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This paper deals with the slightly super-critical elliptic problem

�Du ¼ u
ðNþ2Þ
ðN�2Þþe in O

u > 0 in O

u ¼ 0 on @O;

8>><
>>: ð1Þ

where e > 0 is a small parameter and O� RN is a bounded domain with smooth

boundary. Assuming that the domain exhibits k sufficiently small holes, multiple

solutions are constructed by gluing double-spike patterns located near each of the

holes. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

This paper deals with the construction of solutions of the problem

�Du ¼ u
ðNþ2Þ
ðN�2Þþe in O;

u > 0 in O;

u ¼ 0 on @O;

ð1Þ
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where O is a bounded domain with smooth boundary in RN ; N53; and e > 0
is a small parameter.

It is well known that the problem

�Du ¼ uq in O;

u > 0 in O;

u ¼ 0 on @O

ð2Þ

has at least one solution when 15q5Nþ2
N�2: Instead, when q5Nþ2

N�2 the
existence of solutions to problem (2) depends strongly on the topology or
geometry of O: A well-known result by Pohozaev [13], asserts that (2) has no
solutions if q5Nþ2

N�2 and O is star shaped. On the other hand, Kazdan and
Warner [10] showed that (2) has a radially symmetric solution for any q > 1
when O is a symmetric annulus. Coron in [6] considered the case q ¼ Nþ2

N�2;
and showed that (2) is solvable when O is a (nonsymmetric) domain
exhibiting a small hole, say O ¼ D= %BBðP0;mÞ; where D is a smooth bounded
domain, P0 2 D and m is sufficiently small. In [2], Bahri and Coron
considerably generalize this result proving that if q ¼ Nþ2

N�2 and if some
homology group of O with coefficients in Z2 is nontrivial, then problem (2)
has a solution. While it may be expected that this solution survives a small
super-critical perturbation of the exponent as in (1), the indirect variational
arguments employed in [2, 6] do not seem to give in principle a clue on how
to obtain this fact. Solvability when q > Nþ2

N�2 in domains ‘‘with topology’’ is
not true, in general, as shown via counterexamples by Passaseo [11, 12],
answering negatively the question stated by Brezis [4]. In our recent work
[7], we have considered problem (1) in Coron’s situation of a domain with a
small perforation, and proved solvability whenever e is sufficiently small.
The proof is constructive and, rather puzzingly, the solutions found collapse
as e! 0 in the form of a double spike: the solution tends to vanish
everywhere except around two local maximum points which blow-up at the
rate Oðe

�1
2 Þ: The perforation does not need to be symmetric or contained in a

small ball; for instance, in R3 a domain with a torus with narrow section
excised would suffice.

The purpose of this paper is to raise the issue of solvability of problem (1)
in a domain exhibiting multiple holes. Our main result asserts that in such a
situation, multi-peak solutions exist, consisting of the glueing of double-
spikes associated with each of the holes. More precisely, our setting in
problem (1) is as follows.

Let D be a bounded, smooth domain in RN ; N53; and P1; P2; . . . ; Pm

points of D: Let us consider the domain

O ¼ D
[m
i¼1

%BBðPi;mÞ

-
; ð3Þ

where m > 0 is a small number.
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Theorem 1.1. There exists a m0 > 0; which depends on D and the points

P1; . . . ; Pm such that if 05m5m0 is fixed and O is the domain given by (3), then

the following holds: Given a number 14k4m; there exists e0 > 0 and a family

of solutions ue; 05e5e0 of (1), with the following property: ue has exactly k
pairs of local maximum points ðxej1; x

e
j2Þ 2 O

2 j ¼ 1; . . . ; k with cm5
jxeji � Pjj5Cm for certain constants c;C independent of m; and such that

for each small d > 0;
sup

fjx�xeij j>d 8i;jg
ueðxÞ ! 0

and

sup
jx�xij j5d

ueðxÞ ! þ1 8 i; j

as e! 0:

While it will be clear from the proofs that there is no need for the small
excised domains to be balls of same radii, we will only consider this case for
notational simplicity. Let us also observe that by relabeling the points
P1; . . . ; Pm; the above result actually yields that for each 14k4m and any set
of indices i1; . . . ; ik in f1; . . . ;mg a solution exhibiting double-spikes
simultaneously near the points Pi1 ; . . . ; Pik exists. This, in particular, yields
the existence of at least 2m � 1 solutions of the problem whenever e is
sufficiently small.

The proof will provide much finer information on the asymptotic profile
of the blow-up of these solutions as e! 0: after scaling and translation one
sees around each xeij a solution in entire RN of the equation at the critical
exponent. More precisely, we will find

ueðxÞ ¼
Xk

i¼1

X2
j¼1

aNlije
1

N�2

e
2

N�2l2ij þ jx� xeijj
2

0
@

1
A

N�2
2

þyeðxÞ; ð4Þ

where yeðxÞ ! 0 uniformly as e! 0: The numbers l and the points x will be
further identified as critical points of certain function built upon the Green’s
function of O:

The role of the Green’s function in concentration phenomena associated
with almost-critical problems on the subcritical side, i.e. q ¼ Nþ2

N�2� e; has
already been considered in several works, [3, 6, 9, 14–16].

In what follows, we will denote by Gðx; yÞ the Green’s function of O;
namely G satisfies

DxGðx; yÞ ¼ dðx� yÞ; x 2 O;

Gðx; yÞ ¼ 0; x 2 @O;
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where dðxÞ denotes the Dirac mass at the origin. We denote by H ðx; yÞ its
regular part, namely

H ðx; yÞ ¼ Gðx� yÞ � Gðx; yÞ;

where G denotes the fundamental solution of the Laplacian,

GðxÞ ¼ bN jxj2�N ;

so that H satisfies

DxH ðx; yÞ ¼ 0; x 2 O;

H ðx; yÞ ¼ Gðx� yÞ; x 2 @O:

Its diagonal H ðx; xÞ is usually called Robin’s function of the domain.
The proof of Theorem 1.1 follows along the general lines of that

we devised for the construction of a single two-spike: we work out a
finite-dimensional reduction scheme in a suitable functional space,
reducing the problem to that of finding critical points of a function which
depends on points x and scaling parameters l: The main part of the reduced
function is explicitly given in terms of the Green’s and Robin function. A
critical point is finally found via a min–max characterization worked out
with topological arguments. A technical point to be especially careful with is
that of isolating the different pairs of spikes so that the min–max scheme
does not see undesirable interactions between points associated with
different holes.

Sections 2–4 will be devoted to discuss the finite-dimensional reduction
scheme for the construction of a solution to (1) in the general case of h
spikes. In Section 5 we will be back to our original setting, by considering
the 2k-spike case, with 14k4m; and we will set up the min–max scheme to
find a critical point of the reduced functional, which will let us to the proof
of Theorem 1.1.

