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1. Introduction

This paper deals with the study of positive solutions of the equation

ε2∆u− V (x)u+ f (u) = 0 in R
N, (1.1)

u(x)→ 0 as|x| → ∞.
Here and in what follows,V is a smooth function which is bounded and uniformly
positive, let us say that for certain positive constantsα, β

α ≤ V (x) ≤ β for all x ∈ R
N.

The class of nonlinearities considered in this work includes, but it is not restricted
to, the modelf (u) = up withp > 1, andp < N+2

N−2 if N ≥ 3. Precise assumptions
will be stated and discussed below.

A basic motivation for the study of this equation comes from the fact that it
is satisfied by standing-wave solutions of the nonlinear Schr¨odinger equation

ih̄
∂ψ

∂t
= h̄2

2m
∆ψ −W(x)ψ + g(|ψ |)ψ, (1.2)

namely solutions of the formψ(x, t) = u(x)ei
Et
h̄ , whose amplitudeu(x) van-

ishes at infinity. Here thenu(x) satisfies (1.1) withV = W + E, ε2 = h̄2

2m and
f (u) = g(u)u. In this contextε can be naturally regarded as a small parameter,
see [13].
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An interesting class of solutions of (1.1) are the so called semi-classical
states, which are families of solutionsuε which develop a spike shape around
one or more distinguished points of the space, while vanishing asymptotically
elsewhere asε → 0. More precisely, scaling outε around a pointP , defining
vε(y) = uε(P + εy), thenvε satisfies

∆v − V (P + εy)v + f (v) = 0 in R
N,

v(x)→ 0 as|x| → ∞,
and one searches for solutionsvε which approach asε → 0 a bell-shape given
by a positive, ground-state solution of

∆w − V (P )w + f (w) = 0 in R
N, (1.3)

For the power nonlinearityf (s) = sp, 1< p < N+2
N−2, sinceV (P ) > 0, it is well

known that this problem has a positive solution which goes to zero at infinity.
This solution is, besides, radially symmetric around some point and unique up to
translations, see Gidas, Ni and Nirenberg [14] and Kwong [16]. Moreover, see
[16] and Ni and Takagi [20], the linearized equation aroundw is nondegenerate
in the sense that the problem

∆h− V (P )h+ pwp−1h = 0 in R
N, (1.4)

has linear combinations of the functions∂w
∂xi

as its only solutions which go to zero
at infinity. These facts are crucial in the formulation of a Lyapunov-Schmidt type
procedure, first introduced by Floer andWeinstein in [13] for the one-dimensional
case, then extended by Oh to higher dimensions in [23], [24], which reduces the
original problem to a finite dimensional one. This finite dimensional system of
equations becomes, for the case of a single spike, one inP , which resembles
∇V (P ) = 0 asε → 0. The case ofP a nondegenerate critical point ofV was
dealt with in [13], [23] and [24].

Rabinowitz was the first in dealing with the question from a global variational
point of view. Roughly speaking, under only a basic set of assumptions inf

existence is established for smallε whenever

lim inf|x|→+∞V (x) > inf
x∈RN

V (x),

see [26]. Concentration takes place around a global minimizer ofV , as established
by Wang forf (u) = up, in [31]. In [8] the authors obtained local results for a
rather generalf for which no fine properties of the limiting equation were known.
Assuming that in an open bounded setΛ one has

inf
x∈∂Λ V (x) > inf

x∈ΛV (x),
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a single-peaked solution around a minimizer ofV in Λ is constructed. This
result was extended in [9] to multi-peak solutions around any prescribed finite
set of local minima. The variational approach was also found to work around any
topologically non-trivial critical point ofV in [10], without finite dimensional
reduction, yet uniqueness of the asymptotic radial ground state was required.

On the other hand, the finite dimensional reduction method was also found
suitable to find concentrating solutions around degenerate critical points ofV

whenf (u) = up. Ambrosetti Badiale and Cingolani [1] do so at isolated local
maxima with polynomial degeneracy and Y. Li [18] at generalstablecritical
points ofV . See also [17], [15] and [25] for recent results using this approach.

Throughout this paper the following hypotheses onf : [0,∞)→ R will be
assumed.

(f0) f (s) is of classC1 andf ′(s)s is locally Lipschitz on[0,∞).
(f1) There exists a numberp > 1, withp < N+2

N−2 if N ≥ 3, such that

lim sup
s→+∞

f ′(s)
sp−1

< +∞.

(f2) There is a numberC > 0 such that

f ′(s)s ≤ Cf (s) for 0< s < 1.

(f3) There exists a numberq > 1 such that

0< qf (s) ≤ f ′(s)s for all s > 0.

Assumptions (f0)-(f3) guarantee, from standard variational arguments, ex-
istence of a least-energy ground state of (1.3), which is radially symmetric.
Uniqueness is however not known. This is a delicate issue, for which affirmative
answer is known from fine ODE analysis only for more restricted classes. Per-
haps the most general result of this type is that recently obtained by Serrin and
Tang in [28], which would guarantee radial uniqueness in (1.3) if additionally one
assumes that the quotient−s+f ′(s)s

−s+f (s) is non-increasing. For instance, uniqueness
does not seem to be known for the nonlinearity

f (s) = sp + sq, 1< q < p <
N + 2

N − 2
,

situation in which (f0)-(f3) hold.

The purpose of the present work is to develop a variational method of con-
struction of single and multiple-spike solutions, associated to general topologi-
cally nontrivial critical points ofV , only under assumptions (f0)-(f3).

A difficulty faced with variational characterizations of critical values, is that
they do not always allow easily to localize properties of associated critical points,
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especially if they do not enjoy a minimizing or least-energy character. On the
other hand this is an advantage of the implicit-function Lyapunov-Schmidt type
approach, which discovers the solutions around a small neighborhood of a well
chosen first approximation. However, this approach relies heavily on nondegen-
eracy properties of the linearized problem around this first approximation, thus
this reduction procedure is possible only with very fine information on the the
limiting equation. In a number of interesting problems exhibiting point concen-
tration this type of information is simply not available, and could be very hard to
be obtained even for simplest possible nonlinearities, see for instance [12] and
[2]. The need is then created of finding ways oflocalizing without linearizing.

The approach proposed here consists of dealing explicitly with a special
negative gradient flow defined on Nehari’s manifold for a properly penalized
energy functional associated to the problem. Considered pointwise, this flow
becomes a fairly explicit nonlocal evolution problem inR

N which turns out to
have very nice properties (not shared by heat flow for instance). In particular,
if we start from a well-chosen set of initial conditions obtained from a suitable
test path associated to the linking situation assumed inV , then we we are able
to follow the flow closely. Then we let time go to infinity and define a mimmax
value along this deformed test path. Ekeland’s variational principle then allows
us to find almost-critical points which stay arbitrarily close to the deformed
path. Close analysis of the flow finally leads us to capture the properties of these
almost-critical points which in the limit in time will yield a solution of (1.1) with
the desired characteristics, eliminating the penalization earlier introduced. This
is done for the construction of both, single and multiple-spike solutions of (1.1).

At this point we would like to mention that in related work by Coti-Zelati
and Rabinowitz in [6], [7] multi-bump solutions are constructed for equations
including

∆u− u+ k(x)up = 0,

with k periodic, and under certain nondegeneracy assumptions which cannot be
dealt with via implicit-function finite dimensional reduction, see also the work by
Spradlin [29], where infinite-bump solutions are obtained. These constructions
are also based upon accurate considerations on the gradient flow.

We specify next what type of local linking we consider for the potentialV .
LetΛ be an open, bounded subset ofR

N with C1 boundary∂Λ.

Definition 1.1We say that there is alocal linking ofV in Λ with critical value
c∗, if the following conditions hold:

(a) There exist closed setsB0 ⊂ B ⊂ Λ, B connected, such that if we consider
the class of maps

Γ = {ϕ ∈ C(B,Λ) | ϕ(x) = x ∀x ∈ B0} (1.5)
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then

sup
x∈B0

V (x) < inf
ϕ∈Γ sup

x∈Λ
V (ϕ(x)) ≡ c∗. (1.6)

(b) For eachx ∈ ∂Λwith V (x) = c∗, there is a directionτ , tangent to∂Λ, such
that

∇V (x) · τ �= 0. (1.7)

Particular cases of local linking ofV in Λ are local maxima, local minima or
saddle points forV insideΛ, see below. On the other hand, (a) and (b) guarantee
the existence of a critical point ofV at levelc∗ insideΛ. Condition (b) is necessary
in order to “seal”Λ at levelc∗. so that standard deformation arguments indeed
yield the presence insideΛ of such a critical point.

