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Abstract

In this paper, we find optimal constants of a special class of Gagliardo—Nirenberg type inequalities
which turns out to interpolate between the classical Sobolev inequality and the Gross logarithmic
Sobolev inequality. These inequalities provide an optimal decay rate (measured by entropy methods)
of the intermediate asymptotics of solutions to nonlinear diffusion equations.
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Résumé

Dans cet article, nous trouvons les constantes optimales d’'une classe particuliere d’'inégalités de
type Gagliardo—Nirenberg qui interpole entre une inégalité de Sobolev classique et I'inégalité loga-
rithmique de Sobolev de Gross. Ces inégalités fournissent un taux de décroissance optimal (mesuré
par des méthodes d’'entropie) pour les asymptotiques intermédiaires des solutions d’équations de
diffusion non-linéaires.
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Mots-clés :Inégalités de Gagliardo—Nirenberg ; Inégalité de Sobolev logarithmique ; Constantes optimales ;
Diffusions non linéaires ; Entropie

1. Introduction and main results

Ford > 3, Sobolev’s inequality [40] states the existence of a constantO such that
for any functionu € L%/@=2(R4) with Vu € L2(R?),

lwll 22, < AllVwll2. 1)

Here and in what follows, we define fgr> 0

1/q
||v||q:(/|v|qu) .
Rd

The value of the optimal constant is known to be

A 1 ( () )1/”’
T J/md(d=2)\TI'(d/2)

as established by Aubin and Talenti in [3,41]. This optimal constant is achieved precisely
by constant multiples of the functions

d—2
1 z
wU,X(x):(Uzdl_'x_x'z) ’

with ¢ > 0, ¥ € R¢. On the other hand, a celebrated logarithmic Sobolev inequality was
found in 1975 by Gross [21]. In the case of Lebesgue measure it states that all functions
w e HY(R?), d > 2 satisfy for anys > 0

/ w?log(w?/||w|3) dx +d(1+log(v/7 o)) w3 < o[ Vw|3. 2)
Rd

The extremals of this inequality (which is not stated here in a scaling invariant form) are
constant multiples of the Gaussians:

x—ilz

w(x) = (naz)id/‘le*‘ 202 3

with ¥ € R? [13,42]. In the first part of this work, we will answer the naturally arising
guestion of how these two classical inequalities are related. As we will see, these
inequalities correspond to limiting cases of a one-parameter family of optimal Gagliardo—
Nirenberg type inequalities [19,35] which we shall describe next.
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For p > 0, we define:
D (RY) = {w e LY (RY): Vw e L?(R?) and|w|? e L}(R?)}.

Our first main result states the validity of the following optimal Gagliardo—Nirenberg
inequality.

Theorem 1. Letd > 2.1f p> 1,andp < dde for d > 3, then for any functiomw € D? (R?)
the following inequality holds

lwllz, < AIVwlIgliwli, (4)
where
[ 1 0
Ao (Y =D\ (2y—d\T( TQ) )
o 2nd 2y L(y—d/2)) "’
with
d(p—1 y p+1

~pd+2—-Wd-2p) BV

A is optimal, and4) is reached with equality if and only i is a constant multiple of one
of the functions

1 p—1
We 3 (X) = m ,

with o > 0 andx € R¥.

An analogous estimate takes place in the casef< 1. In fact we have the following
result.

Theorem 2. Letd > 2 and assume thdl < p < 1. Then for any functiomw € D? (R¢) the
following inequality holds

61,110
[wlp+1 < AllVwlizlwliz,” (5)

where

A_(y(p—1)2>%( 2y )12_179<l"(d/2+1+y))‘%
~\ 274 2y +d F(1+y) ’

_ d(1-p) _p+1
TA+pd—@d-2p° T i1-p

with
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A is optimal, and5) is reached with equality by the compactly supported functions

Wo x(X) = (02 —|x —f|2)+ )
with o > 0 andx € R7.

The above results are special cases of Gagliardo—Nirenberg inequalities, which are
found here in optimal form. Theorem 1 contains the optimal Sobolev inequality when
p= dL—Z' Moreover, it provides a direct proof of the Gross—Sobolev inequality with an
optimal constant ap | 1. In fact, taking the logarithm of both sides of inequality (5) for
anyw € HY(R?), we get

1 1 \Y

—Iog( lwll2p )g —IogA+Iog< [ w||2).

0 lwll p+1 0 lwll p+1
Using that) ~ 4(p — 1) asp | 1, we get then

2]( w )2 ( w ) 1 <||Vw||2>
— —— ) log| —— Jdx <lim =logA + lo .
aJ \ulz N w2 s 97T T,
R

Since lim, 1 A =1, it is enough to compute lig) 1 AT_l. For that purpose, we choose for
A the extremal function:

1

_1 =1
wp(x>:<1+p2 |x|2> "

which converges to

Ix2

e 2 =wi(x) asp|l

Thus
. A-1 \Y 4 1
I|m—=—log<|| wl”2)+—llm—<m>:|+ll.
pll 6 lwall2 dpilp—1\llwplpt1
Now,
5 2
||=_/< w1 ) Iog< w1 )dx+|||—|v,
d lwall2 lwall2
R4
where

1 1
= lim |09<”w””2”> and IV=lim |og<“w”””“>.

piip—1 lwallzp ritp—1 lwillp+a
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A straightforward computation yields

. 1 2 2 - 1 1 +1
lim —— [ (w5 —w)dx = lim —— [ (wh — w?* ) dx
pilp 1 (P 1) pilp—l (P 1 )
R4 R4
1
= —feflxl x]% dx
]Rd
It follows that Il — IV =0, hence

A-1 v wf
lim ——= = —Iog(” w1||2) f “L ) e
pi1 0 lwall2 ||w1||2 lwil3
1o 2
2 %N\ 7ze)

d d a
/e_lxlzd)C:n?l and /e_‘x‘2|x|2dx=5n§1.

