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Abstract
We consider the problem of finding standing waves to a nonlinear Schrödinger
equation. This leads to searching for solutions of the equation

−ε2u′′ + V (x)u = |u|p−1u in R,

p > 1, when ε is a small parameter. Given any finite set of points x1 <

x2 < · · · < xm constituted by isolated local maxima or minima of V , and
corresponding arbitrary integers ni , i = 1, . . . , m, we prove that there is a
finite energy solution exhibiting a cluster of ni spikes concentrating around
each xi as ε → 0. The clusters consist of spikes with alternating sign if the
point is a minimum, and of constant sign if it is a maximum. This construction
extends to infinitely many clusters of spikes under appropriate conditions. The
proof follows an elementary variational matching approach, which resembles
the so-called broken-geodesic method.

Mathematics Subject Classification: 34C37, 37J45, 37D45

1. Introduction

In this paper we are concerned with the following nonlinear Schrödinger equation:

ih̄
∂ψ

∂t
= − h̄2

2m
ψxx + W(x)ψ − γ |ψ |p−1ψ. (1.1)

One of the basic principles of quantum mechanics states that it contains classical mechanics
as its limit when h̄ → 0. The rigorous realization of this principle in particular cases is not
an easy task because of the dispersive nature of the linear Schrödinger equation (see [13]
for example). On the other hand, it is known that the presence of the nonlinear term in the
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equation compensates this dispersive character and makes possible the appearance of solitary
waves, namely solutions whose energy travels as a localized packet, thus having ‘particle-like’
behaviour. Besides the many physical problems where this equation appears, this mathematical
fact makes the analysis of solutions of (1.1) as h̄ → 0 very interesting. Many works in the
literature, in one and higher dimensions, have dealt with the analysis of the so-called standing
waves, namely solutions of (1.1), of the form ψ(x, t) = exp(−iEt/h̄)u(x), with u(x) real-
valued, which is the simplest form of a solitary wave. After conveniently relabelling the
parameters of the equation, u(x) satisfies the scalar equation

−ε2u′′ + V (x)u = |u|p−1u in R, (1.2)

where ε > 0 is a small parameter. We assume henceforth p > 1 and that the potential V (x)

is of class C1(R) and satisfies infx∈R V (x) > 0.
Floer and Weinstein [11] studied (1.2) for the case p = 3. By means of a Lyapunov–

Schmidt reduction they constructed single-peaked positive solutions of (1.2) which concentrate
around each given non-degenerate maximum or minimum point of V as h̄ → 0. This
construction was extended by Oh to higher dimensions, and to multi-peaked solutions, with
peaks associated to any given finite set of non-degenerate critical points of the potential
(see [21–23]). It should be remarked that solutions with uniformly bounded mass O(ε)

must necessarily concentrate around critical points of the potential (see [27]). A number
of works have appeared in recent years dealing with the construction of multi-peaked solutions
in a variety of situations, including relaxing non-degeneracy assumptions and more general
nonlinearities (see, for instance, [2, 9, 10, 14 15, 16, 18, 25, 27,] and references therein). An
interesting phenomenon was discovered by Kang and Wei [16]. They established the existence
of positive solutions with any prescribed number of peaks clustering around each given local
maximum point of the potential (in any space dimension). It was also proved in [16] that such
a cluster solution does not exist near a non-degenerate local minimum (see also [14]).

In this paper we revisit the problem in the one-dimensional case, proposing a new
variational construction of multi-peaked solutions of (1.2) associated to each given finite set
of points which are local maxima or minima of V (x), which recovers known constructions
obtained with finite-dimensional reductions involving the implicit function theorem or via
min–max methods. We consider not only positive solutions but also solutions that may change
sign. The method presented allows the gluing of clusters of any prescribed numbers of spikes
associated to each of these points. These clusters must be constituted of peaks of the same sign
around a local maximum point, and with alternate signs at local minima. A main feature of
our construction is its elementary character, which seems to make it feasible for considerable
extension for the nonlinearities considered, while for simplicity we will only consider the case
of problem (1.2).

Let us make our language more precise. The starting point is the following. A (positive)
spike around a point ξ is a solution uε with a local maximum point ξε → ξ and such that the
scaled function vε(y) = uε(ξε + εy), which satisfies

v′′
ε + V (ξε + εy)vε − |vε|p−1vε = 0,

approaches locally over compact sets in y the unique solution w = w(ξ ; y) of

−w′′ + V (ξ)w = wp in R, (1.3)

w′(0) = 0, w(y) > 0 in R, w ∈ H 1(R). (1.4)

In other words, we have the resemblance uε(x) ∼ w(ξ, (x − ξε)/ε) near ξε.
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The key definitions to state our main result are the following. We say that a solution
uε(x) of (1.2) has a cluster of spikes of type (n, +) with constant sign at ξ if there are points
pε

1 < pε
2 < · · · < pε

n with pε
i → ξ as ε → 0 so that for certain δ > 0,

sup
|x−ξ |<δ

∣∣∣∣∣uε(x) −
n∑

i=1

w

(
ξ ; x − pε

i

ε

)∣∣∣∣∣ → 0, as ε → 0.

Similarly, we say that uε(x) has a cluster of spikes of type (n, +) with alternating sign at ξ if
there are points pε

1 < pε
2 < · · · < pε

n with pε
i → ξ as ε → 0 so that for certain δ > 0,

sup
|x−ξ |<δ

∣∣∣∣∣uε(x) −
n∑

i=1

(−1)i−1w

(
ξ ; x − pε

i

ε

)∣∣∣∣∣ → 0, as ε → 0.

We say that uε(x) has a cluster of spikes of type (n, −), if −uε(x) has a cluster of type (n, +)

(with constant or alternating sign) at ξ .

Theorem 1.1. Let us consider m critical points of V , x1 < x2 < · · · < xm, such that for some
h > 0, (x − xi)V

′(x) > 0 (or <0) whenever 0 < |x − xi | < h. Then given a collection of
pairs (ni, ri), i = 1, . . . , m with ri ∈ {+, −} and ni ∈ N, there exists a solution uε of (1.2)
which has a cluster of spikes of type (ni, ri) at xi , with alternating sign if xi is a local minimum
and with constant sign if xi is a local maximum.

This result extends to the construction of solutions with infinitely many clusters of spikes.
As a model, we have the validity of the following result showing the presence chaotic patterns
of clusters of spikes.

Theorem 1.2. Assume that V is periodic and consider a sequence of critical points of V

{xi}i∈N such that for some h > 0, (x − xi)V
′(x) > 0 (or <0) whenever 0 < |x − xi | < h.

Then given N ∈ N and a collection of pairs (ni, ri), i ∈ N with ri ∈ {+, −} and ni ∈ N,
ni � N , there exists a solution uε of (1.2) which has a cluster of spikes of type (ni, σi) at xi ,
with alternating sign if xi is a local minimum and with constant sign if xi is a local maximum.