Theorem 1.1. Assumef satisfies (f0)-(f3) and thatΛ is a bounded, open subset
of R

N with smooth boundary, in which there is linking forV with critical value
c∗. Then there isε0 > 0, so that for every0 < ε < ε0 a positive solutionuε of
(1.1) exists. Ifuε(xε) = max

x∈RN
uε(x) then

xε ∈ Λ, V (xε)→ c∗ and ∇V (xε)→ 0 as ε → 0.

Moreover,
uε(x) ≤ Ae−b|x−xε |/ε

for certain positive numbersA, b.

This result extends to the construction of multi-peak solutions. In order to
avoid technicalities we will assume that the local linking corresponds to saddles.
This allows to obtain in a simple way the Intersection Lemma in Sect. 7. More
precisely consider

Definition 1.2We say that there is alocal linking ofV in Λ with critical value
c∗ of a saddle type, if there is a local linking ofV inΛ with critical valuec∗ and
further:

There are complementary subspacesS, T such thatRN = S⊕T , andO ∈ Λ
such thatB = B(O, r) ∩ (S + {O}) ⊂ Λ, B0 = (∂B(O, r)) ∩ (S + {O}) and

c∗ = inf
x∈(T+{O})∩Λ

V (x). (1.8)

Now we state our second result.

Theorem 1.2. Assume thatf satisfies (f0)-(f3). LetΛi, i = 1, . . . , 1, be smooth
bounded domains inRN with Λ̄i ∩ Λ̄j = ∅, such that there is linking ofV inside
eachΛi with critical valuesc∗i of saddle type. Then there existsε0 > such that,
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for all 0 < ε < ε0 a positive solutionuε of (1.1) exists and, ifxεi ∈ Λi is such
thatuε(xεi) = max

x∈Λi
uε(x) then

V (xεi)→ c∗i and ∇V (xεi)→ 0, asε → 0, for all .

Moreover

uε(x) ≤ Ae−bmin
i

|x−xεi |/ε
for all x ∈ R

N,

for certain positive numbersA, b.

We should also mention that equations of the form (1.1), in bounded domains
under Dirichlet or Neumann boundary condition with a constant potential have
also drawn considerable attention. Many results on existence of spike-layered
patterns been established in recent years for those problems, starting with the
works of Ni and Takagi [20] and [21] and Ni and Wei [22]. These results, as well
as most of the subsequent progress found in the literature, make essential use
the nondegeneracy condition on the limiting equation. In [11] we have obtained
concentration results for least energy solutions under conditions not ensuring
uniqueness or nondegeneracy, in the spirit of (f0)-(f3), which also considerably
simplifies the original proofs. We believe that the techniques developed in the
present paper may be adapted to attack this type of problems. They may also be
of use in the study of related point-concentration phenomena, like nearly critical
elliptic equations, or Ginzburg-Landau vortices, see [27], [4].

The rest of this paper will be devoted to the proof of the above results. In
Sect. 2 we introduce the variational framework. Rather than the usual energy
functional for problem (1.1), we consider a penalized modificationJε, defined as
in [8] and [10]. The Nehari’s manifold is defined here as the set of thoseu �= 0
for which J ′

ε(uε)uε = 0. A min-max quantity eventually leading to our seeked
single-peak solution is defined, making use of a suitable gradient flow. In Sect. 3,
estimates for this flow are found, in particular leading to its global definiteness
in time. In Sect. 4 local control of the flow is obtained which leads to the proof
of Theorem 1.1. In Sect. 5 and Sect. 6 we generalize this analysis to the case of
multiple concentration, leading to the proofs of Theorems 1.2 and Theorem 1.3.

2. The min-max

In this section we will define a min-max quantity which will later be established
to yield a single-spike solution as that predicted in Theorem 1.1. Thus we assume
in what follows thatV has nontrivial linking with critical valuec∗ in a bounded
open setΛ. We begin with a useful observation: with no loss of generality we
may assume that the least value ofV on Λ̄ is very close toc∗. In fact, let us
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consider setsB andB0 as in the definition of linking inΛ: let δ > 0 be an
arbitrary small number and consider the set

Λδ = {x ∈ Λ / V (x) > c∗ − δ}.
Then we can replaceΛ byΛδ without affecting condition (b) in the definition of
linking. In fact, letc∗ − δ < c1 < c

∗ and define

Bδ = B ∩ {x ∈ Λ |V (x) ≥ c1}, B0δ = B ∩ {x ∈ Λ |V (x) = c1}.
Let us notice thatB0δ is non-empty thanks to the connectedness ofB. Then,
given a continuous functionϕ : Bδ → Λδ satisfyingϕ(x) = x on B0δ, we
defineϕ̃ onB by extendingϕ as the identity onB \ Bδ. Thenϕ̃ : B → Λ, and
supx∈B V (ϕ̃(x)) = supx∈Bδ V (ϕ̃(x)). This proves our claim.

Let us consider the usual energy functionalEε associated to equation (1.1),

Eε(u) = 1

2

∫
RN

ε2|∇u|2 + V (x)u2 −
∫

RN

F (u), u ∈ H 1. (2.1)

We have setf (s) = 0 for all s < 0 andF(s) = ∫ s
0 f (t)dt . Standard arguments

show that nonzero critical points ofEε correspond precisely to the positive so-
lutions of (1.1) inH 1(RN). In what follows, for functionsu andv in H 1(RN)

we will denote

‖u‖2
H1,ε

=
∫
ε2|∇u|2 + u2, ‖v‖2

H1 =
∫

|∇v|2 + v2.

Similarly, we denote

‖v‖2
H2 = ‖v‖2

H1 +
∫

|D2v|2, ‖u‖2
H2,ε

= ‖u‖2
H1,ε

+ ε4
∫

|D2u|2.
As in [8], [9] and [10], we will work with a a modified versionJε of Eε, which
penalizes with high values concentration outsideΛ. Let q be as in assumption
(f3), and fix a numberr > (q + 1)/(q − 1). Let a > 0 be so thatf (a) = α/r,
whereα is a positive lower bound ofV . Then we define the functions

f̃ (s) =
{
f (s) s ≤ a
f (a)+ f ′(a)(s − a) s > a

and
g(x, s) = χΛ(x)f (s)+ (1 − χΛ(x))f̃ (s), (x, s) ∈ R

N × R,

whereχΛ denotes the characteristic function of the setΛ. Thanks to assumption
(f1), we have that ifa is chosen small enough then

F̃ (s)− 1

2
f̃ (s)s ≤ 0 and

f̃ (s)

s
≤ V0

2
, for all s ≥ 0. (2.2)
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LetG(x, s) = ∫ s
0 g(x, t)dt and consider the modified functionalJε given by

Jε(u) = 1

2

∫
RN

ε2|∇u|2 + V (x)u2 −
∫

RN

G(x, u), u ∈ H 1. (2.3)

Let us observe thatf satisfies the so-called Ambrosetti-Rabinowitz condition

0< (q + 1)F (s) ≤ f (s)s for all s > 0, (2.4)

as can be easily seen from assumption (f3). It follows thatJε satisfies the Palais-
Smale condition, as can be shown by slightly modifying the argument given in
Lemma 1.1 in [8]. This is an important advantage ofJε with respect toEε, for
which the P.S. condition could typically fail. Our strategy consists of finding a
critical point ofJε. These critical points are weak solutions of the equation

ε2∆u− V (x)u+ g(x, u) = 0 in R
N. (2.5)

Thus, if they additionally satisfy

0 ≤ u(x) ≤ a x ∈ R
N \Λ, (2.6)

then they are solutions of (1.1). A consequence of assumption (f3) is that the
functionf (s)/s is strictly increasing ons > 0. This fact and a standard argument
reduces the search of nontrivial critical points ofJε to that of critical points of
Jε on itsNehari manifoldMε defined as

Mε = {u ∈ H 1 \ {0}/Fε(u) = 0}, (2.7)

where

Fε(u) =
∫

RN

ε2|∇u|2 + V (x)u2 −
∫

RN

g(x, u)u, (2.8)

see [10]. We observe thatu|Λ �≡ 0 if u ∈ Mε. This and the fact thatf (s)/s is
strictly increasing imply thatu ∈ Mε if and only if

Jε(u) = max
t≥0

Jε(tu).