R4 R4

using the facts

We have then reached the inequality

2 2 d._{21Vw|?
/w—2|og<w—2> dx<_|og ”7‘“)”22 , (6)
2 lwls lwll2 2 mde|wl3

for any w € HYX(RY). But this inequality is precisely that obtained from (2), when
optimizing in o > 0. This inequality is the form of the logarithmic Sobolev inequality
which is invariant under scaling [45,28]. As a consequence, optimal functions for (6) are
any of the Gaussians given by (3) with> 0, x € R?. We may also notice that, as a
subproduct of the above derivation of (8)is inequality holds with optimal constangee
Remark 8 for further remarks and references related to (6).

As an application of these optimal inequalities, we will derive some new results for the
asymptotic behavior of solutions to the Cauchy problem:

u;=Au", t>0, xeR?, @)
u(0,x)=uog(x) >0, wugec Ll(Rd). (8)

Whenm > 0, m # 1, this problem has been extensively studied. The easel is the
so-calledporous medium equatiofhen O< m < 1 it is usually referred to as thast
diffusion equationBoth form > 1 and for O< m < 1, this problem is known to be well

posed in weak sense. Moreover, it presemwesswhenevenn > ‘17’2, in the sense that
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Jga u(x, 1) dx is constant it > 0. When"T*2 < m < 1, solutions are regular and positive
for r > 0 [22], but this is no longer true when is below this threshold: for instance,
finite time vanishing may occur as simple examples shownfsrl, solutions are at least
Holder continuous.

The qualitative behavior of solutions to these problems has been the subject of a large
number of papers. Since mass is preserved, it is natural to ask whether a scaling brings
the solution into a certain universal profile as time goes to infinity. This is the case and the
role of the limiting profiles is played by an explicit family of self-similar solutions known
as the Barenblatt—Prattle solutions [5], characterized by the fact that their initial data is a
Dirac mass. These solutions remain invariant under the scajiigx) = A%%u(A%x, A1)
with & = (2 — d(1—m))~! > 0, which leaves the equation invariant. They are explicitly
given by:

1
_da (X - (2 m—1 o\
Ui, x)=t v°°<ta) with voo(x)—<a o |x] >+ , (9)

providedm > dT‘z, m # 1. These solutions have a constant mass uniquely determined by
the parametes .

If o is chosen so that the mass @fcoincides with that ofig, it is known that the
asymptotic behavior of itself is well described by asr — +o0. This phenomenon was
first rigorously described by Friedman and Kamin in the contexpaf L1(R?) N L2(RY),
both in the cases > 1 and(d — 2)/d < m < 1 [18]. These results have been later
improved and extended by. Vazquez and Kamin [24,25]. Also see [44] for a recent survey
and some new results. Thus far it is well known thaidfe L1(R?) and eithenn > 1 or
(d—2)/d <m < 1,then

. . dO(
zﬂToo””(” ) =Ut, )|, =0, im_ ¢ Jut, ) —t@. )| o ey =0 (20)
On the other hand, for the heat equatien= 1), the following fact is classical:

limsupv/r - |u(t, ) — U(t, ')HLl(Rd) < 400,

t—-+400
with

_ 2
Ut x) = 2r1) " ?|uoll L1 gay € 7.

Our next result extends the above asymptotic behavior to the r‘égqbg m < 2 using
an appropriate Lyapunov functional (see Section 4 for more references on the so-called
entropy dissipation techniques

Theorem 3. Assume that the initial datumy is a nonnegative function with

/uo(l—i— |x|2) dx +/u’61 dx < +o0.
R4 R4
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If u is the solution of(7)—(8), andi/ given by(9) satisfies

/U(l,x)dx:/uodx,
]Rd

R4
then the following facts hold.

(i) Assumethat>! <m <1ifd >3,and} <m < 1if d =2. Then

) 1-d(1-m)
lim supr 2@ [[u™ (1, ) = U™ (1, )| 1, < +00.
t——+o0

(i) Assume that <m < 2. Then

. 1+d(m-1) m—1
lim supr 280D || [u(t, ) — U@, U™ (2, ) HLl(Rd) < 400.
t——+00

The main tool in deriving the above result turns out to be the optimal inequalities of
Theorems 1 and 2, which are proven in Section 2. We derive some further consequences of
independent interest in Section 3, including the key estimate for the proof of Theorem 3,
which we carry outin Section 4. Although an exhaustive list of references would have been
too long, as much as possible, relevant references will be quoted in the body of this paper.

