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1. Introduction

This paper deals with the study of positive solutions of the equation
e2Au —V(x)u+ fw) =0 in RY, (1.1)

u(x) — 0 as|x| - oc.

Here and in what followsy is a smooth function which is bounded and uniformly
positive, let us say that for certain positive constantg

a<VEx)<pg foralxeR".

The class of nonlinearities considered in this work includes, but it is not restricted
to, the model (v) = u? withp > 1,andp < %—fg if N > 3. Precise assumptions
will be stated and discussed below.

A basic motivation for the study of this equation comes from the fact that it

is satisfied by standing-wave solutions of the nonlinear &tihger equation

9 h?
ih—aw = —AY — W)Y + g(¥Dy, (1.2)
t 2m

namely solutions of the fornj (x, t) = u(x)ei%, whose amplitude: (x) van-

ishes at infinity. Here then(x) satisfies (1.1) with/ = W + E, ¢2 = % and

f () = g(w)u. In this context can be naturally regarded as a small parameter,
see [13].
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An interesting class of solutions of (1.1) are the so called semi-classical
states, which are families of solutions which develop a spike shape around
one or more distinguished points of the space, while vanishing asymptotically
elsewhere as — 0. More precisely, scaling outaround a pointP, defining
ve(¥) = u (P + ey), thenv, satisfies

Av—V(P+ey)v+ f(v) =0 in RY,

v(x) > 0 as|x| — oo,

and one searches for solutionswhich approach as — 0 a bell-shape given
by a positive, ground-state solution of

Aw—V(P)w+ f(w) =0 in RY, (1.3)

For the power nonlinearityf (s) = s?, 1 < p < x—jg sinceV(P) > 0, itiswell
known that this problem has a positive solution which goes to zero at infinity.
This solution is, besides, radially symmetric around some point and unique up to
translations, see Gidas, Ni and Nirenberg [14] and Kwong [16]. Moreover, see
[16] and Ni and Takagi [20], the linearized equation arounid nondegenerate

in the sense that the problem
Ah —V(P)h + pw”*h=0 in RY, (1.4)

has linear combinations of the functlogl% as its only solutions which go to zero
at infinity. These facts are crucial in the formulation of a Lyapunov-Schmidt type
procedure, firstintroduced by Floer and Weinstein in [13] for the one-dimensional
case, then extended by Oh to higher dimensions in [23], [24], which reduces the
original problem to a finite dimensional one. This finite dimensional system of
equations becomes, for the case of a single spike, o® imhich resembles
VV(P) = 0 ase — 0. The case of a nondegenerate critical point &f was
dealt with in [13], [23] and [24].

Rabinowitz was the first in dealing with the question from a global variational
point of view. Roughly speaking, under only a basic set of assumptiorfs in
existence is established for smallvhenever

liminf V(x) > inf V(x),
[x]—~+00 xeRN

see [26]. Concentration takes place around a global minimizéra$ established

by Wang for f (1) = u”, in [31]. In [8] the authors obtained local results for a

rather generaf for which no fine properties of the limiting equation were known.

Assuming that in an open bounded gebne has

LACIALY



Semi-classical states of nonlinear Sudiiriger equations 3

a single-peaked solution around a minimizerofin A is constructed. This
result was extended in [9] to multi-peak solutions around any prescribed finite
set of local minima. The variational approach was also found to work around any
topologically non-trivial critical point ofV in [10], without finite dimensional
reduction, yet uniqueness of the asymptotic radial ground state was required.
On the other hand, the finite dimensional reduction method was also found
suitable to find concentrating solutions around degenerate critical poirMs of
when f' (1) = u”. Ambrosetti Badiale and Cingolani [1] do so at isolated local
maxima with polynomial degeneracy and Y. Li [18] at genestable critical
points of V. See also [17], [15] and [25] for recent results using this approach.

Throughout this paper the following hypothesesfn[0, co) — R will be
assumed.