Next we see that foru ∈ Mε we have

F ′
ε(u)u = F ′

ε(u)u− Fε(u) =
∫

RN

g′(x, u)u2 − g(x, u)u,

and then, from hypothesis (f1), we see that

F ′
ε(u)u ≥ (q − 1)

∫
Λ

f (u)u > 0. (2.9)
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This fact and assumption (f0) imply thatMε is locally aC1,1 manifold. We
actually have more. GivenK > 0 let us consider consider the set

MK
ε = {u ∈ Mε / Jε(u) ≤ εNK}.

Then the following fact holds.

Lemma 2.1. There exist positive numbersk1 andk2 such that for all sufficiently
smallε and allu ∈ MK

ε one has

F ′
ε(u)u ≥ εNk2 (2.10)

and

εNk1 ≥ ‖u‖H1,ε ≥ εNk2 (2.11)

Proof. Let u ∈ MK
ε . For the proof of this fact it is convenient to rescale the

functionu definingvε(y) = u(εy), andΛε = ε−1Λ. Sinceu ∈ Mε andJε(u) ≤
εNK, from relations (2.4) and (2.2) we find that

(
1

2
− 1

q + 1
)

∫
Λ

f (u)u ≤ KεN

Using again thatu ∈ Mε and (2.2) we find that

Nε ≡
∫

RN

ε2|∇u|2 + V0u
2 ≤ k

Now, let us observe that assumptions (f1) and (f3) imply the existence of a
constantA so that

0< f (s) ≤ A(|s|q + |s|p), s > 0. (2.12)

Using thatu ∈ Mε and Sobolev’s embedding we find that

Nε ≤ 2A
∫
Λε

(vp+1
ε + vq+1

ε ) ≤ K(N(p+1)/2
ε +N(q+1)/2

ε ).

It follows that‖u‖H1,ε is bounded below by a constant independent ofε, times
εN . This proves the estimates (2.11). On the other hand, we have that∫

ε2|∇u|2 + V (x)u2 =
∫
g(u, x)u ≤

∫
f (u)u,

hence inequality (2.10) follows from relation (2.9). ��
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Important role in our analysis will be played by the limiting functionalsIν ,
ν > 0, given by

Iν(u) = 1

2

∫
RN

|∇u|2 + νu2 −
∫

RN

F (u), u ∈ H 1.

Let us consider the numbers

bν = inf
v �=0, v∈H1

max
t>0

Iν(tv). (2.13)

Thenbν > 0 is the least value ofIν , at which there are nontrivial critical points.
These are theleast energy solutionsof the equation

∆u− νu+ f (u) = 0 in R
N,

0< u(x)→ 0 as|x| → ∞,
see for instance [3]. By comparison with suitable barriers, we find that for each
of these solutions there are positive numbersm1,m2 such that

0 ≤ u(x) ≤ m1e
−m2|x|, for x ∈ R

N,

besides they are radially symmetric up to translations thanks to a classical result
in [14].

Now we will build up a min-max quantity forJε. To begin with, we consider
a pathϕε in the classΓ given by (1.5) with the property that

V (ϕε(x)) ≤ c∗ + ε2, for all x ∈ B. (2.14)

Using a deformation argument we may also assume, with no loss of generality
thatϕε is so that wheneverx ∈ B and

V (ϕε(x)) ∈ [c∗, c∗ + ε2] implies |∇V (ϕε(x))| ≤ ε2.

Next we consider a fixed critical point of the functionalIc∗ at levelbc
∗

which we
choose radially symmetric around the origin and denotewc∗ . Associated toϕε,
we consider the pathpε : B → Mε defined as

pε(x)(y) = wc∗
(
y − ϕε(x)

ε

)
tx,ε, y ∈ R

N, (2.15)

wheretx,ε is the uniquet > 0 such that

tx,εwc∗

( · − ϕε(x)
ε

)
∈ Mε.
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Our method consists of deforming the pathpε along a suitable negative gradient
flow for Jε onMε. For this purpose, it is convenient to endowH 1(RN) with the
inner product

(u, v)∗ =
∫

RN

ε2∇u∇v + V (x)uv. (2.16)

In what follows∇Jε and∇Fε will denote the gradients ofJε andFε with respect
to the inner product (2.16). We consider the following initial value problem in
H 1.

η̇ε(x, t) = Gε(ηε(x, t)), η(x,0) = pε(x), x ∈ B, (2.17)

where

Gε(u) = ∇Jε(u)− d(u)∇Fε(u), (2.18)

with

d(u) = (∇Fε(u),∇Jε(u))∗
‖∇Fε(u)‖2∗

. (2.19)

The vector fieldGε corresponds to the orthogonal projection of∇Jε onto the tan-
gent space to the Nehari manifoldMε. It is clearly locally Lipschitz continuous
and satisfiesGε(u) = 0 if and only if ∇Jε(u) = 0. Thus (2.17) has a unique
solutionηε(x, t) defined on some time interval. It is easily checked thatηε(x, t)

belongs toMε at all times and thatJε(η(x, t)) is decreasing int . In Proposition
3.1 (i) we will prove thatη(x, t) is defined for allt ≥ 0. Accepting this fact for
the moment we define the min-max value

Cε = inf
t≥0

sup
x∈B
Jε(ηε(x, t)). (2.20)

Now we will establish thatCε is a critical value ofJε. is a direct consequence
of the following result.

Lemma 2.2. (i) For all sufficiently smallε we have the validity of the estimates,

εN(bc
∗ + o(1)) ≤ Cε ≤ εN(bc∗ + o(ε)). (2.21)

(ii) There exists a numberσ > 0 such that for all sufficiently smallε,

sup
x∈B0

Jε(pε(x)) ≤ εN(bc∗ − σ).
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Lemma 2.2, the fact thatJε satisfies the Palais-Smale condition and a standard
deformation argument readily yield thatCε is a critical value ofJε. In the next
sections we will find an associated critical point which actually solves equation
(1.1) and satisfies the conditions of Theorem 1.1.

A technical point we would like to emphasize, which constitutes a crucial
difference with the min-max quantity defined in [10], is the fact that the elements
of the basic pathpε(x) do notresemble, after the proper scaling, a least energy
solution ofIν for ν = V (ϕε(x)), except when this value equalsc∗. Making the
choice of a “path of least energy spikes” would be in our situation hopeless
since we do not have an uniqueness assumption that would allow to make such a
selection in a continuous way. Lemma 2.1 shows that the original linking situation
of V remains respected through deformations of this “energetically rough” path
at the level of the functionalJε. We may call this approach avariational finite
dimensional reduction. The moral is perhaps that in the study of this type of
point-concentration phenomena in the presence of variational structure, linking
in the finite dimensional guiding energy may be seen transmitted to the functional
counting only with very rough information, in opposition to the fine facts needed
for the Lyapunov-Schmidt reduction procedure.

Proof of Lemma 2.2.Let us prove part (i). To establish the upper estimate in
(2.21), let us consider the test pathpε(x) defined in (2.15). Clearly we have

Cε ≤ sup
x∈B
Jε(pε(x)).

