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This paper deals with the slightly super-critical elliptic problem

(N+2)
—Au =y in Q
u>0 inQ )
u=20 on 0Q,

where £ >0 is a small parameter and Q = R" is a bounded domain with smooth
boundary. Assuming that the domain exhibits & sufficiently small holes, multiple
solutions are constructed by gluing double-spike patterns located near each of the
holes. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

This paper deals with the construction of solutions of the problem

(N+2)
—Au=uD i Q,
u>0 in Q, (1)
u=20 on 0Q,
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where Q is a bounded domain with smooth boundary in RY, N>3,ande>0
is a small parameter.
It is well known that the problem

—Au=u1 in Q,
u>0 in Q, (2)
u=>0 on 0Q
: 2 2
has at least one solution when l<q<%. Instead, when qZ% the

existence of solutions to problem (2) depends strongly on the topology or
geometry of Q. A well-known result by Pohozaev [13], asserts that (2) has no
solutions if q}%—f% and Q is star shaped. On the other hand, Kazdan and
Warner [10] showed that (2) has a radially symmetric solution for any g > 1
when Q is a symmetric annulus. Coron in [6] considered the case g = %—i’%,
and showed that (2) is solvable when Q is a (nonsymmetric) domain
exhibiting a small hole, say Q = 2\ B(P,, 1), where Z is a smooth bounded
domain, Pye % and pu is sufficiently small. In [2], Bahri and Coron
considerably generalize this result proving that if ¢ = x—fg and if some
homology group of Q with coefficients in Z, is nontrivial, then problem (2)
has a solution. While it may be expected that this solution survives a small
super-critical perturbation of the exponent as in (1), the indirect variational
arguments employed in [2, 6] do not seem to give in principle a clue on how
to obtain this fact. Solvability when ¢ > %—f% in domains “with topology” is
not true, in general, as shown via counterexamples by Passaseo [11, 12],
answering negatively the question stated by Brezis [4]. In our recent work
[7], we have considered problem (1) in Coron’s situation of a domain with a
small perforation, and proved solvability whenever ¢ is sufficiently small.
The proof is constructive and, rather puzzingly, the solutions found collapse
as ¢ » 0 in the form of a double spike: the solution tends to vanish
everywhere except around two local maximum points which blow-up at the
rate O(g 2 ). The perforation does not need to be symmetric or contained in a
small ball; for instance, in R* a domain with a torus with narrow section
excised would suffice.

The purpose of this paper is to raise the issue of solvability of problem (1)
in a domain exhibiting multiple holes. Our main result asserts that in such a
situation, multi-peak solutions exist, consisting of the glueing of double-
spikes associated with each of the holes. More precisely, our setting in
problem (1) is as follows.

Let Z be a bounded, smooth domain in RY, N>3, and P, P,....P,
points of £. Let us consider the domain

Q= @\U B(P. p), (3)
i=1

where > 0 is a small number.
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THEOREM 1.1.  There exists a p, > 0, which depends on & and the points
Py, ..., P, such that if 0 < u<py is fixed and Q is the domain given by (3), then
the following holds: Given a number 1 <k<m, there exists &y > 0 and a family
of solutions u,, 0<e<ey of (1), with the following property: u, has exactly k
pairs of local maximum points (&}, &) € QO j=1,....k with cu<
|£;fi — Pj|<Cu for certain constants c,C independent of n, and such that
for each small 6 >0,

sup uy(x) > 0

(& >8 Vi)
and

sup  uy(x) - +00 Vi,j
=&l <o

as ¢ — 0.

While it will be clear from the proofs that there is no need for the small
excised domains to be balls of same radii, we will only consider this case for
notational simplicity. Let us also observe that by relabeling the points

P, ..., P, the above result actually yields that for each 1 <k <m and any set
of indices ij,...,i in {l,...,m} a solution exhibiting double-spikes
simultaneously near the points P,,..., P, exists. This, in particular, yields

the existence of at least 2" — 1 solutions of the problem whenever ¢ is
sufficiently small.

The proof will provide much finer information on the asymptotic profile
of the blow-up of these solutions as ¢ — 0: after scaling and translation one
sees around each ¢f; a solution in entire RY of the equation at the critical
exponent. More precisely, we will find

N-2

ko2 1 2

i =3 Do

Lo Lo 2, 2
=1 j=I 5,N72]~l.j—|—|x—5ii|

+05(x), 4)

where 0.(x) — 0 uniformly as ¢ — 0. The numbers 4 and the points ¢ will be
further identified as critical points of certain function built upon the Green’s
function of Q.

The role of the Green’s function in concentration phenomena associated
with almost-critical problems on the subcritical side, i.e. ¢ = %—f% — ¢, has
already been considered in several works, [3, 6, 9, 14-16].

In what follows, we will denote by G(x, y) the Green’s function of Q,

namely G satisfies

AXG(xLy):é(xi.)/)a XEQ,
Gkx,y) =0, x € 0Q),
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where d(x) denotes the Dirac mass at the origin. We denote by H(x, y) its
regular part, namely

H(xa y) = r(x - y) - G(xa y)a

where I' denotes the fundamental solution of the Laplacian,

T'(x) = byld*",
so that H satisfies
AH(x, y) =0, xeQ,
H,y) =T(x—y), x € 0Q.

Its diagonal H(x,x) is usually called Robin’s function of the domain.

