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1 Introduction

In this paper we study the existence of positive solutions to the nonlinear elliptic
problems






−∆u = u
N+2
N−2+ε in Ω

u > 0 in Ω
u = 0 on ∂Ω

(1.1)

where Ω is a bounded domain with smooth boundary in IRN , N ≥ 3, and ε is a
small positive parameter.
It is well know that problem






−∆u = uq in Ω
u > 0 in Ω
u = 0 on ∂Ω

(1.2)

has at least one solution when q < N+2
N−2 for any smooth bounded domain Ω.

On the contrary, when q is critical or supercritical the existence of solutions to
problem (1.2) depends strongly on the shape of the domainΩ. Indeed, if q ≥ N+2

N−2
Pohozaev’s identity [18] gives that problem (1.2) has no solution ifΩ is star-shaped.
On the other hand, if q = N+2

N−2 , problem (1.2) has at least one solution when Ω is
a symmetric annulus, see Kazdan-Warner [15], or when Ω has a “small hole”, see
Coron [9].
In a remarkable work [3], Bahri and Coron generalize the previous results, by
proving that if q = N+2

N−2 and if some homology group of Ω with coefficients in Z2
is nontrivial, then problem (1.2) has a solution.
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As reported by Brezis in [5], Rabinowitz poses the question whether the nontriviality
of the topology of Ω in the sense of Bahri-Coron is a sufficient condition for
existence of solutions to (1.2) when q > N+2

N−2 .
In [16,17] Passaseo constructs examples that show that the answer is in general
negative. Among other results, he finds that for N ≥ 4 there is a topologically
nontrivial domain, for which no solution of (1.2) exists if q > N+1

N−3 . This of course
does not rule out the possibility that solutions exist in (1.1) provided that ε is
sufficiently small.

Before stating our result, we need to introduce some notation. Let us denote by
G(x, y) the Green’s function of the domain, namely G satisfies

∆xG(x, y) = δ(x− y), x ∈ Ω,

G(x, y) = 0, x ∈ ∂Ω,
where δ(x) denotes the Dirac mass at the origin. We denote by H(x, y) its regular
part, namely

H(x, y) = Γ (x− y)−G(x, y)

where Γ denotes the fundamental solution of the Laplacian,

Γ (x) = bN |x|2−N ,

so that H satisfies
∆xH(x, y) = 0, x ∈ Ω,

H(x, y) = Γ (x− y), x ∈ ∂Ω.
Its diagonal H(x, x) is usually called the Robin’s function of the domain.

The following function will play a crucial role in our analysis:

ϕ(ξ1, ξ2) = H
1
2 (ξ1, ξ1)H

1
2 (ξ2, ξ2)−G(ξ1, ξ2). (1.3)

We will construct solutions of (1.1) which as ε→ 0 develop a spike-shape, blowing-
up at exactly two distict points ξ1, ξ2 while approaching zero elsewhere, provided
that the set where ϕ < 0 is topologically nontrivial in a sense to be specified below.
The pair (ξ1, ξ2) will be a critical point of ϕ with ϕ(ξ1, ξ2) < 0.

For a subspaceB ofΩ we will designate byHd(B) its d-th cohomology group
with integral coefficients. We will consider the homomorphism ι∗ : H∗(Ω) →
H∗(B), induced by the inclusion ι : B → Ω.

Theorem 1.1 AssumeN ≥ 3 and letΩ be a bounded domain with smooth bound-
ary in IRN , with the following property: There exists a compact manifoldM⊂ Ω
and an integer d ≥ 1 such that, ϕ < 0 onM×M, ι∗ : Hd(Ω) → Hd(M) is
nontrivial and either d is odd or H2d(Ω) = 0.
Then there exists ε0 > 0 such that, for any 0 < ε < ε0, problem (1.1) has at least
one solution uε. Moreover, let C be the component of the set where ϕ < 0 which
containsM×M. Then, given any sequence ε = εn → 0, there is a subsequence,
which we denote in the same way, and a critical point (ξ1, ξ2) ∈ C of the function
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ϕ such that uε(x) → 0 on compact subsets of Ω \ {ξ1, ξ2} and such that for any
δ > 0

sup
|x−ξi|<δ

uε(x)→ +∞, i = 1, 2,

as ε→ 0.

Actually, the proof will provide much finer information on the asymptotic profile
of the blow-up of these solutions as ε → 0: after scaling and translation one sees
around each ξi a “bubble”, namely a solution in entire IRN of the equation at the
critical exponent. More precisely, we will find,

uε(x) = αN

2∑

i=1

(
λiεε

1
N−2

ε
2

N−2λ2
iε + |x− ξiε|2

)N−2
2

+ θε(x), (1.4)

where θε(x)→ 0 uniformly as ε→ 0, ξiε → ξi up to subsequences, where (ξ1, ξ2)
is a critical point of ϕ with negative critical value. Besides, one can identify the
limits λi of λiε as

λN−2
i = cN

H(ξj , ξj)
H(ξi, ξi)|ϕ(ξ1, ξ2)|2 , j = i, i, j = 1, 2.

In the next section we will present two examples to clarify the meaning of Theorem
1.1. In fact, its assumptions are satisfied, hence yielding these two-bubble solutions
if for instance to a fixed domain D one excises a subdomain ω contained in a ball
of sufficiently small radius. The other example consists of an arbitrary domain in
IR3 from which one takes away a solid torus with sufficiently small cross-section.

It is rather intriguing that the former situation is precisely that considered by
Coron, who finds existence when p = N+2

N−2 . The solutions here found of course
do not correspond in the limit to those found by Coron or Bahri-Coron since they
disappear as ε→ 0. The persistence of this solution for small ε has been conjectured
by Dancer, see [10], [11], [12].

The role of Green’s and Robin’s functions in the concentration phenomena
associated to the critical exponent has already been considered in several works,
when the exponent q approaches critical from below, namely q = N+2

N−2 − ε. See
Brezis and Peletier [7], Rey [19], [20], [21], Han [14] and Bahri, Li and Rey [4]. In
the latter reference, multi-bubble solutions are found forN ≥ 4 and q = N+2

N−2 − ε,
concentrating around nondegenerate critical points of certain object which for two-
spikes corresponds to the functionϕ (in their case with positive critical value.). This
construction was improved to dimension N = 3 in [21].

Our proof borrows ideas of the above mentioned works. One obvious diffi-
culty one has to circumvent is the fact that Sobolev’s embedding is no longer
valid in our situation. We are able however to work out in “well-chosen” spaces a
somewhat novel reduction to a finite dimensional problem, which we treat with a
variational-topological approach. We remark that our method does not use any a
priori knowledge of non-degeneracy, an assumption perhaps generic, but hard to
check in examples. The main point is then to recognize that critical points of the
underlying finite dimesional energy correspond to critical points of the full energy
functional, hence to solutions of our problem.
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2 Examples and scheme of proof

LetD be a bounded domain with smooth boundary in RN ,N ≥ 3, which contains
the origin 0. We shall emphasize the dependence of the Green’s function on the
domain by writing it as GD(x, y), and similarly for its regular part HD(x, y). Let
us consider a number δ > 0 and the domain

Dδ = D \ B̄(0, δ).

We denote by Gδ , Hδ respectively its Green’s function and regular part.

Lemma 2.1 The following result holds

lim
δ→0

Hδ(x, y) = HD(x, y),

uniformly on x, y in compact subsets of D̄ \ {0}.

Proof. The maximum principle yields

Hδ(x, y) ≤ HD(x, y),

hence the family of functions Hδ(x, y) is uniformly bounded as δ → 0 on each
compact subset of D̄ \ {0}× D̄ \ {0}, and strictly increasing in δ. By harmonicity,
its pointwise limit as δ → 0 is therefore uniform on compacts of D \ {0}. Since
the resulting limit H(x, y) is harmonic in x and bounded, it extends smoothly as a
harmonic function in all of D. H therefore satisfies equation

∆xH(x, y) = 0, x ∈ D,

H(x, y) = Γ (x− y), x ∈ ∂D
and is thus equal to HD. �

Consider now a smooth domain ω such that ω ⊂ B̄(0, δ) ⊂ D and the domain

Ω = D \ ω. (2.1)

Denote byG andH its Green’s function and regular part, and consider the function
ϕ(ξ1, ξ2) defined on Ω ×Ω \ {ξ1 = ξ2} as in (1.3).

Corollary 2.1 For any (fixed) sufficiently small number ρ > 0 there is a δ0 > 0
such that if ω is any domain with ω ⊂ B̄(0, δ) and δ < δ0, then

sup
|ξ1|=|ξ2|=ρ

ϕ(ξ1, ξ2) < 0.

Hence, Theorem 1.1 applies to Ω given by (2.1), with

M = ρSN−1.
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Proof. We have thatHD is smooth near (0, 0) whileGD becomes unbounded, hence
for any ρ > 0

sup
|ξ1|=|ξ2|=ρ

ϕ̃(ξ1, ξ2) < 0

where ϕ̃ is defined by

ϕ̃(ξ1, ξ2) = H
1
2
D(ξ1, ξ1)H

1
2
D(ξ2, ξ2)−GD(ξ1, ξ2).

On the other hand, for this ρ, it follows from the previous lemma that H and hence
G become uniformly close to HD and GD on |ξ1| = |ξ2| = ρ as δ gets smaller.
The desired conclusion then readily follows. �

A second example we consider is the following. LetN = 3 andD be as above.
Consider now a solid torus in IR3 given by T (l, r), where l is the radius of the axis
circle, which we assume centered at 0, and r that of a cross-section. Assume now
that there is an r0 > 0 such that T (l, r0) ⊂ D. Consider now Dδ defined as

Dδ = D \ T (l, δ).