Forx ∈ B we have

Jε(pε(x)) = εN



∫
B(0,Rε)

|∇wc∗ |2 + V (ϕε(x)+ εy)w2
c∗

−
∫

B(0,Rε)

F (wc∗)+ o(ε)

 ,

whereRε = −k logε, with k large enough. Here we use the exponential decay
of wc∗ and we notice that, sinceB is closed andB ⊂ Λ, for ε small enough the
test pathpε does not touch the penalization. We have that

V (ϕε(x)+ εy) = V (ϕε(x))+ ε∇V (ϕε(x)) · y +O(ε2|y|2).
Then, using the radial symmetry ofwc∗ , its exponential decay, and (2.14) we find
that ∫

B(0,Rε)

V (ϕε(x)+ εy)w2
c∗ ≤ c∗

∫
B(0,Rε)

w2
c∗ + o(ε). (2.22)
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From here we obtain

Jε(pε(x)) ≤ εN {Ic∗(wc∗)+ o(ε)},
and then we finally get the desired upper bound

Jε(pε(x)) ≤ εN(bc∗ + o(ε)).
A similar argument yields the validity of the estimate in part (ii). Next we prove
the lower bound in (2.21). For this purpose we define thecenter of massof a
function inL2(RN) which is not identically zero as the quantity

β(u) =

∫
Λ+
xu2(x)dx∫

RN

u2(x)dx
,

whereΛ+ is a small neighborhood of̄Λ. In order to obtain the lower bound, we
will first study the auxiliary minimization problem

mε = Inf{Jε(u)/u ∈ Mε, β(u) = zε}, (2.23)

wherezε ∈ Λ. Standard arguments yield that problem (2.23) has indeed a mini-
mizeruε. We scale this function and define

wε(y) = uε(zε + εy).
The functionswε have a uniform bound inH 1. Sinceuε ∈ Mε, an argument of
concentration-compactness type (see for instance Lemma 3.1 below) gives that

lim
R→∞

∫
RN\B(0,R)

|∇wε|2 + V (zε + εy)w2
ε = 0, (2.24)

uniformly in ε, and that every sequence of{wε} has a weakly convergent sub-
sequence, whose limitw is nonzero. Dichotomy is excluded thanks to the mini-
mizing character ofuε and the fact that the variation ofV onΛ below the level
c∗ can be assumed small enough. GivenR > 0 we have

ε−N
∫

RN

ε2|∇uε|2 + V (x)u2
ε ≥

∫
B(zε,R)

|∇wε|2 + V (zε + εy)w2
ε (2.25)

and

−ε−N
∫

RN

G(x, uε) ≥ −
∫
B(zε,R)

F (wε)−
∫

RN\B(zε,R)
F (wε). (2.26)

By (2.24) we have that ∫
RN\B(zε,R)

F (wε) = oR(1),
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uniformly in ε. Let us take a sequenceεn → 0 so that, dropping the dependence
of n in the notation,zε → z andV (zε)→ V (z).Using (2.25) y (2.26) we obtain

lim inf
ε→0

ε−NJε(uε) ≥ IV (z)(w)+ oR(1).

Consequently

lim inf
ε→0

ε−Nmε = lim inf
ε→0

ε−NJε(uε) ≥ IV (z)(w) ≥ bV (z). (2.27)

Now we complete the argument. We define the functionϕε,t : B → Λ as
ϕε,t (x) = β(ηε(x, t)). We see thatϕε,t : B → Λ+, so that it does not quite
belong toΓ . However, we see from the linking assumption, that if the classΓ +
is defined in the same way asΓ , but allowing the test paths to take values inΛ+,
then the min-max valuec∗ remains unchanged if we replaceΓ byΓ +. Thus, for
everyε > 0 we can find a pointxε ∈ B such that

V (ϕε,t (xε)) ≥ c∗.
Takingzε = ϕε,t (xε) we have that for everyt ≥ 0

sup
x∈B
Jε(ηε(x, t)) ≥ Jε(ηε(xε, t)) ≥ mε,

and then the result follows from (2.27). ��

3. Estimates on the flow

The purpose of this section is to prove the following basic facts of the flow in
(2.17).

Proposition 3.1. (i) The flowηε(x, t)givenby (2.17) iswell defined for allt ≥ 0.

(ii) There is a constantK independent ofε so that

‖ηε(x, t)‖H2,ε ≤ εNK and ‖ηε(x, t)‖L∞ ≤ K,
for all t ≥ 0 and allx ∈ B.

Before proving the proposition lets us consider the following estimate of the
gradient ofJε.

Lemma 3.2. Given anyα0 > 0 there areε0 > 0, σ > 0 andδ > 0 such that

‖∇Jε(u)‖∗ ≤ α0

for all 0< ε < ε0 andu ∈ Mbc
∗+σ

ε .
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Proof. It is not hard to check that∇Jε(u) is Lipschitz continuous overMbc
∗+σ

ε .
Let us assume that the result of the lemma is not true and letuε be a minimizer
of Jε over Mε. A concentration compactness argument allows then to prove
thatε−NJε(uε) → c∗ − δ, asε → 0. Thus, choosingδ + σ small enough and
using that∇Jε is Lipschitz continuous overMbc

∗+σ
ε we find a contradiction with

‖∇Jε(u)‖∗ > α0. ��
Proof of Proposition 3.1.Let us recall that the vector fieldGε defines a negative
gradient onMε. Thus, whileη(x, t) is well defined,η(x, t) ∈ MK

ε , for certain
K > 0 independent ofx. From Lemma 2.1 we see then that in this time interval
η(x, t) is bounded inH 1 norm, uniformly inx. On the other hand, also from
that lemma we have that the numberd(η(t)), given in (2.19) is well defined and
bounded. ConsequentlyGε is bounded along the flow, and thus global existence
of it follows from standard ODE theory. This completes the proof of part (i).

In the proof of (ii) it will be more convenient to work with stretched variables.
We consider the change of variablesx = εy. Let Vε(y) = V (εy). We make
this change of variables inη, pε, g(x, u), Jε,Fε,Gε and(·, ·)∗. We shall avoid
relabelling these objects after the change of variables is made in order to keep
notational simplicity. For instance now de denote

(v1, v2)∗ =
∫
(∇v1∇v2 + V (εy)v1v2)dy (3.1)

Jε(v) = 1

2

∫
(|∇v|2 + V (εy)v2)dy −

∫
G(εy, v)dy.

First we make the vector fieldGε more explicit. Using the definition of the inner
product (3.1) we find

∇Jε(u) = u− Aεg(y, u)
and

∇Fε(u) = 2u− Aε(g′(y, u)u− g(y, u)),
whereAε = (∆− Vε)−1. Using local elliptic estimates, and taking into account
thatV is bounded, we find that forr > 1 Aε : Lr → W 2,r defines a bounded
operator whose norm is bounded independently ofε. If we define

h(y, u) = −g(y, u)− d(u)(g′(y, u)u− g(y, u)),
then equation (2.17) can be written as

dη

dt
= −(1 − 2d(η))η + Aεh(y, η), η(0) = pε(x), (3.2)
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for eachx ∈ B. We denote its solution below simply asη(t), dropping the
dependence onx. SinceJε decreases along the flow, which stays on the Nehari
manifold,η remains bounded inH 1, for all t ≥ 0. This estimate is independent
of x, t andε, that is, there is a constantK such that

‖η(t)‖H1 ≤ K for all t ≥ 0. (3.3)

This global estimate implies by means of the Sobolev embeddings that forp0 =
2N/(N − 2) we have

‖η(t)‖Lp0 ≤ K for all t ≥ 0. (3.4)

A better estimate satisfies the initial condition. In fact,pε(x) ∈ W 2,r (RN) for all
r ≥ 1. Moreover theW 2,r norm is independent ofε and ofr in a closed, bounded
interval contained in(0,∞).

Next we regardd(η(t))as a function oft , and we defineb(t) = t−2
t∫

0
d(τ)dτ.

