is the case
for an arbitrary mode k ≥ N . We claim that φk cannot change sign in
(1,∞). In fact if it did, we begin by observing that it can only do it a finite
number of times, since its behavior at infinity must be eventually like that
of a decaying solution of the Euler’s ODE

Z ′′ +
N − 1
r

Z ′ − λk
r2
Z = 0

namely, at main order we must have

Z(r) = cr−µ(1 + o(1)), µ = −N − 2
2

− 1
2

√
(N − 2)2 + 4λk .

Let r0 > 1 be the last zero of φk, and let us assume that φ > 0 on (r0,∞)
We observe now that since ∆w < 0, w′(r) has exactly one zero in (1,∞).
Thanks to Sturm’s theorem this zero must be less than r0. Hence w′ < 0
in (r0,∞). Let us observe now that

W (r) = rN−1(w′φ′k − w′′φk)
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satisfies in (r,∞)

W ′(r) = rN−3(λk − λ1)w′φk < 0 in (r0,∞),

while W (r0) < 0 and W (+∞) = 0, which is impossible. This shows that
φk must be one-signed. Thus the only possibility for equation (5.6) to have
a nontrivial solution for a given k ≥ N is that λk = −ν(p). Thus we have
proven the following result

Lemma 5.1. Assume that p is such that

ν(p) �= −j(N − 2 + j) for all j = 2, 3, . . . (5.7)

where ν(p) is the principal eigenvalue defined by (5.5). Then Problem (5.3)–
(5.4) with h = 0 admits only the solution φ = 0.

This non-resonance condition produces a good solvability theory for
equation (5.1)–(5.2). We can describe qualitatively the set of exponents p
for which condition (5.7) fails. We have:

Lemma 5.2. For each j ≥ 2 the set of numbers p for which ν(p) = −j(N −
2 + j) is non-empty and finite. In particular, there exists a sequence of the
form

N + 2
N − 2

< p1 < p2 < p3 < · · · ; pj → +∞ as j → +∞ , (5.8)

such that condition (5.7) holds if and only if p �= pj for all j = 1, 2, . . . .

The proof of this result is contained in [11]. It consists of showing that
the eigenvalue ν(p) is a real analytic function of the parameter p. A basic
ingredient is the proof of analytic dependence of w as a function of p, in
appropriate spaces, which follows basically form an analysis due to Dancer
[5].

5.2. Solvability of (5.1)–(5.2)
We consider now the full problem (5.1)–(5.2), namely

∆φ+ pwp−1φ = h in R
N \ B̄1(0) ,

φ = 0 on ∂B1(0) , lim
|x|→+∞

φ(x) = 0 .

Let us fix a small number σ > 0 and consider the norms

‖φ‖∗ = sup
|x|>1

|x|N−2−σ|φ(x)| + sup
|x|>1

|x|N−1−σ |∇φ(x)| (5.9)
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and
‖h‖∗∗ = sup

|x|>1
|x|N−σ|h(x)|. (5.10)

Lemma 5.3. Assume that p satisfies condition (5.7). Then for any h with
‖h‖∗∗ < +∞, Problem (5.1)–(5.2) has a unique solution φ = T (h) with
‖φ‖∗ < +∞. Besides, there exists a constant C(p) > 0 such that

‖T (h)‖∗ ≤ C‖h‖∗∗.

5.3. The operator ∆ + pwp−1 in δ−1D \B1(0)
We assume that Q = 0, and consider the large expanded domain Dδ =
δ−1D. We shall carry out a gluing procedure that will permit to establish
the same conclusion of Proposition 5.3 in this domain, provided that δ is
taken sufficiently small. Thus we consider now the linear problem

∆φ+ pwp−1φ = h in Dδ \ B̄1(0) , (5.11)

φ = 0 on ∂B1(0) ∪ ∂Dδ . (5.12)

We consider the same norms as in (5.9), (5.10) restricted to this do-
main.

Lemma 5.4. Assume that p satisfies condition (5.7). Then there is a number
δ0 such that for all δ < δ0 and any h with ‖h‖∗∗ < +∞, Problem (5.11)–
(5.12) has a unique solution φ = Tδ(h) with ‖φ‖∗ < +∞. Besides, there
exists a constant C(p,D) > 0 such that

‖Tδ(h)‖∗ ≤ C‖h‖∗∗.

The proof of this result follows a similar scheme to that of Lemma 2.1.
The point now is that the fact that the linear theory involves faster decays
makes the contribution of the far-away part of Dδ to enter at a substantially
small order. An analysis of this type is not possible if the basic cell w was
taken as a slow-decaying solution.

5.4. Conclusion of the proof of Theorem 1.3
Let us assume the validity of condition (5.7) or, equivalently, that p �= pj
for all j, with pj the sequence in (5.8). Problem (1.3)–(1.4) is, after setting

v(x) = δ
2

p−1u(δx), equivalent to

∆v + vp = 0 in Dδ \ B̄1(0) , (5.13)

v = 0 on ∂B1(0) ∪ ∂Dδ. (5.14)
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Let us consider the smooth cut-off function ηδ, introduced in the pre-
vious section, which equals 1 in B(0, 2δ−1) and 0 outside B(0, 3δ−1). We
search for a solution v to problem (5.13)–(5.14) of the form

v = ηδw + φ,

which is equivalent to the following problem for φ:

∆φ+ pwp−1φ = N(φ) + E in Dδ \ B̄1(0) , (5.15)

φ = 0 on ∂B1(0) ∪ ∂Dδ . (5.16)

where
N(φ) = N1(φ) +N2(φ) ,

N1(φ) = −(ηδw + φ)p + (ηδw)p + p(ηδw)p−1φ,

N2(φ) = p(1 − ηp−1
δ )wp−1φ,

and

E = −∆(ηδw) − (ηδw)p.

According to Proposition 5.4 we thus have a solution to (5.13)–(5.14) if φ
solves the fixed point problem

φ = Tδ(N(φ) + E) . (5.17)

We get

‖E‖∗∗ ≤ Cδσ . (5.18)

On the other hand, we also find

‖N2(φ)‖∗∗ ≤ Cδ2‖φ‖∗
and so that

‖N1(φ)‖∗∗ ≤ C ( ‖φ‖p∗ + ‖φ‖2
∗ ) . (5.19)

Let us consider now the operator

T (φ) = Tδ(N(φ) +E)

defined in the region

B = {φ ∈ C1(D̄δ \B1(0)) / ‖φ‖∗ ≤ δ
σ
2 } .

We immediately get that T (B) ⊂ B, provided that δ is sufficiently small.
The existence of a fixed point thus follows from Schauder’s theorem. �
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