2. PRELIMINARIES AND BASIC ESTIMATES IN THE REDUCED
ENERGY

Let O be a bounded domain with smooth boundary in RN and let us
consider the enlarged domain

Oe ¼ e�
1

N�2 O; e > 0:

If we make the change of variable

vðyÞ ¼ e

1

2þeN�2
2 uðe

1
N�2yÞ; y 2 Oe;
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we see that u solves (1) if and only if v satisfies

Dvþ v
Nþ2
N�2þe ¼ 0 in Oe;

ve > 0 in Oe;

v ¼ 0 on @Oe:

ð5Þ

Since Oe is expanding to the whole RN ; and all positive solutions of

Dvþ v
Nþ2
N�2 ¼ 0 in RN

are given by the functions

%UUðxÞ ¼ aN
1

1þ jxj2

� N�2
2

and %UUl;yðxÞ ¼ l
N�2
2 %UU

x� y
l

� �

with aN ¼ ðN ðN � 2ÞÞ
N�2
4 ; y 2 RN and l > 0; it is natural to look for

solutions v of the form

vðyÞ �
Xh

j¼1

%UUlj;x
0
j
ðyÞ ð6Þ

for certain set of h points x1; . . . ; xh in O and numbers l1; . . . ; lh > 0; where
from now on we use the letter x to denote a point in O and

x0 ¼ e
�1

N�1x 2 Oe:

A better approximation in (6) should be obtained by using the orthogonal
projections onto H1

0 ðOeÞ of the functions %UUl;x0 ; denoted by Vl;x0 ; namely the
unique solution of the equation

�DVl;x0 ¼ %UU
Nþ2
N�2
l;x0 in Oe;

Vl;x0 ¼ 0 on @Oe;

so that the function fl;x0 ; defined as fl;x0 ¼ %UUl;x0 � Vl;x0 ; will satisfy the
equation

�Dfl;x0 ¼ 0 in Oe;

fl;x0 ¼ %UUl;x0 on @Oe:
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Then, we have

fl;x0 ðxÞ ¼ eH ðe
1

N�2x; xÞl
N�2
2

Z
RN

%UU
p
þ oðeÞ ð7Þ

and, away from x ¼ x0;

Vl;x0 ðxÞ ¼ eGðe
1

N�2x; xÞl
N�2
2

Z
RN

%UU
p
þ oðeÞ; ð8Þ

uniformly for x on each compact subset of Oe: Here G and H are,
respectively, the Green’s function of the Laplacian with the Dirichlet
boundary condition on O and its regular part. For notational convenience
from now on we denote p ¼ Nþ2

N�2:
We consider the functions

%UU i ¼ %UUli;x
0
i
; Vi ¼ Vli;x

0
i
; i ¼ 1; . . . ; h ð9Þ

and we write

%VV ¼
Xh

j¼1

%UU j; V ¼
Xh

j¼1

Vj: ð10Þ

In what remains of this paper our goal is to find a solution v of problem (5)
of the form

v ¼ V þ f; ð11Þ

which for suitable points x and scalars l will have the remainder term f of
small order all over Oe; in fact with magnitude not exceeding OðeÞ in any
reasonable norm over Oe: On the other hand, solutions of (5) correspond to
stationary points of the functional Ie defined as

IeðuÞ ¼
1

2

Z
Oe

jDuj2 �
1

p þ 1þ e

Z
Oe

upþ1þe: ð12Þ

If a solution of the form (11) exists, we should have IeðvÞ � IeðV Þ and that
the corresponding points ðx; lÞ in the definition of V are also ‘‘approximately
stationary’’ for the finite-dimensional functional ðx; lÞ/IeðV Þ: It is then a
natural step toward the construction of the solution to understand the
structure of this functional and to find critical points of it which survive
small perturbations. Thus, our immediate goal is to estimate IeðV Þ where V
is given by (10). If the points xi are taken far apart from each other and
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also far away from the boundary, we have that as a first approximation

IeðV Þ �
Xh

i¼1

Ieð %UU iÞ � hCN ;

where

CN ¼
1

2

Z
RN
jD %UU j2 �

1

p þ 1

Z
RN
j %UU jpþ1:

To work out a more precise expansion, it will be convenient to recast the
variables li into the Li’s given by

li ¼ ðaNLiÞ
1

N�2 ð13Þ

with

aN ¼
1

p þ 1

R
RN %UU

pþ1

ð
R
RN %UU

p
Þ2
:

Let us fix a small number d > 0: We will restrict ourselves to consider only
points xi 2 O and positive numbers Li; such that

jxi � xjj > d; if i=j; distðxi; @OÞ > d; d5Li5d�1 ð14Þ

for all i ¼ 1; . . . ; h:

Lemma 2.1. The following expansion holds:

IeðV Þ ¼ hCN þ e½gN þ oNCðx;LÞ� þ oðeÞ ð15Þ

uniformly with respect to ðx;LÞ satisfying (13) and (14). Here we have

Cðx;LÞ ¼
1

2

Xh

j¼1

H ðxj; xjÞL
2
j � 2

X
i5j

Gðxi; xjÞLiLj

( )
þ logðL1 � � �LhÞ; ð16Þ

gN ¼
h

p þ 1
oN þ

h
2
oN log aN �

h
p þ 1

Z
RN

%UU
pþ1

log %UU

� �
ð17Þ

and oN ¼ 1
pþ1

R
RN %UU

pþ1
:

Proof. We first write

IeðV Þ ¼ I0ðV Þ þ
1

p þ 1

Z
Oe

V pþ1 �
1

p þ 1þ e

Z
Oe

V pþ1þe; ð18Þ
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where

I0ðV Þ ¼
1

2

Z
Oe

jDV j2 �
1

p þ 1

Z
Oe

V pþ1:

Let us first estimate I0ðV Þ; we have

I0ðV Þ ¼I0

Xh

j¼1

Vj

 !

¼
Xh

j¼1

1

2

Z
Oe

jDVjj
2 �

1

p þ 1

Z
Oe

jVjj
pþ1

� �

þ
X
i=j

Z
Oe

DViDVj �
1

p þ 1

Z
Oe

Xh

j¼1

Vj

 !pþ1

�
Xh

j¼1

V pþ1
j

2
4

3
5: ð19Þ

Arguing as in [1,3,7], and taking into account (7) and (8), one can prove that

Z
Oe

jDVi j2 ¼
Z
RN
jD %UU j2 �

Z
RN

%UU
p

� 2

H ðxi; xiÞaNL
2
i eþ oðeÞ; ð20Þ

Z
Oe

DViDVj ¼
Z
RN

%UU
p

� 2

Gðxi; xjÞaNLiLjeþ oðeÞ; ð21Þ

Z
Oe

V pþ1
i ¼

Z
RN

%UU
pþ1
� ðp þ 1Þ

Z
RN

%UU
p

� 2

H ðxi; xiÞaNL
2
i eþ oðeÞ ð22Þ

and finally

1

p þ 1

Z
Oe

Xk

j¼1

Vj

 !pþ1

�
Xk

j¼1

V pþ1
j

2
4

3
5

¼ 2

Z
RN

%UU
p

� 2

Gðxi; xjÞaNLiLjeþ ðeÞ 8i=j: ð23Þ

From (19)–(23), we conclude that

I0ðV Þ ¼ hCN þ
oN

2

Xh

j¼1

H ðxj; xjÞL
2
j � 2

X
i5j

Gðxi; xjÞLiLj

( )
þ oðeÞ:



SUPER-CRITICAL ELLIPTIC PROBLEMS 519
Let us consider now the quantity

IeðV Þ �I0ðV Þ ¼
e

ðp þ 1Þ2

Z
Oe

V pþ1 �
e

p þ 1

Z
Oe

V pþ1 log V þ oðeÞ; ð24Þ

first we see that

Z
Oe

V pþ1 ¼ h
Z
RN

%UU
pþ1
þ oð1Þ:

On the other hand, for a number R > 0 we can write

Z
Oe

V pþ1 log V ¼
Xh

j¼1

Z
jx�x0j j5R

V pþ1 log V þ oðeÞ:

For any index j; we have

Z
jx�x0j j5R

V pþ1 log V

¼ �
N � 2

2
log lj

Z
jx�x0j j5R

V pþ1

þ
Z
jx�x0j j5R

V pþ1 logððljÞ
N�2
2 Vj þ ðljÞ

N�2
2 ðV � VjÞÞ

¼ �
N � 2

2
log lj

Z
RN

%UU
pþ1
þ oðeÞ

� 
þ
Z
RN

%UU
pþ1

log %UU þ oð1Þ:

Then we conclude

Z
Oe

V pþ1 log V

¼ �
N � 2

2
logðl1 � � � lhÞ

Z
RN

%UU
pþ1

� 
þ h

Z
RN

%UU
pþ1

log %UU þ oð1Þ

¼ �
h
2
ðlog aN Þ

Z
RN

%UU
pþ1
�

Z
RN

%UU
pþ1

� 
logðL1 � � �LhÞ

þ h
Z
RN

%UU
pþ1

log %UU þ oð1Þ;
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hence from (24) and the previous computation we get

IeðV Þ �I0ðV Þ

¼ e

"
h

ðp þ 1Þ2

Z
RN

%UU
pþ1
þ

h
2ðp þ 1Þ

log aN

Z
RN

%UU
pþ1

� 

þ

R
RN %UU

pþ1

p þ 1
logðL1 � � �LhÞ �

h
p þ 1

Z
RN

%UU
pþ1

log %UU

#
þ oðeÞ;

this concludes the proof. ]

Remark 2.1. The quantity oðeÞ in the expansion of (15) is actually also of
that size in the C1-norm as a function of x and L in the considered region.

The next two sections will be devoted to reduce the problem of finding a
solution of (5) of the form (11) to that of finding critical points ðx;LÞ of a
functional which is an oðeÞ perturbation of IeðV Þ:

3. THE FINITE-DIMENSIONAL REDUCTION

Fix a small number d > 0 and consider points x0i 2 Oe; numbers Li > 0; for
i ¼ 1; . . . ; h; such that

jx0i � x0jj > de
�1

N�1; distðx0i; @OeÞ > de
�1

N�1; d5Li5d�1: ð25Þ

In this section, we deal with the following intermediate problem: Find a
function f such that for certain constants cij one has

DðV þ fÞ þ ðV þ fÞpþeþ ¼
P
i;j

cijV
p�1
i Zij in Oe;

f ¼ 0 on @Oe;Z
Oe

fV p�1
i Zij ¼ 0 for all i; j;

ð26Þ

where the functions Vi and V are defined in (9) and (10) and Zij will be
defined below.

What we need to do is to solve (26) and then find points x and scalars L
such that the associated cij are all zero, which yields a solution of (5).

Let us consider the functions

%ZZij ¼
@ %UU i

@x0ij
; j ¼ 1; . . . ;N ; %ZZiNþ1 ¼

@ %UU i

@li
¼ ðx� x0iÞ � r %UU i þ ðN � 2Þ %UU i
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and then define the Zij’s in (26) to be their respective H1
0 ðOeÞ-projections,

namely the unique solutions of

DZij ¼ D %ZZij in Oe;

Zij ¼ 0 on @Oe:

The first equation in (26) can be rewritten in the following form:

Dfþ ðp þ eÞV pþe�1f ¼ �NeðfÞ � Re þ
X
i;j

cijV
p�1
i Zij in Oe; ð27Þ

where

Neðx
0;L;fÞ ¼ NeðfÞ ¼ ðV þ fÞpþeþ � V pþe � ðp þ eÞV pþe�1f ð28Þ

and

Reðx0;LÞ ¼ Re ¼ V pþe �
Xh

j¼1

%UU
p
j : ð29Þ

Then we need to understand the following linear problem: given h 2 Cað %OOeÞ;
find a function f such that

Dfþ ðp þ eÞV pþe�1f ¼ hþ
P
i;j

cijV
p�1
i Zij in Oe;

f ¼ 0 on @Oe;Z
Oe

V p�1
i Zijf ¼ 0 for all i; j;

ð30Þ

for certain constants cij; i ¼ 1; . . . ; h; j ¼ 1; . . . ;N þ 1: In order to get
bounded solvability of (30), one needs to work in properly chosen functional
spaces. Similarly as in [7], we introduce L1

n
ðOeÞ and L1

nn
ðOeÞ to be,

respectively, the spaces of functions defined on Oe with finite jj � jjn-norm
(respectively, jj � jjnn-norm), where

jjcjjn ¼ sup
x2Oe

Xh

j¼1

ð1þ jx� x0jj
2Þ

N�2
2

 !�1
cðxÞ

!!!!!!
!!!!!!

and

jjcjjnn ¼ sup
x2Oe

Xh

j¼1

ð1þ jx� x0jj
2Þ

N�2
2

 !�Nþ1
N�2

cðxÞ

!!!!!!!
!!!!!!!:
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We then get the following result.

Proposition 3.1. There are numbers e0 > 0; C > 0; such that for each

05e5e0; any points ðx0;LÞ satisfying (25), and any h 2 CaðOeÞ; problem (30)
has a unique solution

f � LeðhÞ; ð31Þ

which besides satisfies

jjLeðhÞjjn4Cjjhjjnn: ð32Þ

Moreover, the operator Seðx
0;L; hÞ � LeðhÞ is of class C1 in its arguments and

jjrx0;LSeðx
0;L; hÞjjn4Cjjhjjnn: ð33Þ

The proof of this result is identical to that found in [7], except that there
only the case h ¼ 2 was considered. We therefore omit it. Now we return to
the nonlinear problem (26).

Proposition 3.2. Assume the conditions of Proposition 3.1 are satisfied.