2. Gagliardo—Nirenberginequalities

The question of optimal constants has been the subject of many papers. In the case
of critical Sobolev injections and scaling invariant inequalities with weights (Hardy—
Littlewood—Sobolev and related inequalities), apart from [3,41], one has to cite the
remarkable explicit computation by Lieb [30] and various results based on concentration-
compactness methods [31], but the optimality of the constants in Gagliardo—Nirenberg
inequalities (see [29] for an estimate) is a long standing question to which we partially
answer here. The special case of Nash'’s inequality [33] has been solved by Carlen and
Loss in [14]. This case, as well as Moser’s inequality [32], does not enter in the subclass
that we consider here, but it has the striking property that the minimizers are compactly
supported, as in Theorem 5. For more details on the connection between Nash'’s inequality
and the logarithmic Sobolev inequality, see [8] and references therein.

In this section, we will establish the validity of Theorems 1 and 2, and derive some
consequences that will be useful for later purposes. First, in order to treat thg cate
of Theorem 1, we will establish Theorem 4 (which is actually equivalent).

Let us consider the functional:

1 1
G(w):E/lezdx—i-ﬁflwllﬂ’dx.
R4 p]Rd
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We define the minimization problem:

I = inf G(w
o weX ()
over the seft’ of all nonnegative functions € D” (R¢) that satisfy the constraint

1
Zflwlzf’dx=foo, (11)
R4

where for convenience we make the choice:

J ._ﬂ”’”( 2p )y+1<d—y—1>dr<y+1—d/2>
00—

2p \d—p(d—2) pi/? F(y+1)
with y = (p + 1)/(p — 1). The following result characterizes the minimizerdgf.

Theorem 4. Assume thap > 1andp < ﬁ if d > 3. Thenl, is achieved. Moreover, for
any minimizein € X, there exists € R? such that

1

— N a -1 d
w(x)—<7b+|x_f|2) Vx € RY,
where
_ _ _ _ 2
a=22 =400 g - G2 A D) (12)
(r—2 p(p—1

Proof. Using Sobolev’s and Holder’s inequalities, it is immediately verified that- 0.
For eachR > 0, we setBg to be the ball centered at the origin with radiRsand
Xrp=XnN H&(BR) (here we extend functions dHOl outside ofBg by 0). Let us consider
the family of infima

Ig= inf Gw);

weXR

I is decreasing witlR. Besides, by density, ligL, 1~ Ig = Ioo. On the other handig
is achieved since < dL—Z by some nonnegative, radially symmetric functiop defined
on Br. The minimizerwy satisfies orBy the equation:

2p-1
—Awg +wp = purwy
whereur is a Lagrange multiplier. Let us observe that

/|VwR|2dx+/|wR|l+pdx:MR/|wR|2pdx:2pHRJoo-
R4 R4 R4
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Thus

2p
ml/«RJoo < IR < purJso,

so thatu g is uniformly controlled from above and from below Bs— +o0, and converges

up to the extraction of a subsequence to some limit> 0. Sincely itself controls the

H?! norm ofwg over each fixed compact subset®y, from the equation satisfied hyg

and standard elliptic estimates, we deduce a uniform control over compa&tt§ inorms.
Passing to a convenient subsequenck ef +oco, we may then assume thagk converges
uniformly and in theC? sense over compact sets to a radial functianWe may also
assume tha gz — w weakly in L?T1(RY) andVwg — Vw weakly in L2(R?). Besides,
sincewy reaches its maximum at the origin, let us also observe from the equation that we
get the estimate

1< urwly H(0).

This relation implies thatvg does not trivialize in the limit. The functiow is thus a
positive, radially decreasing solution of

—Aw 4 wP = poow?? 1,
in entireR?, andw(|x|) — 0 as|x| — +o0. Now, since the convergence of; to w is

uniform over compact sets, andy is radially decreasing, we may choose a sufficiently
large, but fixed numbes such that orp < |x| < R, wg satisfies an inequality of the form

1
—Aw + éwp < 0.

On the other hand, the fact that< dde yields that the function

_ C
f) = |x|2/(P=D

satisfies for any sufficiently large choice Gf
1
—AL+ éfp > 0.

If we make this choice so thatz (0) < ¢(p) for all largeR, then by comparison we obtain
that

wr(x) < x| > p.

|x]2/(p=1)°
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Now, if we notice that% > d, then

lim sup lwg|?” dx = 0.
M—+00 ppm
M<|x|<R

As a consequenceyg — w strongly in L2?(R%). Hencew € X and since by weak
convergence we have(w) < I, the existence of a minimizer is guaranteed.
The Lagrange multiplier is uniquely determined by the system:

1 1
§/|Vw|2dx~l—m/|w|l+l7dx=loo,
R4 R4

/|Vw|2dx+/|w|l+pdx:2puooloo,
]Rd Rd

d—2 1
7\/'VU}|2dX+m\/|U)|l+pdx=ﬂoojoo,
R4 R4

which follows respectively from the definition @f,, and as a consequence of the equation
multiplied byw and(x - Vw). The constani therefore depends only am, p andd.

Finally, let us consider any minimizapr of G over X. It necessarily satisfies the
equation

—Aw 4 wP = poow?? L.
Ground state solutioAf this equation are known to be radial around some point [20].
With no loss of generality, we take it to be the origin. On the other hand, there is a unique
choice of a positive paramentesuch thato (x) = A% P~Dy(rx) satisfies
—Aw+wP =w L

Invoking uniqueness results of positive solutions by Pucci and Serrin [37] and by Serrin

and Tang for quasilinear elliptic equations [39], we deduce that the above equation has
only one positive radial ground state. On the other hand, the function

a )p—fi
b+|x?