(f0) f(s)is of classC! and f’(s)s is locally Lipschitz on0, co).
(f1) There exists a number > 1, with p < N+2 if N > 3, such that

lim supf ()

s—>+oo SP

(f2) There is a numbet > 0 such that

< 400

f'(s)s <Cf(s) forO<s <1
(f3) There exists a number> 1 such that
0<qf(s) < f'(s)s foralls > 0.

Assumptions (f0)-(f3) guarantee, from standard variational arguments, ex-
istence of a least-energy ground state of (1.3), which is radially symmetric.
Uniqueness is however not known. This is a delicate issue, for which affirmative
answer is known from fine ODE analysis only for more restricted classes. Per-
haps the most general result of this type is that recently obtained by Serrin and
Tang in[28], which would guarantee radial uniqueness in (1.3) if additionally one
assumes that the quotw&ﬁ-‘iM is non-increasing. For instance, uniqueness
does not seem to be known or the nonlinearity

N+2
— P a 1 are
f(s) =sP + 59, <q<p<N_2,

situation in which (f0)-(f3) hold.

The purpose of the present work is to develop a variational method of con-
struction of single and multiple-spike solutions, associated to general topologi-
cally nontrivial critical points of’, only under assumptions (f0)-(f3).

A difficulty faced with variational characterizations of critical values, is that
they do not always allow easily to localize properties of associated critical points,
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especially if they do not enjoy a minimizing or least-energy character. On the
other hand this is an advantage of the implicit-function Lyapunov-Schmidt type
approach, which discovers the solutions around a small neighborhood of a well
chosen first approximation. However, this approach relies heavily on nondegen-
eracy properties of the linearized problem around this first approximation, thus
this reduction procedure is possible only with very fine information on the the
limiting equation. In a number of interesting problems exhibiting point concen-
tration this type of information is simply not available, and could be very hard to
be obtained even for simplest possible nonlinearities, see for instance [12] and
[2]. The need is then created of finding waydadalizing without linearizing

The approach proposed here consists of dealing explicitly with a special
negative gradient flow defined on Nehari's manifold for a properly penalized
energy functional associated to the problem. Considered pointwise, this flow
becomes a fairly explicit nonlocal evolution problemRA which turns out to
have very nice properties (not shared by heat flow for instance). In particular,
if we start from a well-chosen set of initial conditions obtained from a suitable
test path associated to the linking situation assumeéd, ithen we we are able
to follow the flow closely. Then we let time go to infinity and define a mimmax
value along this deformed test path. Ekeland’s variational principle then allows
us to find almost-critical points which stay arbitrarily close to the deformed
path. Close analysis of the flow finally leads us to capture the properties of these
almost-critical points which in the limit in time will yield a solution of (1.1) with
the desired characteristics, eliminating the penalization earlier introduced. This
is done for the construction of both, single and multiple-spike solutions of (1.1).

At this point we would like to mention that in related work by Coti-Zelati
and Rabinowitz in [6], [7] multi-bump solutions are constructed for equations
including

Au—u + k(x)u? =0,
with k periodic, and under certain nondegeneracy assumptions which cannot be
dealt with viaimplicit-function finite dimensional reduction, see also the work by

Spradlin [29], where infinite-bump solutions are obtained. These constructions
are also based upon accurate considerations on the gradient flow.

We specify next what type of local linking we consider for the poteritial
Let A be an open, bounded subseffdf with C* boundarys A.

Definition 1.1 We say that there islacal linking of V in A with critical value
c*, if the following conditions hold:

(&) There exist closed selly C B C A, B connected, such that if we consider
the class of maps

I'={peC(B, A)|p(x)=x Vx € Bo} (1.5)
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then

supV(x) < inf supV(e(x)) = c*. (1.6)
x€Bo 9el’ xeA

(b) Foreach € 3A with V(x) = ¢*, there is a direction, tangenttd A, such
that

VV(x) -t #£0. (1.7)

Particular cases of local linking df in A are local maxima, local minima or
saddle points fo¥ inside A, see below. On the other hand, (a) and (b) guarantee
the existence of a critical point @f atlevelc* insideA. Condition (b) is necessary

in order to “seal”’A at levelc*. so that standard deformation arguments indeed
yield the presence insidé of such a critical point.