Thanks to Lemma 2.1, there is a constantK such that

|d(t)| = |(∇Jε(η),∇Fε(η))∗
‖∇Fε(η)‖2∗

| ≤ K‖∇Jε(η)‖∗,

and then, assuming that an appropriate choice ofδ in Lemma 3.2 has been made,
we see thatd satisfiesd(t) ≤ 1/4 for all t ≥ 0. Here we note that the constant
k2 appearing in (2.10) does not depend onδ. As a consequence we have that
b(t) ≥ t/2 and that

e−b(t)
t∫

0

eb(τ)(1 + d(τ))dτ ≤ 5

2
e−b(t)(eb(t) − 1) ≤ 5

2
. (3.5)

Continuing with the analysis of the flow, we useeb(t) as multiplier in (3.2) and
we obtain thatη satisfies

eb(t)η(t) = η(0)+
t∫

0

eb(τ)Aεh(y, η)dτ. (3.6)

On the other hand, from assumptions (f1) and (f3) we get that

|f ′(s)| ≤ A|s|q−1 if s ≤ 1 and |f ′(s)| ≤ A|s|p−1 if s > 1,

thus

|h(y, η(t))| ≤ A(1 + d(t))|η(t)|q if η(t) ≤ 1 and

|h(y, η(t))| ≤ A(1 + d(t))|η(t)|p if η(t) > 1.
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Next we decomposeh(t) = h(·, η(t)) setting for eacht > 0,

Ω1(t) = {y / η(t)(y) ≤ 1} and Ω2(t) = {y / η(t)(y) > 1},
and thenhi(t) = χΩi(t)h(t) for i = 1,2. Certainly we haveh = h1 + h2. We
note that ifr1 = p0/q andr2 = p0/p thenhi : R+ → Lri (RN) is continuous
and bounded fori = 1,2. Here we use the globalH 1 bound of the flow given in
(3.3).

From (3.6) we can define the following decomposition ofη asη(t) = η1(t)+
η2(t) with

eb(t)ηi(t) = ηi(0)+
t∫

0

eb(τ)Aεhi(τ )dτ, (3.7)

i = 1,2, whereη1(0) = η(0) andη2(0) = 0. Next we perform a bootstrap
iteration. From the discussion above and the properties of the operatorAε we
have

‖Aεhi‖W2,ri ≤ K(1 + d(t)).
Thus, from (3.7) we have

‖ηi(t)‖W2,ri ≤ e−b(t)‖ηi(0)‖W2,ri +Ke−b(t)
t∫

0

eb(τ)(1 + d(τ))dτ.

But then, from (3.5), we conclude that‖ηi(t)‖W2,ri ≤ K for i = 1,2. Next we
use the Sobolev embedding to findp1 > p0 such that

‖η(t)‖Lp1 ≤ K for all t ≥ 0. (3.8)

We can repeat this bootstrap procedure until obtaining

‖η(t)‖H2(RN) ≤ K ∀t ≥ 0

for a certain constantK. We do not do the details. With some more iterations we
also get theL∞ estimate. ��

4. The proof of Theorem 1.1

As we have already shown, the min-maxCε is a critical value for the functional
Jε. Hence to complete the proof of Theorem 1.1 we only need to prove that there
is a critical point ofJε associated to this level, which is also a critical point of
Eε. Let us define

Kc∗ = {x ∈ Λ / V (x) = c∗,∇V (x) = 0}
and letΛ0 be a small neighborhood ofKc∗ such that dist(Λ0, ∂Λ) > 0.

The following is the main step in the proof of the theorem.
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Proposition 4.1. LetΛ0 be as above andΛ1 a domain such that

Λ0 ⊂ Λ1 ⊂ Λ̄1 ⊂ Λ.
Then there exists a positive numberk such that wheneverβ(ηε(x, t̄)) ∈ ∂Λ1 for
x ∈ B and t̄ ≥ 0 we have

Jε(ηε(x, t̄)) ≤ εN(bc∗ − k)
Let us assume for the moment the validity of this result and conclude the

proof of our first main result.

Proof of Theorem 1.1.From Ekeland’s variational principle we can find se-
quencesunε , tn ≥ 0 andxn ∈ B such that

unε → uε, ∇Jε(unε)→ 0, Jε(u
n
ε)→ Cε ≥ (bc∗ + o(1))εN

and

dist(unε , ηε(xn, tn))→ 0.

Thus Jε(ηε(xn, tn)) → Cε ≥ (bc
∗ + o(1))εN . Then, by Proposition 4.1, we

conclude thatβ(unε) is away from the boundary. This together with the decay of
uε, being a solution of (2.5), implies thatuε is a solution of (1.1). ChoosingΛ1

closer toΛ0 if necessary, we can prove thatβ(uε)belongs to a small neighborhood
of Λ0. Finally, shrinking successively the setΛ0 towardsKc∗ , we get the rest of
the statement of Theorem 1.1. ��

It remains to prove Proposition 4.1. To this end, some lemmas are in order.
The next result shows the presence of acollar around the critical points ofV at
level c∗. On this collar the gradient ofV is nonzero.

Lemma 4.2. There exist numbersk > 0, σ > 0 and a closed setD ⊂ Λ1 such
that

(i) ∇V (x) �= 0, for all x ∈ D,
(ii) If γ is a curve inΛ so thatγ (0) ∈ Λ0 andγ (t̄) ∈ ∂Λ1 with

V (γ (t̄)) ≤ c∗ + σ,
then there existst1, t2 ∈ [0, t̄] such thatγ (t) ∈ D for all t ∈ [t1, t2] and
|γ (t1)− γ (t2)| ≥ k.

Proof. Let us denote
R = {x ∈ Λ̄1/∇V (x) �= 0}.

Using hypothesis onV b) we findσ > 0 so thatL = ∂Λ1∩{x/|V (x)−c| ≤ σ } ⊂
R. Then we findk > 0 so small thatLk = {x ∈ Λ̄1/k ≤ dist(x, L) ≤ 2k} ⊂ R.
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On the other hand we definec1 = maxx∈∂Λ1 V (x) andc2 = inf x∈Λ0 V (x). Then
we use Sard’s Lemma to findc1 < c3 < c2 so that

V c3 = {x ∈ Λ̄1/V (x) = c3} ⊂ R.
ModifyingΛ0 if necessary, we may assume thatc∗ − σ < c3. Next we decrease
k > 0, if necessary, so that

L′
k = {x ∈ Λ̄/k ≤ dist(x, V c3) ≤ 2k} ⊂ R.

Then, definingD = Lk ∪ L′
k we see that (i) is satisfied automatically. To prove

(ii) we just observe that ifγ is as in (ii), then it has to cross eitherLk orL′
k, from

where the conclusion readily follows. ��

Lemma 4.3. GivenK there existε0 > 0, σ > 0 and k > 0 such that the
following holds. If0< ε < ε0 andwε ∈ H 2(RN) satisfy

(i) ‖wε‖H2 ≤ K,
(ii) For uε(x) = wε(xε ) we haveuε ∈ Mbc

∗+σ
ε ,

(iii) β(uε) ∈ D,
then

‖Gε(uε)‖∗ ≥ kε.
Proof. Suppose the lemma is not true, then there are sequenceskn → 0
and εn → 0 such thatβ(uεn) ∈ D and ‖Gεn(uεn)‖∗ ≤ knεn. This implies
that ‖∇Jεn(uεn)‖∗ ≤ k̄mεm, with k̄n → 0, as can be seen from the fact that

uεn ∈ Mbc
∗+σ

εn
and Lemma 2.1.

Next we assume, without loss of generality, thatβ(uεn) → x0 and we show
that∇V (x0) = 0, reaching a contradiction. Using (ii) and a concentration com-
pactness argument we can prove thatwεn(y) = uεn(x0 + εny) converges inH 1

to a solutionw of the equation

∆w − V (x0)w + f (w) = 0.

Now we use∂wεn/∂xi as a test function on the gradient ofJε to find∣∣∣∣∣∣
∫

RN

∇wεn∇
∂wεn

∂xi
+ V (x0 + εy)wεn

∂wεn

∂xi
− f (wεn)

∂wεn

∂xi

∣∣∣∣∣∣ ≤ k̄nεn‖wεn‖H2.

Using thatwεn ∈ H 2, we integrate by parts to obtain∣∣∣∣∣∣
∫

RN

∂

∂xi
V (x0 + εny)w2

εn
(y)

∣∣∣∣∣∣ ≤ k̄n‖wεn‖H2,
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and then taking limits we get∂
∂xi
V (x0) = 0. Note that we have also used thatV

is bounded. ��
Lemma 4.4. GivenK > 0 there are numbersα > 0, R > 0 such that, given
any sufficiently smallε andu ∈ MK

ε , there exists̄x ∈ Λ satisfying∫
B(x̄,εR)

u2 > εNα. (4.1)

Proof. For the proof of this fact, it is convenient to rescale the functionu defining
vε(y) = u(εy), andΛε = ε−1Λ.

Sinceu ∈ Mε andJε(u) ≤ εNK, we find From Lemma (2.1) that‖vε‖H1 is
bounded below by a constant independent ofε.