At this point we would like to look at our problem from a different point of view. If we
consider the change of variables x = εt , then we can see the problem as a slowly varying
planar Hamiltonian system with potential G(x, u) = Gε(t, u) = V (εt)u2/2 − |u|p+1/(p + 1).
This and more general Hamiltonian systems have been considered by several authors in
physics and dynamical systems. In our situation, for fixed x the system has two separatrice
loops (figure eight). When the area A(x) inside the loops is extremal, it has been shown that
the solution jumps from the inside to the outside of the loop. For earlier works in this direction,
see Neistadt [20] and references therein. We note that A′(x) = 0 precisely when V ′(x) = 0.

In this context, first works in studying multi-peaked solutions are due to Cherry [6] and
later Palmer [24]. Through the study of a Poincaré–Melnikov function, the existence of single-
peaked solutions, a transverse homoclinic orbit, is proved in [24]. Under this transversality
condition existence of multi-peaked solutions as in theorems 1.1 and 1.2 can be proved by the
Poincaré–Birkhoff–Smale theory of shadowing chains. In this paper we do not assume that
the critical points are non-degenerate so that the theory in [24] is not applicable. Possibly the
result can be still proved in this degenerate case using the notion of topological transversality
from Burns and Weiss [5]. See also recent results by Batelli and Palmer [3].

We mention the works by Kath [17] and by Gedeon et al [12], where slowly varying
planar Hamiltonian systems are also studied. In particular, in [12] the existence of complex
dynamical systems are constructed by means of the Conley index theory. Finally, we say
that chaotic patterns with finitely or infinitely many spikes in related problems have also been
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detected via variational techniques by Séré [26], Coti-Zelati and Rabinowitz [7] and Alessio
and Montecchiari [1].

A main feature of the technique presented is its elementary nature. It exhibits strong
resemblance with the so-called broken-geodesic method in geometry. A variation of it has
been used by Nakashima and Tanaka in [19] in studying clustering layers in some phase
transition problems. Two main differences arise when we compare the situation we deal with
here and the setting of the broken-geodesic method: first, the basic blocks, which are required
to solve the equation under zero-Neumann boundary conditions, are not minimizers of the
associated energy. Second, the curve obtained by joining the basic blocks is not continuous,
but has matching derivatives. Broken-geodesic techniques were also used in a somewhat
related construction by Buffoni and Séré [4].

2. Basic solutions and variational formulation of the problem

In this section we set up a finite-dimensional functional fε, whose critical points correspond to
solutions of our problem. Then we see how a critical point of fε can be obtained by evaluating
the Brouwer degree of some appropriate functions. Pending the evaluation of the degree, we
then prove our theorems.

For notational convenience, we define

G(x, u) = 1

2
V (x)u2 − 1

p + 1
|u|p+1.

Then, given positive numbers a < b, we consider the following boundary value problems:

−ε2uxx + G′(x, u) = 0 in (a, b), ux(a) = ux(b) = 0, (2.1)

−ε2uxx + G′(x, u) = 0 in (−∞, a), u(−∞) = ux(a) = 0, (2.2)

−ε2uxx + G′(x, u) = 0 in (b, +∞), ux(b) = u(+∞) = 0, (2.3)

where G′(x, u) denotes the derivative of G with respect to u. The following result concerns
existence and uniqueness of solutions of the above problems exhibiting spikes at the endpoints
of the corresponding intervals. We call them the basic solutions.

Lemma 2.1. Let M > 0 and σ = (s1, s2) ∈ {+1, −1}2 be given. Then there exist positive
numbers δ0, ε0 and l0 such that for any 0 < ε < ε0 and any a, b with |a| + |b| � M and
(b − a)/ε � l0, problem (2.1) has a unique solution uε(x) = uε,σ (a, b; x) which additionally
satisfies ∥∥∥∥uε(x) − s1w

(
a; x − a

ε

)
− s2w

(
b; x − b

ε

)∥∥∥∥
L∞[a,b]

< δ0. (2.4)

Similarly, given M > 0, σ ∈ {+1, −1}, there is a δ0 > 0 such that for any a with |a| � M and
any ε sufficiently small, problem (2.2) has a unique solution uε(x) = uε,σ (−∞, a; x) with∥∥∥∥uε(x) − σw

(
a; x − a

ε

)∥∥∥∥
L∞(−∞,a]

< δ0. (2.5)

A similar statement holds for problem (2.3), for a solution uε,σ (b; +∞).

We postpone the proof of this result to section 3; instead we continue with the formulation of
the finite-dimensional variational problem. We start recalling that the solutions of (1.2) are
precisely the critical points in H 1(RN) of the functional

Iε(u) =
∫

RN

ε

2
|ux |2 +

1

ε
G(x, u) dx.



Complex patterns in nonlinear Schrödinger equations 1657

Let us consider m points x1 < x2 < · · · < xm, a number h > 0 and prescribed pairs
(ni, ri) as in the statement of theorem 1.1. We assume that M > 0 is a constant such that
−M + 1 < x1 < xm < M − 1. Let n = ∑m

i=1 ni . We want to construct a solution having
spikes (positive maxima or negative minima) precisely at n points t1 < · · · < tn. We will
find a critical point of Iε by means of finding a critical point of a functional fε of the n-tuple
t = (t1, . . . , tn) constructed as the sum of energies of the basic solutions associated to each
subinterval between the points.

Let us define ν1 = 0, νj = ∑j−1
i=1 ni , j = 2, 3, . . . , m, so that n = νm + nm. Since we

want to have a cluster of size nj at xj , we also impose

xj − h < tνj +1 < · · · < tνj +nj
< xj + h for each j. (2.6)

Let us also consider signs s1, s2, . . . , sn determined so that sνj +1 = rj and

sνj +1 = −sνj +2 = sνj +3 = · · · = (−1)nj −1sνj +nj

if xj is a local minimum of V (x) and

sνj +1 = sνj +2 = · · · = sνj +nj

if xj is a local maximum. We may also assume that |ti | � M , for all 1 � i � n. We consider
numbers δ0, ε0 and l0 as in lemma 2.1. Thus assuming additionally that ε < ε0 and

ti+1 − ti

ε
> l0, (2.7)

the following building blocks ui
ε(t) are uniquely defined: ui

ε(t; x) = uε,(si ,si+1)(x) if x ∈
(ti , ti+1), νj � i � νj+1, j = 1, . . . , m − 1; u0

ε(t; x) = uε,s1(x) if x ∈ (−∞, t1); and
un+1

ε (t; x) = uε,sn
(x) if (tn, +∞).

Let us consider the piecewise continuous function uε(t; x) defined as

uε(t; x) = ui
ε(t; x) if ti < x < ti+1, i = 0, . . . , n + 1,

where we understand t0 = −∞ and tn+1 = +∞. We observe that this function is a solution of
(1.2) if and only if it is continuous. Moreover, we can nicely characterize this requirement by
means of the following ‘broken energy’:

fε(t ) =
n∑

j=0

Iε,(tj ,tj+1)(u
j
ε (t)), (2.8)

where

Iε,(a,b)(u) =
∫ b

a

ε

2
|ux |2 +

1

ε
G(x, u) dx,

and t0 = −∞, tn+1 = −∞. We have the following proposition.