Theorem 1.1. Assumef satisfies (f0)-(f3) and that is a bounded, open subset
of RN with smooth boundary, in which there is linking fgrwith critical value
c¢*. Then there igg > 0, so that for everY) < ¢ < gg a positive solution, of
(1.1) exists. . (x,) = m]%v(ug(x) then

xe

x. €A, V(x,) > c¢* and VV(x,) - 0 as ¢ — 0.

Moreover,
us(x) =< Ae—blx—xgl/s

for certain positive numbers, b.

This result extends to the construction of multi-peak solutions. In order to
avoid technicalities we will assume that the local linking corresponds to saddles.
This allows to obtain in a simple way the Intersection Lemma in Sect. 7. More
precisely consider

Definition 1.2 We say that there islacal linking of V in A with critical value
¢* of a saddle typgf there is a local linking of¥ in A with critical valuec* and
further:

There are complementary subspage¥ suchthatr = S T,andO € A
suchthatB = B(O,r) N (S+{0}) C A, Bo = (dB(0,r))N (S +{0}) and

¢t = XE(TJIrr?fO})M V(x). (1.8)

Now we state our second result.

Theorem 1.2. Assume that' satisfies (f0)-(f3). Le#t;, i = 1, ... , ¢, be smooth
bounded domains iR" with A; N A; = @, such that there is linking df inside
eachA; with critical valuesc; of saddle type. Then there exisgs> such that,
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forall 0 < ¢ < gg a positive solution, of (1.1) exists and, if,; € A; is such
thatu,(x.;) = mziXMg(x) then
XEAN;

V(xg) = ¢; and VV(x,) — 0, ase — 0, forall.

Moreover

—bmin|x—xgl/e
1

u.(x) < Ae forall x e RV,

for certain positive numbers, b.

We should also mention that equations of the form (1.1), in bounded domains
under Dirichlet or Neumann boundary condition with a constant potential have
also drawn considerable attention. Many results on existence of spike-layered
patterns been established in recent years for those problems, starting with the
works of Ni and Takagi [20] and [21] and Ni and Wei [22]. These results, as well
as most of the subsequent progress found in the literature, make essential use
the nondegeneracy condition on the limiting equation. In [11] we have obtained
concentration results for least energy solutions under conditions not ensuring
unigueness or nondegeneracy, in the spirit of (f0)-(f3), which also considerably
simplifies the original proofs. We believe that the techniques developed in the
present paper may be adapted to attack this type of problems. They may also be
of use in the study of related point-concentration phenomena, like nearly critical
elliptic equations, or Ginzburg-Landau vortices, see [27], [4].

The rest of this paper will be devoted to the proof of the above results. In
Sect. 2 we introduce the variational framework. Rather than the usual energy
functional for problem (1.1), we consider a penalized modificafioefined as
in [8] and [10]. The Nehari’s manifold is defined here as the set of thoge0
for which J/(u,)u, = 0. A min-max quantity eventually leading to our seeked
single-peak solution is defined, making use of a suitable gradient flow. In Sect. 3,
estimates for this flow are found, in particular leading to its global definiteness
in time. In Sect. 4 local control of the flow is obtained which leads to the proof
of Theorem 1.1. In Sect. 5 and Sect. 6 we generalize this analysis to the case of
multiple concentration, leading to the proofs of Theorems 1.2 and Theorem 1.3.

2. The min-max

In this section we will define a min-max quantity which will later be established
toyield a single-spike solution as that predicted in Theorem 1.1. Thus we assume
in what follows thatV has nontrivial linking with critical value* in a bounded

open setA. We begin with a useful observation: with no loss of generality we
may assume that the least valuelofon A is very close tac*. In fact, let us
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consider set8 and By as in the definition of linking inA: let § > 0 be an
arbitrary small number and consider the set

As={xe A/ V() >c" -8}

Then we can replacg by As without affecting condition (b) in the definition of
linking. In fact, letc* — § < ¢1 < ¢* and define

Bs=BN{xeA|V(x)>c1}, Bops=BN{xeA|V(x)=c}.