Similarly as in the previous example the Green’s and Robin functions of Dδ will
approach that of D. Then, fixing now a sufficiently small ρ > 0 and considering
the boundary of a fixed section S1(ρ) of T (l, ρ), we will have now that if Ω = Dδ

with δ sufficiently small, then

sup
ξ1,ξ2∈S1(ρ)

ϕ(ξ1, ξ2) < 0.

It follows that Theorem 1.1 applies now with

M = S1(ρ).

It is perhaps clear from the above argument that it suffices that for a torus not
necessarily symmetric taken away, the same would be true, provided that it is
“narrow” only in certain region.

Now we proceed into the proof of Theorem 1.1. As we have mentioned, our ap-
proach consists of a combination of a finite dimensional reduction implicit-function
like, in suitable spaces, and a variational approach for the finite dimensional result-
ing problem. In §3, we work out an asymptotic expansion for a finite-dimensional
functional which will be, up to lower order terms, that we want to get critical
points for. §4 is devoted to a linear problem which plays a crucial role in the finite-
dimensional reduction, which is carried out in certain weighted L∞ spaces in §5.
The reduced functional is analyzed asymptotically in §6, and its relation with the
expansion in §3 is found. In §7 we set up a min-max scheme to find a critical point
for the reduced functional. Here is where the topological assumption of Theorem
1.1 is used in order to prove that a crucial intersection property is accomplished.
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3 Basic estimates in the reduced energy

Let

Ū(x) = αN

(
1

1 + |x|2
)N−2

2

where αN = (N(N − 2))
N−2

4 . Then Ū satisfies the equation

−∆Ū = Ūp in IRN .

Here and in what follows N ≥ 3 and p = N+2
N−2 . We also denote

Ūλ,ξ(x) = αN

(
λ

λ2 + |x− ξ|2
)N−2

2

which also satisfies
−∆Ūλ,ξ = Ūp

λ,ξ in IRN ,

which constitute the extremals for Sobolev’s critical embedding and are actually
all positive solutions of the elliptic equation, see [1,22,6,8].
Let Ω be a bounded domain with smooth boundary in IRN . We denote by Uλ,ξ the
H1

0 (Ω)-projection of Ūλ,ξ, namely the unique solution of the equation

−∆Uλ,ξ = Ūp
λ,ξ in Ω

Uλ,ξ = 0 on ∂Ω.

In other words Uλ,ξ = Ūλ,ξ − φλ,ξ where φλ,ξ solves

−∆φλ,ξ = 0 in Ω

φλ,ξ = Ūλ,ξ on ∂Ω.

Then the following estimates hold

φλ,ξ(x) = H(x, ξ)λ
N−2

2

∫

IRN

Ūp + o(λ
N−2

2 ), (3.1)

and, away from x = ξ,

Uλ,ξ(x) = G(x, ξ)λ
N−2

2

∫

IRN

Ūp + o(λ
N−2

2 ), (3.2)

uniformly for ξ on each compact subset of Ω. Here G and H are respectively the
Green function of the Laplacian with Dirichlet boundary condition on Ω and its
regular part.

We consider now two points ξ1, ξ2 ∈ Ω, small numbers λ1, λ2 > 0 and the
functions

Ūi = Ūλi,ξi , Ui = Uλi,ξi , i = 1, 2.
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Our purpose is to estimate the following quantity

J0(U1 + U2) =
1
2

∫

Ω

|∇(U1 + U2)|2 − 1
p+ 1

∫

Ω

(U1 + U2)p+1.

Let us set

CN =
1
2

∫

IRN

|DŪ |2 − 1
p+ 1

∫

IRN

Ūp+1

and

Oδ(Ω) = { (ξ1, ξ2) ∈ Ω ×Ω : |ξ1 − ξ2| > δ, dist(ξi, ∂Ω) > δ,

i = 1, 2 }. (3.3)

Then the following estimate holds

Lemma 3.1 Given δ > 0 we have the validity of the expansion

J0(U1 + U2) = 2CN +
1
2

(∫

IRN

Ūp

)2 {
H(ξ1, ξ1)λN−2

1

+H(ξ2, ξ2)λN−2
2 − 2G(ξ1, ξ2)λ

N−2
2

1 λ
N−2

2
2

}

+o(max{λ1, λ2}N−2)

uniformly with respect to (ξ1, ξ2) ∈ Oδ(Ω).

Proof. The basic estimates leading to the above expansion are basically contained
in [2], [4]. We recall them in the following:

∫

Ω

|DUi|2 =
∫

IRN

|DŪ |2 −
(∫

IRN

Ūp

)2

H(ξi, ξi)λN−2
i + o(λN−2

i ), (3.4)

∫

Ω

∇U1∇U2 =
(∫

IRN

Ūp

)2

G(ξ1, ξ2)λ
N−2

2
1 λ

N−2
2

2 + o(max{λ1, λ2}N−2),

(3.5)

1
p+ 1

∫

Ω

(U1 + U2)p+1 − Up+1
1 − Up+1

2 = 2(
∫

IRN

Ūp)2G(ξ1, ξ2)λ
N−2

2
1 λ

N−2
2

2

+o(max{λ1, λ2}N−2) (3.6)

and

1
p+ 1

∫

Ω

Up+1
i =

1
p+ 1

∫

IRN

Ūp+1

−
(∫

IRN

Ūp

)2

H(ξi, ξi)λN−2
i + o(λN−2

i ) . (3.7)

Finally we decompose

J0(U1 + U2) =
∑

i=1,2

1
2

∫

Ω

|∇Ui|2 − 1
p+ 1

∫

Ω

Up+1
i +
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∫

Ω

∇U1∇U2 − 1
p+ 1

∫

Ω

(U1 + U2)p+1 − Up+1
1 − Up+1

2 ;

substituting estimates (3.4), (3.5), (3.6) and (3.7) in this relation we obtain the
thesis. �

In what follows of this section we will make a choice of the numbers λi in terms
of ε: we will assume

λN−2
i = cNΛ

2
i ε (3.8)

where cN is a constant we will choose later and Λi is only allowed to range on a
bounded interval of the form 0 < δ < Λi < δ−1.

Let us consider the energy functional, associated to problem (1.1),

Jε(u) =
1
2

∫

Ω

|Du|2 − 1
p+ 1 + ε

∫

Ω

up+1+ε.

We consider next the problem of estimating the quantity Jε(U1 +U2). First we see
that

Jε(U1 + U2) = J0(U1 + U2)+

ε

(p+ 1)2

∫

Ω

(U1 + U2)p+1 − ε

p+ 1

∫

Ω

(U1 + U2)p+1 log(U1 + U2) + o(ε).

As we have seen, we have
∫

Ω

(U1 + U2)p+1 = 2
∫

IRN

Ūp+1 + o(1).

On the other hand, for a small number ρ we can decompose
∫

Ω

(U1 + U2)p+1 log(U1 + U2) =
∫

|x−ξ1|<ρ

(U1 + U2)p+1 log(U1 + U2)+

∫

|x−ξ2|<ρ

(U1 + U2)p+1 log(U1 + U2) + o(ε).

Now, we have
∫

|x−ξ1|<ρ

(U1+U2)p+1 log(U1+U2) = −N − 2
2

log λ1

∫

|x−ξ1|<ρ

(U1+U2)p+1+

∫

|x−ξ1|<ρ

(U1 + U2)p+1 log(λ
N−2

2
1 U1 + λ

N−2
2

1 U2) =

−N − 2
2

log λ1(
∫

IRN

Ūp+1 +O(λN
1 ))) +

∫

IRN

Ūp+1 log Ū + o(1).

We conclude that
∫

Ω

(U1 + U2)p+1 log(U1 + U2) = −N − 2
2

log(λ1λ2)
∫

IRN

Ūp+1

+2
∫

IRN

Ūp+1 log Ū + o(1).
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Hence

Jε(U1 + U2) = J0(U1 + U2)

+2ε
{

1
(p+ 1)2

∫

IRN

Ūp+1 − 1
p+ 1

∫

IRN

Ūp+1 log Ū
}

+
N − 2

2(p+ 1)
ε log(λ1λ2)

∫

IRN

Ūp+1 + o(ε).

Combining this estimate with the previous lemma, and our choice (3.8) for λ1, λ2
with

cN =
1

p+ 1

∫
IRN Ūp+1

(
∫

IRN Ūp)2
. (3.9)

we get the following result.

Lemma 3.2 Given δ > 0 and and choosing λN−2
i = cNΛ

2
i ε with cN given by

(3.9), then we have
Jε(U1 + U2) =

2CN + wNε log ε+ γNε+ wNε Ψ(ξ1, ξ2, Λ1, Λ2) + o(ε),

uniformly with respect to (ξ1, ξ2, Λ1, Λ2) ∈ Oδ(Ω)× (]δ, δ−1[)2. Here

Ψ(ξ1, ξ2, Λ1, Λ2) =
1
2
{H(ξ1, ξ1)Λ2

1 +H(ξ2, ξ2)Λ2
2 − 2G(ξ1, ξ2)Λ1Λ2}

+ logΛ1Λ2, (3.10)

γN = 2{ 1
(p+ 1)2

∫

IRN

Ūp+1 − 1
p+ 1

∫

IRN

Ūp+1 log Ū}+ wN log cN

and wN = 1
p+1

∫
IRN Ūp+1.

Remark. The quantity o(ε) in the expansion above is actually also of that size in
the C1-norm as a function of ξ and Λ in the considered region.

4 A linear problem

In this section we introduce a linear problem defined in a suitable functional-analytic
setting which is the basis for the reduction of problem (1.1) to the study of a finite
dimensional problem. It seems useful to consider the problem in proper streched
variables. For this purpose, let us consider the domainΩε = ε− 1

N−2Ω. For functions
u and v defined on Ωε we shall denote in what follows

< u , v >=
∫

Ωε

uv.