W(x) = (

where the values af andb are precisely those given by (12), is an explicit solution, hence
the unique one. Finally, the fact that

3 In agreement with the literature on elliptic PDEs, we shall denotgrbyind statenot only the minimizers
of an energy functional but also any nonnegative non-trigiaidistribution solution which tends to zeroat.
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f w2 dx = Joo
R4

determines exactly what the value #fis, in fact A = 1. This ends to the proof of
Theorem 4. O

Next we will state and prove the analogue of Theorem 4 for the case 6< 1. We
consider now the functional:

~ 1 1
G(w):§/|Vw|2dx+2—/|w|2pdx.
Rd de

We shall denote by

Ino = inf_G(w)
weX

the problem of minimizing‘: over the classt of all nonnegative functions € D? (R¥)
that satisfy the constraint

1 1 ~
—— [ [wP"dx = J,
1/
P+ 2

whereJ, is now the number

Joo

_ﬂ‘”z( 2p )1‘y(d+y—1)d r(1+y)
T p+1\d-pd-2) pdl2  TA+y+d/2)

with y = fl’%j. Then we have the following result

Theorem 5. Assume thad < p < 1. ThenI,, is achieved by the radially symmetric
function

1
w(x) =a*ﬁ(b — %),

wherea andb are given by(12)as in Theorerd. Moreover, ifp > % for any minimizenw,
there existst € R? such thatw(x) = w(x — ), Vx e R?,

Proof. The proof goes similarly to that of Theorem 4. We consider the minimization
problem onXg = X' N Hol(BR). By compactness, the minimizer is achieved. Moreover,
using decreasing rearrangements, one finds that this minimizean be chosen radially
symmetric and decreasing. It satisfies the equation

2p—1
—Awg +wy = prw?,
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within the ball wherewpy, is strictly positive (we need to be careful with the fact that
2p — 1 may be a negative quantity). Exactly the same analysis as above, yieldsgthat
is uniformly controlled and approaches some positive mumhgr Moser’s iteration
provides us with a unifornL.>™ bound derived from théf bound. We should observe
at this point that the O.D.E. satisfied bhyz easily gives by itself an upper local estimate
C(R(Z) - |x|2)i/(17”) for someC > 0 in case the support correspondsgitp< Ro < R. If
this is the case for somRgy > 0, then the minimizer will be unchanged for aRy> Rg
and in fact will be the solution of the minimization problemi{. On the other hand,
a straightforward comparison with barriers of that type [15] actually yields that at some
point the minimizer does get compactly supported ingigefor all R sufficiently large.
This minimizer is thus a ground state radial solution of

—Aw+w = pow?

and for the same reason as in the proof of Theoremd,is unique. According to the
unigueness results of Pucci and Serrin [37] and Serrin and Tang [39] again, such a radial
minimizer is unique. A scaling argument (witi(x) = A/ (?=Dw(1x)) similar to the one
employed in the proof of Theorem 4 gives thaf, = 1 andw is then nothing but the
explicit solution given in the statement of Theorem 5.

In case that 2 — 1 > 0, it is known that all ground states are compactly supported and
radially symmetric on each component of their supports [15]. We obtain then a complete
classification of the minimizers as in Theorem 4. When-21 < 0, the question arises of
whether we do get out of the Euler—Lagrange equation a nice ground state solution, and
whether such a solution is symmetric. This does not seem to be knawn.

We are now in a position to proceed with the proofs of Theorems 1 and 2.

Proof of Theorem 1. Letw € D? satisfy the constraint

Jw] = i/|w(x)\2” dy = Joo,
2p
]Rd

with J» givenin (11). For. > 0, we consider the scaled function
d
wy (x) = A2 w(ix),

which still satisfies/[w;] = J». Then for each. > 0,

1 1
G(wy) = 5/ |Vw|?dx - A4/P=@=2) 4 F/|w|1+pdx.)511(1971)/219 > T
R4 de

Minimizing the left hand side of the above expression ia 0 yields

0 1-6179
C*[IIVwII2||w||p+1] 2 I,
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where
1 —(d— 1 40— d -1
C, = 2yd/p=@d-2 oAbz p-1
2 p+1 d—pd—-2)p+1
d+2—(d-2 dip—1
5=2pu d o= (r-1 .
4p—d(p-1 p(d+2—p(d-2)

Since|lwll2, = 2p Joo, We may write:

100)1/5 lwll2p

0 1-6
> _— .
IVwigiwly > ( c.) @it

By homogeneity, the above inequality actually holds for any D?, with optimal constant
C.\ L/
A= (2pJao)Y/ P <—*) . O
I

Remark 6. The expression aft given in Theorem 1 can be recovered using the invariance
under scaling of the inequality. We may indeed write:

”wa,b ||2p

— — 9 —
IVwa I3l wa.s|

1-6
p+1

for any
1

s = (577z)

with arbitrary positive constantsandb. This fact and a direct computation of this quotient,
for instance withu = b = 1, yield the expression fot in Theorem 1.

