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Abstract

In this paper, we find optimal constants of a special class of Gagliardo–Nirenberg type inequalities
which turns out to interpolate between the classical Sobolev inequality and the Gross logarithmic
Sobolev inequality. These inequalities provide an optimal decay rate (measured by entropy methods)
of the intermediate asymptotics of solutions to nonlinear diffusion equations.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Dans cet article, nous trouvons les constantes optimales d’une classe particulière d’inégalités de
type Gagliardo–Nirenberg qui interpole entre une inégalité de Sobolev classique et l’inégalité loga-
rithmique de Sobolev de Gross. Ces inégalités fournissent un taux de décroissance optimal (mesuré
par des méthodes d’entropie) pour les asymptotiques intermédiaires des solutions d’équations de
diffusion non-linéaires.
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1. Introduction and main results

For d � 3, Sobolev’s inequality [40] states the existence of a constantA> 0 such that
for any functionu ∈ L2d/(d−2)(Rd) with ∇u ∈ L2(Rd),

‖w‖ 2d
d−2

� A‖∇w‖2. (1)

Here and in what follows, we define forq > 0

‖v‖q =
( ∫

Rd

|v|q dx

)1/q

.

The value of the optimal constant is known to be

A= 1√
πd(d − 2)

(
�(d)

�(d/2)

)1/d

as established by Aubin and Talenti in [3,41]. This optimal constant is achieved precisely
by constant multiples of the functions

wσ,x(x)=
(

1

σ 2 + |x − x|2
) d−2

2

,

with σ > 0, x ∈ R
d . On the other hand, a celebrated logarithmic Sobolev inequality was

found in 1975 by Gross [21]. In the case of Lebesgue measure it states that all functions
w ∈H 1(Rd ), d � 2 satisfy for anyσ > 0∫

Rd

w2 log
(
w2/‖w‖2

2

)
dx + d

(
1+ log

(√
π σ

))‖w‖2
2 � σ 2‖∇w‖2

2. (2)

The extremals of this inequality (which is not stated here in a scaling invariant form) are
constant multiples of the Gaussians:

w(x)= (
πσ 2)−d/4 e− |x−x|2

2σ2 , (3)

with x ∈ R
d [13,42]. In the first part of this work, we will answer the naturally arising

question of how these two classical inequalities are related. As we will see, these
inequalities correspond to limiting cases of a one-parameter family of optimal Gagliardo–
Nirenberg type inequalities [19,35] which we shall describe next.
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Forp > 0, we define:

Dp
(
R
d
)= {

w ∈ L1+p
(
R
d
)
: ∇w ∈ L2(

R
d
)

and|w|2p ∈ L1(
R
d
)}
.

Our first main result states the validity of the following optimal Gagliardo–Nirenberg
inequality.

Theorem 1. Letd � 2. If p > 1, andp � d
d−2 for d � 3, then for any functionw ∈Dp(Rd )

the following inequality holds:

‖w‖2p � A‖∇w‖θ2‖w‖1−θ
p+1, (4)

where

A=
(
y(p − 1)2

2πd

) θ
2
(

2y − d

2y

) 1
2p
(

�(y)

�(y − d/2)

) θ
d

,

with

θ = d(p− 1)

p(d + 2− (d − 2)p)
, y = p+ 1

p− 1
.

A is optimal, and(4) is reached with equality if and only ifw is a constant multiple of one
of the functions

wσ,x(x)=
(

1

σ 2 + |x − x|2
) 1

p−1

,

with σ > 0 andx ∈ R
d .

An analogous estimate takes place in the case 0< p < 1. In fact we have the following
result.

Theorem 2. Let d � 2 and assume that0<p < 1. Then for any functionw ∈Dp(Rd ) the
following inequality holds:

‖w‖p+1 � A‖∇w‖θ2‖w‖1−θ
2p , (5)

where

A=
(
y(p − 1)2

2πd

) θ
2
(

2y

2y + d

) 1−θ
2p
(
�(d/2+ 1+ y)

�(1+ y)

) θ
d

,

with

θ = d(1− p)

(1+ p)(d − (d − 2)p)
, y = p+ 1

1− p
.



850 M. Del Pino, J. Dolbeault / J. Math. Pures Appl. 81 (2002) 847–875

A is optimal, and(5) is reached with equality by the compactly supported functions

wσ,x(x)=
(
σ 2 − |x − x|2) 1

1−p

+ ,

with σ > 0 andx ∈ R
d .

The above results are special cases of Gagliardo–Nirenberg inequalities, which are
found here in optimal form. Theorem 1 contains the optimal Sobolev inequality when
p = d

d−2. Moreover, it provides a direct proof of the Gross–Sobolev inequality with an
optimal constant asp ↓ 1. In fact, taking the logarithm of both sides of inequality (5) for
anyw ∈H 1(Rd ), we get

1

θ
log

( ‖w‖2p

‖w‖p+1

)
� 1

θ
logA+ log

( ‖∇w‖2

‖w‖p+1

)
.

Using thatθ ∼ d
4 (p− 1) asp ↓ 1, we get then

2

d

∫
Rd

(
w

‖w‖2

)2

log

(
w

‖w‖2

)
dx � lim

p↓1

1

θ
logA+ log

(‖∇w‖2

‖w‖2

)
.

Since limp↓1A = 1, it is enough to compute limp↓1
A−1
θ

. For that purpose, we choose for
A the extremal function:

wp(x)=
(

1+ p − 1

2
|x|2

)− 1
p−1

,

which converges to

e− |x|2
2 =w1(x) asp ↓ 1.

Thus

lim
p↓1

A− 1

θ
= − log

(‖∇w1‖2

‖w1‖2

)
+ 4

d
lim
p↓1

1

p − 1

( ‖wp‖2p

‖wp‖p+1

)
= I + II .

Now,

II = 2

d

∫
Rd

(
w1

‖w1‖2

)2

log

(
w1

‖w1‖2

)
dx + III − IV,

where

III = lim
p↓1

1

p − 1
log

(‖wp‖2p

‖w1‖2p

)
and IV= lim

p↓1

1

p− 1
log

(‖wp‖p+1

‖w1‖p+1

)
.
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A straightforward computation yields

lim
p↓1

1

p− 1

∫
Rd

(
w

2p
p −w

2p
1

)
dx = lim

p↓1

1

p − 1

∫
Rd

(
w
p+1
p −w

p+1
1

)
dx

= 1

4

∫
Rd

e−|x|2|x|4 dx.