On the other hand, we have the validity of the following fact:Let {vn} be a

bounded sequence inH 1 andε = εn → 0 be such that for someR > 0 one has

lim
n→∞ sup

y∈Λε

∫
B(y,R)

|vn|2 = 0, (4.2)

then
∫
Λε

|vn|r+1 → 0 for eachr ∈ (1, N+2
N−2). This is actually a slight variation

of Lemma 2.18 in [6] for which the same proof applies, so we omit it.
To complete the proof, we assume by contradiction that for someR > 0 there

are sequencesε = εn → 0 and{un} ∈ Mε with Jε(un) ≤ KεN such that for
vn(y) = un(εny) one has

lim
n→∞ sup

y∈Λε

∫
B(y,R)

|vε,n|2 = 0. (4.3)

Then by the above result, we find thatvn → 0 in Lr+1(Λε). But this and the
fact thatun lies on Nehari’s manifold imply thatvε,n → 0 inH 1. We have thus
reached a contradiction, which proves the validity of the lemma. ��

Lemma 4.5. Given positive numbersα1, α2 there exist positive numbersR0, ε0

andk such that for allR > R0, the following holds. If0< ε < ε0, u ∈ Mbc
∗+σ

ε

are so that ∫
B(xi ,εR)

u2 ≥ εNαi, i = 1,2, (4.4)

withB(x1,2εR) ∩ B(x2,2εR) = ∅, then‖∇Jε(u)‖∗ ≥ k.

Proof. Suppose the lemma is false. Then there areα1 > 0 andα2 > 0 such
that for a givenR > 0 we can find sequencesεn → 0, kn → 0 andun ∈ Mεn

such that (4.4) holds for certainxin, i = 1,2, and‖∇Jεn(u)‖∗ → 0. We rescale
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un definingvn(y) = un(x1n + εny). By standard arguments we prove thatvn
converges inH 1, after taking a subsequence, to a non-trivial solution of the
limiting equation. Here we use that the values ofV do not vary much overΛ to
avoid dichotomy. Now we chooseR > 0 large enough so that for every solution
z of the limiting equation centered at the origin we have∫

RN\B(0,R)
z2 ≤ α2

2
.

Then we get a contradiction, since on one handε−1
n |x1n−x2n| → ∞ an on other

handε−Nn Jεn(un) ≤ c∗ + σ . ��
Proof of Proposition 4.1.A deformation argument allows us to assume that the
basic pathϕε satisfies

V (ϕε(x)) ≤ c∗ − σ for all ϕε(x) /∈ Λ0.

for certain small constantσ > 0. With this in mind we observe that ifϕε(x) /∈ Λ0

then

Jε(ηε(x, t)) ≤ εN(bc − σ) for all t ≥ 0.

Thus the only interesting case appears whenϕε(x) ∈ Λ0, and we assume this
now. For simplicity we will writeηε(x, t) = ηε(t)

An application of Lemmas 4.4 and 4.5 yields the existence ofα > 0 and
R > 0 such that if we setαN = α/2(20)N, then for eacht ≥ 0 there is a point
x̄t ∈ Λ with∫

B(x̄t ,εR)

ηε(t)
2 ≥ εNα, and

∫
B(x̄,εR)

ηε(t)
2 ≤ εNαN, (4.5)

for all x̄ ∈ R
N with |x̄ − x̄t | ≥ 4R. At this point we consider a slightly different

notion of center of mass, which is more robust thanβ in front of small variations
of the function far away from the center of mass. Let us consider a partition
{Ri / i ∈ N} of R

N consisting of cubes with sideR/10. Let us fix points
xεi ∈ εRi for eachi, and a numberα > 0. Foru ∈ Mε we let its modified center
of mass be

βR(u) =
∑
i∈N
xεi (

∫
εRi
u2 − εNαN)+∑

i∈N
(
∫
εRi
u2 − εNαN)+ ,

well defined whenever the denominator of the above quotient is non-zero. In
particular this object is well defined on the functionsηε(t), provided thatα was
chosen sufficiently small. Moreover, if we setγ (t) = βR(ηε(t)), we see that
there is a constantM > 0 such that

|γε(t1)− γε(t2)| ≥ 2Rε implies ‖ηε(t1)− ηε(t2)‖ ≥ εNM. (4.6)
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On the other hand, the result of Lemma 4.3 holds withβ replaced byβR, since
β − βR = o(1) asε → 0. Thus we may assume in the remaining of the proof,
thatβR(ηε(t̄)) ∈ ∂Λ1.

Sinceγε(0) ∈ Λ0, γε(t̄) ∈ ∂Λ1 andV (γε(t̄)) ≤ c∗ + σ , by Lemma 4.2 there
exist t1, t2 such thatγε(t) ∈ D for t ∈ [t1, t2] and|γε(t1) − γε(t2)| ≥ k1. Then
we use Lemma 4.3 to findk such that

‖Gε(ηε(t))‖ ≥ kε ∀t ∈ [t1, t2].
Thus

Jε(ηε(t2))− Jε(ηε(t1)) =
t2∫
t1

(∇Jε(ηε(t)), η̇ε) ≤ −εk
t2∫
t1

‖η̇ε(t)‖dt. (4.7)

On the other hand, there exists a partition of the interval[t1, t2] such thats0 =
t1 < s1 < . . . < snε = t2, nε + 1 ≥ k1/2Rε and|γ (si+1)− γ (si)| ≥ 2Rε. Then,
from (4.6) we have, for all 0≤ i ≤ nε − 1, that

εNM ≤ ‖ηε(si+1)− ηε(si)‖ ≤
si+1∫
si

‖η̇ε(t)‖dt. (4.8)

Combining equation (4.8) and (4.7) we obtain a constantk such that

Jε(ηε(t2))− Jε(ηε(t1)) ≤ kεN
and consequently

Jε(ηε(t̄))− Jε(ηε(0) ≤ −kεN,
from where the result follows. ��

5. Some preliminaries for the study of multipeak solutions

In this section we introduce some definitions and we do a preliminary analysis
leading to the proof of Theorem 1.2 on the existence of multipeak solutions. Thus,
we consider setsΛi , i = 1, · · · , 1 as in the statement of the theorem, and cor-
responding setsBi, B0,i as in the definition of local linking, with corresponding
classes of pathsΓi and critical valuesc∗i . See Definition 1.1.

Let us choose small neighborhoodsΛ+
i of Λ̄i , in such a way that̄Λ+

i ∩ Λ̄+
j =

∅, for all i �= j . We defineΣ = R
N \ ⋃1

i=1Λ
+
i and we letρi : R

N → [0,1] be
C∞ functions such that

ρi(x) =
{

1 x ∈ Λ+
i

0 x ∈ ⋃
i �=j
Λ+
j ,
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i = 1, . . . , 1, and
1∑
i=1
ρi(x) ≡ 1 for all x ∈ R

N . We considerΛ =
1⋃
i=1
Λi , and

define a penalized functionalJε as in (2.3) and the Nehari manifold as in (2.7)
and (2.8). We will also considerlocal Nehari manifolds

Miε = {u �= 0 / Fiε(u) = 0},
where

Fiε(u) = J ′
ε(u)(ρiu), i = 1, ..., 1.

We observe that and that all critical points ofJε belong to allMiε’s. These sets
will be actual manifolds only at some regions. On the other hand, we clearly

have that
1⋂
i=1

Miε ⊂ Mε.

Now construct next a suitable test pathpε. We first choose for eachi ∈
{1, · · · , 1} a pathϕiε ∈ Γi such that

V (ϕiε(x)) ≤ c∗i + ε2 for all x ∈ Bi.
As in Sect. 2, we assume thatϕiε has been chosen so thatx ∈ Bi andV (ϕiε(x)) ∈
[c∗i , c∗i + ε2] implies|∇V (ϕiε(x))| ≤ ε2. Then we define

pε :
1∏
i=1

Bi →
1⋂
i=1

Miε

as

pε(x) =
1∑
i=1

wc∗i

( · − ϕiε(xi)
ε

)
ρ̄i(·)tε(xi),

wherex = (x1, . . . , x1), ρ̄i is a cut-off function such that̄ρi ≡ 1 over a small
neighborhood ofΛ̄i, supp(ρ̄i) ⊂ Λ+

i , so that in particularρiρ̄i = ρ̄i . wc∗i is a
least energy critical point ofIc∗i andtε(xi) is chosen so thatpε(x)ρi ∈ Mε for
all i = 1, 1. We observe thatpε(x) ∈ Mεi for all i = 1, ..., 1, by the choice of
ρ̄i . We also note thatpε(x)(y) = 0 for all y ∈ Σ.