Let us notice thaiBys is non-empty thanks to the connectednes®8of hen,
given a continuous functiop : Bs — Aj; satisfyinge(x) = x on Bgs, we
defineg on B by extendingy as the identity orB \ B;. Theny : B — A, and
SUp.cz V(@(x)) = sup., V(¢(x)). This proves our claim.

Let us consider the usual energy functiofalassociated to equation (1.1),

1
E.(u) = Efg2|W|2+ V(x)u? — / F(u), ueH. (2.1)
RN RN
We have self (s) = 0 foralls < 0andF(s) = fos f()dt. Standard arguments
show that nonzero critical points @, correspond precisely to the positive so-

lutions of (1.1) inH*(RY). In what follows, for functions: andv in H*(R")
we will denote

2 2 2 2 2 2 2
||u||H1,8=fs Vul? + 2, ||v||Hl=f|Vv| o2

Similarly, we denote

2 2 2..12 2 2 4 2. 12
o2, = ||v||H1+f|D WPl = luls, +e f|D ul?.

As in [8], [9] and [10], we will work with a a modified versiod, of E., which
penalizes with high values concentration outsitld_et ¢ be as in assumption
(f3), and fix a number > (¢ + 1)/(¢ — 1). Leta > 0 be so thatf (a) = «/r,
whereq is a positive lower bound df . Then we define the functions

7R WA s<a
Fs) = { F@+ f@G—a) s>a

and
g(x,s) = xa@) f() + (L= xa)) f(s), (x,8) € RY xR,

wherey 4, denotes the characteristic function of the 4eThanks to assumption

(f1), we have that it: is chosen small enough then

fs) _ Vo

=

s T 27

F(s) — %f(s)s <0 and forall s > 0. (2.2)
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LetG(x,s) = fcj g(x, t)dt and consider the modified functional given by

1
Jo(u) = E/<«;2|W|2+ V(x)u® — f G(x,u), ueH (2.3)
RN RN
Let us observe thaf satisfies the so-called Ambrosetti-Rabinowitz condition

O<(@+DF(s) < f(s)s forall s> 0, (2.4)

as can be easily seen from assumption (f3). It follows fhagtisfies the Palais-
Smale condition, as can be shown by slightly modifying the argument given in
Lemma 1.1 in [8]. This is an important advantage/pfvith respect toF,, for
which the P.S. condition could typically fail. Our strategy consists of finding a
critical point of J,. These critical points are weak solutions of the equation

?Au—V@)u+gx,u)=0 in RV, (2.5)
Thus, if they additionally satisfy
O<u(x)<a xeRM\ A, (2.6)

then they are solutions of (1.1). A consequence of assumption (f3) is that the
function £ (s) /s is strictly increasing om > 0. This fact and a standard argument
reduces the search of nontrivial critical pointsJgfto that of critical points of

J. on itsNehari manifoldM, defined as

M, = {u € H'\ {0}/ F.(u) = O}, (2.7)
where
F.(u) = f&ZIVu|2+V(x)u2—/g(x,u)u, (2.8)
RN RN

see [10]. We observe that, # 0 if u € M,. This and the fact that (s)/s is
strictly increasing imply that € M, if and only if

Jo(u) = m%XJg(tu).
>
Next we see that fag € M, we have

Flwyu = F.(w)u — Fe(u) = /g’(x, wu? — g(x, w)u,
RN

and then, from hypothesis (f1), we see that

Fiwu > (q — 1)/ fwu > 0. (2.9)
A



Semi-classical states of nonlinear Sudiiriger equations 9

This fact and assumption (fO) imply thatt, is locally aC*? manifold. We
actually have more. GiveR > 0 let us consider consider the set

ME ={ue M./ J.(u) <eVK}.
Then the following fact holds.