It follows that III − IV = 0, hence

lim
p↓1

A− 1

θ
= − log

(‖∇w1‖2

‖w1‖2

)
+ 2

d

∫
Rd

w2
1

‖w1‖2
2

log

(
w2

1

‖w1‖2
2

)
dx

= 1

2
log

(
2

πde

)
,

using the facts ∫
Rd

e−|x|2 dx = π
d
2 and

∫
Rd

e−|x|2|x|2 dx = d

2
π

d
2 .

We have then reached the inequality

∫
Rd

w2

‖w‖2
2

log

(
w2

‖w‖2
2

)
dx � d

2
log

(
2‖∇w‖2

2

πde‖w‖2
2

)
, (6)

for any w ∈ H 1(RN). But this inequality is precisely that obtained from (2), when
optimizing in σ > 0. This inequality is the form of the logarithmic Sobolev inequality
which is invariant under scaling [45,28]. As a consequence, optimal functions for (6) are
any of the Gaussians given by (3) withσ > 0, x̄ ∈ R

d . We may also notice that, as a
subproduct of the above derivation of (6),this inequality holds with optimal constants.See
Remark 8 for further remarks and references related to (6).

As an application of these optimal inequalities, we will derive some new results for the
asymptotic behavior of solutions to the Cauchy problem:

ut =�um, t > 0, x ∈ R
d, (7)

u(0, x)= u0(x)� 0, u0 ∈L1(
R
d
)
. (8)

Whenm > 0, m = 1, this problem has been extensively studied. The casem > 1 is the
so-calledporous medium equation. When 0< m < 1 it is usually referred to as thefast
diffusion equation.Both form > 1 and for 0< m < 1, this problem is known to be well
posed in weak sense. Moreover, it preservesmasswheneverm > d−2

d
, in the sense that
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∫
Rd u(x, t)dx is constant int > 0. Whend−2

d
< m< 1, solutions are regular and positive

for t > 0 [22], but this is no longer true whenm is below this threshold: for instance,
finite time vanishing may occur as simple examples show. Form> 1, solutions are at least
Hölder continuous.

The qualitative behavior of solutions to these problems has been the subject of a large
number of papers. Since mass is preserved, it is natural to ask whether a scaling brings
the solution into a certain universal profile as time goes to infinity. This is the case and the
role of the limiting profiles is played by an explicit family of self-similar solutions known
as the Barenblatt–Prattle solutions [5], characterized by the fact that their initial data is a
Dirac mass. These solutions remain invariant under the scalinguλ(t, x)= λdαu(λαx,λt)

with α = (2− d(1−m))−1 > 0, which leaves the equation invariant. They are explicitly
given by:

U(t, x)= t−dα · v∞
( x

tα

)
with v∞(x)=

(
σ 2 − m− 1

2m
|x|2

) 1
m−1

+
, (9)

providedm> d−2
d

, m = 1. These solutions have a constant mass uniquely determined by
the parameterσ .

If σ is chosen so that the mass ofU coincides with that ofu0, it is known that the
asymptotic behavior ofu itself is well described byU ast → +∞. This phenomenon was
first rigorously described by Friedman and Kamin in the context ofu0 ∈ L1(Rd)∩L2(Rd),
both in the casesm > 1 and (d − 2)/d < m < 1 [18]. These results have been later
improved and extended by. Vázquez and Kamin [24,25]. Also see [44] for a recent survey
and some new results. Thus far it is well known that ifu0 ∈ L1(Rd) and eitherm > 1 or
(d − 2)/d <m< 1, then

lim
t→+∞

∥∥u(t, ·)− U(t, ·)∥∥1 = 0, lim
t→+∞ tdα

∥∥u(t, ·)− U(t, ·)∥∥
L∞(Rd)

= 0. (10)

On the other hand, for the heat equation (m= 1), the following fact is classical:

lim sup
t→+∞

√
t · ∥∥u(t, ·)− U(t, ·)∥∥

L1(Rd)
<+∞,

with

U(t, x)= (2πt)−d/2‖u0‖L1(Rd) e− |x|2
2t .

Our next result extends the above asymptotic behavior to the ranged−1
d

� m < 2 using
an appropriate Lyapunov functional (see Section 4 for more references on the so-called
entropy dissipation techniques).

Theorem 3. Assume that the initial datumu0 is a nonnegative function with∫
Rd

u0
(
1+ |x|2)dx +

∫
Rd

um0 dx <+∞.
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If u is the solution of(7)–(8), andU given by(9) satisfies∫
Rd

U(t, x)dx =
∫
Rd

u0 dx,

then the following facts hold.

(i) Assume thatd−1
d

< m< 1 if d � 3, and 1
2 <m< 1 if d = 2. Then

lim sup
t→+∞

t
1−d(1−m)
2−d(1−m)

∥∥um(t, ·)− Um(t, ·)∥∥
L1(Rd)

<+∞.

(ii) Assume that1<m< 2. Then

lim sup
t→+∞

t
1+d(m−1)
2+d(m−1)

∥∥[u(t, ·)− U(t, ·)]Um−1(t, ·)∥∥
L1(Rd)

<+∞.

The main tool in deriving the above result turns out to be the optimal inequalities of
Theorems 1 and 2, which are proven in Section 2. We derive some further consequences of
independent interest in Section 3, including the key estimate for the proof of Theorem 3,
which we carry out in Section 4. Although an exhaustive list of references would have been
too long, as much as possible, relevant references will be quoted in the body of this paper.

2. Gagliardo–Nirenberg inequalities

The question of optimal constants has been the subject of many papers. In the case
of critical Sobolev injections and scaling invariant inequalities with weights (Hardy–
Littlewood–Sobolev and related inequalities), apart from [3,41], one has to cite the
remarkable explicit computation by Lieb [30] and various results based on concentration-
compactness methods [31], but the optimality of the constants in Gagliardo–Nirenberg
inequalities (see [29] for an estimate) is a long standing question to which we partially
answer here. The special case of Nash’s inequality [33] has been solved by Carlen and
Loss in [14]. This case, as well as Moser’s inequality [32], does not enter in the subclass
that we consider here, but it has the striking property that the minimizers are compactly
supported, as in Theorem 5. For more details on the connection between Nash’s inequality
and the logarithmic Sobolev inequality, see [8] and references therein.