Proposition 2.1. Assume that ε < ε0 and that the points t1 < · · · < tn satisfy conditions (2.6)
and (2.7). Then fε is of class C1 within this range and uε(t) is a solution of (1.2) if and only
if ∇fε(t) = 0.

Proof. For numbers a, b and σ ∈ {+, −}, let us denote

mε,σ (a, b) = Iε,(a,b)(uε,σ (a, b)), (2.9)

allowing for a = −∞ and b = ∞. A direct computation gives us the validity of the following
facts: for ε ∈ (0, ε0] and (b − a)/ε � l0, mε,σ (a, b) is differentiable and

∂

∂a
mε,σ (a, b) = −1

ε
G(a, uε,σ (a, b; a)),

∂

∂b
mε,σ (a, b) = 1

ε
G(b, uε,σ (a, b; b)).

(2.10)
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Similarly, mε,σ (−∞, b) and mε,σ (a, ∞) are differentiable and

∂

∂b
mε,σ (−∞, b) = 1

ε
G(b, uε,σ (−∞, b; b)),

∂

∂a
mε,σ (a, ∞) = −1

ε
G(a, uε,σ (a, ∞; a)).

(2.11)

Now, it is clear that uε(t) is a solution of (1.2) if and only if

uj−1
ε (t; tj ) = uj

ε(t; tj ), j = 1, . . . , n. (2.12)

On the other hand, ∇fε(t) = 0 is equivalent to

G(tj , u
j−1
ε (t; tj )) = G(tj , u

j
ε (t; tj )), j = 0, . . . , n − 1. (2.13)

We observe that the values u
j−1
ε (t; tj ) and u

j
ε(t; tj ) are both very close to sjw(tj ; 0) by

lemma 2.1. Also, G(tj , sjw(tj ; 0)) = 0 and Gu(tj , sjw(tj ; 0)) �= 0. Thus, (2.13) and (2.12)
are, indeed, equivalent. �

Our task in proving theorem 1.1 is therefore reduced to finding a critical point of the
function fε(t) on the set

	ε = 	ε
1 × · · · × 	ε

m,

where 	ε
j is the set of all nj -tuples tj = (tνj +1, . . . , tνj +nj

) such that

xj − h < tνj +1 < · · · < tνj +nj
< xj + h,

tνj +i+1 − tνj +i

ε
> l0,

for all i = 1, . . . , nj . To find such critical points we use Brouwer’s degree theory, accordingly
it will be enough to show that the degree of ∇fε over 	ε is not zero, i.e. deg(∇fε, 	

ε, 0) �= 0.
See [8] for a discussion on Brouwer’s degree theory.

The computation of this degree will be reduced to computing the degree of the gradient
of partial functions, depending only on the group of variables associated to each critical point
xj of V . We fix j , and to simplify the notation, we write τi = tνj +i , and the signs si = sνj +i ,

i = 0, . . . , nj + 1. We will assume in the arguments to follow that the points τ0 = tνj
and

τn+1 = tνj+1+1 are kept fixed, and we define the partial energies g
j
ε : 	ε

j → R as

gj
ε (τ ) =

n∑
i=0

mε,σi
(τi, τi+1), (2.14)

where mε,σ was defined in (2.9), σi = (si, si+1), τ = (τ1, . . . , τn) and

	ε
j =

{
τ/xj − h � τ1 < · · · < τn � xj + h,

τi+1 − τi

ε
� l0, i = 1, . . . , nj − 1

}
.

We observe that τ0 = −∞ if j = 1 or |xj−1 − τ0| < h otherwise. Similarly τnj +1 = +∞ if
j = m or lies in the h-neighbourhood of xj+1. Thus these points are in relative terms very far
away from the τi’s if h was chosen small enough.

The following result is crucial and we postpone its proof to section 4.

Proposition 2.2. There exist numbers κ > 0, ε0 > 0 such that for each j , all 0 < ε < ε0 and
any τ0 and τnj +1 satisfying |xj − τ0| > 2h, |xj − τnj +1| > 2h, we have that |∇g

j
ε (τ )| � κ for

all τ ∈ ∂	
j
ε and

deg(∇gj
ε , 	

ε
j , 0) = dj �= 0.

Before proceeding, let us use this result to prove our main results.
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Proof of theorem 1.1. From the definition of the functions fε and gε
j , a direct computation

shows that

∇tj fε(t) = ∇tj g
j
ε (t

j ) + o(1), (2.15)

where o(1) → 0 as ε → 0, uniformly on t ∈ 	ε. Proposition 2.2 then implies that for all ε

small enough ∇fε(t) does not vanish on ∂	ε and that

deg(∇fε, 	
ε, 0) =

m∏
j=1

deg(∇gj
ε , 	

ε
j , 0) �= 0, (2.16)

since the degree deg(∇g
j
ε (tνj +1, . . . , tνj +nj

), 	ε
j , 0) = dj does not depend on the points tνj

and
tνj+1 . Theorem 1.1 clearly follows from (2.16) and proposition 2.2. �

Proof of theorem 1.2. Fix m ∈ N and consider the points x1, x2, . . . , xm. Proposition 2.2
then holds for the corresponding gε

j , j = 1, 2, . . . , k. Since V is periodic, and the size of the
prescribed clusters is uniformly bounded, it follows that the numbers ε0 and κ in proposition 2.2
may be chosen uniform in m. Similarly we see that the quantity o(1) in (2.15) also goes to zero
uniformly in m. As a consequence we have the presence of a solution um

ε (x) which develops
the desired clusters at the xi’s as ε → 0 uniformly in m. Finally, for fixed ε, sufficiently small
independently of m we may pass using a standard compactness argument, to a subsequence
which converges uniformly over compacts to a solution uε with the required properties. This
concludes the proof. �

We devote the rest of the paper to proving lemma 2.1 and proposition 2.2.

3. Proof of lemma 2.1 and further properties of basic solutions

In this section we prove lemma 2.1, which allows us to reduce our problem to finding a critical
point for the finite-dimensional function fε. We will also prove some results providing extra
properties of the basic solutions that are needed in the computation of the degree in section 4.

We start by proving the uniqueness part of lemma 2.1. Let ρ0 > 0 and L0 > 0 be constants
such that

Guu(x, u) � ρ0 for all |u| � 2ρ0, x ∈ R, (3.1)

|w(a; L0)| <
ρ0

2
for all a ∈ [−M, M], (3.2)

where w(ξ, y) is the solution of (1.3) and (1.4).