Proof of Theorem 2. It is very similar to the proof of Theorem 1. For amny € D”
satisfying the constraint

- 1 -
Jlw] := p—H/|w(x)|”“dx =Js
]Rd

and for anyx > 0, we consider the scaling; (x) = A4/?*Dw(ix), which also satisfies
J[w;] = J. Using now thaG[w,] > I, we find, after optimizating oa > 0,

~ 0 1-0710 < 7
C*[IIVwIIZIIwIIZ,, " 2 I,
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where
~ 1 2_@-2 1 -4tz -1 d
2 2p p d+2—pd-2)
G —d-2 1-
6=( +p)d —(d—2)p) and 0 — d(1-p) .
d+1-pd-1) 1+ p)d—(d—-2)p)
Sincellw|l14+p = (p + 1) Joo, We may write:
o (o \Y' lwllpea
|Ww@mwae>(£ﬁ das :
Cs ((p+ D Joo)V/ D

By homogeneity and invariance under scaling, the above inequality is true far arfy?,
with optimal constant

= 17+  C 18
A=((p+DJx)"" (—) . O
Ioo
Remark 7. Homogeneity and invariance under scaling also yield4dhe expression

lwapll p+1

= 0= 10
|V 613 1T 113,

for any

b 2\ YA-p)
wa,b(x) = ( )

+

with a andb arbitrary positive constants. The constant in Theorem 2 then follows by direct
computations (with for instanee=b = 1).

Remark 8. On the logarithmic Sobolev inequality, we may notice that:

() Finding it as a limit has already been done in [4,9] and several other results show
that the logarithmic Sobolev inequality is an endpoint of various families of inequalities:
see for instance [6-9]. The point is that we get here the optimal form [45] with optimal
constants as the limit of optimal inequalities with optimal constants.

(i) A proof of (6) based on Theorem 2 and similar to the one given in Theorem 4 can
also be established by lettingt 1. It is indeed enough to differentiate the function

p AlIVwlgliwlz,” = lwlly+1, atp=1,
where A and 6 are considered as functions pf However one has to assume that

belongs taD? (R¢) for any p in a left neighborhood of 1, and then extend the inequality to
HY(R?) = DY(RY) by a density argument.
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(iii) The optimal form (6) of the the logarithmic Sobolev inequality is easily recovered
from (2) by applying it tov(-) = 29/2w(x-) and optimizing the corresponding expression
with respect to. > 0, thus giving

N EZA S
“\202)  |Vwll2’
(iv) The fact that the family of Gaussians (3) are the only minimizers follows by a
symmetry argument [20] and by the of result of Serrin and Tang [39].

3. Some consequences

We may recast the Gagliardo—Nirenberg inequality of Theorem 1 and its extension
of Theorem 2 into a single nonhomogeneous form with still optimal constants. Since
the Lagrange multipliers asssociated to the constraints are explicit, this indeed allows to
rewrite the minimization problems of Theorems 4 and 5 without constraints (it turns out
that both expressions correspondingpto- 1 andp < 1 can be collected into a single
non homogeneous inequality). This form is similar to the standard form of the logarithmic
Sobolev inequality (2) compared to the scaled form (6) (also see Remark 11).

Proposition 9. Letd > 2, r > 0 and p > 0 be such thafp # 1, and p < ﬁ if d > 3.
Then, for any functiom € D (R¢), the following inequality holds

1d 440 2 & gl 14, € 5
5T’ IIlelz+mf e ||w||1+,,—51<||w||2,,>0, (13)
wheree is the sign of(p — 1),
d+2—pd-2
5=2p +2—p( )
4p—d(p—1

and K > Ois an optimal constant. Fop > % p # 1, optimal functions for inequalit{1 3)
are all given by the family of functions

_d_(x—X
XH—>T 2?w .
T

ForO<p< % inequality(13)is also achieved by the same family of functions. Here

) = (7 )’%1
“ \b+4elx|?2/+

with @ and b given by(12) (in both casesp > 1 and p < 1) and K is explicitely given
by (14) (see below
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Proof. Using the scaling

_d .
wH T 2Pw<—),
T

itis clear that (13) holds for any > 0 if and only if it holds at least for one. Fgr> 1, we
taket = 1 and (13) is a direct consequence of the proof of Theorem 1, KvithC, A%,
The casep < 1 is slightly more delicate and we proceed as in the proof of Theorem 5. Let

wy(x) = Aﬂiﬂw()»x).

An optimization om. > 0 of the quantity

1 d gy 2, K 5
—TP Vw, |5+ —|lw
5 IVwlla 2 lwallz,

1 d_ 2d
:_va”%_“ d+2) J—d+2

2wl -
_ w . 2 2
2 2p" Hlep

shows that it is bounded from below by

14p—d(p-1) -l
K 2 d=pd=2) (C||Vw||g||w;\||%;0)p+l o
for some explicit constan@ > 0, which using Theorem 1 again allows to identky O

Remark 10. The functionw = w,; (with the notations of Remarks 6 and 7, amdb
given by (12)) is a (the unique up to a translatiop if- %) nonnegative radial solution of

—Aw+ sw? = gw?’~1 (on its support ifp < %), which allows us to comput& as

1 2p—48
K = 5”“’”217
2 d\\ 2
(=L — 4 4p—d(p-1)
ia 41773(pp71) bl<nd/2¥) |f p > 1’
P
2p IG5

- (14)

2(p—1)
1 4 rEhH \rew
—adr—d(p-1 b_l ﬂd/zﬁ |f p > 1
2p F(ﬁ +3)

Remark 11. inequality (13) is invariant under the scaling

2
w > prlw(ue),

which makes it clear that minimizers form a one-parameter family (up to any translation
in RY). If d >3, for p=d/(d — 2), the dependence in disappears and (13) is the usual
Sobolev inequality (1), with the usual scaling invarianc& f?— 1) = d — 2). We observe
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that in the limitp — 1, up to an appropriate scaling, we recover the Gross logarithmic
Sobolev inequality in the usual nonhomogeneous form (2).