In this section, we will establish the validity of Theorems 1 and 2, and derive some
consequences that will be useful for later purposes. First, in order to treat the casep > 1
of Theorem 1, we will establish Theorem 4 (which is actually equivalent).

Let us consider the functional:

G(w)= 1

2

∫
Rd

|∇w|2 dx + 1

1+p

∫
Rd

|w|1+p dx.
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We define the minimization problem:

I∞ ≡ inf
w∈X

G(w)

over the setX of all nonnegative functionsw ∈Dp(Rd ) that satisfy the constraint

1

2p

∫
Rd

|w|2p dx = J∞, (11)

where for convenience we make the choice:

J∞ := πd/2

2p

(
2p

d − p(d − 2)

)y+1
(d − y − 1)d

pd/2

�(y + 1− d/2)

�(y + 1)

with y = (p + 1)/(p− 1). The following result characterizes the minimizers ofI∞.

Theorem 4. Assume thatp > 1 andp < d
d−2 if d � 3. ThenI∞ is achieved. Moreover, for

any minimizerw ∈ X , there existsx ∈ R
d such that

�w(x)=
( a

b+ |x − x|2
) 1

p−1 ∀x ∈ R
d ,

where

a = 2
2p− d(p− 1)

(p− 1)2
and b = (2p− d(p− 1))2

p(p − 1)2
. (12)

Proof. Using Sobolev’s and Hölder’s inequalities, it is immediately verified thatI∞ > 0.
For eachR > 0, we setBR to be the ball centered at the origin with radiusR and
XR =X ∩H 1

0 (BR) (here we extend functions ofH 1
0 outside ofBR by 0). Let us consider

the family of infima

IR = inf
w∈XR

G(w);

IR is decreasing withR. Besides, by density, limR→+∞ IR = I∞. On the other hand,IR
is achieved sincep < d

d−2 by some nonnegative, radially symmetric functionwR defined
onBR . The minimizerwR satisfies onBR the equation:

−�wR +w
p
R = µRw

2p−1
R ,

whereµR is a Lagrange multiplier. Let us observe that∫
Rd

|∇wR|2 dx +
∫
Rd

|wR|1+p dx = µR

∫
Rd

|wR|2p dx = 2pµRJ∞.
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Thus

2p

p + 1
µRJ∞ � IR � pµRJ∞,

so thatµR is uniformly controlled from above and from below asR → +∞, and converges
up to the extraction of a subsequence to some limitµ∞ > 0. SinceIR itself controls the
H 1 norm ofwR over each fixed compact subset ofBR , from the equation satisfied bywR

and standard elliptic estimates, we deduce a uniform control over compacts inC2,α norms.
Passing to a convenient subsequence ofR → +∞, we may then assume thatwR converges
uniformly and in theC2 sense over compact sets to a radial functionw. We may also
assume thatwR ⇀w weakly inLp+1(Rd) and∇wR ⇀ ∇w weakly inL2(Rd ). Besides,
sincewR reaches its maximum at the origin, let us also observe from the equation that we
get the estimate

1 � µRw
p−1
R (0).

This relation implies thatwR does not trivialize in the limit. The functionw is thus a
positive, radially decreasing solution of

−�w+wp = µ∞w2p−1,

in entireR
d , andw(|x|) → 0 as|x| → +∞. Now, since the convergence ofwR to w is

uniform over compact sets, andwR is radially decreasing, we may choose a sufficiently
large, but fixed numberρ such that onρ < |x|<R, wR satisfies an inequality of the form

−�w+ 1

2
wp � 0.

On the other hand, the fact thatp < d
d−2 yields that the function

ζ(x)= C

|x|2/(p−1)

satisfies for any sufficiently large choice ofC,

−�ζ + 1

2
ζ p � 0.

If we make this choice so thatwR(ρ) < ζ(ρ) for all largeR, then by comparison we obtain
that

wR(x) <
C

|x|2/(p−1)
, |x|> ρ.
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Now, if we notice that 2p
p−1 > d , then

lim
M→+∞ sup

R>M

∫
M<|x|<R

|wR|2p dx = 0.

As a consequence,wR → w strongly in L2p(Rd ). Hencew ∈ X and since by weak
convergence we haveG(w) � I∞, the existence of a minimizer is guaranteed.

The Lagrange multiplierµ∞ is uniquely determined by the system:

1

2

∫
Rd

|∇w|2 dx + 1

p + 1

∫
Rd

|w|1+p dx = I∞,

∫
Rd

|∇w|2 dx +
∫
Rd

|w|1+p dx = 2pµ∞J∞,

d − 2

2d

∫
Rd

|∇w|2 dx + 1

p+ 1

∫
Rd

|w|1+p dx = µ∞J∞,

which follows respectively from the definition ofI∞, and as a consequence of the equation
multiplied byw and(x · ∇w). The constantµ∞ therefore depends only onm,p andd .

Finally, let us consider any minimizerw of G over X . It necessarily satisfies the
equation

−�w+wp = µ∞w2p−1.

Ground state solutions3 of this equation are known to be radial around some point [20].
With no loss of generality, we take it to be the origin. On the other hand, there is a unique
choice of a positive paramenterλ such that�w(x)= λ2/(p−1)w(λx) satisfies

−��w+ �wp = �w2p−1.

Invoking uniqueness results of positive solutions by Pucci and Serrin [37] and by Serrin
and Tang for quasilinear elliptic equations [39], we deduce that the above equation has
only one positive radial ground state. On the other hand, the function

�w(x)=
( a

b + |x|2
) 1

p−1
,

where the values ofa andb are precisely those given by (12), is an explicit solution, hence
the unique one. Finally, the fact that

3 In agreement with the literature on elliptic PDEs, we shall denote byground statenot only the minimizers
of an energy functional but also any nonnegative non-trivialC1 distribution solution which tends to zero at∞.
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Rd

w2p dx = J∞

determines exactly what the value ofλ is, in fact λ = 1. This ends to the proof of
Theorem 4. ✷

Next we will state and prove the analogue of Theorem 4 for the case 0< p < 1. We
consider now the functional:

G̃(w)= 1

2

∫
Rd

|∇w|2 dx + 1

2p

∫
Rd

|w|2p dx.