Consider then a fixed number δ > 0, and points ξ′
i ∈ Ωε, numbers Λi > 0 i = 1, 2,

with

|ξ′
1 − ξ′

2| > δε− 1
N−2 , dist (ξ′

i, ∂Ωε) > δε− 1
N−2 , δ < Λi < δ−1, (4.1)
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and the functions

V̄i(x) = ŪΛ∗
i ,ξ′

i
(x) = αN

(
Λ∗

i

(Λ∗
i )2 + |x− ξ′

i|2
)N−2

2

whereΛ∗
i = (cNΛ2

i )
1

N−2 . As before, we take the projections ontoH1
0 (Ωε) of these

functions, namely the functions Vi given as the unique solutions of

−∆Vi = V̄ p
i in Ωε

Vi = 0 on ∂Ωε.

Consider further the following functions

Z̄ij =
∂V̄i

∂ξij
, j = 1, . . . , N, Z̄iN+1 =

∂V̄i

∂Λ∗
i

= (x− ξi) · ∇V̄i + (N − 2)V̄i,

and their respective H1
0 (Ωε)-projections Zij , namely the unique solutions of

∆Zij = ∆Z̄ij in Ωε

Zij = 0 on ∂Ωε.

For further notational simplicity, we we will denote

V = V1 + V2 and V̄ = V̄1 + V̄2.

Consider now the following problem. Given h ∈ Cα(Ω̄ε), find a function φ such
that for certain constants cij , i = 1, 2, j = 1, . . . , N + 1 one has






∆φ+ (p+ ε)V p+ε−1φ = h+
∑

i,j cijV
p−1
i Zij in Ωε

φ = 0 on ∂Ωε

< V p−1
i Zij , φ >= 0 for all i, j.

(4.2)

We want to show that this problem is uniquely solvable with uniform bounds in
certain appropriate norms. To this end, we consider the following weighted L∞-
norms. For a function ψ defined on Ωε, we define

‖ψ‖∗ = sup
x∈Ωε

|
(
(1 + |x− ξ′

1|2)− N−2
2 + (1 + |x− ξ′

2|2)− N−2
2

)−β

ψ(x)|,

where β = 1 if N = 3 and β = 2
N−2 if N ≥ 4. Similarly we define, for any

dimension N ≥ 3,

‖ψ‖∗∗ = sup
x∈Ωε

|
(
(1 + |x− ξ′

1|2)− N−2
2 + (1 + |x− ξ′

2|2)− N−2
2

)− 4
N−2

ψ(x)|.

These norms are easily seen to be equivalent respectively to ‖(V̄ )−βψ‖∞ and
‖(V̄ )− 4

N−2ψ‖∞, uniformly in points and numbers satisfying (4.1). It should be
noticed that in a related problem in entire space with “almost critical” nonlinearity,
Wang and Wei [23] have used instead a weighted Sobolev spaces approach to carry
out a finite dimensional reduction in searching for one-spike solutions.

Our purpose in what follows is to prove the following result.
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Proposition 4.1 Assume constraints (4.1) hold. Then there are numbers ε0 > 0,
C > 0, such that for all 0 < ε < ε0 and all h ∈ Cα(Ω̄ε), problem (4.2) admits a
unique solution φ ≡ Lε(h). Besides,

‖Lε(h)‖∗ ≤ C‖h‖∗∗ (4.3)

and
|cij | ≤ C‖h‖∗∗. (4.4)

Here and in the rest of this paper, we denote by C a generic constant which is
independent of ε and of the particular ξ

′
i , Λi chosen satisfying (4.1).

Lemma 4.1 Under the conditions of Proposition 4.1, assume the existence of a
sequence ε = εn → 0 such that there are functions φε and hε with ‖hε‖∗∗ = o(1)
if N = 4, | log ε| ‖hε‖∗∗ = 0(1) if N = 4, such that

∆φε + (p+ ε)V p−1+εφε = hε +
∑

i,j

cijV
p−1
i Zij in Ωε

φε = 0 on ∂Ωε,

< V p−1
i Zij , φε >= 0 for all i, j,

for certain constants cij , depending on ε. Then

‖φε‖∗ → 0.

Proof. We shall establish first the slightly weaker assertion that

‖φε‖ρ
= sup

x∈Ωε

|
(
(1 + |x− ξ′

1|2)− N−2
2 + (1 + |x− ξ′

2|2)− N−2
2

)−(β−ρ)
φε(x)| → 0

with ρ > 0 a small fixed number. To do this, we assume the opposite, so that with
no loss of generality we may take ‖φε‖ρ = 1. Testing the above equation against
Zlk, integrating by parts twice we get that
∑

cij < V p−1
i Zij , Zlk >=< ∆Zlk + (p+ ε)V p−1+εZlk, φ > − < hε, Zlk > .

(4.5)
This defines a linear system in the cij which is “almost diagonal” as ε approaches
zero, since we have for k = 1, . . . , N

< V p−1
i Zij , Zlk >= δi,lδj,k

∫

IRN

Ūp−1
Λi

(
∂ŪΛi,0

∂xk

)2

+ o(1) (4.6)

and for k = N + 1

< V p−1
i Zij , Zl(N+1) >= δi,lδj,N+1

∫

IRN

Ūp−1
Λi

(
x · ŪΛi + (N − 2)ŪΛi

)2 +o(1)

(4.7)
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for suitable Λi > 0. On the other hand, it is easy to see that we have, for l = 1, 2,

< ∆Zlk + (p+ ε)V p+ε−1Zlk, φ >= o(1)‖φ‖ρ, (4.8)

after noticing that ∆Zlk + pV̄ p−1
l Zlk = 0 and an application of dominated con-

vergence. Finally we have

| < hε, Zij > | ≤ C‖hε‖∗∗.

Thus, we conclude that

|cij | ≤ C‖hε‖∗∗ + o(1)‖φε‖ρ (4.9)

so that cij = o(1). Rewrite now the equation in the following form

φε(x)− (p+ ε)
∫

Ωε

Gε(x, y)V p+ε−1φεdy =

−
∫

Ωε

Gε(x, y)hε dy −
∑

cij

∫

Ωε

V p−1
i ZijGε(x, y) dy x ∈ Ωε, (4.10)

where Gε denotes the Green’s function of Ωε. We make now the following obser-
vation: ∫

Ωε

Gε(x, y)|hε| dy ≤

‖hε‖∗∗C
∫

IRN

Γ (x− y) ((1 + |y − ξ′
1|2)−2 + (1 + |y − ξ′

2|2)−2) dy ≤

C‖hε‖∗∗| log ε|m
(
(1 + |x− ξ′

1|2)− N−2
2 + (1 + |x− ξ′

2|2)− N−2
2

)β

with m =

{
1 if N = 4

0 if N = 4
.

On the other hand, we have

|
∑

cij

∫

Ωε

V p−1
i ZijGε(x, y) dy| ≤

C(‖φε‖ρ + ‖hε‖∗∗)
∑∫

IRN

Γ (x− y)
(
(1 + |y − ξ′

i|2)− N+3
2

)
≤

C(‖φε‖ρ + ‖hε‖∗∗)
(
(1 + |x− ξ′

1|2)− N−2
2 + (1 + |x− ξ′

2|2)− N−2
2

)

Similarly, we obtain ∫

Ωε

Gε(x, y)V p+ε−1|φε|dy ≤

C‖φε‖ρ
(
(1 + |x− ξ′

1|2)− N−2
2 + (1 + |x− ξ′

2|2)− N−2
2

)β

.
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Equation (4.10) and the above estimates imply that

|φε(x)| ≤ C(‖φε‖ρ + ‖hε‖∗∗)
(
(1 + |x− ξ′

1|2)− N−2
2

+(1 + |x− ξ′
2|2)− N−2

2

)β

, (4.11)

hence that
(
(1 + |x− ξ′

1|2)− N−2
2 + (1 + |x− ξ′

2|2)− N−2
2

)−(β−ρ)
|φε(x)| ≤

C
(
(1 + |x− ξ′

1|2)− N−2
2 + (1 + |x− ξ′

2|2)− N−2
2

)ρ

.

Since ‖φε‖ρ = 1, it follows the existence of a radius R > 0 and a number γ > 0,
both independent of ε such that ‖φε‖L∞(BR(ξ′

i)) > γ for either i = 1 or i = 2.
Assume this happens for i = 1. Then local elliptic estimates and the bound (4.11)
yield that, up to a subsequence, φ̃ε(x) = φε(x − ξ′

1) converges uniformly over
compacts of IRN to a nontrivial solution φ̃ of

∆φ̃+ pŪp−1
Λ,0 φ̃ = 0, (4.12)

for some Λ > 0, which besides satisfies

|φ̃(x)| ≤ C|x|(2−N)β . (4.13)

Hence, for N = 3 we have

|φ̃(x)| ≤ C|x|2−N .

Now, since φ̃ satisfies (4.12) and estimate (4.13) holds, a bootstrap argument leads
to

|φ̃(x)| ≤ C|x|2−N for any N > 3.

It is well known that this implies that φ̃ is a linear combination of the functions
∂ŪΛ,0
∂xj

, x ·∇ŪΛ,0 +(N−2)ŪΛ,0, see for instance [19]. On the other hand, we recall
that ∫

Ωε

φεV
p−1
i Zij = 0 for all i, j.

By dominated convergence, this relation is easily seen to be preserved up to the
limit, hence

∫

IRN

φ̃Ūp−1
Λ,0

∂ŪΛ,0

∂xj
=
∫

IRN

φ̃Ūp−1
Λ,0 (x · ∇ŪΛ,0 + (N − 2)ŪΛ,0) = 0,

for all j. Hence the only possibility is that φ̃ ≡ 0, which is a contradiction which
yields the proof of ‖φε‖ρ → 0. Finally, from estimate (4.11), we observe that

‖φε‖∗ ≤ C(‖hε‖∗∗ + ‖φε‖ρ),
hence ‖φε‖∗ → 0, and the proof is thus complete. �
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Now we are in a position to prove Proposition 4.1. To do this, let us consider
the space

H = {φ ∈ H1
0 (Ωε) | < V p−1

i Zij , φ >= 0 ∀ i, j }
endowed with the usual inner product [φ, ψ] =

∫
Ωε
∇φ∇ψ. Problem (4.2) ex-

pressed in weak form is equivalent to that of finding a φ ∈ H such that

[φ, ψ] =<
(
(p+ ε)V p+ε−1φ− h) , ψ > ∀ψ ∈ H.