Proof of lemma 2.1 (uniqueness). We only prove the first part, since the other is similar.
We argue indirectly. Suppose that there exist sequences (εn)

∞
n=1, (δn)

∞
n=1, (an)

∞
n=1, (bn)

∞
n=1

satisfying

εn → ∞, δn → 0, ln ≡ bn − an

εn

→ ∞
and such that the equation

−ε2
nuxx + G′(x, u) = 0 in (an, bn), ux(an) = ux(bn) = 0, (3.3)

has two solutions u(1)
n (x), u(2)

n (x) satisfying (2.4). We may assume that an → a0, bn → b0 for
suitable a0, b0 ∈ [−M, M]. We observe that then w(an; y) → w1(y) and w(bn; y) → w2(y),
where w1 and w2 are the unique positive solutions of

−wyy + Viw = wp, w(y) > 0 in R, wy(0) = 0,
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where V1 = V (a0) and V2 = V (b0). By rescaling we introduce v(i)
n (y) = u(i)

n (an +
εny) : [0, ln] → R. Since both u(1)

n (x), u(2)
n (x) satisfy (3.3), we have the function hn defined

as hn(y) = (v(2)
n (y) − v(1)

n (y))/‖v(2)
n − v(1)

n ‖H 1 satisfies ‖hn‖H 1 = 1 and

−hnyy + V (an + εny)hn = p|θnv
(2)
n + (1 − θn)v

(1)
n |p−1hn in (0, ln),

hny(0) = hny(ln) = 0,
(3.4)

where θn = θn(y) ∈ (0, 1). Multiplying by hn(y) and integrating over [0, ln], we find∫ ln

0
|hny |2 + Guu(an + εny, θnv

(2)
n + (1 − θn)v

(1)
n )h2

n dy = 0.

By the choice of L0 and ρ0, we have from here∫ ln

0
|hny |2 dy + ρ0

∫ ln−L0

L0

h2
n dy

� −
∫

[0,L0]∪[ln−L0,ln]
Guu(an + εny, θnv

(2)
n + (1 − θn)v

(1)
n )h2

n dy. (3.5)

Therefore, we have

‖hn‖L2(0, L0) �→ 0 or ‖hn‖L2(ln−L0, ln) �→ 0,

since the contrary, together with (3.5), would imply that ‖hn‖H 1 → 0.

We assume ‖hn‖L2(0, L0) �→ 0. The case ‖hn‖L2(ln−L0,ln) �→ 0 can be treated in a similar
way. Then we have hn → h �= 0 weakly in H 1. By our assumptions we have

v(1)
n (y) → s1w1(y) and v(2)

n (y) → s1w1(y),

in L∞
loc. Thus, from (3.4) we find that h ∈ H 1(0, ∞) and it satisfies

−hyy + V1h = p|w1|p−1h in [0, ∞), hy(0) = 0. (3.6)

On the other hand, w1y ∈ H 1(0, ∞) and it satisfies

−(w1y)yy + V1w1y = p|w1|p−1w1y in [0, ∞), w1y(0) = 0, w1yy(0) �= 0.

Thus h(y) and w1y(y) are linearly independent solutions of

−vyy + V1v = p|w1|p−1v.

Since w1(y) → 0 as y → ∞, this equation has an unbounded solution ζ(y). However, ζ(y)

must be a linear combination of h(y) and w1y(y), which are both bounded in [0, ∞). This is
a contradiction that implies that the solution of (3.3) is unique, completing the proof. �

With a very similar proof, actually simpler, we can also consider the case when the spatial
variable is frozen. For a ∈ [−M, M] and l > 0 we consider the following problem:

−wyy + G′(a, w(y)) = 0 in (0, l), wy(0) = wy(l) = 0. (3.7)

Then we have the following lemma.

Lemma 3.1. There exist l0 > 0 and δ0 > 0 such that if l � l0 and σ = (s1, s2) ∈ {+, −}2,
then (3.7) has a unique solution, denoted by wσ (a, l; y), satisfying

‖wσ (a, l; y) − s1w(a; y) − s2w(a; l − y)‖L∞(0,l) � δ0. (3.8)

In the arguments to follow it will also be important to consider solutions of (2.1) but
having only one bump. We can prove the following lemma using the arguments just given for
lemma 2.1.
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Lemma 3.2.

(a) For any M > 0 there exist δ0, ε0, l0 > 0 such that for any ε ∈ (0, ε0] and
−M � a < b � M satisfying (b − a)/ε � l0, there is at most one solution uε of
(2.1) satisfying∥∥∥∥uε(x) − w

(
a; x − a

ε

)∥∥∥∥
L∞(a,b)

< δ0. (3.9)

(b) A similar statement holds for the equation

−ε2uxx + G′(x, u) = 0 in (a, b), ux(a) = u(b) = 0. (3.10)

We continue the discussion of lemma 2.1, but now on the existence part. In our construction
we will first obtain one bump solutions and then we will glue them conveniently to get the
two bump solutions we are looking for. The construction of a one bump solution is done via
a mountain pass argument on a penalized functional. We have the following existence result
whose proof is given in the appendix.

Lemma 3.3. Let δ0, ε0, l0 > 0 so that the statement of lemma 3.2 holds. For every δ ∈ (0, δ0],
there exist constants ε1 ∈ (0, ε0], l1 ∈ [l0, ∞) such that if ε ∈ (0, ε1] and (b − a)/ε � l1, then

(a) The Neumann boundary value problem (2.1) has a positive solution uε(x) = wl
ε,N(a, b; x)

satisfying

‖uε(a + εy) − w(a; y)‖L∞(0,(b−a)/ε) < δ. (3.11)

(b) The Dirichlet–Neumann boundary value problem (3.10) has a positive solution uε =
wl

ε,D(a, b; x) satisfying (3.11).

Remark 3.1. We can also construct a solution satisfying (3.11) in (0, ∞) in a similar way to
the proof of lemma 3.3.

On the other hand, as in lemma 3.3, we can also find positive solutions uε = wr
ε,N(a, b; x)

to the Neumann problem (2.1) satisfying∥∥∥∥uε(x) − w

(
b; x − b

ε

)∥∥∥∥
L∞(a,b)

< δ, (3.12)

and solutions uε = wr
ε,D(a, b; x) to the Dirichlet–Neumann boundary value problem

−ε2uxx + G′(x, u) = 0 in (a, b), u(a) = ux(b) = 0, (3.13)

and so that also satisfies (3.12).

Proof of lemma 2.1 (existence). We first discuss the case of a solution of type σ = (+, +). We
will obtain such a solution by joining wl

ε,N(a, τ ; x) with wr
ε,N(τ, b; x) for a suitable τ ∈ (a, b).