The proof of Theorem 1.1 follows along the general lines of that
we devised for the construction of a single two-spike: we work out a
finite-dimensional reduction scheme in a suitable functional space,
reducing the problem to that of finding critical points of a function which
depends on points & and scaling parameters 4. The main part of the reduced
function is explicitly given in terms of the Green’s and Robin function. A
critical point is finally found via a min—max characterization worked out
with topological arguments. A technical point to be especially careful with is
that of isolating the different pairs of spikes so that the min—max scheme
does not see undesirable interactions between points associated with
different holes.

Sections 2—4 will be devoted to discuss the finite-dimensional reduction
scheme for the construction of a solution to (1) in the general case of &
spikes. In Section 5 we will be back to our original setting, by considering
the 2k-spike case, with 1 <k<m, and we will set up the min—max scheme to
find a critical point of the reduced functional, which will let us to the proof
of Theorem 1.1.

2. PRELIMINARIES AND BASIC ESTIMATES IN THE REDUCED
ENERGY

Let Q be a bounded domain with smooth boundary in RY and let us

consider the enlarged domain

1
Q. = N-2Q, e>0.

If we make the change of variable
1

. i
v(y) =77 2 u(eN-2y), Ve,
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we see that u solves (1) if and only if v satisfies

N+2
Av+ N2 = in Q,,
v; >0 in Q,, ®)
v=20 on 0Q,.

Since Q, is expanding to the whole R", and all positive solutions of

N2 Y
Av+ovN-2=0 in R

are given by the functions
1\
= - N-2 _ /x —
U(x) = oy (—2> and U, ,(x) = ATU(x y)
1+ |x|

A

N-2
with oy = (N(N —2)) 4, yeR" and 2>0, it is natural to look for
solutions v of the form

h
o) ~ > Uy (6)

Jj=1
for certain set of /& points &4,..., &, in Q and numbers 4y,..., 4, >0, where

from now on we use the letter & to denote a point in Q and
-1
E =eN-1¢eQ,.
A better approximation in (6) should be obtained by using the orthogonal

projections onto HO1 (Q,) of the functions U ,.2» denoted by 7, », namely the
unique solution of the equation

_N+2
— [N-2 :
—AV, o = U/i,é’ in Q,,
V;ﬁ,f/ =0 on an,

so that the function ¢
equation

,.¢» defined as ¢, » = Ui,é’ — V.2, will satisfy the

~A¢ o =0 in Q,

d)/l,f, = Ui,i, on GQ;
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Then, we have

§,.(x) = cH(E 25,7 T / 07+ ole) )

R

and, away from x = &,
1 N-2 - p
Vo) = oGV 017 [ 07 ot ®)
i IRN

uniformly for x on each compact subset of Q,. Here G and H are,
respectively, the Green’s function of the Laplacian with the Dirichlet
boundary condition on Q and its regular part. For notational convenience
from now on we denote p = {43,

We consider the functions

Ui=0U,0. Vi=Vyg, i=1l...h ©)

and we write

h h
v=> U, v=>_ V. (10)

In what remains of this paper our goal is to find a solution v of problem (5)
of the form

v="V+¢, (11)

which for suitable points ¢ and scalars A will have the remainder term ¢ of
small order all over €, in fact with magnitude not exceeding O(¢) in any
reasonable norm over Q,. On the other hand, solutions of (5) correspond to
stationary points of the functional .#, defined as

| , 1
Eﬁy — D - p+l+a. 12
w=3 [ o [ (12

If a solution of the form (11) exists, we should have .#.(v) ~ .#,(¥) and that
the corresponding points (£, /) in the definition of ¥ are also “approximately
stationary” for the finite-dimensional functional (&, A)— # (V). It is then a
natural step toward the construction of the solution to understand the
structure of this functional and to find critical points of it which survive
small perturbations. Thus, our immediate goal is to estimate .# (V) where V'
is given by (10). If the points ¢; are taken far apart from each other and
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also far away from the boundary, we have that as a first approximation
h -
IV) ~ Y I(T) ~ hCy,
f

where

1 -1 -
Cy == DU — —— U,
" 2/RN| Pt Y

To work out a more precise expansion, it will be convenient to recast the
variables 4; into the A;’s given by

1
Ai = (ayA)N-2 (13)
with

1 [ O
ay =——"—=5>.
NP1 U7

Let us fix a small number 6 > 0. We will restrict ourselves to consider only
points &; € Q and positive numbers A;, such that

& — &1 >0, if i#], dist(¢;, 0Q) > 9, S<A;<d ! (14)
foralli=1,...,A

LemwmA 2.1.  The following expansion holds:
J(V) = hCy + elyy + on'P(E A)] + ole) 15)

uniformly with respect to (¢, A) satisfying (13) and (14). Here we have

h
W(EA) = %{Z H(E,EDAT =2 ) G(&, 5,-)AiA,»} +1log(Ar -+ Ap),  (16)
j=1

i<j
h h h - ptl _
YN = {m(})N‘i‘EO)NlOgaN—m - U log U} (17)
and oy = ﬁ Jry ot
Proof. We first write
1

1 \
JS(V):JO(V)+—/ yrl /V”“**’, (18)
p+1 Jo Q,

p+1+e



518 DEL PINO, FELMER, AND MUSSO

where

1 1
fQ(V):E /Q |DV|2—ﬁ [2 VP"F].