We shall denote by

Ĩ∞ ≡ inf
w∈X̃

G̃(w)

the problem of minimizing̃G over the class̃X of all nonnegative functionsw ∈ Dp(Rd )

that satisfy the constraint

1

p + 1

∫
Rd

|w|p+1 dx = J̃∞,

whereJ̃∞ is now the number

J̃∞ = πd/2

p + 1

(
2p

d − p(d − 2)

)1−y
(d + y − 1)d

pd/2

�(1+ y)

�(1+ y + d/2)

with y = p+1
1−p

. Then we have the following result

Theorem 5. Assume that0 < p < 1. Then Ĩ∞ is achieved by the radially symmetric
function

�w(x)= a
− 1

1−p
(
b− |x|2) 1

1−p

+ ,

wherea andb are given by(12)as in Theorem4. Moreover, ifp > 1
2, for any minimizerw,

there exists̃x ∈ R
d such thatw(x)= w̃(x − x̃), ∀x ∈ R

d .

Proof. The proof goes similarly to that of Theorem 4. We consider the minimization
problem onX̃R = X̃ ∩ H 1

0 (BR). By compactness, the minimizer is achieved. Moreover,
using decreasing rearrangements, one finds that this minimizerwR can be chosen radially
symmetric and decreasing. It satisfies the equation

−�wR +w
2p−1
R = µRw

p,
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within the ball wherewR is strictly positive (we need to be careful with the fact that
2p − 1 may be a negative quantity). Exactly the same analysis as above, yields thatµR

is uniformly controlled and approaches some positive mumberµ∞. Moser’s iteration
provides us with a uniformL∞ bound derived from theH 1 bound. We should observe
at this point that the O.D.E. satisfied bywR easily gives by itself an upper local estimate
C(R2

0 − |x|2)1/(1−p)
+ for someC > 0 in case the support corresponds to|x| <R0 � R. If

this is the case for someR0 > 0, then the minimizer will be unchanged for anyR > R0
and in fact will be the solution of the minimization problem inR

d . On the other hand,
a straightforward comparison with barriers of that type [15] actually yields that at some
point the minimizer does get compactly supported insideBR for all R sufficiently large.
This minimizer is thus a ground state radial solution of

−�w+w2p−1 = µ∞wp

and for the same reason as in the proof of Theorem 4,µ∞ is unique. According to the
uniqueness results of Pucci and Serrin [37] and Serrin and Tang [39] again, such a radial
minimizer is unique. A scaling argument (with�w(x)= λ1/(p−1)w(λx)) similar to the one
employed in the proof of Theorem 4 gives thatµ∞ = 1 andw is then nothing but the
explicit solution given in the statement of Theorem 5.

In case that 2p− 1> 0, it is known that all ground states are compactly supported and
radially symmetric on each component of their supports [15]. We obtain then a complete
classification of the minimizers as in Theorem 4. When 2p− 1< 0, the question arises of
whether we do get out of the Euler–Lagrange equation a nice ground state solution, and
whether such a solution is symmetric. This does not seem to be known.✷

We are now in a position to proceed with the proofs of Theorems 1 and 2.

Proof of Theorem 1. Let w ∈Dp satisfy the constraint

J [w] := 1

2p

∫
Rd

∣∣w(x)
∣∣2p dx = J∞,

with J∞ given in (11). Forλ > 0, we consider the scaled function

wλ(x)= λ
d

2p w(λx),

which still satisfiesJ [wλ] = J∞. Then for eachλ > 0,

G(wλ)= 1

2

∫
Rd

|∇w|2 dx · λd/p−(d−2) + 1

1+p

∫
Rd

|w|1+p dx · λ−d(p−1)/2p � I∞.

Minimizing the left hand side of the above expression inλ > 0 yields

C∗
[‖∇w‖θ2‖w‖1−θ

p+1

]δ � I∞,
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where

C∗ = 1

2
λ
d/p−(d−2)∗ + 1

p + 1
λ
−d(p−1)/2p∗ , λ∗ = d

d − p(d − 2)

p − 1

p + 1
,

δ = 2p
d + 2− (d − 2)p

4p − d(p − 1)
and θ = d(p − 1)

p(d + 2− p(d − 2))
.

Since‖w‖2p = 2pJ∞, we may write:

‖∇w‖θ2‖w‖1−θ
p+1 �

(
I∞
C∗

)1/δ ‖w‖2p

(2pJ∞)1/(2p)
.

By homogeneity, the above inequality actually holds for anyw ∈Dp , with optimal constant

A= (2pJ∞)1/(2p)
(
C∗
I∞

)1/δ

. ✷
Remark 6. The expression ofA given in Theorem 1 can be recovered using the invariance
under scaling of the inequality. We may indeed write:

A= ‖�wa,b‖2p

‖∇�wa,b‖θ2‖�wa,b‖1−θ
p+1

for any

�wa,b(x)=
( a

b + r2

) 1
p−1

with arbitrary positive constantsa andb. This fact and a direct computation of this quotient,
for instance witha = b = 1, yield the expression forA in Theorem 1.

Proof of Theorem 2. It is very similar to the proof of Theorem 1. For anyw ∈ Dp

satisfying the constraint

J̃ [w] := 1

p + 1

∫
Rd

∣∣w(x)
∣∣p+1 dx = J̃∞

and for anyλ > 0, we consider the scalingwλ(x) = λd/(p+1)w(λx), which also satisfies
J̃ [wλ] = J̃∞. Using now that̃G[wλ] � Ĩ∞, we find, after optimizating onλ > 0,

C̃∗
[‖∇w‖θ2‖w‖1−θ

2p

]δ̃ � Ĩ∞,



860 M. Del Pino, J. Dolbeault / J. Math. Pures Appl. 81 (2002) 847–875

where

C̃∗ = 1

2
λ

2d
p+1−(d−2)
∗ + 1

2p
λ
−d

1−p
p+1∗ , λ∗ = p − 1

p

d

d + 2− p(d − 2)
,

δ̃ = (1+ p)(d − (d − 2)p)

d + 1−p(d − 1)
and θ = d(1− p)

(1+ p)(d − (d − 2)p)
.