Next we define the gradient flow forJε projected onto the manifoldsMiε.
Unlike the single peak case, here we shall introduce an inner product depending
on the point. The evolution problem defining the gradient flow will become fairly
simple, allowing the extra properties we need for multipeaks.

Given a vectord = (d1, . . . , d1) ∈ R
1 with small norm, we define the

following inner product inH 1, for φ, ϕ ∈ H 1

(φ, ϕ)d =
∫

RN

(1 − d)ε2∇φ∇ϕ + {(1 − d)V (x)− ε2ω}φϕ, (5.1)
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whered = 2
1∑
i=1
diρi, andω =

1∑
i=1
di∆ρi.We denote by‖·‖d the norm associated

to (·, ·)d. For a given functionψ ∈ ∩1i=1Miε we let∇Jε(ψ) and∇Fiε(ψ) be the
gradients ofJε andFiε with respect to the inner (5.1). Then we define the vector
field Gε as the projection of the gradient ofJε onto∩1i=1Miε. Explicitely, we let

Gε(ψ) = ∇Jε(ψ)−
1∑
i=1

di∇Fiε(ψ), (5.2)

whered = (d1, . . . , d1) is chosen so that it satisfies the nonlinear system

1∑
j=1

djaij (d) = bj (d), j = 1, ..., 1, (5.3)

where

aij (d) = (∇Fjε(ψ),∇Fiε(ψ))d and bj (d) = (∇Jε(ψ),∇Fjε(ψ))d,
whenever system (5.3) is uniquely solvable. Assuming for the moment that this
is the case for allψ in certain class of functionsS which containspε(x), and as-
suming additionally thatd depends onψ in a Lipschitz manner, we may consider
for each givenx the differential equation

η̇ = −Gε(η), η(0) = pε(x). (5.4)

Equivalently, while the flow is defined we have

(η̇, ϕ)d = −(η, ϕ)d +
∫

RN

h(x, η)ϕ, for ϕ ∈ H 1,

where

h(x, s) = g(x, s)−
1∑
i=1

diρi(sg
′(x, s)+ g(s)).

Let us consider the divergence form operator

Lεφ = −ε2div((1 − d)∇φ)+ {(1 − d)V (x)− ε2ω}φ, for φ ∈ H 1.

It can be proved that the operatorLε is invertible and that its inverseAε is bounded
as an operator fromLr intoW 2,r for all r > 1. Thus (5.4) is equivalent to

dη

dt
= −η + Aεh(η), η(0) = pε(x). (5.5)

We point out here that this equation makes sense only if the inner product(·, ·)d
and the operatorAε are well defined. This is the case whenη(t) ∈ S, whereS is
to be precisely defined later.
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In the next lemma we study system (5.3), giving a crucial information on the
projections and the flow defined by (5.5). For a setΩ ⊂ R

N we denote by‖·‖d,Ω
the norm inH 1(Ω) obtained as‖ · ‖d but integrating only overΩ.

Given positive numbersk0,K andδ1 we define now the set

S = {ψ ∈ ∩1i=1Miε / ‖ψ‖0,Σ ≤ εNδ1, ‖ψ‖0 ≤ εNK, ‖∇Jε(ψ)‖0 ≤ δ1
and‖ψ‖0,Λ+

i
≥ εNk0 for all i = 1, . . . , 1}.

We observe that whend is small, the norms‖ · ‖d and‖ · ‖0 are equivalent.

Lemma 5.1. There isγ0 > 0, ε0 > 0, andK > 0 such that for every0 < ε <
ε0, 0< γ < γ0 there existsk0 > 0 andδ1 > 0 so that wheneverψ ∈ S we have
that system (5.3) has a unique solutiond ∈ B(0, γ ).
Proof. We fix k, δ1 so that ∫

Λi

f (ψ)ψ ≥ kεN (5.6)

for all ψ ∈ S. We notice that for any givenσ > 0 there existsδ1 > 0 such that
for all ψ ∈ S we have dist(ρiψ,Mε) ≤ εNσ for all i. Then (5.6) also implies
that‖∇Fε(ρiψ)‖d ≥ k̄, for certaink̄ > 0. Then, makingδ1 smaller if necessary,
we have‖∇Fiε(ψ)‖d ≥ k̄/2. Thus we have that for somek1 > 0

aii(d) ≥ k1 > 0 i = 1, . . . , 1. (5.7)

Next we divide each equation in (5.3) and we defineT : R
N → R

N as

Ti(d) = −
1∑
j=i
j �=i

(
aij (d)
aii(d)

dj − bj (d)
aii(d)

)
i = 1, . . . , 1.

Then (5.3) is equivalent to the fixed point problem

d = T (d),
We will prove next thatT : B̄(0, γ ) → B̄(0, γ ). We defineφi = ∇Fiε(ψ) and
we see that

supp(φi) ⊂ Λ+
i ∪Σ, for all i = 1, . . . , 1.

Then, fori �= j , we find that

|aij (d)| ≤ |(φi, φj )d| ≤ ‖φi‖d,Σ‖φj‖d,Σ,
but

‖φi‖d,Σ = sup
ϕ∈H1(Σ)

(φi, ϕ)d

‖ϕ‖d ≤ m‖ψ‖d,Σ . (5.8)
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On the other hand, for somēm > 0

|bi(d)| ≤ ‖∇Jε(ψ)‖d‖∇Fiε(ψ)‖d ≤ m̄δ1‖ψ‖d. (5.9)

Thus, we have thatT (d) ∈ B(0, γ ) for all d ∈ B(0, γ ), if δ1 is small enough.
To prove thatT is a contraction we differentiateT and use the Mean Value

Theorem.We take into account the definition ofaij andbj and we use an argument
as above. We omit the details. ��
Remark 5.2.Lemma 5.1 above defines a function

d : S ⊂ H 1 → R
1,

which is locally Lipschitz.

6. Analysis of the gradient flow for multipeak solutions

In this section we make the analysis of the flow defined by (5.5). In particular we
will prove that the flow exists for allt ≥ 0, by proving thatη(t) ∈ S for all t ≥ 0.
In proving this we will obtain a close control ofη(t) away from the setΛ. It will
be more convenient to work with stretched variables. Thus we change variables
as x = εy. We denoteVε(y) = V (εy) and we make corresponding change
of variables inη, pε, g(x, u), Jε,Mε,Miε,Fε,Fiε, Aε, Lε, S and (·, ·)d. For
simplicity we shall keep the same notation for these objects in the new variables.
In particular now we denote

Jε(v) = 1

2

∫
(|∇v|2 + V (εy)v2)dy −

∫
G(εy, v)dy,

(φ, ϕ)d =
∫

RN

(1 − d)∇φ∇ϕ + {(1 − d)V (εy)− ε2ω(εy)}φϕ,

Lεφ = −div((1 − d(εy))∇φ)+ {(1 − d(εy))V (εy)− ε2ω}φ.
Let us fix a pointx and letT > 0 be so that the solutionη(t) of (5.5) exists and
η(t) ∈ S for all t ∈ [0, T ]. Such aT > 0 indeed exists. In the next lemma we
establish the positivity ofη.

Lemma 6.1. If the numberγ0 in Lemma 5.1 is fixed sufficiently small, then
η(t) ≥ 0 for all t ∈ [0, T ].