Let us first estimate .#((V); we have

j=1
- 1 2 1
= [ v —-—— |
> [ ot v
1 h prL
+ /DV,»DVj—— ( V,-) =Nt (19
iz p+1Jo, ; ; ’

Arguing as in [1,3,7], and taking into account (7) and (8), one can prove that

_ B 2
/ DV = / |DU|2—( / U") H(E EayAe + o), (20)
Q, RY RV

2
/ DV.DV; = ( / U”) G(&, EanNihje + o(e), (21)
Q, RY

N

2
L= [ ([ 07) el on @
Q, RY RY

and finally

2
= 2< / 0") G &avAje +(2) Vi), (23)
RY

From (19)—(23), we conclude that

h
So(V) = hCy + %N{Z H(EEDA; =2 > G(&, 5,~)A,-A,} +0(z).
j=1

i<j
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Let us consider now the quantity

&

_ _ _ & p+tl %
I = A = /Q e

/ Vet log V 4 o(e),  (24)
Q.’,

first we see that

/VPH:h/ o7 1 o1,
Q, RY

On the other hand, for a number ¢ > 0 we can write
h

yrtllogV =
I >

/ VP log V + o(e).
=1 Jh=gl<e

For any index j, we have

/ yrtllog v
k—&l<e
N-=2
= - log /lj-/ yrt!
2 k¢ <o

" SN2 N2
+ / Ve log((Z) 2 Vi+(A4) 2 (V=)
-l <o

N-2 _ _ _
- log /; (/ o’ 4 0(8)) n / 0" og T + o(1).
2 RN RN

Then we conclude

/ yetilog v
Q;

N -2 , _ _
= -=— log(/ll--%h)(/ U”“>+h/ 0" log U + o(1)
RN RN

—g(logaN)/v oot - (/ (7”“)1og(/\1--./\,,)
R}\/ RN

Ty /[R 0" og U + o(1),




520 DEL PINO, FELMER, AND MUSSO

hence from (24) and the previous computation we get

I(V) = FoV)

h = p+1 h — p+1
—_— u  + loga (/ U )
(p+ 1) Jw 2p+ 1) =V g

. o' h _ _
Llog(/\l Ay ——— | T log T
p+1 p+1 Jrv

= ¢

+ o(e),

this concludes the proof. 1

Remark 2.1. The quantity o(e) in the expansion of (15) is actually also of
that size in the C'-norm as a function of & and A in the considered region.

The next two sections will be devoted to reduce the problem of finding a

solution of (5) of the form (11) to that of finding critical points (£, A) of a
functional which is an o(¢) perturbation of .7 (V).

3. THE FINITE-DIMENSIONAL REDUCTION

Fix a small number 6 > 0 and consider points é; € Q., numbers A; > 0, for
i=1,...,h, such that

—1 —1
& — &> N1, disE,00,) > SN, d<A<dL (29)

In this section, we deal with the following intermediate problem: Find a
function ¢ such that for certain constants c;; one has

AV + o)+ +§)r =Y ey 'z, in Q,
ij
¢=0 on 0Q,, (26)
/ oV 'z, =0 for all i,
Q,

where the functions ¥; and V are defined in (9) and (10) and Z; will be
defined below.

What we need to do is to solve (26) and then find points ¢ and scalars A
such that the associated c;; are all zero, which yields a solution of (5).

Let us consider the functions

6(_]i . = aUz

Zi=—7 j=1,...,N,  Zyu = o = (- &) VU + N - 2)T;
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and then define the Z;’s in (26) to be their respective H{(€,)-projections,
namely the unique solutions of

AZU = AZU‘ in QL-,
le =0 on an

The first equation in (26) can be rewritten in the following form:

Ap+ (p+eV P g =—Nudp) — R+ eyVi"'z;  inQ, (27
ij
where
Ni&, A, @) = Ni(p) = (V + §)LT = VP — (p+ ey Pl (28)

and i
R(E AN =R =vr-3" T’ (29)

=1
Then we need to understand the following linear problem: given # € C*(Q,),

find a function ¢ such that

Ad) + (P + 3)V‘D+1}71¢ = h + Z cl-jV,-p*lZl-j il’l QS,
Lj

$=0 on 0L, (30)
/ VP ' Zp =0 for all i, /,
Q,
for certain constants ¢, i=1,...,h, j=1,...,N+ 1. In order to get

bounded solvability of (30), one needs to work in properly chosen functional
spaces. Similarly as in [7], we introduce L°(€;) and LZ,(Q.) to be,

respectively, the spaces of functions defined on Q, with finite || - ||,-norm
(respectively, || - |l-norm), where
P -1
212 N2
W1l = sup (Z (I + k= &Pz ) Y(x)
xeQ; j:1
and
N+l
h  yN=2 N2
s = sup S +k-EP ().
xebd, j:1
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We then get the following result.

ProrosITION 3.1.  There are numbers ¢y >0, C >0, such that for each
0<e<e, any points (&', A) satisfying (25), and any h € C*(Q,), problem (30)
has a unique solution

¢ = Ly(h), (31

which besides satisfies
Le(Ml < ClIA |- (32)
Moreover, the operator Sy(¢', A, h) = Ly(h) is of class C' in its arguments and
IV e ASe(E' Ay )15 < ClI | (33)

The proof of this result is identical to that found in [7], except that there
only the case 47 = 2 was considered. We therefore omit it. Now we return to
the nonlinear problem (26).