Lemma 2.1. There exist positive numbetsandk, such that for all sufficiently
smalle and allu € MX one has

Flwu > ek, (2.10)
and

ek > ullgr, > eVko (2.11)

Proof. Letu € MX. For the proof of this fact it is convenient to rescale the
functionu definingv, (y) = u(ey), andA, = e~ 1A. Sinceu € M, andJ, (1) <
eV K, from relations (2.4) and (2.2) we find that

(1 ! )/ fayu < Ke"
—- = — u)u &
2 q+ 1 A -
Using again thai € M, and (2.2) we find that
Ne= | | VulP+Vou? <k
RN

Now, let us observe that assumptions (f1) and (f3) imply the existence of a
constantA so that

0< f(s) < A(s|? +Is]"), s>0. (2.12)
Using thatt € M, and Sobolev’'s embedding we find that

N, <?2A (v£+1 + Ug+l) < K(Ns(p+l)/2 n Néq+l)/2)'
Ag

It follows that ||u]| ;1 . is bounded below by a constant independerd, dimes
eV. This proves the estimates (2.11). On the other hand, we have that

f82|Vu|2+V(x)u2:/g(u,x)u < ff(u)u,

hence inequality (2.10) follows from relation (2.9). |
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Important role in our analysis will be played by the limiting functionals
v > 0, given by

1
I,(u) = E/|W|Z+vuz—/F(u), ue H.
RN RN

Let us consider the numbers

b’ = inf  maxl,(tv). (2.13)

v#0, veHL t>0

Thenb’ > 0 is the least value df,, at which there are nontrivial critical points.
These are thdeast energy solutionsf the equation

Au—vu+ fu)=0 inRY,

O<u(x)— 0 as|x| — oo,

see for instance [3]. By comparison with suitable barriers, we find that for each
of these solutions there are positive numbegsm, such that

0<u(x) <me ™ for x e RV,

besides they are radially symmetric up to translations thanks to a classical result
in [14].

Now we will build up a min-max quantity for,.. To begin with, we consider
a pathg, in the clasd™ given by (1.5) with the property that

V(ps(x)) < c* +¢%, forallx € B. (2.14)

Using a deformation argument we may also assume, with no loss of generality
that, is so that whenever € B and

V(p:(x)) € [¢*, c* +&%] implies |VV(g:(x))| < &%

Next we consider a fixed critical point of the functiorial at levelb” which we
choose radially symmetric around the origin and dengte Associated ta,,
we consider the patp, : B — M, defined as

Pe(X)(y) = wex <y—Tcps(x)> teer y€ERY, (2.15)

wheret, . is the unique > 0 such that

Iy, Wer <'—_ g08(16)) S ./\/ls.

&



Semi-classical states of nonlinear Sudiiriger equations 11

Our method consists of deforming the pathalong a suitable negative gradient
flow for J, on M,. For this purpose, it is convenient to end@i#(R"Y) with the
inner product

(u,v), = /82Vqu + V(x)uv. (2.16)

]RN

Inwhat followsV J, andV F, will denote the gradients of. andF, with respect
to the inner product (2.16). We consider the following initial value problem in
H.

Ne(x, 1) = Ge(e(x, 1)),  n(x,0) = p:(x), x€B, (2.17)
where
Ge(u) = Ve (u) —du)VF(u), (2.18)
with

_ (VF(u), VI ()
IVEW?

d(u) (2.19)
The vector field;, corresponds to the orthogonal projectiorMof, onto the tan-
gent space to the Nehari manifoMd.. It is clearly locally Lipschitz continuous
and satisfiegj. (1) = 0 if and only if VJ. () = 0. Thus (2.17) has a unique
solutionn, (x, t) defined on some time interval. It is easily checked thét, r)
belongs taM, at all times and thal,.(n(x, #)) is decreasing in. In Proposition
3.1 (i) we will prove thaty(x, t) is defined for alk > 0. Accepting this fact for
the moment we define the min-max value

C. = inf supJ.(n:(x, 1)). (2.20)
t

20 xeB

Now we will establish thaf is a critical value of/.. is a direct consequence
of the following result.

Lemma 2.2. (i) For all sufficiently smalk we have the validity of the estimates,
eV 4+ 0(1) < C, < VB +o(e)). (2.21)
(il) There exists a number > 0 such that for all sufficiently smadi,

sup Je(p:(x)) < SN(bC* —0).