That is we find uε,(+,+)(a, b; x) of the form

uε,(+,+)(a, b; x) =
{
wl

ε,N(a, τ ; x), x ∈ [a, τ ],
wr

ε,N(τ, b; x), x ∈ (τ, b],
(3.14)

where τ ∈ (a, b) is such that

wl
ε,N(a, τ ; τ) = wr

ε,N(τ, b; τ). (3.15)

In what follows we show that such a τ ∈ (a, b) exists. First we observe that the functions
(a, y) �→ wl

ε,N(a, a + εy; a + εy) and (b, y) �→ wr
ε,N(b − εy, b; b − εy) are continuous

R × [l1, ∞) as a consequence of their uniqueness.
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Next we obtain some asymptotic estimates of wl
ε,N and wr

ε,N. We claim that there are
numbers ε2 ∈ (0, ε1], l2 > l1 and ν0 > 0 such that for ε ∈ (0, ε2], we have

wl
ε,N(a, a + εl1; a + εl1) � ν0, 0 < wr

ε,N(b − εy, b; b − εy) � ν0

2
, (3.16)

for y � l2. To prove the claim we first see that

wl
ε,N(a, a + εl1; a + εy) → w(+,+)(a, 2l1; y),

in C2(0, l1) as ε → 0, where w(+,+)(a, 2l1; y) is a solution of (3.7) satisfying (3.8). Setting

ν0 = 1
2 inf

a∈[−M,M]
w(+,+)(a, 2l1; l1),

we can show the first inequality in (3.16), if ε2 � ε1 is sufficiently small. Next we observe
that for ε ∈ (0, ε1], w(z) = wr

ε,N(b − εy, b; b − εz) satisfies

−wzz + V (b − εz)w = wp in (0, y), |w(z)| � ρ0 in (L0, y).

Recalling (3.1) and using a suitable comparison argument in (L0, y), we can find l2 � l1
independent of b ∈ [−M, M] such that

0 < wr
ε,N(b − εy, b; b − εy) � ν0

2
for all b ∈ [−M, M] and y � l2.

This proves the second inequality in (3.16). With similar arguments we can also prove that

wr
ε,N(b − εl1, b, b − εl1) � ν0, 0 < wl

ε,N(a, a + εy, a + εy) � ν0

2
, (3.17)

for y � l2. Thus, we obtain from (3.16) and (3.17) that

wl
ε,N(a, a + εl1; a + εl1) − wr

ε,N(a + εl1, b; a + εl1) � 1
2ν0 > 0,

wl
ε,N(a, b − εl1; b − εl1) − wr

ε,N(b − εl1, b; b − εl1) � − 1
2ν0 < 0,

if (b − a)/ε � 2l1 + l2. Then by continuity it follows the existence of τ ∈ (a + εl1, b − εl1)

which satisfies (3.15). Then we get (2.4) from (3.11).
For the construction of a solution of type σ = (+, −), we proceed in an analogous way.

That is, we find uε,(+,−)(a, b; x) of the form

uε,(+,−)(a, b; x) =
{
wl

ε,D(a, τ ; x), x ∈ [a, τ ],
−wr

ε,D(τ, b; x), x ∈ (τ, b].
(3.18)

In order for such a function to be the solution of (2.1), we need to have

(wl
ε,D)x(a, τ ; τ) = (wr

ε,D)x(τ, b; τ). (3.19)

The existence of τ ∈ (a, b) is based in continuity properties of the functions (wl
ε,D)x(a, a +

εy; a + εy) and (wr
ε,D)x(b − εy, b; b − εy) in a, b, y, and the inequalities

(wl
ε,D)x(a, a + εl1; a + εl1) � −ν0 and |(wr

ε,D)x(b − εy, b; b − εy)| � ν0

2
for y � l2,

(wr
ε,D)x(b − εl1, b; b − εl1) � ν0 and |(wl

ε,D)x(a, a + εy; a + εy)| � ν0

2
for y � l2. The proof of these inequalities can be done as that of (3.16) and (3.17) and we
omit it. Condition (2.4) is obtained as before.

The construction of solutions of type (−, +) and (−, −) is similar. The second part of
lemma 2.1 is essentially lemma 3.3. �

Without difficulty lemma 2.1 can be refined to obtain the following.
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Lemma 3.4.

(a) For any M > 0 and δ > 0 there exists ε1 = ε1(δ, M) > 0 and l1 = l1(δ, M) such that if
ε ∈ (0, ε1], −M � a < b � M , (b − a)/ε � l1 and σ = (s1, s2) ∈ {+1, −1}2, then there
exists a solution uε(x) = uε,σ (a, b; x) of (2.1) satisfying∥∥∥∥uε(a + εy) − s1w(a; y) − s2w

(
b; b − a

ε
− y

)∥∥∥∥
C2(0,(b−a)/ε)

< δ,

(b) For any M > 0 and δ > 0 there exists ε1 = ε1(δ, M) > 0 such that if ε ∈ (0, ε1],
b ∈ [−M, M] and σ ∈ {+, −}, then there exists a solution uε(x) = uε,σ (−∞, b; x) of
(2.2) satisfying

‖uε(b + εy) − σw(b; y)‖C2(−∞,0) < δ.

A similar statement holds for the equation on (a, ∞).

A combination of lemmas 3.1 and 3.4 leads to the following.

Lemma 3.5. For any l > l0 and δ > 0, there exists ε1 = ε1(l, δ) > 0 independent of a,
b ∈ [−M, M] such that for ε ∈ (0, ε1], (b − a)/ε ∈ [l0, l] and σ ∈ {+, −}2∥∥∥∥uε,σ (a, b; a + εy) − wσ

(
a,

b − a

ε
; y

)∥∥∥∥
C2(0,(b−a)/ε)

� δ.

Finally we establish the exponential decay of the basic solutions. We have the following
lemma.

Lemma 3.6. There are constants α > 0 and β > 0, independent of a, b, ε, σ , such that for
ε ∈ (0, ε0], (b − a)/ε � l0 it holds

|uε,σ (a, b; x)| + ε|(uε,σ )x(a, b; x)| � β

{
exp

(
−α(x − a)

ε

)
+ exp

(
−α(b − x)

ε

)}

for all x ∈ [a, b], and

|uε,σ (−∞, b; x)| + ε|(uε,σ )x(−∞, b; x)| � β exp

(
−α(b − x)

ε

)

for all x ∈ (−∞, b]. A similar statement holds for the interval (a, ∞).

Proof. We recall that the solution w(·; ·) to the limiting equations (1.3) and (1.4) is
exponentially decaying. Then, noting that uε,σ satisfies

−ε2uxx + Gu(x, u(x)) = 0,

the use of (3.1) and a standard comparison argument allows us to prove the lemma. �

4. Computing the degree. Proof of proposition 2.2

In this section we compute the degree of the function g
j
ε on 	ε

j . This leads us to prove
proposition 2.2. For notational convenience we shall drop the index j from g

j
ε , 	ε

j and nj .
The first step is the study of the behaviour of ∇gε over ∂	ε. With this information, we later

compute the deg(∇gε, 	
ε, 0) by introducing a suitable homotopy with an explicit function.

In what follows, we fix τ0 ∈ [−∞, xj − 2h] and τn+1 ∈ [xj + 2h, ∞]. By definition of
	ε we see that

∂	ε = {τ ; τ1 = xj − h} ∪ {τ ; τn = xj + h} ∪
{
τ ; τi+1 − τi

ε
= l0 for some i

}
,

We study next the behaviour of ∇gε on each of the above three sets. We have two cases.