PRrOPOSITION 3.2.  Assume the conditions of Proposition 3.1 are satisfied.
Then there is a constant C > 0 such that, for all ¢ > 0 small enough, there exists
a unique solution

d=dpE AN =¢+y

to problem (26) with  defined by y = —L(R?) and for points &, A satisfying
(25). Besides, the map (&', A) — ¢(E', A) is of class C' for the || - ||,-norm and

Bl < Cemintr2 (34)

IV () Pl < Cemintr2i, (3%)

Proof. Problem (26) is equivalent to solving a fixed point problem;
indeed ¢ = ¢ + ¥ is a solution of (26) if

¢ = —L(N(¢ + V) = 4,(),

taking into account that y = —L,(R®) and that L, is a linear operator.

Then we need to prove that the operator 4, defined above is a contraction
inside a properly chosen region. Arguing in [7], one can show that for all
small ¢ >0 and ||¢]l, <1, we get

NPl < ClIBIE" P2 (36)
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and
IR 4 < C. (37)
Hence, by definition of y and Proposition 3.1, we infer that
W]l <Cée

and
IN( + W)l S CIPI[3" PP 4 gmintp2hy, (38)

Let us now consider the set
= {d € Hy: ||l <remnir2y

with r a positive number to be fixed later. From Proposition 3.1 and (38) we
get

14l = IL:N(P + ¥)lls < ClIN(D + Pl

. Y . Sy
< C[rmm{p,2}8mm{p A4} + 8mm{p,Z}] < rgmm\p,2;

for small ¢ and any ¢~> € #,, provided that r is chosen large enough, but
independent of ¢. 4, turns out to be a contraction mapping in this region.
This follows from the fact that N, defines a contraction in the || - ||,,-norm,
which can be proved with a rather straightforward estimate, as done in
detail in [7].

The proof of differentiability of the function (j;(f',/\) follows in
approximately the same way as a similar result in [7], so we only sketch
it. Let us write

B, A, ) = ¢ + LN + ),

we have B(¢', A, ¢) = 0.
Now we write

DgB(E, A, §)0] = 0+ L(ODGN(d + ) = 0 + M(0).
It is not hard to check that the following estimate holds:
1M (O)]]5 < Cel|0]].

It follows that for small ¢, the linear operator Dq;B(f/, A, 43) is invertible in

Ly, with uniformly bounded inverse. It also depends continuously on its
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parameters. Let us differentiate with respect to (¢, A). We have

DaB(E, A, §) = (DaL)(Ny($ + ¥))e LIDN)E, A, ¢ + )
+ L(DGN )&, A, § + ¥)Dyy,
where
Dap = —[(DyL)(R®) o L(DyR%)] (39)

<

and

DgRﬁ:(p+g)Vf’+*>*'Dé;Vi—pﬁf’”Dé;Iz Vi=1,...,h (40)
These expressions depend continuously on their parameters; a similar
computation holds for the derivative with respect to A. The implicit function

theorem yields that (;S(g”, A)is a C' function into LY. Moreover, we have for
instance

Dap = — (DgB(E, A, §)) ' (Do LN + Y)ILD(N(E', A, b + 1)
+ L(DgN)(E A, d + D),

so that

1Dz lls < CUINAP + V)l
+ IDaNJE A + W)l + IDGN(E A, b + Y)Deplli). (41)

From (38) and (34) we get
IN:( + W)l < CemM1P2),
Straightforward computations allow us to estimate the other terms in (41),
using, in particular, that by definition of i and Proposition 3.1,
Dl < Ce.
We finally obtain
1Dzl < CemniP.

A similar estimate holds for differentiation with respect to A. This concludes
the proof.
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4. THE REDUCED FUNCTIONAL

Let us consider points (&, A) which satisfy constraints (14) for some small

-1
fixed & > 0, and set & = eN-1¢. Let ¢(y) = ¢(&', A)(y) be the unique solution
of problem

AV + @)+ + @) =5 eV 2y in Q.
$=0 on 0Q,, (42)
/Q ¢Vi1"lzij:0 for all i, j,

given by Proposition 3.2. Let us consider the functional
IS, A) = J(V + &),
where .#, was defined in (12). The definition of ¢ yields that
JV + ) =0
for all # which vanishes on 0Q, and such that

/nVi”*lzijzo for all 7, /.

The easily checked facts that

oV

—:ZIH 13
0&;j o)

ov
A, A +o(1)

with o(1) small as ¢ — 0, and the last part of Proposition 3.2 give the validity
of the following.

LemMA 4.1. v =V + ¢ is a solution of problem (5), namely c;; = 0 in (42)
for all i, j, if and only if (¢, A) is a critical point of I.

Next step is then to give an asymptotic estimate for 7(¢,A). Not too
surprisingly, this functional and .#.(V) coincide up to order o(e).