As noted in [6], the Gaussian weighted forms of the Poincaré inequality and logarithmic

Sobolev inequalities may take very simple forms. If we denote pytlde measure
(2)~4/2e~1x*/2 dx | these inequalities are respectively given by:

2
/Iﬂ%u—(/uﬁmg </anmLam
R4 R4 R4
‘/Iﬂ mg( b )dum:Z/WVdeu,
Rd | flzdll/ Rd

and a whole family interpolates between both, fat b < 2:

2/p
qum—(fvwm) <Q—meﬂ%u
R4 R4 Rd

(the logarithmic Sobolev inequality appears as the derivative at2). However this
family is not optimal (except fop = 1 or p = 2). Here we will establish a family of
optimal inequalities, to the price of weights that are slightly more complicated.

Corollary 12. Let p > 1 and consider

1

v = (7= +a|x|z)"71

with ¢ andb given by(12). Then for any measurable functigh

)
K 2 2
—(fmbﬁwg’—fv&@m_/( HWllﬂﬁwﬂw
P 1
R? R4 R4

<w[|VfVu@dx
d

provided all above integrals are well defined. Héfas an optimal constant, given i§g4),
and

d+2—-(d-2)p

§=2 .
P ap—dp—-1)
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A similar result holds fop < 1.

Proof. It is a straightforward consequence of inequality (13) wite 1 applied to( f w)
and of:

/|V(wf)|2dx=/|Vf|2w2dx—/f2wAwdx
]Rd Rd ]Rd

together withAw = w? — w?’~1. O

As another straightforward consequence of Proposition 9, inequality (13) can be
rewritten for

1
v=w?, m:i and
2p
_Lapdp-1y d—pd—2 d
—Hp—dp-1) _d—pd—2) for p< —_
|p2 —1] d—2

as follows (this form will be very useful in the next section). See the concluding remarks
of this paper for some comments on the literature.

Corollary 13. Letd > 2, m > 42 (m > } if d = 2), m # 1 and v be a nonnegative

function such thavv”—1/2 € L2(R?), x — |x|%v(x) € LY(R?Y) and
vE Ll(Rd) if m>1,
v e LY(RY) ifm <1

Then
1 m m—1 2
O<L[v]—L[vm]<§/v‘x+mV(U )|, (15)
]Rd
B X2 1,
Rd
and

1
1— n—1
Voo (X) = (02+W’"|x|2)+

with o defined in order thadf := ||v||1 = ||v |l1. This inequality is optimal and becomes
an equality if and only it = v.
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Note that by convexityps is the unique minimizer ofL[v] under the constraint
lvll1 = M. The constant arising in the expression af, is explicit:

d 1 d
1 2m 2= —5) .
—( 71) (s —2) if m <1,
2-d(1-m) 1-m ( = )
o 1I-m = y
1/ 2m 2 I'(;%p) .
— T if m> 1.
M\m-1 F( m1+2)

4. Longtimebehaviour of fast diffusion and porous medium equations

In what follows, we denote by(x, ¢) the solution of the Cauchy problem (7)—(8). We
will also denote henceforth

M:/uo(x) dx.

R4

Form # 1, let us consider the solution &= RA—4-1 R0) =1

R() = (1+ (2— d(1— m))s) = (16)

and letz (r) =log R(¢). The functionv(x, t) defined fromu by the relation

u(t,x)=R@)~ - (r(t) W) 17)

satisfies the equation
vsz(vm)~|—V-(xv) >0, x eRY, (18)
which for m = 1 corresponds to the linear Fokker—Planck equation. Let us observe that

R(t) — +o00 wheneverd — 2)/d < m, which covers our entire range of interest. In (17),
the L1 norm is preserved:

luc, ')HLl(Rd) = o(r®). ") ||L1(1R<d)'
SinceR(0) = 1 andt (0) = 0, the initial data is preserved:
v(t=0,x)=ug(x) Vxe R4,
With the same notations as in Section 1, as

t — 400, R(t)wtaa MOO(ta )Nu(tﬂ )
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and, according to (10), the known faotr, -) ~ Uz, -) when"T*2 <m < 1lorm> 1reads
in these new scales just as:

v(T,x) > Veo(x) fort — +o0,

both uniformly and in the.! sense, with the notations of Corollary 13.

It turns out that
2 1
v|—>L[v]=/<v—|x2| ——1_mvm)dx

R4

defines a Lyapunov functional for Eq. (17) as we shall see below. The proof of Theorem 3
will be a consequence of Propositions 14 and 15 below, and of Corollary 13.