Then there is a constant C > 0 such that, for all e > 0 small enough, there exists

a unique solution

f ¼ fðx0;LÞ ¼ *ffþ c

to problem (26) with c defined by c ¼ �LeðReÞ and for points x0;L satisfying

(25). Besides, the map ðx0;LÞ ! *ffðx0;LÞ is of class C1 for the jj � jjn-norm and

jj *ffjjn4Ceminfp;2g; ð34Þ

jjrðx0 ;LÞ *ffjjn4Ceminfp;2g: ð35Þ

Proof. Problem (26) is equivalent to solving a fixed point problem;
indeed f ¼ *ffþ c is a solution of (26) if

*ff ¼ �LeðNeð *ffþ cÞÞ � Aeð *ffÞ;

taking into account that c ¼ �LeðReÞ and that Le is a linear operator.
Then we need to prove that the operator Ae defined above is a contraction

inside a properly chosen region. Arguing in [7], one can show that for all
small e > 0 and jj %ffjjn4

1
4
; we get

jjNeð %ffÞjjnn4Cjj %ffjjminfp;2g
n ð36Þ
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and

jjRejjnn4Ce: ð37Þ

Hence, by definition of c and Proposition 3.1, we infer that

jjcjjn4Ce

and

jjNeðfþ cÞjjnn4Cðjjfjjminfp;2g
n þ eminfp;2gÞ: ð38Þ

Let us now consider the set

Fr ¼ f *ff 2 H 1
0 : jj *ffjjn4reminfp;2gg

with r a positive number to be fixed later. From Proposition 3.1 and (38) we
get

jjAeð *ffÞjjn ¼ jjLeðNeð *ffþ cÞÞjjn4CjjNeð *ffþ cÞjjnn

4C½rminfp;2geminfp2;4g þ eminfp;2g�5reminfp;2g

for small e and any *ff 2Fr; provided that r is chosen large enough, but
independent of e: Ae turns out to be a contraction mapping in this region.
This follows from the fact that Ne defines a contraction in the jj � jjnn-norm,
which can be proved with a rather straightforward estimate, as done in
detail in [7].

The proof of differentiability of the function *ffðx0;LÞ follows in
approximately the same way as a similar result in [7], so we only sketch
it. Let us write

Bðx0;L; *ffÞ � *ffþ LeðNeð *ffþ cÞÞ;

we have Bðx0;L; *ffÞ ¼ 0:
Now we write

D %ffBðx0;L; *ffÞ½y� ¼ yþ LeðyD %ffNeð *ffþ cÞÞ � yþMðyÞ:

It is not hard to check that the following estimate holds:

jjMðyÞjjn4Cejjyjjn:

It follows that for small e; the linear operator D %ffBðx0;L; *ffÞ is invertible in
L1
n
; with uniformly bounded inverse. It also depends continuously on its
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parameters. Let us differentiate with respect to ðx0;LÞ: We have

Dx0Bðx
0;L; *ffÞ ¼ ðDx0LeÞðNeð *ffþ cÞÞ8 Le½ðDx0NeÞðx

0;L; *ffþ cÞ

þ LeðD %ffNeÞðx
0;L; *ffþ cÞDx0c�;

where

Dx0c ¼ �½ðDx0LeÞðReÞ 8 LeðDx0R
eÞ� ð39Þ

and

Dx0i
Re ¼ ðp þ eÞV pþe�1Dx0i

Vi � p %VV
p�1
i Dx0i

%VVi 8i ¼ 1; . . . ; h: ð40Þ

These expressions depend continuously on their parameters; a similar
computation holds for the derivative with respect to L: The implicit function
theorem yields that *ffðx0;LÞ is a C1 function into L1

n
: Moreover, we have for

instance

Dx0
*ff ¼ � ðD %ffBðx0;L; *ffÞÞ�1½ðDx0LeÞðNeð *ffþ cÞÞ�8½LeðDx0 ðNeðx

0;L; *ffþ cÞÞÞ

þ LeððD %ffNeÞðx
0;L; *ffþ cÞDx0cÞ�;

so that

jjDx0
*ffjjn4CðjjNeð *ffþ cÞjjnn

þ jjDx0Neðx
0;L; *ffþ cÞjjnn þ jjD %ffNeðx

0;L; *ffþ cÞDx0cjjnnÞ: ð41Þ

From (38) and (34) we get

jjNeð *ffþ cÞjjnn4Ceminfp;2g:

Straightforward computations allow us to estimate the other terms in (41),
using, in particular, that by definition of c and Proposition 3.1,

jjDx0cjjn4Ce:

We finally obtain

jjDx0
*ffjjn4Ceminfp;2g:

A similar estimate holds for differentiation with respect to L: This concludes
the proof. ]
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4. THE REDUCED FUNCTIONAL

Let us consider points ðx;LÞ which satisfy constraints (14) for some small

fixed d > 0; and set x0 ¼ e
�1

N�1x: Let fðyÞ ¼ fðx0;LÞðyÞ be the unique solution
of problem

DðV þ fÞ þ ðV þ fÞpþeþ ¼
P

i;j cijV
p�1
i Zij in Oe;

f ¼ 0 on @Oe;Z
Oe

fV p�1
i Zij ¼ 0 for all i; j;

ð42Þ

given by Proposition 3.2. Let us consider the functional

Iðx;LÞ ¼ IeðV þ fÞ;

where Ie was defined in (12). The definition of f yields that

I0eðV þ fÞ½Z� ¼ 0

for all Z which vanishes on @Oe and such thatZ
Oe

ZV p�1
i Zij ¼ 0 for all i; j:

The easily checked facts that

@V
@xij
¼ Zij þ oð1Þ;

@V
@Li
¼ ZiðNþ1Þ þ oð1Þ

with oð1Þ small as e! 0; and the last part of Proposition 3.2 give the validity
of the following.

Lemma 4.1. v ¼ V þ f is a solution of problem (5), namely cij ¼ 0 in (42)
for all i; j; if and only if ðx;LÞ is a critical point of I :

Next step is then to give an asymptotic estimate for Iðx;LÞ: Not too
surprisingly, this functional and IeðV Þ coincide up to order oðeÞ:

Proposition 4.1. We have the expansion

Iðx;LÞ ¼ hCN þ e½gN þ wNCðx;LÞ þ oð1Þ�; ð43Þ

where oð1Þ ! 0 as e! 0 in the uniform C1-sense with respect to ðx;LÞ
satisfying (25).
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Here, we recall

Cðx;LÞ ¼
1

2

Xh

j¼1

H ðxj; xjÞL
2
j � 2

X
i5j

Gðxi; xjÞLiLj

( )
þ logðL1 � � �LhÞ

and the constants in (43) are those in Lemma 2.1.

Proof. We start showing that

Iðx;LÞ �IeðV Þ ¼ oðeÞ ð44Þ

and

rx;L½Iðx;LÞ �IeðV Þ� ¼ oðeÞ: ð45Þ

Taking into account that 0 ¼ DIeðV þ cþ *ffÞ½ *ff�; a Taylor expansion gives

IeðV þ cÞ � Iðx;LÞ ¼
Z 1

0

t dt D2IeðV þ cþ t *ffÞ½ *ff; *ff�

�
Z 1

0

t dt
Z
Oe

jr *ffj2 � ðp þ eÞðV þ cþ t *ffÞpþe�1 *ff
2

� �

¼
Z 1

0

t dt
Z
Oe

Neð *ffþ cÞ *ff
�

þ
Z
Oe

ðp þ eÞ½V pþe�1 � ðV þ cþ t *ffÞpþe�1� *ff
2

: ð46Þ

Since jj *ffjjn ¼ Oðeminfp;2gÞ; we get

Iðx;LÞ �IeðV þ cÞ ¼ Oðe2 minfp;2gÞ: ð47Þ

Differentiating with respect to x variables we get from (46) that

Dx½IeðV þ cÞ � Iðx;LÞ�

¼ e�
1

N�1

Z 1

0

t dt
Z
Oe

Dx0 ½ðNeð *ffþ cÞÞ *ff�
�

þ ðp þ eÞ
Z
Oe

Dx0 ½ððV þ cþ t *ffÞpþe�1 � ðV þ cÞpþe�1Þ *ff
2
�

: ð48Þ

Using the computations in the proof of Proposition 3.2 we get that the
first integral in relation (48) can be estimated by Oðe2 minfp;2gÞ; so does
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the second; hence