With the aid of Riesz’s representation theorem, this equation gets rewritten inH in
the operational form

φ = Tε(φ) + h̃ (4.14)

with certain h̃ ∈ H which depends linearly in h and where Tε is a compact operator
in H . Fredholm’s alternative guarantees unique solvability of this problem for any
h provided that the homogeneous equation

φ = Tε(φ)

has only the zero solution in H . Let us observe that this last equation is equivalent
to

∆φ+ (p+ ε)V p−1+εφ =
∑

i,j

cijV
p−1
i Zij in Ωε (4.15)

φ = 0 on ∂Ωε,

< φ, V p−1
i Zij >= 0

for certain constants cij . Assume it has a nontrivial solution φ = φε, which with
no loss of generality may be taken so that ‖φε‖∗ = 1. But this makes the previous
lemma applicable, so that necessarily ‖φε‖∗ → 0. This is certainly a contradiction
that proves that this equation only has the trivial solution in H . We conclude then
that for each h, problem (4.2) admits a unique solution. We check that

‖φ‖∗ ≤ C‖h‖∗∗.

We assume again the opposite. In doing so, we find a sequence hε with ‖hε‖∗∗ =
o(1) and solutions φε ∈ H of problem (4.2) with ‖φε‖∗ = 1. Again this makes
the previous lemma applicable, and a contradiction has been found. This proves
estimate (4.3). Estimate (4.4) follows from this and relation (4.9). This concludes
the proof of the proposition. �

It is important for later purposes to understand the differentiability of the oper-
ator Lε on the variables

ξ′ = (ξ′
1, ξ

′
2) ∈ Ω2

ε , (Λ1, Λ2) ∈ IR2
+

which satisfy constraints (4.1). Consider the L∞
∗ (resp. L∞

∗∗) of functions defined
on Ωε with finite ‖‖∗ norm (resp. ‖‖∗∗ norm). We consider the map

(ξ′, Λ, h) �→ S(ξ′, Λ, h) ≡ Lε(h), (4.16)

as a map with values in L∞
∗ ∩H1

0 (Ωε). We have the following result:
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Proposition 4.2 Under the conditions of Proposition 4.1, the map S is of classC1.
Besides, we have

‖∇ξ′,ΛS(ξ′, Λ, h)‖∗ ≤ C‖h‖∗∗

Proof. Let us consider differentiation with respect to the variable ξ′
kl, k = 1, 2, l =

1, . . . , N . For notational simplicity we write ∂
∂ξ′

ij
= ∂ξ′ .Let us set,φ = S(ξ′, Λ, h)

and, still formally, Z = ∂ξ′φ. We seek for an expression for Z. Then Z satisfies
the following equation:

∆Z + (p+ ε)V p+ε−1Z = −(p+ ε)∂ξ′(V p−1+ε)φ+

∑

i,j

dijV
p−1
i Zij + cij∂ξ′(V p−1

i Zij) in Ωε.

Here dij = ∂ξ′cij . Besides, from differentiating the orthogonality condition <
φ, V p−1

i Zij >= 0 we further obtain the relations

< φ, ∂ξ′(V p−1
i Zij) > + < Z, V p−1

i Zij >= 0.

Let us consider constants bij such that

< Z −
∑

l,k

blkZlk, V
p−1
i Zij >= 0.

These relations amount to
∑

l,k

blk < Zlk, V
p−1
i Zij >=< φ, ∂ξ′V p−1

i Zij > (4.17)

Since this system is diagonal dominant with uniformly bounded coefficients, we
see that it is uniquely solvable and that

blk = O(‖φ‖∗)
uniformly on ξ′, Λ in the considered region. Now, we easily see that

‖φ∂ξ′(V p−1+ε)‖∗∗ ≤ C‖φ‖∗.
Recall now that from Proposition 4.2 cij = O(‖h‖∗∗). On the other hand

|∂ξ′(V p−1
i Zij(x))| ≤ C|x− ξ′

i|−N−4,

hence
‖cij∂ξ′V p−1

i Zij‖∗∗ ≤ C‖h‖∗∗.

Let us now set η = Z −∑i,j bijZij . Then, summing up the estimates above, and
using that ‖φ‖∗ ≤ C‖h‖∗∗, we get that η satisfies the relation

∆η + (p+ ε)V p−1+εη = f +
∑

i,j

dijV
p−1
i Zij in Ωε, (4.18)
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where

f =
∑

i,j

bij(−(∆+ (p+ ε)V p−1+ε)Zij + cij∂ξ′(V p−1
i Zij)−

(p+ ε)∂ξ′(V p−1+ε)φ, (4.19)

so that
‖f‖∗∗ ≤ C‖h‖∗∗.

Since besides η ∈ H1
0 (Ωε) and

< η, V p−1
i Zij >= 0 for all i, j, (4.20)

we have that η = Lε(f). Reciprocally, if we now define

Z = Lε(f) +
∑

i,j

bijZij ,

with bij given by relations (4.17) and f by (4.19), then it is a matter of routine to
check that indeed Z = ∂ξ′φ. In fact Z depends continuously on the parameters
ξ′, Λ and h for the norm ‖ ‖∗, and ‖Z‖∗ ≤ C‖h‖∗∗ for points in the considered
region. The corresponding result for differentiation with respect to the Λi’s follow
similarly. This concludes the proof. �

Remark 4.1 We can also state the above result by saying that the map (ξ′, λ) �→ Lε

is of class C1 in L(L∞
∗∗, L

∞
∗ ) and, for instance

(Dξ′Lε)(h) = Lε(f) +
∑

i,j

bijZij , (4.21)

where f is given by (4.19) and bij by (4.17) .

5 The finite-dimensional reduction

At this point we are ready to start the finite dimensional reduction. Again for
notational brevity, we write V = V1 + V2 and V̄ = V̄1 + V̄2. We consider now
the nonlinear problem of finding a function φ such that for some constants cij the
following equation holds






∆(V + ψ + φ) + (V + ψ + φ)p+ε
+ =

∑
i,j cijV

p−1
i Zij in Ωε,

φ = 0 on ∂Ωε,∫
Ωε
φV p−1

i Zij = 0 for all i, j,
(5.1)

where the function ψ will be chosen below. Let us rewrite the first equation in (5.1)
in the following form

∆φ+ (p+ ε)V p+ε−1φ =

−Nε(ψ + φ)− (∆ψ + (p+ ε)V p+ε−1ψ +Rε) +
∑

i,j

cijV
p−1
i Zij in Ωε,
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where
Nε(η) = (V + η)p+ε

+ − V p+ε − (p+ ε)V p+ε−1η,

Rε = V p+ε − V̄ p
1 − V̄ p

2 .
(5.2)

We choose in what follows, ψ as

ψ = −Lε(Rε), (5.3)

where Lε is the operator defined in Proposition 4.1. We will estimate separately
each term in (5.2) in the ‖ ‖∗∗-norm. To estimate Nε(η), it is convenient, and
sufficient for our purposes, to assume ‖η‖∗ < 1. Note that

Nε(η) =
(p+ ε)(p− 1 + ε)

2
(V1 + V2 + tη)p−2+εη2 (5.4)

with t ∈ (0, 1). If N ≤ 6, then p ≥ 2 and we can estimate

|V̄ − 4
N−2Nε(η)| ≤ CV̄ (p−2)β− 4

N−2+2β‖η‖2∗,
hence

‖Nε(η)‖∗∗ ≤ C‖η‖2∗.
Assume now that N > 6. If |η| ≤ 1

2 V̄ then relation (5.4) yields that

|V̄ − 4
N−2Nε(η)| ≤ CV̄ 2β−1‖η‖2∗ ≤ Cε2β−1‖η‖2∗.

In the other case, we see directly from (5.2) that |Nε(η)| ≤ C|η|p and hence

|V̄ − 4
N−2Nε(η)| ≤ V̄ pβ− 4

N−2 ‖η‖p∗ ≤ Cε−(2−p)β‖η‖p∗.
Combining these relations we get

‖Nε(η)‖∗∗ ≤
{
C‖η‖2∗ if N ≤ 6
C(ε2β−1‖η‖2∗ + ε−(2−p)β‖η‖p∗) if N > 6.

(5.5)

Next we estimate the term Rε. We have

|Rε| ≤ |V̄ p+ε
i − V̄ p

i |+ o(ε
N+2
N−2 ) ≤ εCV̄ p

i | log V̄i|(x) + o(ε
N+2
N−2 )

in the regions where |x− ξ′
i| ≤ δ̄ε− 1

N−2 , for small δ̄ > 0. Taking into account that

|Rε| ≤ CεN+2
N−2 in the complement of these two regions, we get

‖Rε‖∗∗ ≤ Cε.
Combining this with (5.3) and (5.5), we obtain then the following estimate.

Lemma 5.1 Assume that the conditions of Proposition 4.1 are satisfied. Then there
is a positive constant C such that, for any sufficiently small ε and ‖φ‖∗ ≤ 1,

‖Nε(ψ + φ)‖∗∗ ≤
{
C(‖φ‖2∗ + ε2) if N ≤ 6
C(ε2β−1‖φ‖2∗ + ε−(2−p)β‖φ‖p∗ + εpβ+1) if N > 6.