1664 M del Pino et al

Case 1: ∇gε when τ1 = xj − h or τn = xj + h. We deal first with the case τ1 = xj − h. We
start with some preliminaries. Recalling that w(a; y) is the solution of (1.3) and (1.4) with
ξ = a, we define

H(a) =
∫ ∞

0

1

2
|wy(a; y)|2 + G(a, w(a; y)) dy.

Making a change of variables, we easily see that

w(a; y) = V (a)1/(p−1)w(V (a)1/2y),

where w(y) is the unique positive solution in H 1(R) of

−wyy + w = wp in R, w′(0) = 0.

Then we can see that

H(a) = C0V (a)(p+3)/2(p−1), (4.1)

where

C0 =
∫ ∞

0

1

2
|wy |2 +

1

2
|w|2 − 1

p + 1
|w|p+1 dy.

Now we can state the following lemma.

Lemma 4.1. For any δ > 0, there exists ε1 = ε1(δ) ∈ (0, ε0] and L = L(δ) > l0 such that

(a) if ε ∈ (0, ε1] and (b − a)/ε � 3L| log ε|, then∣∣∣∣ ∂

∂a
mε,σ (a, b) − H ′(a)

∣∣∣∣ � δ and

∣∣∣∣ ∂

∂b
mε,σ (a, b) − H ′(b)

∣∣∣∣ � δ;

(b) if ε ∈ (0, ε1] and (b − a)/ε � l0, then∣∣∣∣
(

∂

∂a
+

∂

∂b

)
mε,σ (a, b) − (H ′(a) + H ′(b))

∣∣∣∣ � δ.

Proof.
(a) By (2.10), we have

∂

∂a
mε,σ (a, b) = −1

ε
G(a, uε,σ (a, b; a)).

Setting v(y) = uε,σ (a, b; a + εy) and choosing a cut-off function ϕ(y) : [0, ∞) → [0, 1] such
that ϕ(τ) = 1 for τ ∈ [0, 1], ϕ(τ) = 0 for τ ∈ [2, ∞) and ϕ′(τ ) � 0 for τ ∈ [0, ∞), we have

∂

∂a
mε,σ (a, b) = 1

ε

(
1

2
|vy(0)|2 − G(a, v(0))

)

=
∫ 2L| log ε|

0

1

ε

d

dy

{
ϕ

(
y

L| log ε|
) (

−1

2
|vy |2 + G(a + εy, v(y))

)}
dy

=
∫ 2L| log ε|

0

1

Lε| log ε|ϕ
′
(

y

L| log ε|
) (

−1

2
|vy |2 + G(a + εy, v(y))

)
dy

+
∫ 2L| log ε|

0
ϕ

(
y

L| log ε|
)

Gx(a + εy, v(y)) dy = (I ) + (II ).

By lemma 3.6, there exists L = L(δ) > 0 such that if (b − a)/ε � 3L| log ε|, then

| − 1
2 |vy |2 + G(a + εy, v(y))| � 1

2δε for y ∈ [L| log ε|, 2L| log ε|].
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Thus we have

|(I )| � 1

2

∫ 2L| log ε|

L| log ε|

1

L| log ε| |ϕ
′
(

y

L| log ε|
)

|δ dy � δ

2
.

By lemmas 3.4 and 3.6, we can also see∣∣∣∣(II ) −
∫ ∞

0
Gx(a, w(a; y)) dy

∣∣∣∣ � δ

2
,

provided (b − a)/ε � 1 and ε is sufficiently small. By the definition of H(a), we have

H ′(a) =
∫ ∞

0
Gx(a, w(a; y)) dy.

Thus we get the first inequality in (a). The second inequality can be obtained in a similar way.
(b) Now we prove (b). By (2.10), we have(

∂

∂a
+

∂

∂b

)
mε,σ (a, b) = −1

ε
G(a, uε,σ (a, b; a)) +

1

ε
G(b, uε,σ (a, b; b))

=
∫ (b−a)/ε

0

1

ε

d

dy

{
−1

2
|vy |2 + G(a + εy, v(y))

}
dy,

where v(y) = uε,σ (a, b; a + εy). Arguing as in part (a), we obtain the desired result. �
Now we recall (4.1) and choose δ > 0 such that

|H ′(x)| > 2δ for x ∈ [xj − h, xj − 1
2h].

Then we choose ε1 = ε1(δ) and L = L(δ) as given in lemma 4.1. Then, by making ε1

smaller if necessary, we see that for τ1 = xj − h and ε ∈ (0, ε1], there exists k ∈ {1, 2, . . . , n}
satisfying

xj − h = τ1 < τ2 < · · · < τk � xj − 1
2h, and

τk+1 − τk

ε
� 3L| log ε|. (4.2)

Now we state first our estimate.

Proposition 4.1. Assume that (4.2) holds then, for ε ∈ (0, ε1] we have
k∑

i=1

∂

∂τi

gε(τ1, . . . , τn)

{
< 0, if xj is a local minimum,
> 0, if xj is a local maximum.

We remark that in our analysis we consider τ0 > −∞ and τn+1 < ∞, but a similar result
holds if we take τ0 = −∞ or τn+1 = ∞.

Proof. We just deal with the case where xj is a local minimum of V . In view of (4.2), we can
apply lemma 4.1 to obtain

k∑
i=1

∂

∂τi

gε(τ1, . . . , τn) = ∂

∂τ1
mε,σ0(τ0, τ1) +

k−1∑
i=1

(
∂

∂τi

+
∂

∂τi+1

)
mε,σi

(τi, τi+1)

+
∂

∂τk

mε,σk
(τk, τk+1) � 2

k∑
i=1

(H ′(τi) + δ) < 0

completing the proof. �
In the case τn = xj + h, we proceed in a similar way. First we obtain k ∈ {1, . . . , n} such

that
xj + 1

2h � τk < τk+1 < · · · < τn = xj + 1
2h,

τk − τk−1

ε
� 3L| log ε|. (4.3)

Then we have the following proposition.
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Proposition 4.2. Assume that (4.3) holds then, for ε ∈ (0, ε1] we have
n∑

i=k

∂

∂τi

gε(τ1, . . . , τn)

{
> 0 if xj is a local minimum,

< 0 if xj is a local maximum.

Case 2: ∇gε when (τi+1 − τi)/ε = l0. To estimate ∇gε when τi+1 and τi are relatively close,
we need some preliminaries. By elementary phase plane analysis on the function wσ (a, l; y),
introduced in lemma 3.1, we have the following lemma.

Lemma 4.2. For any a ∈ R, l � l0 and σ ∈ {+, −}2,

Eσ (a, l) ≡ 1
2 |w′

σ (a, l; y)|2 − G(a, wσ (a, l; y))

is independent of y. Moreover

(a) if σ = (+, +) or (−, −), then Eσ (a, l) < 0,
(b) if σ = (+, −) or (−, +), then Eσ (a, l) > 0.

Now we can prove the following important lemma.

Lemma 4.3.