Dx½Iðx;LÞ �IeðV þ cÞ� ¼ Oðeminf2p;4g� 1
N�2Þ:

Now, since DIeðV Þ½c� ¼
R
Oe

Rec;

IeðV þ cÞ �IeðV Þ

¼
Z 1

0

ð1� tÞ dt ½ðp þ eÞ
Z
Oe

ððV þ tcÞpþe�1 � V pþe�1Þc2� � 2

Z
Oe

Rec
� �

:

ð49Þ

Since jjcjjn þ jjRejjnn ¼ OðeÞ; the above term is Oðe2Þ; then, (44) follows from
(47) and (49). Using again (49), we see that

Dx½IeðV þ cÞ �IeðV Þ�

¼ e
�

1
N�2Dx0

Z 1

0

ð1� tÞ dt ðp þ eÞ
Z
Oe

ððV þ tcÞpþe�1 � V pþe�1Þc2

� ��

�2
Z
Oe

Rec
�
:

Since from Proposition 3.1 it follows that jjDx0cjjn ¼ OðeÞ; we get

Dx½IeðV þ cÞ �IeðV Þ� ¼ Oðe2Þ � 2e�
1

N�2Dx0

Z
Oe

Rec
� 

:

Arguing as in [9], one gets that

Dx0

Z
Oe

Rec
� 

¼ oðe2Þ;

which gives (45).
From Lemma 2.1, we can finally conclude that

Iðx;LÞ ¼ hCN þ e½gN þ wNCðx;LÞ� þ oðeÞ: ð50Þ

On the other hand, as a consequence of (45) and the remark after Lemma
2.1 we also get

rIðx;LÞ ¼ e
1

p þ 1

Z
RN

Upþ1
� 

ðrCðx;LÞ þ oð1ÞÞ: ] ð51Þ
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5. THE EXTERIOR DOMAIN

Let us consider the exterior domain

Dn ¼ RN = %BBð0; 1Þ:

We denote by Gn and Hn the Green’s function of Dn and its regular part. In
this section, we will work out some estimates for these objects which will be
useful for the resolution of the finite-dimensional variational problem
derived in the previous section, in the situation of Theorem 1.1. Explicitly,
we have

Hnðx; yÞ ¼
bN

j jyjðx� %yyÞjN�2
;

where %yy ¼ y
jyj2

; and

Gnðx; yÞ ¼
bN

jx� yjN�2
� Hnðx; yÞ:

In particular,

Hnðx; xÞ ¼
bN

ðjxj2 � 1ÞN�2
:

More explicitly, let y be the angle formed by the vectors x and y: Then,

Hnðx; yÞ ¼
bN

ð1þ jxj2jyj2 � 2jxjjyj cos yÞ
N�2
2

:

We want to analyze the function

jnðx; yÞ ¼ Hnðx; xÞ
1=2Hnðy; yÞ

1=2 � Gnðx; yÞ; x=y;

namely

b�1N jnðx; yÞ ¼
1

ðjxj2 � 1Þ
N�2
2

1

ðjyj2 � 1Þ
N�2
2

þ
1

ð1þ jxj2jyj2 � 2jxjjyj cos yÞ
N�2
2

�
1

ðjxj2 þ jyj2 � 2jxjjyj cos yÞ
N�2
2

:
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Now we make the following observation: let x and y vary letting their
magnitudes remain constant. If we differentiate with respect to the angle y;
we obtain

a�1N
@

@y
jnðx; yÞ ¼ fðjxj

2 þ jyj2 � 2jxjjyj cos yÞ�
N
2

� ð1þ jxj2jyj2 � 2jxjjyj cos yÞ�
N
2 g sin y > 0

for 05y5p: In particular, for given magnitudes jxj and jyj jn maximizes its
value when y ¼ p; in other words when x and y have opposite directions.
Assume this is the situation, namely that for a unit vector e; x ¼ se; y ¼ �te;
with s; t > 1: Then in this case jnðx; yÞ reduces to

b�1N jnðx; yÞ ¼ b�1N *jjnðs; tÞ

¼
1

ðs2 � 1Þ
N�2
2 ðt2 � 1Þ

N�2
2

þ
1

ðst þ 1ÞN�2
�

1

ðsþ tÞN�2
:

This function has a negative global minimum value, attained at a point of
the form ðrn;rnÞ: Let

cn ¼ � *jjnðr
n;rnÞ ¼ � min

ðx;yÞ2Dn

*jjnðjxj; jyjÞ: ð52Þ

Let us consider then a small value dn for which the level set f *jjnðs; tÞ ¼ �dng
is a closed curve and that r *jjnðs; tÞ is nonzero on it. Set

A ¼ fðx; yÞ j *jjnðjxj; jyjÞ5� dng: ð53Þ

Thus, the above discussion shows that on this bounded region we have
jnðx; yÞ5� dn and that if ðx; yÞ 2 @A one of the following two situations
occurs: Either there is a tangential direction t to @A such that rjnðx; yÞ �
t=0 or x; y lie in opposite directions, jnðx; yÞ ¼ �dn and rjnðx; yÞ=0
points orthogonally outwards A:

The following fact will be useful later. The matrix

Mnðx; yÞ ¼
Hnðx; xÞ �Gnðx; yÞ

�Gnðx; yÞ Hnðy; yÞ

" #

is invertible in A and its inverse Mnðx; yÞ
�1 has a norm which is uniformly

bounded. In fact, its eigenvalue with least absolute value is given by

l ¼
1

2
ðHnðx; xÞ þ Hnðy; yÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHnðx; xÞ þ Hnðy; yÞÞ

2 þ 4D
q

Þ;
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where D ¼ G2
n
ðx; yÞ � Hnðx; xÞHnðy; yÞ > 0 in A: Thus,

jlj5
1

4

4Dþ 1
2
ðHnðx; xÞ þ Hnðy; yÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðHnðx; xÞ þ Hnðy; yÞÞ
2 þ 4D

q :

But D is uniformly bounded from below since jjnðx; yÞj is so over A; and
uniform bounds from above and below also hold true for Hn in this region.