PropoSITION 4.1.  We have the expansion
I(&,A) = hCy + elyy + Wy (S, A) + o(1)], (43)

where o(1) - 0 as ¢ — 0 in the uniform C'-sense with respect to (&,A)
satisfying (25).
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Here, we recall

1 h
W(EA) = E{Z H(ELEDAT =2 ) G, 5,-)A,-A,} +log(Aj -+ Ay)
j=1

i<j
and the constants in (43) are those in Lemma 2.1.
Proof. We start showing that
I(&,A) = (V) = o(e) (44)
and
Veall(§,A) = (V)] = o(e). (45)

Taking into account that 0 = D.#,(V 4+ + $)[], a Taylor expansion gives
1
SV D= IEN = [ 1t DI b+ 1))
0
1
712 T\p+e—1 72
X/o tdt[/ﬂg VoI — (p+e)V + ¥ + td) d)}
1
= d (& b
[ el [ wGemi
+ / (p+ oV =+ + tqﬁ)'”“]&z). (46)
Q,
Since ||l = O(E™nP2}), we get
IEA) = IV +y) = O@ ™™, (47)

Differentiating with respect to & variables we get from (46) that

Del IV + ) — 1S, A)]
1

1 ~ ~
o /0 rdt( /Q DAV + )
+ (p+e) /Q Dol((V +y + )P — (v + l//)”“)¢32]>~ (48)

Using the computations in the proof of Proposition 3.2 we get that the
first integral in relation (48) can be estimated by O(¢?>™n2}) so does
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the second; hence

DAIEA) — SV + )] = O@E™2P41-73),
Now, since D.7 (V)[y] = fQ” Ry,
TV + ) — I
1
- {/ 1=0ndt(p+ &)/ vV + l‘lﬁ)p-H?'_l — VP+‘°'“)lp2] -2 / Rglﬁ}.
0 Q, Q,
(49)

Since [l + ||Re]l = O(e), the above term is O(¢?); then, (44) follows from
(47) and (49). Using again (49), we see that

De[ IV + ) — I,(V)]
1

I ) : B te—1  prpte—l 2]
=¢ Dé/{/o (1 t)dt[(era)/Qn ((V + np)? Ve W

=2 [ Ry,

Since from Proposition 3.1 it follows that [|D=v|l,, = O(e), we get
1
De[ IV + ) — F,(V)] = O(e?) — 26 N-2Dy ( / R"'l,b).
Q;

Arguing as in [9], one gets that

Ds < /Q R‘;xp) = o(&%),
which gives (45).

From Lemma 2.1, we can finally conclude that
I(&,A) = hCy + elyy + wyP(S, A)] + o(e). (50)

On the other hand, as a consequence of (45) and the remark after Lemma
2.1 we also get

— 1 1
VIEA) =6 1(/R urt )(V‘P(é,A)—i—o(l)). ' (51)
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5. THE EXTERIOR DOMAIN

Let us consider the exterior domain
D, = R\ B(0, 1).

We denote by G, and H, the Green’s function of D, and its regular part. In
this section, we will work out some estimates for these objects which will be
useful for the resolution of the finite-dimensional variational problem
derived in the previous section, in the situation of Theorem 1.1. Explicitly,
we have

by
) = =5
where y = ‘#, and
Gul(x,y) = biN,H — Hyl(x, y).
ke —

In particular,

by

H.(x,x) = W

More explicitly, let 6 be the angle formed by the vectors x and y. Then,
by

H*(xs y) = Ay
(1 + [xP1y* = 2Jx|y| cos 6) 2

We want to analyze the function

04, ¥) = He(x, ) P Ho(3, )2 = Gulx, ), x#,
namely

1 1
N=2 N2
(P =D 2 (pf-1)2
1
N2
(1 + P> = 2|y cos 0) 2
1

b];vl(p*(x, J’) =

+

- N2
(I + [yI> = 2Jx|[y| cos 0) 2
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Now we make the following observation: let x and y vary letting their
magnitudes remain constant. If we differentiate with respect to the angle 0,
we obtain

4 0 2 2 N
ay 75 Pxx, ¥) = {(X[" + 7 — 2l cos 0) 2

N
— (1 + |xPIy> = 2Ix]|y| cos 0) 2} sin 6 >0

for 0 <0< m. In particular, for given magnitudes |x| and |y| ¢, maximizes its
value when 6 = &, in other words when x and y have opposite directions.
Assume this is the situation, namely that for a unit vector e, x = se, y = —te,
with s,7> 1. Then in this case ¢,(x, y) reduces to

by 9%, 1) = by a5, 1)
I P B
- —T D sV

This function has a negative global minimum value, attained at a point of
the form (p*, p*). Let

¢ = =0.(p*,p") = — min @, (], [y (52)
(x,y)€Dx
Let us consider then a small value J, for which the level set {Q.(s,?) = —d4}
is a closed curve and that VQ,(s, ?) is nonzero on it. Set
o = {(x, ) | @ulx], [¥)) < — 0s). (53)

Thus, the above discussion shows that on this bounded region we have
@.(x, y)< — d4 and that if (x, y) € 0o/ one of the following two situations
occurs: Either there is a tangential direction 7 to 0./ such that Vo,(x, y) -
1#0 or x,y lie in opposite directions, @.(x,y) = —dsx and Ve.(x, y)#0
points orthogonally outwards .«7.

The following fact will be useful later. The matrix

MoV =1 G Ha)

Hi(x, %) —@mw]

is invertible in .7 and its inverse Mx(x, y)! has a norm which is uniformly
bounded. In fact, its eigenvalue with least absolute value is given by

1
= 3 0,20+ Ha( ) =\ (5,0 + Ha )Y +40),
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where A = G2(x, ) — Hy(x,X)Hy(y, ) > 0 in /. Thus,

st 4A + 5 (Hy(x,x) + Hil(, y))

4 JUHex) + i, ) + 47

But A is uniformly bounded from below since |p,(x, )| is so over ./, and
uniform bounds from above and below also hold true for H in this region.

Another observation is the following. Let u >0 and consider now the
exterior domain

D, = RY\ B(0, .