(a) For any l � l0 there exists ρ(l) > 0 and ε2(l) > 0 such that for (b − a)/ε ∈ [l0, l] and
ε ∈ (0, ε2],

ε
∂

∂a
mε,σ (a, b)

{
� −ρ(l), if σ = (+, +) or (−, −),

� ρ(l), if σ = (+, −) or (−, +),
(4.4)

ε
∂

∂b
mε,σ (a, b)

{
� ρ(l), if σ = (+, +) or (−, −),

� −ρ(l), if σ = (+, −) or (−, +).
(4.5)

(b) For any δ > 0 there exist l(δ) � l0 and ε2 > 0 such that for (b − a)/ε � l(δ) and
ε ∈ (0, ε2],

ε

∣∣∣∣ ∂

∂a
mε,σ (a, b)

∣∣∣∣ � δ and ε

∣∣∣∣ ∂

∂b
mε,σ (a, b)

∣∣∣∣ � δ.

Proof.

(a) We prove just for (4.4) and σ = (+, −). We argue indirectly. If the proposition does not
hold, there exist sequences aj , bj , εj such that (bj − aj )/εj ∈ [l0, l], εj → 0 and

lim sup
j→∞

εj

∂

∂a
mεj ,σ (aj , bj ) � 0.

We may assume aj → ã, bj → ã and (bj − aj )/εj → l̃ ∈ [l0, l]. By lemma 3.5, we
have uεj ,σ (aj , bj ; aj + εjy) → wσ (ã, l̃; y). Thus

εj

∂

∂a
mεj ,σ (aj , bj ) = −G(aj , uεj ,σ (aj , bj ; aj )) → −G(ã, wσ (ã, l̃; 0)) = Eσ (ã, l̃) > 0,

which is a contradiction proving (a). Here we used lemma 4.2.
(b) Observing that w(a; y) satisfies

1
2 |wy(a; y)|2 − G(a; w(a; y)) ≡ 0,

We can deduce (b) from lemmas 2.1 and 3.4.
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�
Using lemma 4.3 we choose numbers

ρ0 > ρ1 > · · · > ρn and l0 < l1 < · · · < ln
as follows: first we apply (a) of lemma 4.3 and set ρ0 = ρ(l0). Next we apply (b) and set
l1 = l(ρ0/2). We continue this process obtaining

ρ1 = ρ(l1), l2 = l
(ρ1

2

)
, ρ2 = ρ(l2), . . . , ln = l

(ρn−1

2

)
, ρn = ρ(ln).

Then we have the following proposition.

Proposition 4.3. Suppose that (τ1, . . . , τn) ∈ 	ε satisfies (τi+1 − τi)/ε = l0 for some
i ∈ {1, 2, . . . , n − 1}. Then there exists j ∈ {2, 3, . . . , n} and k ∈ {0, 1, . . . , n} such that

τj − τj−1

ε
∈ [l0, lk] and

τj+1 − τj

ε
∈ [lk+1, ∞). (4.6)

For such a j we have

∂

∂τj

gε(τ1, . . . , τn) > 0, if (s1, . . . , sn) = (+, +, . . .) or (−, −, . . .), (4.7)

∂

∂τj

gε(τ1, . . . , τn) < 0, if (s1, . . . , sn) = (+, −, . . .) or (−, +, . . .). (4.8)

Proof. First we look at (4.6). If it does not hold for all j and k, then we have
τi+1 − τi

ε
= l0,

τi+2 − τi+1

ε
� l1, . . . ,

τi+2 − τi+1

ε
� ln−i−1,

τn+1 − τn

ε
� ln−i ,

and then we obtain
τn+1 − τn

ε
� ln. (4.9)

But this is impossible for sufficiently small ε since we have τn+1 − τn � h.
Thus, let j and k so that (4.6) holds. Then by lemma 4.3, we have

ε
∂

∂τj

mε,σj−1(τj−1, τj )

{
� ρk, if σj−1 = (+, +) or (−, −),

� −ρk, if σj−1 = (+, −) or (−, +),

and also

ε

∣∣∣∣ ∂

∂τj

mε,σj
(τj , τj+1)

∣∣∣∣ � ρk

2
.

Since
∂

∂τj

gε(τ1, . . . , τn) = ∂

∂τj

mε,σj−1(τj−1, τj ) +
∂

∂τj

mε,σj
(τj , τj+1),

we obtain (4.7) and (4.8). �
This completes the study of the behaviour of ∇gε over ∂	ε. We can now see from

propositions 4.1–4.3 that, as desired, there is a number κ > 0 such that for all small ε,

|∇gε(τ )| � κ for all τ ∈ ∂	ε,

and then deg(∇gε, 	
ε, 0) is well defined. As in [19], we define �ε : 	ε → R as

�ε(τ) = 1

2
(τ1 − xj )

2 +
1

2
(τn − xj )

2 +
n−1∑
j=1

exp

(
−τj+1 − τj

ε

)
. (4.10)

Then we have the following crucial proposition.
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Proposition 4.4. . For sufficiently small ε > 0, we have:

(a) if xj is a local minimum of V (x) and (s1, s2, . . . , sn) = (+, +, . . .) or (−, −, . . .), then
∇gε and −∇�ε are homotopic in 	ε, i.e. for all θ ∈ [0, 1] and (τ1, . . . , τn) ∈ ∂	ε,

θ∇gε(τ1, . . . , τn) − (1 − θ)∇�ε(τ1, . . . , τn) �= 0; (4.11)

(b) if xj is a local maximum of V (x) and (s1, s2, . . . , sn) = (+, −, . . .) or (−, +, . . .), then
∇gε and ∇�ε are homotopic in 	ε, i.e. for all θ ∈ [0, 1] and (τ1, . . . , τn) ∈ ∂	ε

θ∇gε(τ1, . . . , τn) + (1 − θ)∇�ε(τ1, . . . , τn) �= 0. (4.12)

Proof. It is not hard to prove that

(4.2) implies

(
∂

∂τ1
+ · · · +

∂

∂τk

)
�ε(τ1, . . . , τn) < 0, (4.13)

(4.3) implies

(
∂

∂τk

+ · · · +
∂

∂τn

)
�ε(τ1, . . . , τn) < 0, (4.14)

(4.6) implies
∂

∂τj

�ε(τ1, . . . , τn) < 0. (4.15)

From here (4.11) and (4.12) follow easily. �
Thus we can see from the homotopy invariance of the Brouwer degree that

deg(∇gε, 	
ε) = deg(±∇�ε, 	ε).

But, since �ε : 	ε → R has a unique non-degenerate critical point in 	ε, we get
deg(∇gε, 	

ε) = ±1 and the proof of proposition 2.2 is thus concluded.
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Appendix

In this appendix we will give a proof of the existence lemma 3.3. Our proof consists of finding
a critical point for the functional

J (ε, a, l; v) =
∫ l

0

1

2
|vy |2 + V (a + εy)v2 − 1

p + 1
v

p+1
+ dy,

where u+ = max{u, 0} and l = (b − a)/ε, so that u(x) = v((x − a)/ε) satisfies (3.11). We
consider the functional over the Sobolev space H to be the space HN = H 1(0, l) in the case
of the Neumann boundary value problem (2.1) and the space HD = {v ∈ H 1(0, l); v(l) = 0}
in the case of Dirichlet–Neumann boundary problem (3.10).