(5.6)
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Proposition 5.1 Assume the conditions of Proposition 4.1 are satisfied. Then there
is a C > 0, such that for all small ε there exists a unique solution φ = φ(ξ′, Λ)
with

||φ||∗ ≤ Cε
to the problem






∆φ+ (p+ ε)V p+ε−1φ = −Nε(ψ + φ) +
∑

i,j cijV
p−1
i Zij in Ωε

φ = 0 on ∂Ωε∫
Ωε
φV p−1

i Zij = 0 for all i, j,
(5.7)

where ψ is the function defined in (5.3).

Proof. Let us set
F = {φ ∈ H1

0 : ||φ||∗ ≤ ε}.
Define now the map Aε : F → H1

0 as

Aε(φ) = −Lε(Nε(φ+ ψ)),

where Lε is the linear operator defined in Proposition 4.1. Since ψ = −Lε(Rε)
and since Lε is a linear operator, solving (5.7) is equivalent to finding a fixed point
φ forAε. From Proposition 4.1 and Lemma 5.1 we conclude that, for ε sufficiently
small and any φ ∈ Fr we have

‖Aε(φ)‖∗ = ‖Lε(Nε(φ+ ψ))‖∗ ≤ C‖Nε(φ+ ψ)‖∗∗ ≤
{
Cε2 ≤ ε if N ≤ 6
C(ε2β+1 + εpβ+1) ≤ ε if N > 6,

where the last inequality holds provided that ε is sufficiently small. Now we will
show that the mapAε is a contraction, for any ε small enough. That will imply that
Aε has a unique fixed point in F and hence problem (5.7) has a unique solution.

For any φ1, φ2 in Fr we have

‖Aε(φ1)−Aε(φ2)‖∗ ≤ C‖Nε(ψ + φ1)−Nε(ψ + φ2)‖∗∗,

hence we just need to check that Nε is a contraction in its corresponding norms.
By definition of Nε

Dφ̄Nε(φ̄) = (p+ ε)[(V + φ̄)p+ε−1
+ − V p+ε−1].

Hence we get

|Nε(ψ + φ1)−Nε(ψ + φ2)| ≤ CV̄ p−2|φ̄||φ1 − φ2|.
for some φ̄ in the segment joining ψ + φ1 and ψ + φ2. Hence, we get for small
enough ‖φ̄‖∗,

V̄ − 4
N−2 |Nε(ψ + φ1)−Nε(ψ + φ2)| ≤ CV̄ 2β−1‖φ̄‖∗‖φ1 − φ2‖∗.
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We conclude

‖Nε(ψ + φ1)−Nε(ψ + φ2)‖∗∗ ≤ V̄ 2β−1(‖φ1‖∗ + ‖φ2‖∗ + ‖ψ‖∗)‖φ1 − φ2‖∗
≤ εmin{2β,1}‖φ1 − φ2‖∗

and hence Aε is a contraction mapping for the ‖ ‖∗-norm inside Fr. �

Our purpose in what remains of this section is to analyze the differentiability
properties of the function φ(ξ′, Λ) defined in Proposition 5.1

Proposition 5.2 The function (ξ′, Λ) �→ φ(ξ′, Λ) provided by Proposition 5.1 is of
class C1 for the norm ‖ ‖∗. Moreover,

‖∇(ξ′,Λ)φ‖∗ ≤ Cε.
Proof. We recall that φ is defined through the relation

B(ξ′, Λ, φ) ≡ φ+ Lε(Nε(φ+ ψ)) = 0.

Write N(ξ′, Λ, φ̄) = Nε(φ̄), namely

N(ξ′, Λ, φ̄) = (V + φ̄)p+ε
+ − V p+ε − (p+ ε)V p+ε−1φ̄.

Then
Dφ̄N(ξ′, Λ, φ̄) = (p+ ε)[(V + φ̄)p+ε−1

+ − V p+ε−1]

and

Dξ′N(ξ′, Λ, φ̄) = (p+ ε)[(V + φ̄)p+ε−1
+

−V p+ε−1 − (p+ ε− 1)V p+ε−2φ̄]Dξ′V, (5.8)

similarly for DΛN(ξ′, Λ, φ̄). We have that

DφB(ξ′, Λ, φ)[θ] = θ + Lε(θDφ̄Nε(φ+ ψ)) ≡ θ +M(θ).

Now,

‖M(θ)‖∗ ≤ C‖(θDφ̄Nε(φ+ ψ))‖∗∗ ≤ C‖V − 4
N−2+βDφ̄Nε(φ+ ψ))‖∞‖θ‖∗.

Now,

V̄ − 4
N−2+β |Dφ̄Nε(φ+ ψ))| ≤ V̄ 2β−1‖φ+ ψ‖∗ ≤ Cεmin{2β,1}.

It follows that for small ε, the linear operator DφB(ξ′, Λ, φ) is invertible in L∞
∗ ,

with uniformly bounded inverse. It also depends continuously on its parameters.
Now, let us consider differentiability with respect to the (ξ′, Λ) variables. We

have
Dξ′B(ξ′, Λ, φ) = (Dξ′Lε)(Nε(φ+ ψ))+

[
Lε((Dξ′N)(ξ′, Λ, φ+ ψ)) + Lε((Dφ̄N)(ξ′, Λ, φ+ ψ)Dξ′ψ)

]
.
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HereDξ′Lε is the operator defined by the expression (4.21) and the second quantity
by (5.8). Observe also that

Dξ′ψ = (Dξ′Lε)(Rε) + Lε(Dξ′Rε). (5.9)

Also,

Dξ′
1
Rε = (p+ ε)V p+ε−1Dξ′

1
V1 − pV̄ p−1

1 Dξ′
1
V̄1. (5.10)

These expressions also depend continuously on their parameters. We have a similar
expression for the derivative with respect to Λ.

The implicit function theorem then applies to yield that φ(ξ′, Λ) indeed defines
a C1 function into L∞

∗ . Moreover, we have for instance

Dξ′φ = −(DφB(ξ, Λ, φ))−1[(Dξ′Lε)(Nε(φ+ψ))+[Lε(Dξ′ [N(ξ′, Λ, φ+ψ)]) +

Lε((Dφ̄N)(ξ′, Λ, φ+ ψ)Dξ′ψ)]
]
.

Hence,

‖Dξ′φ‖∗ ≤ C(‖Nε(φ+ ψ)‖∗∗+

‖Dξ′N(ξ′, Λ, φ+ ψ)‖∗∗ + ‖Dφ̄N(ξ′, Λ, ψ + φ)Dξ′ψ‖∗∗),

where we have used Remark 4.1. From Lemma 5.1, we get

‖Nε(φ+ ψ)‖∗∗ ≤
{
Cε2 if N ≤ 6
Cεpβ+1 if N > 6. (5.11)

On the other hand, from (5.8) we have

|(Dξ′N)(ξ′, Λ, φ̄)| ≤ CV̄ N−1
N−2 |(V + φ̄)p+ε−1

+ −V p+ε−1−(p+ε−1)V p+ε−2φ̄| ≤

CV̄
5

N−2+ε+β‖φ̄‖∗,
hence

‖(Dξ′N)(ξ′, Λ, ψ + φ)‖∗∗ ≤ C‖φ+ ψ‖∗ ≤ Cε.
In similar way we get that

‖Dφ̄N(ξ′, Λ, ψ + φ)Dξψ‖∗∗ ≤ Cε.

Hence, we finally get

‖D′
ξφ‖∗ ≤ Cε,

as desired. A similar estimate holds for differentiation with respect to theΛi’s. This
concludes the proof. �
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6 The reduced functional

Now we have all elements at hand for the resolution of the full problem. In what
follows we consider points (ξ′

1, ξ
′
2, Λ1, Λ2) = (ξ′, Λ) with, for i = 1, 2,

|ξ′
1 − ξ′

2| ≥ ε− 1
N−2 δ, dist(ξ′

i, ∂Ωε) ≥ ε− 1
N−2 δ, δ < Λi < δ−1. (6.1)

The estimates obtained below will be uniform on points satisfying these constraints.
Let φ(x) = φ(ξ′, Λ)(x) be the unique solution of problem






∆(V + ψ + φ) + (V + ψ + φ)p+ε
+ =

∑
i,j ci,jV

p−1
i Zij in Ωε

φ = 0 on ∂Ωε∫
Ωε
φV p−1

i Zij = 0 for all i, j
(6.2)

as predicted by Proposition 5.1. We observe that if ξ′ = ε− 1
N−2 ξ with ξ ∈ Ω ×Ω,

and Λ are so that cij = 0 for all i, j, we obtain a solution of our original problem,
by means of the scaling

u(x) = ε−ζv(xε− 1
N−2 ), (6.3)

where

v = V + ψ + φ(ε− 1
N−2 ξ, Λ) and ζ =

1
2 + εN−2

2

. (6.4)

v will be a critical point of the functional

Iε(v) =
1
2

∫

Ωε

|Dv|2 − 1
p+ ε+ 1

∫

Ωε

vp+ε+1,

while u one of

Jε(u) =
1
2

∫

Ω

|Du|2 − 1
p+ 1 + ε

∫

Ω

up+1+ε.

It seems reasonable therefore to consider the functions defined in Ω

φ̂(ξ, Λ)(x) = ε−ζφ(ε− 1
N−2 ξ, Λ)(ε− 1

N−2x),

ψ̂(x) = ε−ζψ(ε− 1
N−2x) and Ûi(x) = ε−ζVi(ε− 1

N−2x) = ε(
1
2 −ζ)Uλε

i ,ξi(x),

where
λε

i = (cNΛ2
i ε)

1
N−2 and ξi = ε

1
N−2 ξ′

i;

in particular,
(ξ1, ξ2) ∈ Oδ(Ω)

(see (3.3)) since (6.1) holds. Let us set Û = Û1 + Û2. Consider now the functional

I(ξ, Λ) ≡ Jε(Û + ψ̂ + φ̂(ξ, Λ)). (6.5)

We see that
I(ξ, Λ) = ε1−2ζIε(V + ψ + φ)

We start with the following basic claim:
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Lemma 6.1 u = Û + ψ̂ + φ̂ is a solution of problem (1.1) if and only if (ξ, Λ) is
a critical point of I .