Another observation is the following. Let m > 0 and consider now the
exterior domain

Dm ¼ RN = %BBð0;mÞ:

Then we observe that if we denote by simply Gm and Hm its Green’s function
and regular parts, then Gmðx; yÞ ¼ m2�NGnðm�1x;m�1yÞ; Hmðx; yÞ ¼ m2�N

Hnðm�1x;m�1yÞ: In particular, the following holds. If we set Am ¼ mA then
Am corresponds precisely to the set where jmðjxj; jyjÞ5� dnm2�N : Besides if

Mmðx; yÞ ¼
Hmðx; xÞ �Gmðx; yÞ

�Gmðx; yÞ Hmðy; yÞ

" #
;

then

jjMmðx; yÞ
�1jj4CmN�2; ðx; yÞ 2Am: ð54Þ

We finish with a last observation. For the domain O given by

O ¼ D
[m
j¼1

%BBðPj;mÞ

-
ð55Þ

with P1; P2; . . . ; Pm points in the bounded, smooth domain D; the Green’s
function G satisfies

Gðx; yÞ ¼ Gmðx� Pi; y � PiÞ þ Oð1Þ; ðx; yÞ 2 ðPi; PiÞ þAm;

where the quantity Oð1Þ is bounded independent of all small m; in the C1

sense. The same is true for the corresponding functions H and j:

6. THE PROOF OF THE MAIN RESULT

Let us now fix 14k4m; we are looking for solutions to problem (1) with k
couples of spikes, each one of which is close to one of the points P1; . . . ; Pk ;
when m > 0 is small.
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The results obtained in Section 4 imply that our problem reduces to the
study of critical points of the function C; which in the case of 2k spikes takes
the form

Cðx;LÞ ¼
Xk

i¼1

cð#xxi; #LLiÞ � 2Rðx;LÞ;

where x is a k-tuple of pairs, say x ¼ ð#xx1; . . . ; #xxkÞ with #xxi ¼ ðxi1; xi2Þ 2 O
2; and

L ¼ ð #LL1; . . . ; #LLkÞ ¼ ðL11;L12; . . . ;Lk1;Lk2Þ 2 R
2k
þ ;

cð#xxi; #LLiÞ ¼
1

2
fH ðxi1; xi1ÞL

2
i1 þ H ðxi2; xi2ÞL

2
i2 � 2Gðxi1; xi2ÞLi1Li2g

þ logLi1Li2 ð56Þ

and

Rðx; lÞ ¼
X
i5j

X
14‘1;‘242

Gðxi‘1 ; xj‘2ÞLi‘1Lj‘2 :

Let us consider a small number m > 0 and the domain O given by (55). We
define next a region S� O2k where we will work out the variational
problem introduced in Section 4. Let A be the region of R2N defined in (53)
and

Ai ¼ ðPi; PiÞ þ mA:

In other words, ðx; yÞ 2Ai if and only if

*jjnðm
�1jx� Pij;m�1jy � PijÞ4� dn;

where *jjn and dn were defined in the previous section. Let us set

S ¼ fx=ðxi1; xi2Þ 2Ai 8i ¼ 1; . . . ; kg: ð57Þ

We shall consider the functional C defined precisely over the class S� R2k
þ ;

actually C has some singularities that we avoid by replacing the term
Gðxi1; xi2Þ in (56) by

GM ðxi1; xi2Þ ¼
Gðxi1; xi2Þ if Gðxi1; xi2Þ4M ;

M if Gðxi1; xi2Þ > M ;

(
ð58Þ

where M > 0 is a very large number. For notational convenience, we still call
C the modified functional on S� R2k

þ :
For every #xxi 2Ai we choose dið#xxiÞ ¼ ðdi1ð#xxiÞ; di2ð#xxiÞÞ 2 R

2
þ to be a vector

defining a negative direction of the quadratic form associate with c: Such a
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direction exists since the function j; defined by

jðx; yÞ ¼ H ðx; xÞ1=2H ðy; yÞ1=2 � Gðx; yÞ ð59Þ

is negative over Ai: Let us be more precise. For fixed #xxi 2Ai; the function

cð#xxi; dÞ ¼
1

2
fH ðxi1; xi1Þd

2
1H ðxi2; xi2Þd

2
2 � 2Gðxi1; xi2Þd1d2g þ log d1d2 ð60Þ

regarded as a function of ðd1; d2Þ only, with d1; d2 > 0; has a unique critical
point %ddð#xxiÞ given by

%dd
2

i1 ¼ �
H ðxi2; xi2Þ

1=2

H ðxi1; xi1Þ
1=2jðxi1; xi2Þ

; %dd
2

i2 ¼ �
H ðxi1; xi1Þ

1=2

H ðxi2; xi2Þ
1=2jðxi1; xi2Þ

:

Note that, in particular,

H ðxi1; xi1Þ %dd
2

i1 þ H ðxi2; xi2Þ %dd
2

i2 � 2Gðxi1; xi2Þ %dd i1
%dd i2 ¼ �1

and

cð#xxi; %ddð#xxiÞÞ ¼ �
1

2
þ log

1

jjð#xxiÞj
: ð61Þ

Then we simply choose dið%xxiÞ ¼ %ddð#xxiÞ:
Let rn be the number given as in Eq. (52). Set

Si ¼ fx=jx� Pij ¼ mrng; S2
i ¼ Si � Si:

In what follows, we denote

S ¼
Yk
i¼1

S2
i ; dðxÞ ¼ ðd1ð#xx1Þ; . . . ; dkð#xxkÞÞ 2 R

2k
þ :

Let G be the class of all continuous functions

g :S� Ik
0 � ½0; 1� ! S� R2k

þ ;

such that

1. For all x 2S; t 2 ½0; 1� the following hold gðx; s0; tÞ ¼ ðx;s0dðxÞÞ; and
gðx;s�10 ; tÞ ¼ ðx;s�10 dðxÞÞ:

2. gðx;s; 0Þ ¼ ðx;sdðxÞÞ for all ðx;sÞ 2S� Ik
0 ; where I0 ¼ ½s0; s�10 � with

s0 is a small number to be chosen later. Then we define the
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min–max value as

cðOÞ ¼ inf
g2G

sup
ðx;sÞ2S�Ik

0

Cðgðx;s; 1ÞÞ ð62Þ

and we will prove in what follows that cðOÞ is a critical value of C: We begin
with an upper estimate for this value.

Lemma 6.1. For all sufficiently small m; the following estimate holds:

cðOÞ4�
k
2
þ kðN � 2Þ log m� k log cn þ oð1Þ;

where oð1Þ ! 0 as m! 0:

Proof. We consider the test path defined for all t 2 ½0; 1� as gðx;s; tÞ ¼
ðx;sdðxÞÞ: Maximizing Cðx;sdðxÞÞ in the variable s; we observe that this
maximum value is attained approximately at s ¼ 1; by our choice of the
vector dðxÞ: Besides, by definition of Si we see that

jð#xxiÞ4� cnm2�N ; ð63Þ

dðxÞ ¼ Oðm
N�2
2 Þ: This last fact gives that Rðx; dðxÞÞ ¼ OðmN�2Þ: Hence

max
s

Cðx;sdðxÞÞ ¼
Xk

i¼1

cð#xxi; dið#xxiÞÞ þ oð1Þ

and the desired result follows from (61) and (63). ]

A key step in the direction of proving that cðOÞ is indeed a critical value of
C is an intersection lemma. The idea behind this result is the topological
continuation of the set of solution of an equation, and is based on the work
of Fitzpatrick et al. [8]. For every ðx; s; tÞ 2S� Ik