Since‖w‖1+p = (p + 1)J̃∞, we may write:

‖∇w‖θ2‖w‖1−θ
2p �

(
Ĩ∞
C̃∗

)1/δ̃ ‖w‖p+1

((p+ 1)J̃∞)1/(p+1)
.

By homogeneity and invariance under scaling, the above inequality is true for anyw ∈Dp ,
with optimal constant

A= (
(p + 1)J̃∞

)1/(p+1)
(
C̃∗
Ĩ∞

)1/δ̃

. ✷
Remark 7. Homogeneity and invariance under scaling also yield forA the expression

A= ‖�wa,b‖p+1

‖∇�wa,b‖θ2‖�wa,b‖1−θ
2p

for any

�wa,b(x)=
(
b − r2

a

)1/(1−p)

+

with a andb arbitrary positive constants. The constant in Theorem 2 then follows by direct
computations (with for instancea = b = 1).

Remark 8. On the logarithmic Sobolev inequality, we may notice that:
(i) Finding it as a limit has already been done in [4,9] and several other results show

that the logarithmic Sobolev inequality is an endpoint of various families of inequalities:
see for instance [6–9]. The point is that we get here the optimal form [45] with optimal
constants as the limit of optimal inequalities with optimal constants.

(ii) A proof of (6) based on Theorem 2 and similar to the one given in Theorem 4 can
also be established by lettingp ↑ 1. It is indeed enough to differentiate the function

p �→A‖∇w‖θ2‖w‖1−θ
2p − ‖w‖p+1, atp = 1,

whereA and θ are considered as functions ofp. However one has to assume thatw

belongs toDp(Rd) for anyp in a left neighborhood of 1, and then extend the inequality to
H 1(Rd)=D1(Rd) by a density argument.



M. Del Pino, J. Dolbeault / J. Math. Pures Appl. 81 (2002) 847–875 861

(iii) The optimal form (6) of the the logarithmic Sobolev inequality is easily recovered
from (2) by applying it tov(·) = λd/2w(λ·) and optimizing the corresponding expression
with respect toλ > 0, thus giving

λ=
(
πd

2σ 2

)1/2 ‖w‖2

‖∇w‖2
.

(iv) The fact that the family of Gaussians (3) are the only minimizers follows by a
symmetry argument [20] and by the of result of Serrin and Tang [39].

3. Some consequences

We may recast the Gagliardo–Nirenberg inequality of Theorem 1 and its extension
of Theorem 2 into a single nonhomogeneous form with still optimal constants. Since
the Lagrange multipliers asssociated to the constraints are explicit, this indeed allows to
rewrite the minimization problems of Theorems 4 and 5 without constraints (it turns out
that both expressions corresponding top > 1 andp < 1 can be collected into a single
non homogeneous inequality). This form is similar to the standard form of the logarithmic
Sobolev inequality (2) compared to the scaled form (6) (also see Remark 11).

Proposition 9. Let d � 2, τ > 0 andp > 0 be such thatp = 1, andp � d
d−2 if d � 3.

Then, for any functionw ∈Dp(Rd), the following inequality holds:

1

2
τ

d
p−d+2‖∇w‖2

2 + ε

p+ 1
τ
−d

p−1
2p ‖w‖1+p

1+p − ε

2p
K‖w‖δ2p � 0, (13)

whereε is the sign of(p− 1),

δ = 2p
d + 2− p(d − 2)

4p− d(p − 1)

andK > 0 is an optimal constant. Forp > 1
2 , p = 1, optimal functions for inequality(13)

are all given by the family of functions

x �→ τ
− d

2p �w
(
x − x

τ

)
.

For 0<p � 1
2, inequality(13) is also achieved by the same family of functions. Here

�w(x)=
( a

b+ ε|x|2
) 1

p−1

+

with a and b given by(12) (in both cases: p > 1 andp < 1) andK is explicitely given
by (14) (see below).
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Proof. Using the scaling

w �→ τ
− d

2p w
( ·
τ

)
,

it is clear that (13) holds for anyτ > 0 if and only if it holds at least for one. Forp > 1, we
takeτ = 1 and (13) is a direct consequence of the proof of Theorem 1, withK = C∗A−δ .
The casep < 1 is slightly more delicate and we proceed as in the proof of Theorem 5. Let

wλ(x)= λ
d

p+1w(λx).

An optimization onλ > 0 of the quantity

1

2
τ

d
p−d+2‖∇wλ‖2

2 + K

2p
‖wλ‖δ2p

= 1

2
‖∇w‖2

2 · τ d
p−d+2

λ
2d
p+1−d+2 + K

2p
‖wλ‖δ2p · λd p−1

p+1
δ

2p

shows that it is bounded from below by

K
1
2

4p−d(p−1)
d−p(d−2)

(
C‖∇w‖θ2‖wλ‖1−θ

2p

)p+1 · τ−d
p−1
2p

for some explicit constantC > 0, which using Theorem 1 again allows to identifyK. ✷
Remark 10. The function�w = �wa,b (with the notations of Remarks 6 and 7, anda, b
given by (12)) is a (the unique up to a translation ifp > 1

2) nonnegative radial solution of
−�w+ εwp = εw2p−1 (on its support ifp � 1

2), which allows us to computeK as

K = 1

2p
‖�w‖2p−δ

2p

=



1

2p
a

4p
4p−d(p−1) b−1

(
πd/2

�(
2p
p−1 − d

2)

�(
2p
p−1)

) 2(p−1)
4p−d(p−1)

if p > 1,

1

2p
a

4p
4p−d(p−1) b−1

(
πd/2

�(
1+p
1−p

)

�(
1+p
1−p

+ d
2)

) 2(p−1)
4p−d(p−1)

if p > 1.

(14)

Remark 11. inequality (13) is invariant under the scaling

w �→ µ
2

p−1w(µ·),
which makes it clear that minimizers form a one-parameter family (up to any translation
in R

d ). If d � 3, for p = d/(d − 2), the dependence inτ disappears and (13) is the usual
Sobolev inequality (1), with the usual scaling invariance (2/(p− 1)= d − 2). We observe
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that in the limitp → 1, up to an appropriate scaling, we recover the Gross logarithmic
Sobolev inequality in the usual nonhomogeneous form (2).