Proof. We will have that the numbers cij in (5.7) are all zero if and only if

DIε(V + φ̄)[Zij ] = 0 for all i, j, (6.6)

where, for now, we write φ̄ = ψ + φ. On the other hand,

∂

∂ξlk
I(ξ, Λ) = 0

for all l, k if and only if
∂

∂ξ′
lk

Iε(V + φ̄) = 0

where ξ′ = ε−1/(N−2)ξ, namely if and only if

DIε(V + φ̄)
[
∂V

∂ξ′
lk

+
∂φ̄

∂ξ′
lk

]
= 0.

Now,
∂V

∂ξ′
lk

= Zlk + o(1).

Hence
DIε(V + φ̄)[Zlk + o(1)] = 0

with o(1) → 0 in, say, ‖ ‖∗-norm, since we have also seen that ‖ ∂φ̄
∂ξ′

ij
‖∗ = o(1).

Now, by definition of φ we have that

DIε(V + φ̄)[ϕ] = 0

for all ϕ inH1
0 with< ϕ, V p−1

i Zij >= 0 for all i, j. For a given function θ we can
find constants bij such that θ −∑ bijZij satisfies

< θ −
∑

i,j

bijZij , V
p−1
l Zlk >= 0

for all l, k. In fact this amounts to the system

< θ, V p−1
l Zlk >=

∑

i,j

bij < Zij , V
p−1
l Zlk >

which has a uniformly invertible associated matrix. We see in particular that bij =
O(‖θ‖∗). Then the above estimate implies that

∂I

∂ξij
= 0

if and only if
DIε(V + φ̄)[Zij + o(1)θ] = 0
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where θ is a uniformly bounded element of the space spanned by the Zlk’s. Thus
the above relation for all i, j is equivalent to

DIε(V + φ̄)[Zij ] = 0

for all i, j. By definition of the cij , it is easily seen that this is indeed equivalent
to cij = 0 for all i, j. Therefore finding (ξ′, Λ) in such a way that the numbers cij
which appear in problem (6.2) are zero is equivalent to finding critical points of the
function I(ξ, Λ). �

Our next purpose is to establish an asymptotic estimate for the functional
I(ξ, Λ). We prove

Proposition 6.1 Let ζ be given by (6.4). Then we have the expansion,

ε2ζ−1I(ξ, Λ) = 2CN + γNε+ wNε Ψ(ξ, Λ) + o(ε)θ(ξ, Λ), (6.7)

uniformly with respect to (ξ, Λ) ∈ Oδ(Ω) × (]δ, δ−1[)2, where θ and ∇ξ,Λθ are
uniformly bounded, independently of ε. Here, we recall

Ψ(ξ, Λ) =
1
2
{H(ξ1, ξ1)Λ2

1 +H(ξ2, ξ2)Λ2
2 − 2G(ξ1, ξ2)Λ1Λ2}+ logΛ1Λ2,

and the constants in (6.7) are those in Lemma 3.2.

Proof. To begin with, we will prove that the following relations hold

I(ξ, Λ)− Jε(Û) = o(ε) (6.8)

and
∇ξ,Λ[I(ξ, Λ)− Jε(Û)] = o(ε). (6.9)

First, a Taylor expansion gives that

Jε(Û + ψ̂)− I(ξ, Λ) = Jε(Û + ψ̂)− Jε(Û + ψ̂ + φ̂) =
∫ 1

0
tdtD2Jε(Û + ψ̂ + tφ̂)[φ̂, φ̂], (6.10)

since 0 = DIε(V + ψ + φ)[φ] = ε2ζ−1DJε(Û + ψ̂ + φ̂)[φ̂]. Now, from the
definition of φ, we see that

∫ 1

0
tdtD2Jε(Û + ψ̂ + tφ̂)[φ̂, φ̂] = ε1−2ζ

∫ 1

0
tdtD2Iε(V + ψ + tφ)[φ, φ]

= ε1−2ζ

∫ 1

0
tdt

[∫

Ωε

|∇φ|2 − (p+ ε)(V + ψ + tφ)p+ε−1φ2
]

= ε1−2ζ

∫ 1

0
tdt

(∫

Ωε

Nε(φ+ ψ)φ

+
∫

Ωε

(p+ ε)[V p+ε−1 − (V + ψ + tφ)p+ε−1]φ2
)
. (6.11)
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Since, we recall ‖φ‖∗ +‖ψ‖∗ = O(ε), the above relation together with (5.11) yield
in particular,

I(ξ, Λ)− Jε(Û + ψ̂) =






O(ε2) if N < 6
O(ε2| log ε|) if N = 6
O(ε1+

4
N−2 ) if N ≥ 7,

(6.12)

uniformly on ξ, Λ in the considered region. Let us estimate now difference in
derivatives. Differentiating with respect to ξ variables we get from (6.11) that

Dξ[I(ξ, Λ)− Jε(Û + ψ̂)]

= ε1−2ζ− 1
N−2

∫ 1

0
tdt

(∫

Ωε

Dξ′ [(Nε(φ+ ψ))φ]

+(p+ ε)
∫

Ωε

∇ξ′ [((V + ψ + tφ)p+ε−1 − (V )p+ε−1)φ2]
)
. (6.13)

Here ξ′
i = ε− 1

N−2 ξi. Using the computations in the proof of Proposition 5.2 we get
that

Dξ[I(ξ, Λ)− Jε(Û + ψ̂)] = o(ε)

Now,

Jε(Û + ψ̂)− Jε(Û) = ε1−2ζ [Iε(V + ψ)− Iε(V )]

= ε1−2ζ

{∫ 1

0
(1− t)dt[(p+ ε)

∫

Ωε

((V + tψ)p+ε−1

−V p+ε−1)ψ2]− 2
∫

Ωε

Rεψ

}
(6.14)

where we have used that

DIε(V )[ψ] = −
∫

Ωε

Rεψ.

Arguing as before and taking into account that (6.12) holds, we get (6.8). On the
other hand, using (6.14), we see that

Dξ[Jε(Û + ψ̂)− J(Û)]

= ε1−2ζ− 1
N−2Dξ′

{∫ 1

0
(1− t)dt[(p+ ε)

∫

Ωε

((V + tψ)p+ε−1

−V p+ε−1)ψ2]− 2
∫

Ωε

Rεψ

}
.

A computation similar to those already carried out yields then that

Dξ[Jε(Û + ψ̂)− J(Û)] = o(ε)− 2ε− 1
N−2Dξ′(

∫

Ωε

Rεψ).
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The desired result will follow if we prove that

ε− 1
N−2Dξ′(

∫

Ωε

Rεψ) = o(ε). (6.15)

First, if N > 3, Proposition 5.2 yields

ε− 1
N−2Dξ′(

∫

Ωε

Rεψ) =






O(ε2− 1
N−2 ) if N = 4, 5

O(ε7/4| log ε|) if N = 6
O(ε

N+1
N−2 ) if N ≥ 7.

Let us consider now the case N = 3. We have that

Dξ′
1

(∫

Ωε

Rεψ

)
=
∫

Ωε

(Dξ′
1
Rε)ψ +

∫

Ωε

(Dξ′
1
ψ)Rε = ε2(I + II).

Let us estimate first II . Our first observation is that, locally, around ξ′
i,

ε−1Rε(ξ1 + x)→ V 5
0 log V0 + cV 4

0

uniformly over compacts, for certain constant c. Here V0(|x|) = Ūλ,0 for some
λ > 0. We also set Z0 = x · ∇V0 + V0. Hence, ε−1ψ(x+ ξ1)→ w(|x|) where w
is the unique radial solution of

∆w + pV 4
0 w = V 5

0 log V0 + cV 4
0 + bV 4

0 Z0

which goes to zero at∞, and is such that
∫

IRN

V 4
0 Z0w = 0.

The constant b is precisely that making the integral of the right hand side of the
above equation against Z0 equal to zero. In a similar way,

ε−1Dξ1ψ(x+ ξ1)→ w′(|x|) x|x| .

After a suitable application of dominated convergence, we get that After a suitable
application of dominated convergence, we get that

II = ε−2
∫

Ωε

(Dξ1ψ)Rε = ε−2






2∑

j=1

∫

B(ξ′
j)

(Dξ1ψ)Rε

+
∫

Ωε\∩2
j+1B(ξj

′ )
(Dξ1ψ)Rε

}

→
∫

IRN

(V 5
0 log V0 + cV 4

0 + bV 4
0 Z0)(|x|)w′(|x|) x|x| +O

(
1
R

)
= O

(
1
R

)
,

by symmetry. The term I can we dealt with in a similar manner. We conclude that
I + II → 0 since R can be chosen as large as desired. Hence relation (6.15) has
been established, and this proves the result in what concerns to derivatives with
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respect to ξ. Derivatives with respect to Λ are actually dealt with in fact in simpler
way, since the term ε− 1

N−2 does not appear in the differentiation. The validity of
(6.15) thus follows.