Proposition 14. Assume thain > diﬂ and thatug is a nonnegative function such that

(1+ Ix|?uo andufy belong toL1(R9). Letv be the solutions of Eq18)with initial data
ug. Then, with the above notations,

d _ m m—1 2
EL[U(T’ -)] =— f v(t, -)‘x + va(r, ) dx, (29)
R4
TETOOL[U(‘L', )] = Llveol. (20)

andif &L <m <1ford >3, <m <1ifd=2,0rm> 1, then
0< L{v(z, )] = Llvso] < (Lluol — Llvecl) - €72 ¥z > 0. (21)

Proof. Let us assume first that the initial datg(x) is smooth and compactly supported in
say the ballB(0, p) for somep > 0. Assume that

—— <m<1

The solution is smooth thanks to the results in [22]. Let us consider the function:

1
1—m\ T 1
wp(x) — (2—”:”) (|x|2_ )02) I-m

It is easily checked thaw,(x) is a steady state of (18), defined on the redion> p.

Since this function takes infinite values ®B(0, p), the comparison principle implies that
v(r,x) <w,(x) forall r > 0. Hence

v(x, 7) = O(|x|~%/A=m)
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uniformly in = > 0. Let us fix a numbeR > 0. Integrations by parts then give

d lx|2
E f UTdX

= — / X - (va —l—xv)dx—l—g f (va +xv) - x dx
B(O,R) dB(O,R)

=d / v dx — / |x|2vdx+§ / (va+xv)-xax,

B(O,R) B(O,R) 3B(O,R)

wheredx is the measure induced by Lebesgue’s measurgRi0, R). Integrating with
respect tar, we get:
2
(v(x, T) — uo(x))% dx
B(O,R)

T T

=d/ / vm(x,s)dxds—i—g/ / (va(x,s).x+v(x,s)R2)ax.

0 B(O,R) 0 9B(O,R)

Now, for fixedr, the rate of decay of(x, r) implies that, aR — o0,

T
RB/ / v(x,S)axds=o(Rd+272/(1fm))'

0 3B(O,R)

On the other hand,

T
R / V™ (x, s) dx ds = O(szm/(lfm)) ask — +oo,
dB(O,R) O

which means that

T

/ /Um(RZ,s) dx ds :O(R—Z"/(l—m)).

3B(0,1) 0
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Hence along a sequen&g — +oco, we get:

T
9 - o /(L)
iR / /vm(Rz,s)dxds|R=Rn:O(anm/(l )

8B(0,1) 0
Equivalently
T
Rn_d / / Vo™ (x,s) - xdxds = O(R;Zm/(lfm)fl),
dB(O.R,) O
hence

T

Ry f f Vo (x,s) - x dr ds = O(R,‘,lizm/(lfm)).

0 3B(O,Ry,)

The latter term goes to zero & — +oo sincem > #2. We conclude then that

f(v(x T) — uo(x))l—dx_ /f v (x, s) dx ds.

R4 0 Rd

Now, a similar argument leads us to

1
[ ("D =) d /f((Zm A 1/2)|2—dv’”)0'xds-

R4 R4

We conclude that [v(z, -)] is well defined and decreasing according to (19).

In the casen > 1, the solution has compact support for any 0 and the computation
leading to Eqg. (19) can be carried out directly. Finally, the requiremenuthist smooth
and compactly supported can be removed by a density argument. The proof of (19) is
complete.

If &1 <m <1ford >3,3 <m <1ifd=2, orm > 1, combining relation (19) with
estimate (15) of Corollary 13, we get the differential inequality:

d
aL[v(r, -)] < —2(L[v(t, -)] — L[voo]).
SinceL[vse] minimizesL[w] on

{we LY (RY): lwll1= [luoll1}.

(21) immediately follows. In that case, (20) is trivial.
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Let us establish (20) whefi; < m < 51, We have proven that defines a Lyapunov
functional for Eqg. (17). The mass af is finite and preserved in time,[v(-, 7)] is
decreasing and therefore uniformly bounded from abowe iFhe quantities

/v(t,x)|x|2dx and /vm(r,x)dx
R4 R4

are uniformly bounded from above in, because of Holder's inequality applied to
—m(1—m) . vm(lfm)_
00 :

V" Vo
m 2 1-m 2 " m Lo
/v dx < /v o+ o [x]“)dx| - /voo dx , (22)

w w w

for any domainw ¢ R?, and because of the definition bfv]:
/ xl® 1 / 2. 1om 2V ar| <z (23)
v 2 X 1 o A el 2’n X X NS v
R4 R4
(with herew = R?), thus giving estimates on
|x|2 .
/ odr and o]
]Rd
which depend only om, M andL[v]. Next we claim that
/vmdx—> /vgédx ast — +oo0.
Rd ]Rd

However, we already know that” (z,-) — v, in LY™m(R?). To establish the result it
suffices to show that

vV"(r,x)dx — 0 asR — +oo,

|x|>R
uniformly in =, which is easily achieved by applying (22) with
w= {x eR%: |x| > R}.