We proceed to modify the functional J according to an idea from del Pino and Felmer [9].
We consider ρ0 > 0 and L0 > 0 such that (3.1) and (3.2) hold. We set

f (u) =
{|u|p−1u, if |u| � ρ0,

ρ
p−1
0 u, if |u| > ρ0
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and

f (y, u) = χ[0,L0](y)u
p
+ + (1 − χ[0,L0](y))f (u+),

where χ[0,L0](y) = 1 if y ∈ [0, L0] and χ[0,L0](y) = 0 if y �∈ [0, L0]. Finally we set the
penalized functional

J̃ (ε, a, l; v) =
∫ l

0

1

2
|vy |2 + V (a + εy)v2 − F(y, v) dy,

where F(y, ξ) = ∫ ξ

0 f (y, τ ) dτ . We remark that critical points of J̃ (ε, a, l; v) satisfy the
equation

−vyy + V (a + εy)v = f (y, v) in (0, l),

with boundary conditions depending on H = HD or H = HN. Thus a critical point v of
J̃ (ε, a, l; ·) is a critical point of J (ε, a, l; ·) if

‖v(y)‖L∞(L0,l) � ρ0 (A.1)

is satisfied.
It is easy to see that J̃ (ε, a, l; v) has the mountain pass geometry and satisfies the Palais–

Smale compactness condition. Then, by the mountain pass theorem, there is a non-trivial
critical point v∗ = v(ε, a, l; y) of J̃ characterized as follows:

J̃ (ε, a, l; v∗) = b(ε, a, l) ≡ inf
γ∈�

max
τ∈[0,1]

J̃ (ε, a, l; γ (τ)), (A.2)

where

� = {γ ∈ C([0, 1], H); γ (0) = 0, J̃ (ε, a, l; γ (1)) < 0}. (A.3)

We will show that if l is sufficiently large and ε is sufficiently small then v(ε, a, l; y) satisfies

‖v(ε, a, l; y) − w(a; y)‖L∞(0,l) � δ.

This implies, on the one hand, that v(ε, a, l; y) satisfies (A.1) and so the penalization does not
act, and, on the other hand, that the rescaled function u(x) = v((x − a)/ε) satisfies (3.11), as
required.

For our purposes, we introduce the following limiting functionals:

J∞(a; v) =
∫ ∞

0

1

2
|vy |2 + V (a)v2 − 1

p + 1
v

p+1
+ dy,

J̃∞(a; v) =
∫ ∞

0

1

2
|vy |2 + V (a)v2 − F(y, v+) dy.

Both functionals are defined on H 1(0, ∞) and have a mountain pass geometry. We also see that

J∞(a; v) � J̃∞(a; v) for all v ∈ H 1(0, ∞). (A.4)

We define

c∞(a) = inf
γ∈�a,∞

max
τ∈[0,1]

J∞(a; γ (τ)) and b∞(a) = inf
γ∈�̃a,∞

max
τ∈[0,1]

J̃∞(a; γ (τ)),

where �a,∞ and �̃a,∞ are defined in a similar way to (A.3).
Next we claim that w(a; y) is the unique critical point of J̃∞(a; ·) satisfying J̃∞(a; v) =

b∞(a). To prove this claim we first recall a well-known fact, i.e. c∞(a) is attained by w(a; y),
which is the unique critical point of J∞(a; v). Next we see that

b∞(a) = c∞(a). (A.5)
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In fact, by (A.4), it is clear that c∞(a) � b∞(a). On the other hand, setting

γ (τ) = Rw(a; y)τ for large constant R > 1,

we see that γ ∈ �̃a,∞ and

b∞(a) � max
τ∈[0,1]

J̃∞(a; γ (τ)) = c∞(a).

Thus we get (A.5). Now we complete the proof of the claim: let v(y) be a critical point of
J̃∞(a; v) with a critical value b∞(a) = c∞(a). Setting γ (τ) = Rv(y)τ , we see that

max
τ∈[0,1]

J∞(a; γ (τ)) � max
τ∈[0,1]

J̃∞(a; γ (τ)) = c∞(a).

Thus we have maxτ∈[0,1] J∞(a; γ (τ)) = c∞(a), from where v(y) = rw(a; y) for some r > 0.
But then, since v �→ f (y, v)/v is strictly increasing, we have v(y) = w(a; y), proving the
claim.

Now we complete the proof of the lemma. We argue indirectly and suppose that there
exist δ > 0 and sequences (εn)

∞
n=1, (an)

∞
n=1 ⊂ [−M, M], (ln)

∞
n=1 and (vn(y))∞n=1 such that

(a) εn → 0, ln → ∞ and an → a0 for some a0 ∈ [−M, M]. (b) vn(x) is a critical point of
J̃ (εn, an, ln; v) with J̃ (εn, an, ln; vn) = b(εn, an, ln). (c) ‖vn − w(an; y)‖L∞(0,ln) � δ.

By using proper test functions we can easily see that

b(εn, an, ln) → b∞(a0). (A.6)

Let us assume that, extracting a subsequence if necessary, we have

vn(y) → v0(y) in C2
loc.

Since vn(y) is a critical point of J̃ (εn, an, ln; v), by analysing the corresponding differential
equations, and the decay properties of vn(y) implied by the form of f (y, v), we see that vn(y)

converges to v0(y) in H 1(0, ∞) and then v0(y) is a critical point of J̃∞(a0; v). Moreover,

J̃∞(a0; v0) = lim
n→∞ J̃ (εn, a, ln; vn) = b∞(a0).

Thus by our earlier claim v0(y) = w(a0; y) contradicting (c) and (A.6). �
Remark A.1. We can show that v(ε, a, l; y) has only one local maximum which is located
at boundary 0 for sufficiently small ε. In fact, if not, there exist sequences εj → 0,
aj → a0 ∈ [−M, M] and lj → ∞ such that vj (y) = v(εj , aj , lj ; y) attains a local maximum
at yj ∈ (0, lj ]. Of course, vjy(yj ) = 0 and vjyy(yj ) � 0. Since vj satisfies the rescaled
equation, we have vj (yj ) � V (aj + εjyj )

1/(p−1). On the other hand, vj satisfies (3.11) and
we can see that yj is bounded as j → ∞. We assume yj → y0 � 0. Since vj (y) converges
to w(a0; y) in C2

loc, we have wy(a0; y0) = limj→∞ vjy(yj ) = 0. Thus we have y0 = 0. Since
vjy(0) = vjy(yj ) = 0, we can find sj ∈ (0, yj ) such that vjyy(sj ) = 0. We have sj → 0 and
0 = vjyy(sj ) → wyy(a; 0) < 0. This is a contradiction.
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