0 � ½0; 1� we denote
gðx;s; tÞ ¼ ð*xxðx;s; tÞ; *LLðx; s; tÞÞ 2 S� R2k

þ ; and we define the set

S1 ¼ fðx;sÞ 2S� Ik
0=

*LLi1ðx; s; 1Þ � *LLi2ðx; s; 1Þ ¼ 1g:

Lemma 6.2. For every open neighborhood V of S1 in S� Ik
0 ; the

projection g : V !S induces a mono-morphism in cohomology, that is

gn :HnðSÞ ! HnðV Þ

is injective.
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Proof. Let us define the set

Zð½0; 1�Þ ¼ fðx;sÞ 2S� Ik
0=f ðx; s; tÞ=1 for all t 2 ½0; 1�g;

where 1 ¼ ð1; . . . ; 1Þ; f ¼ ðf1; . . . ; fkÞ and fiðx;s; tÞ ¼ *LLi1ðx;s; tÞ � *LLi2ðx;s; tÞ:
The function h defined by hðx;s; tÞ ¼ ðgðx;sÞ; f ðx;s; tÞÞ is a homotopy
of pairs

h : ðS� Ik
0 ;Zð½0; 1�ÞÞ � ½0; 1� ! ðS� Rk

þ;S� ðR
k
þ=f1gÞÞ:

By choosing s0 small enough we have that the following inclusion is well
defined:

j : ðS� Ik
0 ;S� @Ik

0 Þ ! ðS� Ik
0 ;Zð½0; 1�ÞÞ:

If i is also an inclusion map and h0ð�Þ ¼ hð�; 0Þ; then we have the following
commutative diagram in cohomology:

HnðS� Ik
0 ; Zð½0; 1�ÞÞ  �

h*
0 HnðS� Rk

þ;S� ðR
k
þ=f1gÞÞ

&jn in.
HnðS� Ik

0 ;S� @Ik
0 Þ:

Since in is an isomorphism, we conclude that hn
0 is a mono-morphism and

then from the homotopy axiom, we find that

h1 ¼ ðg; f1Þ : ðS� Ik
0 ;Zð½0; 1�ÞÞ ! ðS� Rk

þ;S� ðR
k
þ=f1gÞÞ

induces a mono-morphism in cohomology, where h1ð�Þ ¼ hð�; 1Þ: Next,
defining

Zð1Þ ¼ fðx;sÞ 2S� Ik
0=f ðx;s; 1Þ=1g

and noting that Zð½0; 1�Þ � Zð1Þ; we also find that

h1 : ðS� Ik
0 ;Zð1ÞÞ ! ðS� Rk

þ;S� ðR
k
þ=f1gÞÞ

induces a mono-morphism in cohomology. Since V and Zð1Þ are open, and
V c � Zð1Þ; defining Z ¼ Zð1Þ \ V and using the excision axiom, we
conclude that

hn

1 :H
nðS� Rk

þ;S� ðR
k
þ=f1gÞÞ ! HnðV ; ZÞ

is a mono-morphism. Let e be a generator of HkðRk
þ;R

k
þ=f1gÞ and u 2

HiðSÞ; with i50; then following from the basic relation between cross
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product and cup product in cohomology, we have

hn

1ðu� eÞ ¼ dnðgnðuÞ � f n

1 ðeÞÞ ¼ gnðuÞ ^ f n

1 ðeÞ:

Since hn
1 is a mono-morphism, it follows that gn is also a mono-

morphism. ]

Proposition 6.1. There is a constant K so that

sup
ðx;sÞ2S�Ik

0

Cðgðx;s; 1ÞÞ5� K for all g 2 G:

Proof. We observe that #xxi 2Ai implies that xil 2 BðPi;r2mÞ=BðPi;r1mÞ;
for l ¼ 1; 2; with 15r15rn5r2 independent of m: Hence we can find d0 > 0
such that ðxi1 � PiÞ � ðxi2 � PiÞ > 0 whenever jxi1 � xi2j5d0: Next let K0 > 0 so
that Gðx; yÞ5K0 implies jx� yj5d0:

Assume, by contradiction, that for certain g 2 G

Cðgðx;s; 1ÞÞ4� kK0 for all ðx;sÞ 2S� Ik
0 :

This implies that for all ðx;sÞ 2S1; ð*xx; *LLÞ ¼ ð*xxðx; s; 1Þ; *LLðx;s; 1ÞÞ; we have

2
Xk

i¼1

Gð*xxiÞ �
Xk

i¼1

fH ð*xxi1; *xxi1Þ *LL
2

i1 þ H ð*xxi2; *xxi2Þ *LL
2

i2g þ 2Rð*xx; *LLÞ5kK0

and then taking a small neighborhood V of S1 in S� Ik
0 ;

Xk

i¼1

Gð*xxiðx;s; 1ÞÞ5kK0 for all ðx;sÞ 2 V :

Note that Rð*xx; *LLÞ is small compared to Gð*xxiÞ: From here we conclude that
for every ðx;sÞ 2 V there exists i 2 f1; . . . ; kg such that

Gð*xxiðx;s; 1ÞÞ5K0

and consequently j*xxi1 � *xxi2j5d0: Let us fix a point %xx such that j %xxj ¼ rnm; then
%xxi ¼ ðPi þ %xx; Pi � %xxÞ 2 S2

i and %xx ¼ ð%xx1; . . . ; %xxkÞ 2S: We note that because of
the above conclusion g1ðV Þ � ðS=T ð%xxÞÞ � R2k

þ ; where g1 ¼ gð�; 1Þ and T ð%xxÞ ¼
ft %xx=r15t5r2g:

Let us consider the map r : S� R2k
þ !S defined componentwise as

riðx;LÞ ¼ rnmðxi1=jxi1j; xi2=jxi2jÞ: Then gn0 8 rn :HnðSÞ ! HnðS� Ik
0 Þ; where

g0 ¼ gð�; 0Þ is an isomorphism. Denoting g1 ¼ gð�; 1Þ; by homotopy axiom we
see then that gn1 8 rn is also an isomorphism. Consider the following
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commutative diagram:

HnðS� Ik
0 Þ  �

g*
1 HnðS� R2k

þ Þ  �
g *

HnðSÞ

in1 # in2 # in3 #

HnðV Þ  �
*gg*
1 Hnðg1ðV ÞÞ  �

*rr *

HnðS=f%xxgÞ;

where i1; i2 and i3 are inclusion maps, *gg1 ¼ g1jV and *rr ¼ rjg1ðV Þ: Since in1 is a
mono-morphism by Lemma 6.2, we obtain a contradiction with the fact that
H 2NkðS=f%xxgÞ ¼ 0: ]

In view of Proposition 6.1, in order to prove that the min–max number
(62) is a critical value, we need to care about the fact that the domain in
which C is defined is not necessarily closed for the gradient flow of C: The
following lemma is a step in this direction.

Lemma 6.3. Let ðxn;LnÞ 2 S� R2k
þ be a sequence such that

rLCðx
n;LnÞ ! 0: ð64Þ

Then each component of Ln is bounded above and below by positive constants.