As noted in [6], the Gaussian weighted forms of the Poincaré inequality and logarithmic
Sobolev inequalities may take very simple forms. If we denote by dµ the measure
(2π)−d/2e−|x|2/2 dx, these inequalities are respectively given by:

∫
Rd

|f |2 dµ−
( ∫

Rd

|f |2 dµ

)2

�
∫
Rd

|∇f |2 dµ and

∫
Rd

|f |2 log

( |f |2∫
Rd |f |2 dµ

)
dµ� 2

∫
Rd

|∇f |2 dµ,

and a whole family interpolates between both, for 1� p < 2:

∫
Rd

|f |2 dµ−
( ∫

Rd

|f |p dµ

)2/p

� (2− p)

∫
Rd

|∇f |2 dµ

(the logarithmic Sobolev inequality appears as the derivative atp = 2). However this
family is not optimal (except forp = 1 or p = 2). Here we will establish a family of
optimal inequalities, to the price of weights that are slightly more complicated.

Corollary 12. Letp > 1 and consider

w(x)=
( a

b+ |x|2
) 1

p−1

with a andb given by(12). Then for any measurable functionf ,

K

p

( ∫
Rd

|f |2pw2p dx

) δ
2p −

∫
Rd

|f |2w2p dx −
∫
Rd

(
2

p + 1
|f |p+1 − |f |2

)
wp+1 dx

�
∫
Rd

|∇f |2w2 dx

provided all above integrals are well defined. HereK is an optimal constant, given by(14),
and

δ = 2p
d + 2− (d − 2)p

4p− d(p− 1)
.
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A similar result holds forp < 1.

Proof. It is a straightforward consequence of inequality (13) withτ = 1 applied to(fw)

and of: ∫
Rd

∣∣∇(wf )
∣∣2 dx =

∫
Rd

|∇f |2w2 dx −
∫
Rd

f 2w�w dx

together with�w = wp −w2p−1. ✷
As another straightforward consequence of Proposition 9, inequality (13) can be

rewritten for

v =w2p, m= p + 1

2p
and

τ
− 1

2p (4p−d(p−1)) = d −p(d − 2)

|p2 − 1|
(

for p <
d

d − 2

)
as follows (this form will be very useful in the next section). See the concluding remarks
of this paper for some comments on the literature.

Corollary 13. Let d � 2, m � d−1
d

(m > 1
2 if d = 2), m = 1 and v be a nonnegative

function such that∇vm−1/2 ∈L2(Rd ), x �→ |x|2v(x) ∈ L1(Rd) and{
v ∈ L1

(
R
d
)

if m> 1,

vm ∈L1
(
R
d
)

if m< 1.

Then

0� L[v] −L[v∞] � 1

2

∫
Rd

v

∣∣∣x + m

m− 1
∇(vm−1)∣∣∣2 dx, (15)

where L[v] =
∫
Rd

(
v
|x|2
2

− 1

1−m
vm
)

dx

and

v∞(x)=
(
σ 2 + 1−m

2m
|x|2

) 1
m−1

+

with σ defined in order thatM := ‖v‖1 = ‖v∞‖1. This inequality is optimal and becomes
an equality if and only ifv = v∞.
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Note that by convexity,v∞ is the unique minimizer ofL[v] under the constraint
‖v‖1 =M. The constantσ arising in the expression ofv∞ is explicit:

σ
2−d(1−m)

1−m =


1

M

(
2m

1−m
π

) d
2 �( 1

1−m
− d

2)

�( 1
1−m

)
if m< 1,

1

M

(
2m

m− 1
π

) d
2 �( m

m−1)

�( m
m−1 + d

2)
if m> 1.

4. Long time behaviour of fast diffusion and porous medium equations

In what follows, we denote byu(x, t) the solution of the Cauchy problem (7)–(8). We
will also denote henceforth

M =
∫
Rd

u0(x)dx.

Form = 1, let us consider the solution oḟR =R(1−m)d−1, R(0)= 1:

R(t) = (
1+ (

2− d(1−m)
)
t
) 1

2−d(1−m) , (16)

and letτ (t)= logR(t). The functionv(x, τ ) defined fromu by the relation

u(t, x)=R(t)−d · v
(
τ (t),

x

R(t)

)
(17)

satisfies the equation

vτ =∆
(
vm
)+ ∇ · (xv) τ > 0, x ∈ R

d , (18)

which for m = 1 corresponds to the linear Fokker–Planck equation. Let us observe that
R(t) → +∞ whenever(d − 2)/d < m, which covers our entire range of interest. In (17),
theL1 norm is preserved:∥∥u(t, ·)∥∥

L1(Rd)
= ∥∥v(τ (t), ·)∥∥

L1(Rd)
.

SinceR(0)= 1 andτ (0)= 0, the initial data is preserved:

v(τ = 0, x)= u0(x) ∀x ∈ R
d .

With the same notations as in Section 1, as

t → +∞, R(t) ∼ tα, u∞(t, ·)∼ U(t, ·)
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and, according to (10), the known factu(t, ·)∼ U(t, ·) when d−2
d

< m< 1 orm> 1 reads
in these new scales just as:

v(τ, x)→ v∞(x) for τ → +∞,

both uniformly and in theL1 sense, with the notations of Corollary 13.
It turns out that

v �→L[v] =
∫
Rd

(
v
|x|2
2

− 1

1−m
vm
)

dx

defines a Lyapunov functional for Eq. (17) as we shall see below. The proof of Theorem 3
will be a consequence of Propositions 14 and 15 below, and of Corollary 13.

Proposition 14. Assume thatm > d
d+2 and thatu0 is a nonnegative function such that

(1+ |x|2)u0 andum0 belong toL1(Rd ). Letv be the solutions of Eq.(18)with initial data
u0. Then, with the above notations,

d

dτ
L
[
v(τ, ·)]= −

∫
Rd

v(τ, ·)
∣∣∣x + m

m− 1
∇v(τ, ·)m−1

∣∣∣2 dx, (19)

lim
τ→+∞L

[
v(τ, ·)]= L[v∞], (20)

and if d−1
d

� m< 1 for d � 3, 1
2 <m< 1 if d = 2, or m> 1, then

0 � L
[
v(τ, ·)]−L[v∞] �

(
L[u0] −L[v∞]) · e−2τ ∀τ > 0. (21)

Proof. Let us assume first that the initial datau0(x) is smooth and compactly supported in
say the ballB(0, ρ) for someρ > 0. Assume that

d

d + 2
<m< 1.