Then we observe that if we denote by simply G, and H,, its Green’s function
and regular parts, then G,(x,y) = > VGl 'x, 17l y), Hulx,y) = 1>V
Hy(u'x, = 'y). In particular, the following holds. If we set .«/, = p.</ then
</, corresponds precisely to the set where ¢, (|x|, |y)) < — Ssp>N. Besides if

H, (X,X) -G (X,y)
Mu(x> y) = ! " >
_G}t(xay) H,ll(y: y)
then
IMu(x, ) I <CUV 2, (x,p) € . (54)

We finish with a last observation. For the domain Q given by
Q=2\J BE.w (55)
=1

with P, P, ..., P, points in the bounded, smooth domain &, the Green’s
function G satisfies

Glx,y) = Gu(x — B,y = P)+ O(), (x,y) €(P,R)+ A,

where the quantity O(1) is bounded independent of all small g, in the C!
sense. The same is true for the corresponding functions A and ¢.

6. THE PROOF OF THE MAIN RESULT

Let us now fix 1 <k <{m; we are looking for solutions to problem (1) with £
couples of spikes, each one of which is close to one of the points P, ..., F,
when u > 0 is small.
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The results obtained in Section 4 imply that our problem reduces to the
study of critical points of the function ¥, which in the case of 2k spikes takes
the form

k
W(EA) =D U, A) = 2RE A,
i=1

where ¢ is a k-tuple of pairs, say ¢ = (fl, cee ék) with f,- = (&, ¢n) € Q% and
A=A, A) = A, A, A, Aw) e RE,
P 1
V(& A) =5 {HEn, )AL + H(Cn, En)AL — 2G(En, En)AnAn}
+ log /\”Aiz (56)

and

RED=D > G &e)hinAin.

i<j 1<0,6<2

Let us consider a small number x> 0 and the domain Q given by (55). We
define next a region £ = Q* where we will work out the variational
problem introduced in Section 4. Let .o/ be the region of R*" defined in (53)
and

;= (P,P) + .
In other words, (x, y) € .«; if and only if
Pu(u = Pl y = PN — s,
where @, and J, were defined in the previous section. Let us set
E=A{¢/(,¢p)e A Yi=1,... k}. (57)

We shall consider the functional ¥ defined precisely over the class X x Ri";
actually ¥ has some singularities that we avoid by replacing the term

G(&j1, &p) in (56) by

) G, Cn) it G(&i1,En) <M,
Gu(&in,Cn) = {M i G(Ey.En)> M. (58)

where M > 0 is a very large number. For notational convenience, we still call
¥ the modified functional on X x R3*.

For every f,» € .o/; we choose d,-(fi) = (d,-l(éi),d,-z(é,«)) € [Ri to be a vector
defining a negative direction of the quadratic form associate with . Such a
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direction exists since the function ¢, defined by
o(x,y) = H(x,x)'*H(y,»)'* - G, y) (59)

is negative over .«Z;. Let us be more precise. For fixed f,- € .«/;, the function
p 1
Y(&id) = FHH G, EDdTH (E, En)dy — 2G(En, En)dida} + logdidy  (60)

regarde_:dAas a function of (d;,d,) only, with d;,d, > 0, has a unique critical
point d(¢&;) given by
7P H(Ep, Ep)'? 7P H(Ey, &'
i1~ > = .
H(&n, &n) o, )

H(En, €)' PoEn, En)

Note that, in particular,
_2 _2 - -
H(&py, Si)dy + H(Ciy Cn)dyy — 2G(Ein, Ep)dindin = —1

and

nd ——+1 — 61
W&, d&)) = g| (51)| (61)

Then we simply choose di(&;) = c;’(é,»).
Let p* be the number given as in Eq. (52). Set

Si={x/k—P|l=pp*},  S; =S8 xS
In what follows, we denote
fzﬁﬁ,thm»wmhmM.
i=1
Let I" be the class of all continuous functions

y: S x I x[0,1] > = x R,
such that

1. Forall ¢ € &, t €0, 1] the following hold y(¢, 0y, t) = (£, 60d(£)), and

(&, Uol,t) =(, og‘d(f))
2. y(&,0,0) = (& 0d(¢)) for all (¢,0) € & x 1§, where Iy = [69, 0, '] with
oo 1s a small number to be chosen later. Then we define the
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min—max value as

c(Q)=inf sup Y, 0a,1)) (62)

7€ (& o)eSxIE

and we will prove in what follows that ¢(Q) is a critical value of ¥. We begin
with an upper estimate for this value.

LEMMA 6.1.  For all sufficiently small u, the following estimate holds:

Q)< — g + k(N — 2)log u — klog c* + o(1),

where o(1) - 0 as u — 0.
Proof. We consider the test path defined for all 1 €[0,1] as y({,0,¢) =
(¢, 0d(&)). Maximizing W(&,0d(&)) in the variable o, we observe that this

maximum value is attained approximately at ¢ = 1, by our choice of the
vector d(&). Besides, by definition of S; we see that

p(€)< — P, (63)

dé) = O(u¥). This last fact gives that R(¢,d(¢)) = O(uV~?). Hence
k
max W(&,0d(&) = D W(&.di(&)) + o(1)
i=1

and the desired result follows from (61) and (63). 1

A key step in the direction of proving that ¢(Q) is indeed a critical value of
Y is an intersection lemma. The idea behind this result is the topological
continuation of the set of solution of an equation, and is based on the work

of Fitzpatrick et al. [8]. For every (¢, 0,t)e & x I¥ x [0,1] we denote
W&, 0,1) = (E(&,0,0), A&, 0,1) € = x R?*, and we define the set