Proof. For notational simplicity in the proof, we shall drop from the
sequences the dependence on n: Let us denote here that

x ¼ ðx11; x12; . . . ; xk1; xk2Þ; L ¼ ðL11;L12; . . . ;Lk1;Lk2Þ;

let us also denote

Hil ¼ H ðxil; xilÞ; Gil;jm ¼ Gðxil; xjmÞ:

Then (64) corresponds to the system

HilLil þ
1

Lil
�
X

jm=il

Gil;jmLjm ¼ oð1Þ:

Assume that the sequence Ln is not bounded above or below component-
wise. Since the numbers H and G remain uniformly controlled (we are
working with fixed m), we easily see that either Lil ! 0 or Lil ! þ1; and
that at least for one index il Lil ! þ1: Set *LLil ¼ Lil=jLj: Passing to a
subsequence we may assume that this sequence of vectors approaches a
nonzero vector #LL: Relabeling if necessary, after dropping those equations
corresponding to zero coordinate in L; we obtain that the resulting system
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has the following form:

M #LLþ R #LL ¼ 0;

where M is a block matrix of the form

M ¼

M1

M2

�

�

Ms

H1

�

�

Ht

2
66666666666666664

3
77777777777777775

and the Mi’s are two by two blocks of the form

Mi ¼
Hi1 �Gi1;i2

�Gi1;i2 Hi2

" #
;

associated with a pairs of coordinates xi1; xi2 for which both coordinates in
#LL are nonzero. The Hi’s instead correspond to numbers of the form Hil for
l ¼ 1 or 2; corresponding to those coordinates in which one and only one of
the components l in the vector #LL became nonzero. The matrix R has entries
bounded independent of m; while the entries in the blocks of M are
comparatively very large. From the analysis in the previous section, the
matrix M turns out invertible, and M�1 has a matrix norm which is
uniformly small if m was chosen small enough, see (54). It follows that the
above system has only #LL ¼ 0 as a solution, a contradiction that proves the
lemma. ]

We finally can prove

Proposition 6.2. The functional C satisfies the Palais–Smale condition

in the region S� R2k
þ at the level cðOÞ given in (62), provided that m was chosen

sufficiently small.

Proof. Let us consider a sequence ðxn;LnÞ 2 S� R2k
þ such that

rLCðx
n;LnÞ ! 0
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and

rt
xCðx

n;LnÞ ! 0;

where rt
xC corresponds to the tangential gradient of C to ð@SÞ � R2k

þ in case
that xn is approaching a boundary point of S or the full gradient otherwise.
From the previous lemma, the components of Ln are bounded above and
below by positive constants, so that we may assume, passing to a
subsequence, ðxn;LnÞ ! ð%xx; %LLÞ 2 %SS� R2k

þ and Cðxn;LnÞ ! cðOÞ: Then

rLCð%xx; %LLÞ ¼ 0:

If %xx lies in the interior of S we would have converged to a critical point of C:
Assume that %xx 2 @S: It means that

*jjnðm
�1j%xxi01 � Pi0 j;m

�1j%xxi02 � Pi0 jÞ ¼ �dn

for some index i0:
We first observe that since rLCð%xx; %LLÞ ¼ 0; %LL satisfies

%LL
2

i1 ¼ �
H ð%xxi2; %xxi2Þ

1=2

H ð%xxi1; %xxi1Þ
1=2jð%xxi1; %xxi2Þ

þ yi1; %LL
2

2 ¼ �
H ð%xxi1; %xxi1Þ

1=2

H ð%xxi2; %xxi2Þ
1=2jð%xxi1; %xxi2Þ

þ yi2;

where, with m chosen sufficiently small, the quantity yil is of small order.
Substituting back in C; we get

cðOÞ ¼ Cð%xx; %LLÞ ¼ �
k
2
þ
Xk

i¼1

log
1

jjð%xxi1; %xxi2Þj
þ yð%xxÞ; ð65Þ

where yðxÞ is small in the C1-sense, as m becomes smaller. Hence for each i
either rjð%xxi1; %xxi2Þ � 0 if ð%xxi1; %xxi2Þ lies in the interior of Ai or rjð%xxi1; %xxi2Þ �
T � 0 for any direction tangential to @Ai otherwise. Thus, the angle formed
by the vectors %xxi01 � Pi0 and

%xxi02 � Pi0 must be close to p since otherwise, the
analysis in the previous section would yield that some tangential derivative
of j would be away from 0: This implies that

jð%xxi1; %xxi2Þ � m2�N *jjnðm
�1j%xxi01 � Pi0 j;m

�1jxi02 � Pi0 jÞ ¼ �dnm
2�N :

But combining this last relation with the upper estimate for cðOÞ in Lemma
6.1, we see that for some index i1 we have that jjð%xxi11;

%xxi12Þj must be very
large, say greater than 2cnm2�N if dn was originally chosen sufficiently small.
Finally, the definition of cn would then tell us that the angle formed by the
vectors %xxi11 � Pi1 and %xxi12 � Pi1 must be away from p: Again, this would
imply that some inner or tangential derivative of j would be away from
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zero. This is a contradiction. Hence the point %xx lies in the interior of S:
Hence Palais Smale (PS) holds, and the proposition has been proven. ]

Proof of Theorem 1.1 is now completed. We consider the domain Sr;R ¼
S� ½r;R�2k with r;R to be chosen later. The functional I is well defined on
Sr;R except on the set

D *rr ¼ fðx;LÞ 2 Sr;R=jxi1 � xi2j5 *rr for some 14i4kg:

Modifying I in (50), by extending C to all Sr;R; as in (58), we extend I and
keep relations (50) and (51) over Sr;R:

By the Palais Smale condition for C proved in Proposition 6.2 there
are numbers R > 0; c > 0 and a0 > 0 such that for all 05a5a0; and
ðx;LÞ 2 S satisfying jLj5R and cðOÞ � 2a4Cðx;LÞ4cðOÞ þ 2a; we have
jrCðx;LÞj5c:

Next we use the min–max characterization of cðOÞ to choose g 2 G so that

cðOÞ4 sup
ðx;sÞ2S�Ik

0

Cðgðx;s; 1ÞÞ4cðOÞ þ a:

By making r small and R larger if necessary, we can assume that gðx; s; 1Þ 2
S2r;R=2 � Sr;R for all ðx;sÞ 2S� Ik

0 :
We define a min–max value for the functional I using g and the negative

gradient flow for I : More precisely we consider Z : Sr;R � ½0;1� ! Sr;R

being the solution of the equation ’ZZ ¼ �hðZÞrIðZÞ with initial condition
Zðx;L; 0Þ ¼ ðx;LÞ: Here the function h is defined in S so that hðx;LÞ ¼ 0 for
all ðx;LÞ with Cðx;LÞ � cðOÞ � 2a and hðx;LÞ ¼ 1 if Cðx;LÞ5cðOÞ � a;
satisfying 04h41:

By the choice of r and R and taking into account (50) and (51), we have
Zðx;L; tÞ 2 Sr;R for all t50: Then the following min–max value

CðOÞ ¼ inf
t50

sup
ðx;sÞ2S�Ik

0

IðZðgðx; s; 1Þ; tÞÞ

is a critical value for I : In all this reasoning, we are assuming that e is small
enough to make the errors in (50) and (51) sufficiently small.
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