We consider next the problem of estimating the quantity

Jε(Û1 + Û2) = Jε(εζ̄(U1 + U2)).

where ζ̄ = 1
2 − ζ. We have the expansion

ε−2ζ̄Jε(εζ̄(U1 + U2)) =

Jε(U1 + U2) +
1− ε ε

2

p+ 1 + ε

∫

Ω

(U1 + U2)p+1+ε. (6.16)

Let us now consider the second term in (6.16). From estimates already carried out
in §3, we see that

1− ε ε
2

p+ 1 + ε

∫

Ω

(U1 + U2)p+1+ε = (−ε
2

log ε+ o(ε))
[ 1
p+ 1

∫

Ω

(U1 + U2)p+1+

ε

(p+ 1)2

∫

Ω

(U1 + U2)p+1 − ε

p+ 1

∫

Ω

(U1 + U2)p+1 log(U1 + U2) + o(ε)
]
=

− 1
p+ 1

(
∫

IRN

Ūp+1)ε log ε+ o(ε). (6.17)

Combining (6.16), (6.17), (6.8) and (6.9) and the results of Lemma 3.2, (6.7) finally
follows. �

Lemma 3.2 and its remark, together with (6.9), yield

I(ξ, Λ) = 2CN + εγN + ε
1

p+ 1
(
∫

IRN

Up+1)Ψ(ξ, Λ) + o(ε), (6.18)

and

∇I(ξ, Λ) = ε
1

p+ 1
(
∫

IRN

Up+1)(∇Ψ(ξ, Λ) + o(1)), (6.19)

estimates that will be crucial later for our purposes
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7 The min-max

In this section we set up a min-max scheme to find a critical point of the function
Ψ . This scheme can be also used to find a critical point for the reduced functional
I . We recall that the function Ψ is well defined in (Ω ×Ω \∆)× IR2

+, where ∆ is
the diagonal ∆ = {(ξ1, ξ2) ∈ Ω ×Ω / ξ1 = ξ2}. In order to avoid the singularity
of Ψ over ∆ we consider M > 0 and define

GM (ξ) =

{
G(ξ) if G(ξ) ≤M
M if G(ξ) > M,

(7.1)

and we consider ΨM,ρ : Ωρ ×Ωρ × IR2
+ → IR defined by

ΨM,ρ(ξ, Λ) = Ψ(ξ, Λ)−GM (ξ)Λ1Λ2 +G(ξ)Λ1Λ2, (7.2)

where ρ > 0 and Ωρ = {ξ1 ∈ Ω / dist(ξ1, ∂Ω) > ρ}. We will specify ρ and
M later, and for notational convenience we will simply write ΨM,ρ = Ψ and
D = Ωρ×Ωρ×IR2

+. We consider a further restrictionDϕ = {(ξ, Λ) ∈ D/ϕ(ξ) <
−ρ0}, where ρ0 = min{ 1

2 exp(−2C0 − 1),− 1
2 max{ϕ/ inM2}}, with

C0 = sup
(ξ,σ)∈M2×I0

Ψ(ξ, σ).

With this choice certainlyM2 × IR2
+ ⊂ Dϕ.

Aiming to define the min-max class, for every ξ ∈ M2 we let d(ξ) = (d1(ξ),
d2(ξ)) ∈ IR2 be the negative direction of the quadratic form defining Ψ . Such a
direction exists since, by hypothesis of Theorem 1.1, the functionϕ is negative over
M2. We easily see that there is a constant c > 0 so that c < d1(ξ)d2(ξ) < c−1 for
all ξ ∈M2.

Next we let Γ be the class of continuous functions γ :M2×I0× [0, 1]→ Dϕ,
such that

1. γ(ξ, σ0, t) = (ξ, σ0d(ξ)), and γ(ξ, σ−1
0 , t) = (ξ, σ−1

0 d(ξ)) for all ξ ∈ M2,
t ∈ [0, 1], and

2. γ(ξ, σ, 0) = (ξ, σd(ξ)) for all (ξ, σ) ∈M2 × I0,

where I0 = [σ0, σ
−1
0 ] with σ0 is a small number to be chosen later. Then we define

the min-max value

c(Ω) = inf
γ∈Γ

sup
(ξ,σ)∈M2×I0

Ψ(γ(ξ, σ, 1)) (7.3)

and we will prove in what follows that c(Ω) is a critical value of Ψ . The first step in
this direction is an intersection lemma. The idea behind this result is the topological
continuation of the set of solution of an equation, and is based on the work of
Fitzpatrick, Massabó and Pejsachowicz [13]. For every (ξ, σ, t) ∈M2×I0× [0, 1]
we denote γ(ξ, σ, t) = (ξ̃(ξ, σ, t), Λ̃(ξ, σ, t)) ∈ Dϕ, and we define the set

S = {(ξ, σ) ∈M2 × I0 / Λ̃1(ξ, σ, 1) · Λ̃2(ξ, σ, 1) = 1}.
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Lemma 7.1 For every open neighborhood V of S in M2 × I0, the projection
g : V →M2 induces a monomorphism in cohomology, that is

g∗ : H∗(M2) −→ H∗(V )

is a monomorphism.

Proof. Let us define the set

Z([0, 1]) = {(ξ, σ) ∈M2 × I0 / f(ξ, σ, t) = 1, for all t ∈ [0, 1]},
where f(ξ, σ, t) = Λ̃1(ξ, σ, t)·Λ̃2(ξ, σ, t). Then the function h defined by h(ξ, σ, t)
= (g(ξ, σ), f(ξ, σ, t)) is a homotopy of pairs

h : (M2 × I0, Z([0, 1]))× [0, 1] −→ (M2 × IR+,M2 × (IR+ \ {1}).
By choosing σ0 small enough we have that the following inclusion is well defined:

j : (M2 × I0,M2 × ∂I0) −→ (M2 × I0, Z([0, 1])).

If i is also an inclusion map and h0(·) = h(·, 0), then we have the following
commutative diagram in cohomology

H∗(M2 × I0, Z([0, 1]))
h∗
0←− H∗(M2 × IR+,M2 × (IR+ \ {1}))

j∗

↘
i∗

↙
H∗(M2 × I0,M2 × ∂I0)

Since i∗ is an isomorphism we conclude that h∗
0 is a monomorphism and then from

the homotopy axiom, we find that

h1 = (g, f1) : (M2 × I0, Z([0, 1]))→ (M2 × IR+,M2 × (IR+ \ {1}))
induces a monomorphism in cohomology, where h1(·) = h(·, 1). Next, defining

Z(1) = {(ξ, σ) ∈M2 × I0 / f(ξ, σ, 1) = 1}
and noting that Z([0, 1]) ⊂ Z(1) we also find that

h1 : (M2 × I0, Z(1))→ (M2 × IR+,M2 × (IR+ \ {1})
induces a monomorphism in cohomology. Since V and Z(1) are open, and V c ⊂
Z(1), defining Z = Z(1) ∩ V and using the excision axiom, we conclude that

h∗
1 : H∗(M2 × IR+,M2 × (IR+ \ {1}))→ H∗(V,Z)

is a monomorphism. Let e be a generator ofH1(IR+, IR+\{1}) and u ∈ Hi(M2),
with i ≥ 0, then following from the basic relation between cross product and cup
product in cohomology, we have

h∗
1(u× e) = d∗(g∗(u)× f∗

1 (e)) = g∗(u) � f∗
1 (e).

Since h∗
1 is a monomorphism, it follows that g∗ is also a monomorphism. �
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Corollary 7.1 There is a constant K, independent of σ0, so that

sup
(ξ,σ)∈M2×I0

Ψ(γ(ξ, σ, 1)) ≥ −K for all γ ∈ Γ.

Proof. SinceΩ is smooth, there is δ0 > 0 such that if ξ1, ξ2 ∈ Ωρ and |ξ1−ξ2| < δ0
then the line segment [ξ1, ξ2] ⊂ Ω. Then we let K > 0 so that G(ξ1, ξ2) ≥ K
implies |ξ1 − ξ2| < δ0. We observe that, if we assume that M is chosen such that
M ≥ 2K, then the implication remains valid both for G and GM .

Assume, for contradiction, that for certain γ ∈ Γ

Ψ(γ(ξ, σ, 1)) ≤ −K for all (ξ, σ) ∈M2 × I0.

This implies that, for a small neighborhood V of S inM2 × I0, we have

G(ξ̃(ξ, σ, 1)) ≥ K for all (ξ, σ) ∈ V. (7.4)

Let D0 = Ω × Ω × IR2
+ and γ1 = γ(·, 1). Consider the inclusion i2 : γ1(V ) →

D0 and the maps p : γ1(V ) → Ω × IR2
+ and δ : Ω × IR2

+ → D0 defined
as p(ξ1, ξ2, Λ) = (ξ1, Λ) and δ(ξ1, Λ) = (ξ1, ξ1, Λ). From (7.4) we find that the
functionh : γ1(V )×[0, 1]→ D0 defined ash(ξ1, ξ2, Λ, t) = (ξ1, ξ2+t(ξ1−ξ2), Λ)
is a homotopy between i2 and δ ◦ p. Let d be the integer given in Theorem 1.2 and
consider the following commutative diagram

H2d(M2 × I0) γ1
∗

←− H2d(D0)
i∗1↓ i∗2↓

H2d(V )
γ2

∗
←− H2d(γ1(V )),

where i1 is inclusion map and γ2 = γ1|V . From the hypothesis of Theorem 1.2
we find u ∈ Hd(M) and v ∈ Hd(Ω) nontrivial elements such that ι∗(v) = u.
If v̂ × v̂ ∈ H2d(D0) is the corresponding element, then by homotopy axiom and
Lemma 4.1 we have i∗1 ◦γ∗

1 (v̂× v̂) = 0. On the other hand we see that δ∗(v̂× v̂) =
v̂ � v̂ ∈ H2d(Ω × IR2

+) is zero, either because d is odd or because H2d(Ω) = 0.
In both cases we have then γ∗

2 ◦ i∗2(v̂ × v̂) = 0, providing a contradiction. �
In view of Corollary 7.1, in order to prove that the min-max number (7.3) is a

critical value, we need to care about the fact that the domain in which Ψ is defined is
not necessarily closed for the gradient flow of Ψ . The following lemma, involving
the original ϕ, is a step in this direction

Lemma 7.2 Given c < 0 there exists a sufficiently small number ρ > 0 with the
following property: If (ξ̄1, ξ̄2) ∈ ∂(Ωρ×Ωρ) is such that ϕ(ξ̄1, ξ̄2) = c, then there
is a vector τ , tangent to ∂(Ωρ ×Ωρ) at the point (ξ̄1, ξ̄2), so that

∇ϕ(ξ̄1, ξ̄2) · τ = 0. (7.5)

The number ρ does not depend on c.
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Proof. Consider, for small ρ, the modified domain

Ω̃ = ρ−1Ω,

and observe that for this domain, its associated Green’s function and regular part
are given by

G̃(x1, x2) = ρN−2G(ρx1, ρx2), H̃(x1, x2) = ρN−2H(ρx1, ρx2).