The solution is smooth thanks to the results in [22]. Let us consider the function:

wρ(x)=
(

1−m

2m

)− 1
1−m (|x|2 − ρ2)− 1

1−m .

It is easily checked thatwρ(x) is a steady state of (18), defined on the region|x| > ρ.
Since this function takes infinite values on∂B(0, ρ), the comparison principle implies that
v(τ, x) � wρ(x) for all τ > 0. Hence

v(x, τ )= O
(|x|−2/(1−m)

)
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uniformly in τ > 0. Let us fix a numberR > 0. Integrations by parts then give

d

dτ

∫
B(0,R)

v
|x|2
2

dx

=
∫

B(0,R)

|x|2
2

∇ · (∇vm + xv
)
dx

= −
∫

B(0,R)

x · (∇vm + xv
)
dx + R

2

∫
∂B(0,R)

(∇vm + xv
) · x d̃x

= d

∫
B(0,R)

vm dx −
∫

B(0,R)

|x|2v dx + R

2

∫
∂B(0,R)

(∇vm + xv
) · x d̃x,

whered̃x is the measure induced by Lebesgue’s measure on∂B(0,R). Integrating with
respect toτ , we get:

∫
B(0,R)

(
v(x, τ )− u0(x)

) |x|2
2

dx

= d

τ∫
0

∫
B(0,R)

vm(x, s)dx ds + R

2

τ∫
0

∫
∂B(0,R)

(∇vm(x, s) · x + v(x, s)R2) d̃x.

Now, for fixedτ , the rate of decay ofv(x, τ ) implies that, asR → +∞,

R3

τ∫
0

∫
∂B(0,R)

v(x, s) d̃x ds = O
(
Rd+2−2/(1−m)

)
.

On the other hand,

R1−d

∫
∂B(0,R)

τ∫
0

vm(x, s) d̃x ds = O
(
R−2m/(1−m)

)
asR → +∞,

which means that

∫
∂B(0,1)

τ∫
0

vm(Rz, s) d̃x ds = O
(
R−2m/(1−m)

)
.
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Hence along a sequenceRn → +∞, we get:

∂

∂R

∫
∂B(0,1)

τ∫
0

vm(Rz, s) d̃x ds|R=Rn = O
(
R

−2m/(1−m)−1
n

)
.

Equivalently

R−d
n

∫
∂B(0,Rn)

τ∫
0

∇vm(x, s) · x d̃x ds = O
(
R

−2m/(1−m)−1
n

)
,

hence

Rn

τ∫
0

∫
∂B(0,Rn)

∇vm(x, s) · x d̃x ds = O
(
R
d−2m/(1−m)
n

)
.

The latter term goes to zero asRn → +∞ sincem> d
d+2. We conclude then that

∫
Rd

(
v(x, τ )− u0(x)

) |x|2
2

dx = d

τ∫
0

∫
Rd

vm(x, s)dx ds.

Now, a similar argument leads us to

1

1−m

∫
Rd

(
vm(x, τ )− vm0 (x)

)
dx =

τ∫
0

∫
Rd

(
4m2

(2m− 1)2
∣∣∇(vm−1/2)∣∣2 − dvm

)
dx ds.

We conclude thatL[v(τ, ·)] is well defined and decreasing according to (19).
In the casem> 1, the solution has compact support for anyτ > 0 and the computation

leading to Eq. (19) can be carried out directly. Finally, the requirement thatu0 is smooth
and compactly supported can be removed by a density argument. The proof of (19) is
complete.

If d−1
d

� m< 1 for d � 3, 1
2 <m< 1 if d = 2, orm> 1, combining relation (19) with

estimate (15) of Corollary 13, we get the differential inequality:

d

dτ
L
[
v(τ, ·)]� −2

(
L
[
v(τ, ·)]−L[v∞]).

SinceL[v∞] minimizesL[w] on{
w ∈L1+

(
R
d
)
: ‖w‖1 = ‖u0‖1

}
,

(21) immediately follows. In that case, (20) is trivial.
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Let us establish (20) whend
d+2 <m< d−1

d
. We have proven thatL defines a Lyapunov

functional for Eq. (17). The mass ofv is finite and preserved in time,L[v(·, τ )] is
decreasing and therefore uniformly bounded from above inτ . The quantities∫

Rd

v(τ, x)|x|2 dx and
∫
Rd

vm(τ, x)dx

are uniformly bounded from above inτ , because of Hölder’s inequality applied to
vmv

−m(1−m)∞ · vm(1−m)∞ :

∫
ω

vm dx �
[∫
ω

v

(
σ 2 + 1−m

2m
|x|2

)
dx

]m
·
[∫
ω

vm∞ dx

]1−m

, (22)

for any domainω ⊂ R
d , and because of the definition ofL[v]:

∫
Rd

v
|x|2
2

dx − 1

1−m

[ ∫
Rd

v

(
σ 2 + 1−m

2m
|x|2

)
dx

]m
� L[v] (23)

(with hereω = R
d ), thus giving estimates on

∫
Rd

v
|x|2
2

dx and
∥∥vm∥∥

L1(Rd)

which depend only onm, M andL[v]. Next we claim that∫
Rd

vm dx →
∫
Rd

vm∞ dx asτ → +∞.

However, we already know thatvm(τ, ·) ⇀ vm∞ in L1/m(Rd ). To establish the result it
suffices to show that ∫

|x|>R

vm(τ, x)dx → 0 asR → +∞,

uniformly in τ , which is easily achieved by applying (22) with

ω = {
x ∈ R

d : |x|>R
}
.

The latter integral is finite form> d
d+2 and goes to 0 asR → +∞. Using the decay term
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Rd

v
∣∣x + m

m− 1
∇vm−1

∣∣2 dx

= 4m

(2m− 1)2

∫
Rd

∣∣∇vm−1/2
∣∣2 dx +

∫
Rd

v|x|2 dx − 2d
∫
Rd

vm dx,

it is clear that at least for a subsequenceτn → +∞,∫
Rd

|x|2v(x, τn)dx →
∫
Rd

|x|2v∞(x)dx,

which proves (20). ✷
An estimate of the difference betweenv andv∞ in terms ofL is given by the following

result.