yl = {(éso—) €Y x ](1){/;\!1(5’ 0',1)';\[2(6,0, 1) = 1}

LEMMA 6.2. For every open neighborhood V of &1 in & x I, the
projection g:V — & induces a mono-morphism in cohomology, that is

g* H*(S) - H*(V)

is injective.
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Proof. Let us define the set
Z([0,1) = {(&,0) e & < I§/ f(&,0,0)#1 for all t€[0,1]},
Where ]l = (13 D) 1)7 f = (fla .. °9fk) and f;(éaaat) = ;\il(ézaat) : [\iz(éaaat)‘
The function £ defined by #(&,a,1) = (9(,0), (&, 0,1) is a homotopy
of pairs

hi (S x IE Z([0,1]) x [0, 1] = (& x RE, 7 x (RE\ {1})).

By choosing ¢y small enough we have that the following inclusion is well
defined:

Ji(L X I, x 01y — (7 x I, Z([0,1])).

If i is also an inclusion map and Ay(-) = &(-,0), then we have the following
commutative diagram in cohomology:

.
H*Y < 15, 2(0,1]) <~ H*Y xR, 7 x RE\{1}))
N iy
H*S x 1§, x oIf).

Since /* is an isomorphism, we conclude that /f is a mono-morphism and
then from the homotopy axiom, we find that

hi = (g, /) (¥ x I, 2([0,1])) > (¥ x RE, 7 x (RE\{1}))

induces a mono-morphism in cohomology, where #4;(-) = A(-,1). Next,
defining

z0) =1 a) e s x5/ f(& 0o, )#1}
and noting that Z([0, 1]) = Z(1), we also find that
h (S < IE,Z(1) - (¢ x R, .7 x (RE\{1}))
induces a mono-morphism in cohomology. Since V' and Z(1) are open, and
Ve < Z(1), defining Z=Z(1) n ¥V and using the excision axiom, we
conclude that

B HYY x RE, 7 < (RE\{1}) —» H¥(V, 2)

is a mono-morphism. Let e be a generator of Hk([Rk,[Ri\{ﬂ}) and u e
H(¥), with i=0, then following from the basic relation between cross
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product and cup product in cohomology, we have
hi(u x e) = d*(g*(u) x f{(e)) = g*(u) — fi(e).

Since A4} is a mono-morphism, it follows that ¢* is also a mono-
morphism. 1§

PROPOSITION 6.1. There is a constant K so that

sup Y o,1)= —K forall yel.

£ k
(&0)es X1

Proof. We observe that é,— € o/; implies that &; € B(P;, pou)\B(P, pi 1),
for I = 1,2, with 1 <p, <p*<p, independent of u. Hence we can find 6y > 0
such that (¢;; — BP) - (¢, — P;) > 0 whenever |&;; — ;| <dg. Next let Ky > 0 so
that G(x, y) =K, implies |x — y| <.

Assume, by contradiction, that for certain y e I'

¥(y(¢,0,1)< — kKo for all (£,0) € & x IF.

This implies that for all (&, 6) € %1, (&,A) = (&(&,0,1),A(E, 6, 1)), we have

k k
2

G(&) — S HE. EDA, + HCEn EmAn) + 2REA) > kKo
=1

i=1 i=
and then taking a small neighborhood ¥ of .| in .% x IF,

k
> G0, 1)=kKy  for all (¢,0)€ V.

i=1

Note that R(E, A) is small compared to G(f,«). From here we conclude that
for every (&, 0) € V there exists i € {1,...,k} such that

G (¢, 0,1) =Ko

and consequently & — Enl< do. Let us fix a point X such that [X| = p*u, then
&E=P+x,P—X)eS?and &= (&1,.-.,&) € ¥. We note that because of
the above conclusion y,(V) = (Z\T(¢)) x R%*, where y; = y(-,1) and T(¢) =
{t/p1<t<p,}.

Let us consider the map r: X x Ri" — & defined componentwise as
(& A) = p*u(a /1énl, En/Iénl). Then yf o r*: H*(S) — H*(S x I§), where
70 = 7(-,0) is an isomorphism. Denoting y; = y(-, 1), by homotopy axiom we
see then that yfo/* is also an isomorphism. Consider the following
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commutative diagram:

HY x If) <~ H¥ExR¥) <& HY9)

il 5 il
HWY) s B0 S HAE,
where i1, i and #3 are inclusion maps, 7, = 7|, and 7 = r|, (). Since i} is a

mono-morphism by Lemma 6.2, we obtain a contradiction with the fact that
HM(A\{E) =0, 1

In view of Proposition 6.1, in order to prove that the min—max number
(62) is a critical value, we need to care about the fact that the domain in
which W is defined is not necessarily closed for the gradient flow of . The
following lemma is a step in this direction.

LEMMA 6.3. Let (¢",A") € = x R* be a sequence such that
VAY(E", A") - 0. (64)
Then each component of A" is bounded above and below by positive constants.