Proof. If γ0 is chosen small enough, then|d| is small, thush(y, s) ≥ 0 for all
s ∈ R. Here we note thath(y, s) = 0 if s ≤ 0 and we use hypothesis (f2).
Multiplying the equation

Lεψ = h(η)
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byψ− = min{ψ,0} and integrating, we easily conclude thatψ = Aεh(η) ≥ 0.
Now we consider inH 1 the problem

(etη)′ = etAεh(η), η(0) = pε(x),
whose unique solution satisfies(etη)′ ≥ 0. Noting thatpε(x) ≥ 0 in R

N we find
then thatη(t) ≥ 0 in R

N , for all t ∈ [0, T ]. ��
Next we obtain an estimate from above for the flow. As we have already

mentioned, for eachr > 1 Lε has a bounded inverseAε : Lr → W 2,r whose
norm is bounded independently ofε as follows from local elliptic estimates.
Reproducing the proof of Proposition 3.1 with only minor changes, we can find
a constantK such that‖η(t)‖L∞ ≤ K for all t ∈ [0, T ]. Let us consider the
functionψε = KAεχΛε, whereΛε = (1/ε)Λ.

Lemma 6.2. For each sufficiently smallσ there is a functionwε(y) and positive
constantsb andC such that

wε − σAεwε ≥ ψε (6.1)

and

pε(x)(y) ≤ wε(y) ≤ Ce−b dist(y,Λε) for all y ∈ R
N, (6.2)

for all x ∈ ∏
Bi .

Proof. For a fixed smallσ > 0, we consider the fundamental solutionL of

−∆L + σL = δ0
in R

N . Then set

wε(y) = M
∫
Λε

L(y − z)dz,

for M > 0 also fixed. It is easily checked that forM chosen sufficiently large,
estimates (6.2) hold forwε. On the other hand,

Lεwε ≥ −(1 − d(εy))∆wε + ∇yd(εy)∇wε + αwε,
for certainα > 0. Now, the asymptotic behavior of∇L is dominated by that of
L, and∇yd(εy) gets small asε does. It follows that

(1 − d)−1(Lεwε − σwε) ≥ −∆wε + α

2
wε ≥ MχΛε.

Thus choosingσ ≤ α
2 the conclusion follows from the monotonicity ofAε. ��
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Lemma 6.3. η(t)(y) ≤ wε(y)
and

|∇yη(t)(y)| ≤ m1 exp(−m2dist (y,Λε)), (6.3)

for all y ∈ R
N, t ∈ [0, T ].

Proof. We first chooseσ ≥ f ′(a) so that

h(y, η(t)) ≤ ση(t)+KχΛε(y), for all y ∈ R
N,

whereK has been enlarged if necessary and we have used theL∞ estimate of
η(t). Next we define

ϕ = h(y, η)− ση −KχΛε and ϑ = wε − σAεwε − ψε.
We note thatAεϕ − ϑ ∈ H 1 andAεϕ − ϑ ≤ 0 for all (y, t) ∈ R

N × [0, T ]. We
consider next the ordinary differential equation inH 1

µ̇ = −µ+ σAεµ+ Aεϕ − ϑ, µ(0) = η(0)− wε. (6.4)

Certainly the functionη(t) − wε is the solution (6.4). On the other hand the
equation

µ̇ = −µ+ σAεµ− + Aεϕ − ϑ, µ(0) = η(0)− wε, (6.5)

has a unique solution, saȳµ. Sinceµ̄ also satisfies

d

dt
et µ̄ = et (σAεµ̄− + Aεϕ − ϑ) ≤ 0 and µ̄(0) ≤ 0,

we find thatµ̄(t) ≤ 0. But thenµ̄ satisfies (6.4), which also has a unique solution,
and consequentlyη(t) ≤ wε for all t ∈ [0, T ]. To prove (6.3) we just use elliptic
estimates in the equation

Lε
d

dt
(etη) = eth(y, η)

then we integrate. ��
The following lemma states that the flowη exists for all time.

Lemma 6.4. sup{τ ≥ 0 / η(t) ∈ S for t ∈ [0, τ ]} = +∞.

Proof. Assume the supremum above isT < +∞. Then, using Lemma 6.3 we
find that

dist(ρiη(t),Mε) ≤ m1e
−m2

ε , (6.6)

for certainm1 andm2. Then, assuming the constantk0 in Lemma 5.1 has been
chosen small enough, the use of (5.6) yields

‖η(t)‖d,Λ+
i

≥ k0 ∀t ∈ [0, T ].
Since the other inequalities definingS are also kept true we obtain a contradiction
with the definition ofT . ��
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7. Existence of multi-peak solutions: proof of Theorems 1.2

In this section we complete the proof of Theorem 1.2. We use the same idea as
in Sect. 4, after we know that along the flow we keep1 bumps, thanks to the
exponential control of the flow obtained in Lemma 6.3.

Proof of Theorem 1.2Let η be the solution of (5.4) that exists for allt ≥ 0. We
consider the min-max value

Cε = inf
t≥0

sup
x∈∏

Bi

Jε(η(pε(x), t)). (7.1)

We first show thatCε is a critical value forJε. In this direction we see that
estimating the energy of test pathpε with computations as in Sect. 2 we have

Jε(η(t)) ≤ εN
1∑
i=1

(bc
∗
i + o(ε)), (7.2)

and also that there existsσ > 0 such that

sup
x∈∂ΠBi

Jε(pε(x)) ≤ εN
1∑
i=1

(bc
∗
i − σ). (7.3)

Next we need an Intersection Lemma which reads as follows:

Lemma 7.1.

sup
x∈∏

Bi

Jε(η(pε(x), t)) ≥ εN
1∑
i=1

(bc
∗
i + o(1)), for all t ≥ 0. (7.4)

Proof. Using Lemma 6.3 and the fact thatη(t) ∈ S, we findk such that

‖η(t)‖H1(Λ+
i )

≥ εNk ∀t ∈ [0, T ],
for all i = 1, . . . , 1. We define alocal center of mass, foru ∈ L2(RN) and
1 ≤ i ≤ 1

βi(u) =

∫
Λ+
i

xu2(x)dx

∫
RN

u2(x)ρi(x)dx
.

We observe that the local center of mass are well defined forη(t), for all t , thus
we may consider the functionϕ : ∏

Bi × [0,∞)→ ∏
Λ+
i defined as

ϕi(x, t) = βiη(pε(x), t)) ∈ Λ+
i .

If t = 0 thenη(pε(x),0)) = pε(x) and consequentlyϕ is homotopic to the
identity.
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We are interested in finding, for eacht ≥ 0 and 0< ε ≤ ε0 a pointx ∈ ∏
Bi

such that

V (ϕi(x, t) ≥ c∗i . (7.5)

This can be achieved solving the systems of equations

fi(x) ≡ qi(ϕi(x, t)−Oi) = 0, (7.6)

whereqi : RN → Si is the orthogonal projection ontoSi . Here we use the
notationSi, Ti for the subspaces ofRN andOi for the point inΛi in Definition
1.2. The functionf : ∏

Bi × [0,∞) → ∏
Si is homotopic to the identity and

it satisfies
f (x, t) �= 0 for all x ∈ ∂

∏
Bi t ≥ 0.

This last fact is a consequence of (7.3) and an argument as in Lemma 2.2, estimate
(2.27). Then, using degree theory we obtain a solutionx̄ of system (7.6).

Next, consideringzε = ϕi(x̄, t) and use the argument in Lemma 2.2 again
we obtain

sup
x∈∏

Bi

Jε(η(t)ρi) ≥ εN(bc∗i + o(1))
for all 1 ≤ i ≤ 1, and then

Jε(η(t)) ≥ εN
1∑
i=1

(bc
∗
i + o(1)),

finishing the proof of the lemma. ��
Estimates (7.3) and (7.4) imply thatCε is a critical value. All we have to

prove is that associated toCε there is a critical point ofJε which is also a critical
point of the original functional. But this can be achieved by an argument as in
the case of a single peak. Without presenting all details we just point out that, as
a consequence of Lemma 6.3,η can be decomposed as

η(t) =
1∑
i=1

ηi(t)+ r(ε)

whereηi(t) satisfies supp(ηi) ⊂ Λ+
i and dist(ηi(t),Mε) ≤ εNm1e

−m2
ε . The

error termr(ε) is supported inΣ and satisfies

|r(ε)(y)| ≤ m1e
−m2

ε
dist (y,Λ) for all y ∈ R

N.

We conclude from here that, except for an exponentially small error, eachηi can
be treated is in the case of a single peak. Then the ideas used in the proof of
Theorem 1.1 can be used to prove that there is a critical point associated toCε
that does not touch the penalization. ��
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