Proposition 15. Assume thatd � 2. Let v is a nonnegative function such thatx �→
(1+ |x|2)v andvm belong toL1(Rd ) and considerv∞ defined as in Corollary13.

(i) If d−2
d

� m< 1, m> 1
2 , then there exists a constantC > 0 which depends only onm,

M = ∫
Rd v dx andL[v] such that

C
∥∥vm − vm∞

∥∥2
L1(Rd)

� L[v] −L[v∞].

(ii) If 1<m� 2 andR =√
2m/(m− 1)σ 2, then

C
∥∥(v − v∞)vm−1∞

∥∥2
L1(Rd)

� L[v] −L[v∞].

For the proof of this result, we need a lemma which is a variation of the Csiszár–
Kullback inequality. We provide a proof for completeness and refer to [16,26,2] for related
results.

Lemma 16. Assume thatΩ is a domain inRd and thats is a convex nonnegative function
on R

+ such thats(1)= 0 ands′(1)= 0. If µ is a nonnegative measure onΩ and iff and
g are nonnegative measurable functions onΩ with respect toµ, then∫

Ω

s

(
f

g

)
g dµ� K

max{∫
Ω
f dµ,

∫
Ω
g dµ} · ‖f − g‖2

L1(Ω,dµ)
, (24)

whereK = 1
2 · min{K1,K2},
K1 = min

η∈]0,1[ s
′′(η) and K2 = min

θ∈]0,1[, h>0
s′′(1+ θh)(1+ h), (25)

provided that all the above integrals are finite.
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Proof. We may assume without loss of generality thatf and g are strictly positive
functions. Let us seth = (f − g)/g, so thatf/g = 1 + h. If ω is any subdomain ofΩ
andk a positive, integrable onω, function, then Cauchy–Schwarz’s inequality yields:

∫
ω

|f − g|2
k

dµ�
(
∫
ω
|f − g|dµ)2∫

ω
k dµ

. (26)

The proof of inequality (24) is based on a Taylor’s expansion ofs(t) aroundt = 1. Since
s(1)= s′(1)= 0, we have

s

(
f

g

)
= s(1+ h)= 1

2
s′′(1+ θh)h2

for some functionx �→ θ(x) with values in]0,1[. Thus we need to estimate from below
the function ∫

Ω

s′′(1+ θh)gh2 dµ.

First, we estimate∫
f<g

s′′(1+ θh)gh2 dµ=
∫

f<g

s′′(1+ θh)
|f − g|2

g
dµ� K1

∫
f<g

|f − g|2
g

dµ

according to the definition (25) ofK1. Using (26) with

ω = {
x ∈Ω : f (x) < g(x)

}
and k = g,

we obtain: ∫
f<g

s′′(1+ θh)gh2 dµ� K1
(
∫
f<g |f − g|dµ)2∫

f<g g dµ
. (27)

On the other hand, we have:∫
f>g

s′′(1+ θh)gh2 dµ=
∫

f>g

s′′(1+ θh)(1+ h)
|f − g|2

f
dµ� K2

∫
f>g

|f − g|2
f

dµ

using the definition (25) ofK2. Now, using again (26) with

ω = {
x ∈Ω : f (x) > g(x)

}
and k = f,
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we get:

∫
f>g

s′′(1+ θh)gh2 dµ� K2
(
∫
f>g |f − g|dµ)2∫

f>g f dµ
. (28)

Combining (27) and (28), we obtain (24).✷
Proof of Proposition 15. The result is a direct consequence of Lemma 16. Form< 1, we
take:

s(t) = mt1/m − t

1−m
+ 1, K1 =K2 = 1

m
, dµ(x)= dx and

L[v] =
∫
Rd

s

(
vm

vm∞

)
vm∞ dx.

According to (22) and (23), the quantities∫
Rd

v
|x|2
2

dx and ‖vm‖L1(Rd)

depend only onm, M andL[v], which proves the statement onC.
If 1 <m< 2, we may write:

|x|2
2

= m

m− 1

(
σ 2 − vm−1∞

)
� m

m− 1
σ 2 for |x|<

√
2m

m− 1
σ,

∫
RN

vvm−1∞ dx � m

m− 1
σ 2M

and apply Lemma 16 to

L[v] =
∫
Rd

s
( v

v∞

)
v∞ dµ(x)+

∫
B(0,R)c

(
v
|x|2
2

+ 1

m− 1
vm
)

dx,

with

s(t)= tm −mt

m− 1
+ 1, K1 =K2 =m and dµ(x)= vm−1∞ (x)dx. ✷

Proof of Theorem 3. Estimate (21), Proposition 15 and relation (21) yield that form< 1

C
∥∥vm(·, τ )− vm∞

∥∥2
L1(Rd)

�
(
L[u0] −L[v∞]) · e−2τ ∀τ > 0,
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while for m> 1

C
∥∥(v(·, τ )− v∞

)
vm−1∞

∥∥2
L1(Rd)

�
(
L[u0] −L[v∞]) · e−2τ ∀τ > 0.

Recalling that in terms of the variablet , τ = τ (t) ∼ logt , and changing variables into
the original definition ofv in terms ofu(x, t), gives us exactly the relations seeked for in
Theorem 3 withU replaced by

u∞(t, x)=R(t)−dv∞
(

logR(t),
x

R(t)

)
andR given by (16). A straightforward computation shows thatU andu∞ are asymptot-
ically equivalent and this concludes the proof.✷

Finally, let us mention that the Lyapunov functionalL[v] had already been exhibited
by Ralston and Newman in [34,38]. An alternative approach for getting the decay ofL[v]
is based on the entropy–entropy dissipation method, which has been used for the heat
equation in [42,43,1] and generalized to nonlinear diffusions in [17,12] (also see [36] by
Otto on the gradient flow structure of the porous medium equation), providing another
proof of inequality (15). More recents developments can be found in [11,23,27,10]. We
shall refer to [28] and references therein for earlier works in probability theory and
applications to Markov diffusion generators, and to [4] for relations with Sobolev type
inequalities.
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