Proof. For notational simplicity in the proof, we shall drop from the
sequences the dependence on n. Let us denote here that

E=(in¢ 8 ), A= AL A, AL Ap),

let us also denote
[—Iil = H(éib éil)s Gil,jm = G(iila é/m)

Then (64) corresponds to the system

1
HyNijg +—— Z GitjmAjm = o(1).
Ai Jm#il

Assume that the sequence A" is not bounded above or below component-
wise. Since the numbers H and G remain uniformly controlled (we are
working with fixed u), we easily see that either A;; — 0 or A;; — +00, and
that at least for one index i/ A;; — +00. Set A; = A;;/|Al. Passing to a
subsequence we may assume that this sequence of vectors approaches a
nonzero vector A. Relabeling if necessary, after dropping those equations
corresponding to zero coordinate in A, we obtain that the resulting system
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has the following form:
MA 4+ RA =0,
where M is a block matrix of the form

M,
M,

Ht_

and the M;’s are two by two blocks of the form

H; —Gi12

M =
-G  Hp

>

associated with a pairs of coordinates ¢;;, &;, for which both coordinates in
A are nonzero. The H;’s instead correspond to numbers of the form H;; for
I =1 or 2, corresponding to those coordinates in which one and only one of
the components / in the vector A became nonzero. The matrix R has entries
bounded independent of u, while the entries in the blocks of M are
comparatively very large. From the analysis in the previous section, the
matrix M turns out invertible, and M~' has a matrix norm which is
uniformly small if 4 was chosen small enough, see (54). It follows that the
above system has only A = 0 as a solution, a contradiction that proves the
lemma. &

We finally can prove
PrOPOSITION 6.2. The functional Y satisfies the Palais—Smale condition
in the region T X Ri" at the level ¢(Q) given in (62), provided that u was chosen

sufficiently small.

Proof. Let us consider a sequence (¢",A") e £ x [R{ik such that

VAY(E",A") -0
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and
VIW(E,AT) > 0,

where VEW corresponds to the tangential gradient of ‘¥ to (0Z) x Ri" in case
that &" is approaching a boundary point of X or the full gradient otherwise.
From the previous lemma, the components of A" are bounded above and
below by positive constants, so that we may assume, passing to a
subsequence, (£",A") - (,A) € £ x Ri" and W(&",A") - ¢(Q). Then

VAY(E A) = 0.

If & lies in the interior of £ we would have converged to a critical point of V.
Assume that & € 0X. It means that

Pult 11 = ol 1ip — Pol) = —0s
for some index ij.

We first observe that since V,\‘I’(f A) =0, A A satisfies

1_\2 _ H(ézZaéﬁ) /2 1_\2 _ H(éllﬂéll) /2

N T HGLE) P T 2 HEn &) Pe(En, En)

where, with p chosen sufficiently small, the quantity 60;; is of small order.
Substituting back in ¥, we get

0[27

_ A 1 _
W =VEN =54 o 7 00 9

where 0(¢) is small in the C'-sense, as u becomes smaller. Hence for each i
either Vo(&;1, En) ~ 0 if (&1, &) lies in the interior of <Z; or V(& Ep) -

T ~ 0 for any dlrectlon tangential to 0.«/; otherwise. Thus, the angle formed
by the vectors 5,01 % and &; > — P, must be close to « since otherwise, the
analysis in the prev1ous section would yield that some tangential derivative
of ¢ would be away from 0. This implies that

o0&, En) ~ M27N¢*(ﬂ71|6i01 Py, u 1|5102 PByl) = S

But combining this last relation with the upper estimate for ¢(Q) in Lemma
6.1, we see that for some index i; we have that |(p(é,11, ,12)| must be very
large say greater than 2¢*u>~V if 6* was originally chosen sufficiently small.
Finally, the definition of ¢* would then tell us that the angle formed by the
vectors &1 — P, and &, — P, must be away from n. Again, this would
imply that some inner or tangential derivative of ¢ would be away from
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zero. This is a contradiction. Hence the point ¢ lies in the interior of .
Hence Palais Smale (PS) holds, and the proposition has been proven. 1

Proof of Theorem 1.1 is now completed. We consider the domain X,z =
T x [r, R with r,R to be chosen later. The functional 7 is well defined on
2, r except on the set

Ap = {(&A) € Zor/lén — Enl<p for some 1<i<k}.

Modifying / in (50), by extending ¥ to all %, , as in (58), we extend / and
keep relations (50) and (51) over Z, z.

By the Palais Smale condition for ¥ proved in Proposition 6.2 there
are numbers R>0, ¢>0 and o >0 such that for all O<a<way, and
(&,A) e T satisfying |A|=R and ¢(Q) — 20 <WV(E,A)<c(Q) + 20, we have
IVW(E A)|=c.

Next we use the min—max characterization of ¢(Q) to choose y € I so that

Q< sup Yy, 0,1)<c(Q) + 0.

(Eo)es x Ik

By making » small and R larger if necessary, we can assume that y(£,0,1) €
Zorp < Zpg forall (£,0) € S x If.

We define a min—max value for the functional 7 using y and the negative
gradient flow for /. More precisely we consider n: X,z x [0,00] = X,z
being the solution of the equation # = —h(y)VI(n) with initial condition
n(&, A, 0) = (& A). Here the function 4 is defined in X so that #(&, A) = 0 for
all (§,A) with W(&,A) < ¢(Q) — 20 and A(E,A) =1 if P(E,A)=c(Q) — a,
satisfying 0<A< 1.

By the choice of » and R and taking into account (50) and (51), we have
(&, A,t) e Z, for all £=0. Then the following min—max value

C@=inf sup I(n(y(C 0,1),0)

>V (oIt

is a critical value for /. In all this reasoning, we are assuming that ¢ is small
enough to make the errors in (50) and (51) sufficiently small.
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