Then ϕ(ρx1, ρx2) = c translates into ϕ̃(x1, x2) = cρN−2 where

ϕ̃(x1, x2) = H̃(x1, x1)1/2H̃(x2, x2)1/2 − G̃(x1, x2).

Assume that dist (ρx1, ∂Ω) = ρ, namely that dist (x1, ∂Ω̃) = 1. After a rotation
and a translation, we assume that the closest point of the boundary to x1 is the
origin, that x1 = (0, 1), where 0 = 0IRN−1 and that as ρ → 0 the domain Ω̃
becomes the half-space xN > 0. In order to make the relation ϕ̃(x1, x2) = cρN−2

remain, as ρ→ 0, we claim that necessarily we must have d = |x1 − x2| = O(1)
as ρ→ 0. In fact, otherwise we will have

H̃(x1, x1)1/2H̃(x2, x2)1/2 ≥ Cd− N−2
2

while
G̃(x1, x2) ≤ Cd−(N−2).

Hence, for large d
Cd− N−2

2 ≤ ϕ̃(x1, x2) = cρN−2,

which is impossible since c < 0. We observe that this conclusion does not depend
on the value of c, but on the fact c is negative. By assumption, we also have |x1 −
x2| ≥ 1. Then we let ρ → 0 and then assume that the point x2 converges to
some x̄2 = (x̄′

2, x̄
N
2 ), where x̄N

2 ≥ 1. We also set, consistently x̄1 = (0, 1). The
functions H̃(x, y) and G̃(x, y) converge to the corresponding ones Ĥ and Ĝ in the
half-space xN > 0, namely to

Ĥ(x, y) =
bN

|x− ŷ|N−2

and

Ĝ(x, y) = bN

(
1

|x− y|N−2 −
1

|x− ŷ|N−2

)
.

Here, for y = (y′, yN ) we denote ŷ = (y′,−yN ). Similarly, ∇ϕ̃ converges to ∇ϕ̂
where

ϕ̂(x1, x2) = Ĥ(x1, x1)1/2Ĥ(x2, x2)1/2 − Ĝ(x1, x2).

We have that
ϕ̂(x̄1, x̄2) = 0,

Assume first that x̄′
2 = 0. Then

∇x′
2
ϕ̂(x̄1, x̄2) = −∇x′

2
Ĝ(x̄1, x̄2)

= −(N − 2)bN

(
1

|x̄2 − x̄1|N−2 −
1

|x̄2 − ˆ̄x1|N−2

)
x

′
2 = 0
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since clearly |x̄2 − x̄1| < |x̄2 − ˆ̄x1|. The vector of IRN × IRN (0′, 0, x′
2, 0) is

clearly tangent to the boundary of the restriction xN
1 > 0, where we are assuming

the considered point lies. Assume now that x′
2 = 0, case in which otherwise x̄2 =

(0′, a0) with a0 ≥ 2, and then

b−1
N ϕ̂(x̄1, x̄2 + (a− a0)x̄1) =

1

2
N−2

2

1

(2a)
N−2

2

−
(

1
(a− 1)N−2 −

1
(1 + a)N−2

)

Differentiating with respect to a we get

b−1
N ∇xN

2
ϕ̂(x̄1, x̄2)

= −(N − 2)[2−(N−1)a
−N/2
0 − (a0 − 1)−(N−1) + (a0 + 1)−(N−1)]

This combined with the relation ϕ̂(x̄1, x̄2) = 0 yields

b−1
N ∇xN

2
ϕ̂(x̄1, x̄2)

= (N − 2)[(a0 − 1)−(N−1) − 2−(N−1)a
−N/2
0 − (a0 + 1)−(N−1)] > 0.

Indeed, since ϕ̂(x̄1, x̄2) = 0 we have

1

2N−1a
N
2
0

=
1

2a0

1

2N−2a
N−2

2
0

<

[
1

(a0 − 1)N−1 −
1

(a0 + 1)N−1

]
.

So we can conclude that

b−1
N ∇xN

2
ϕ̂(x̄1, x̄2) > 0. �

We finally can prove

Proposition 7.1 The number c(Ω) given in (7.3) is a critical value for Ψ in D.

Proof. We first prove that for every sequence {(ξn, Λn)} ⊂ Dϕ such that (ξn, Λn)
→ (ξ̄, Λ̄) ∈ ∂Dϕ and Ψ(ξn, Λn) → c(Ω) there is a vector T , tangent to ∂Dϕ at
(ξ̄, Λ̄), such that

∇Ψ(ξ̄, Λ̄) · T = 0. (7.6)

In order to prove (7.6) we first observe that if Λn → Λ̄ ∈ ∂IR2
+ then Ψ(ξn, Λn)→

−∞. Thus we can assume that Λ̄ ∈ IR2
+, ξ̄ ∈ Ω̄ρ×Ω̄ρ andϕ(ξ̄) ≤ −ρ0. Two cases

arise, if ∇ΛΨ(ξ̄, Λ̄) = 0 then T can be chosen parallel to ∇ΛΨ(ξ̄, Λ̄). Otherwise,
when ∇ΛΨ(ξ̄, Λ̄) = 0 we have that Λ̄ satisfies

Λ̄2
1 = − H(ξ̄2, ξ̄2)1/2

H(ξ̄1, ξ̄1)1/2ϕ(ξ̄1, ξ̄2)
, Λ̄2

2 = − H(ξ̄1, ξ̄1)1/2

H(ξ̄2, ξ̄2)1/2ϕ(ξ̄1, ξ̄2)
,

and ξ̄ satisfies ϕ(ξ̄) < 0. Substituting back in Ψ , we get

Ψ(ξ̄1, ξ̄2, Λ̄1, Λ̄2) = −1
2

+
1
2

log
1

|ϕ(ξ̄1, ξ̄2)|
and then ϕ(ξ̄) = − exp(−2c(Ω) − 1) ≤ −2ρ0 < −ρ0, so that ξ̄ ∈ ∂(Ωρ × Ωρ).
At this point we choose M : We take ρ > 0 as in Lemma 7.2, then we let Hρ =
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max{H(ξ1, ξ1) / ξ1 ∈ Ωρ} and consider M ≥ exp(2K − 1) + Hρ. We observe
then, that the use of Corollary 7.1 impliesG(ξ̄1, ξ̄2) ≤M . Thus, we can apply (7.5)
to complete the proof of (7.6). Now we can define an appropriate negative gradient
flow that will remain in Dϕ at level c(Ω).

To finish we only need to prove the Palais Smale condition inDϕ at level c(Ω),
that is, that if {(ξn, Λn)} ⊂ Dϕ satisfies Ψ(ξn, Λn)→ c(Ω) and∇Ψ(ξn, Λn)→ 0
then {(ξn, Λn)} has a subsequence converging to some (ξ̄, Λ̄) ∈ Dϕ. In fact, it can
be shown that the sequence Λn remains bounded. Then we conclude using (7.6).

�

Now we are in a position to complete the proof of Theorem 1.1, proving that
the reduced functional has a critical point.

Proof of Theorem 1.1 completed. We consider the domain Dr,R = Ωρ × Ωρ ×
[r,R]2 ∩Dϕ, with r,R to be chosen later. The functional I is well defined onDr,R

except on the set ∆ρ = {ξ ∈ Ωρ × Ωρ / |ξ1 − ξ2| < ρ}. Proceeding as with Ψ ,
we can extend I to all Dr,R, keeping the relations (6.18) and (6.19) over Dr,R.

By the Palais Smale condition forΨ proved in Proposition 7.1 there are numbers
R > 0, c > 0 and α0 > 0 such that for all 0 < α < α0, and (ξ, Λ) ∈ Dr,R

satisfying |Λ| ≥ R and c(Ω)−2α ≤ Ψ(ξ, Λ) ≤ c(Ω)+2αwe have |∇Ψ(ξ, Λ)| ≥
c.

Next by the min-max characterization of c(Ω) to choose γ ∈ Γ so that

c(Ω) ≤ sup
(ξ,σ)∈M2×I0

Ψ(γ(ξ, σ, 1)) ≤ c(Ω) + α.

By making r small and R larger if necessary, we can assume that γ(ξ, σ, 1) ∈
Dr/2,R/2 ⊂ Dr,R for all (ξ, σ) ∈M2 × I0.

We define a min-max value for the functional I using γ and the negative gradient
flow for I . More precisely we consider η : Dr,R×[0,∞]→ Dr,R being the solution
of the equation η̇ = −h(η)∇I(η) with initial condition η(ξ, Λ, 0) = (ξ, Λ). Here
the function h is defined in Dr,R so that h(ξ, Λ) = 0 for all (ξ, Λ) with Ψ(ξ, Λ) ≤
c(Ω)− 2α and h(ξ, Λ) = 1 if Ψ(ξ, Λ) ≥ c(Ω)− α, satisfying 0 ≤ h ≤ 1.

By the choice of r and R and taking in account (6.18) and (6.19) we have
η(ξ, Λ, t) ∈ Dr,R for all t ≥ 0. Then the following min-max value

C(Ω) = inf
t≥0

sup
(ξ,σ)∈M2×I0

I(η(γ(ξ, σ, 1), t))

is a critical value for I . In all this reasoning we are assuming that ε is small enough,
to make the errors in (6.18) and (6.19) sufficiently small. �
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