The latter integral is finite fom > d‘lﬁ and goes to 0 aR — +oo. Using the decay term
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/U|x + %Vt)m_lfdx

R4

4m m—1/2|2 2 m

Zm |V'U | dx+ U|.x| dx — 24 v dx,
R4 R4 R4

it is clear that at least for a subsequenge> +oo,
f Ix|%v(x, ) dx — / x| %00 () dx,
R4 R4

which proves (20). O

An estimate of the difference betweemnduv,, in terms ofL is given by the following
result.

Proposition 15. Assume that > 2. Let v is a nonnegative function such that—
(1+ |x|®v andv™ belong toL1(R?) and considew., defined as in CorollaryL.3,

(i) If &2 <m <1, m > 1, then there exists a consta@it> 0 which depends only on,
M = [pqvdx and L[v] such that

Cll™ = o |3 sy < LIvl = Llveo].

(i) fl<m<2andR=./2m/(m — 1)c?, then
m—1)2
Cllw = vo)v3s | ey < LIv] = Llvsc].

For the proof of this result, we need a lemma which is a variation of the Csiszar—
Kullback inequality. We provide a proof for completeness and refer to [16,26,2] for related
results.

Lemma 16. Assume thaf2 is a domain inR¢ and thats is a convex nonnegative function
onR™ such thats (1) = 0 ands’(1) = 0. If  is a nonnegative measure ¢éhand if f and
g are nonnegative measurable functions@rwith respect tqu, then

J K )
o Jgdn= : - 1 , 24
!s<g)g "2 ey Fau T gaw 1 T I@.an (24)

wherek = 1 - min{K1, K2},

Ki1= min s” and Ko= min "A+60hA+h 25
1= min s (m 2=, i o8 (1+6h)(1+h), (25)

provided that all the above integrals are finite.
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Proof. We may assume without loss of generality thatand g are strictly positive
functions. Let us sek = (f — g)/g, so thatf/g = 1+ h. If w is any subdomain of2
andk a positive, integrable om, function, then Cauchy—Schwarz’s inequality yields:

2 2
If;gl du (f lf — gldu)‘ (26)

> f kdu

The proof of inequality (24) is based on a Taylor’s expansion(of aroundr = 1. Since
s(1) =s'(1) =0, we have

s (i) =s(1+h)= }s”(l +0h)h?
g 2

for some functiont — 6(x) with values in]0, 1[. Thus we need to estimate from below
the function

/s”(l—i— 0h)gh®du.
2

First, we estimate

2 2
/ s”(l—i—@h)ghzd,uz / S”(l—i—@h)lf gl / |f g|
f<g f<g f<g
according to the definition (25) d&1. Using (26) with
={x€.Q: f(x)<g(x)} and k=g,

we obtain:

(ffg | f —gld)?

/s”(1+9h)gh2dM>K1 I 5 (27)
feg f<gg uw
On the other hand, we have:
_ o2 2
/s”(l—i—@h)ghzdu: / S+ onya+ L fg' dusk, [ = g'
f>g f>g f>g

using the definition (25) oK>. Now, using again (26) with

a):{xe.Q: f(x)>g(x)} and k= f,
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we get:

(ffog I f —gld)?
ff>g fdu

/ s"(146h)gh’du > K>

f>g

(28)

Combining (27) and (28), we obtain (24)0O

Proof of Proposition 15. The result is a direct consequence of Lemma 16s#er 1, we
take:

S(f)=m7t+1, Ki1=Ky=—, du(x)=dx and
1-m m
L[v]:/s(v—)v'onodx
V%o
Rd

According to (22) and (23), the quantities

/ Uﬁ dx and ||Um ”Ll(Rd)
2

R4

depend only om:, M andL[v], which proves the statement ¢h
If1 <m < 2, we may write:

sz_l(o — Uhg )gm_lo for |x| < ma,

and apply Lemma 16 to

2
L[U]Z/S(UL)UOO du(x) + / (U%-ﬁ- milv’"> dx,

R4 B(0,R)"

with

"™ — mt

s(t) = +1, Ki=Ky=m and du(x)=v"lx)dx. O

m-—1

Proof of Theorem 3. Estimate (21), Proposition 15 and relation (21) yield thatfior 1

Cllv™ (. 7) = v | 1 g, < (Lluo) — Llveo]) - €72 V7 >0,
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while form > 1
C|l(ve, ) - voo)vg;*1||§1(Rd) < (L[uol — Llvso]) -€7% V> 0.

Recalling that in terms of the variabte t = t(¢) ~ logs, and changing variables into
the original definition ofv in terms ofu(x, r), gives us exactly the relations seeked for in
Theorem 3 withi/ replaced by

_d X
Uoo(f, x) = R(1) " Voo (IogR(;), %>

and R given by (16). A straightforward computation shows taandu., are asymptot-
ically equivalent and this concludes the proofi

Finally, let us mention that the Lyapunov functionglv] had already been exhibited
by Ralston and Newman in [34,38]. An alternative approach for getting the deddy pf
is based on the entropy—entropy dissipation method, which has been used for the heat
equation in [42,43,1] and generalized to nonlinear diffusions in [17,12] (also see [36] by
Otto on the gradient flow structure of the porous medium equation), providing another
proof of inequality (15). More recents developments can be found in [11,23,27,10]. We
shall refer to [28] and references therein for earlier works in probability theory and
applications to Markov diffusion generators, and to [4] for relations with Sobolev type
inequalities.
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