X€Bog
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Lemma 2.2, the fact that satisfies the Palais-Smale condition and a standard
deformation argument readily yield th&t is a critical value ofJ,. In the next
sections we will find an associated critical point which actually solves equation
(1.1) and satisfies the conditions of Theorem 1.1.

A technical point we would like to emphasize, which constitutes a crucial
difference with the min-max quantity defined in [10], is the fact that the elements
of the basic pathp.(x) do notresemble, after the proper scaling, a least energy
solution of I, for v = V(¢.(x)), except when this value equafs. Making the
choice of a “path of least energy spikes” would be in our situation hopeless
since we do not have an uniqueness assumption that would allow to make such a
selectionin acontinuous way. Lemma 2.1 shows that the original linking situation
of V remains respected through deformations of this “energetically rough” path
at the level of the functional.. We may call this approach\ariational finite
dimensional reductionThe moral is perhaps that in the study of this type of
point-concentration phenomena in the presence of variational structure, linking
in the finite dimensional guiding energy may be seen transmitted to the functional
counting only with very rough information, in opposition to the fine facts needed
for the Lyapunov-Schmidt reduction procedure.

Proof of Lemma 2.2.Let us prove part (i). To establish the upper estimate in
(2.21), let us consider the test path(x) defined in (2.15). Clearly we have

Ce = supJe(p:(x)).

xeB

Forx € B we have

Je(pe(x)) = &V / |Vwes |2+ V(@ (x) + ey)w?
B(O,R;)

— / F(we)+o(e) ¢,

B(O,R,)

whereR, = —kloge, with k large enough. Here we use the exponential decay
of w.+ and we notice that, sinc® is closed and3 C A, for ¢ small enough the
test pathp, does not touch the penalization. We have that

V(@e(x) +y) = V(ge(x)) +eVV(ge(x)) - y + O(2]y]?).

Then, using the radial symmetry of+, its exponential decay, and (2.14) we find
that

/ V(@e(x) + ey)wi < c* / w2+ o(e). (2.22)
B(O,R;) B(O,R,)
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From here we obtain
Je(pe (1)) < e (Lo (wer) + 0()},
and then we finally get the desired upper bound
Je(pe(0) < V(b + o(e)).

A similar argument yields the validity of the estimate in part (ii). Next we prove
the lower bound in (2.21). For this purpose we definedbeter of massf a
function in L2(RY) which is not identically zero as the quantity

[ xu?(x)dx
pu = [ u?(x)dx’
RN

whereA™ is a small neighborhood of. In order to obtain the lower bound, we
will first study the auxiliary minimization problem

me = Inf{J.(u)/u € M,, B(u) = z.}, (2.23)

wherez, € A. Standard arguments yield that problem (2.23) has indeed a mini-
mizeru,. We scale this function and define

We (y) = ug(ze + €).
The functionsw, have a uniform bound i#?*. Sinceu, € M,, an argument of
concentration-compactness type (see for instance Lemma 3.1 below) gives that

lim f |Vw, |2 4 V(ze + ey)w? = 0, (2.24)
RN\B(O,R)

R— o0

uniformly in &, and that every sequence {af.} has a weakly convergent sub-
sequence, whose limit is nonzero. Dichotomy is excluded thanks to the mini-
mizing character of;, and the fact that the variation &f on A below the level

¢* can be assumed small enough. Gives- 0 we have

s—N/ sZ|Vus|2+V<x>u§zf Vwel? 4 Vi + en)w?  (2.25)
RN B(z¢,R)

and

—g—N/ G(x,u,) > —/ F(w,) —/ F(w,). (2.26)
RN B(z¢,R) RN\B(z¢,R)

By (2.24) we have that

f F(w) = or(D),
RM\B(z:,R)
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uniformly in e. Let us take a sequeneg — 0 so that, dropping the dependence
of n in the notationz, — zandV(z,) — V(z). Using (2.25) y (2.26) we obtain

lim |Qf 8_N~]8(Ms) > Iy (w) +or(D).
£

Consequently

lim igf e ¥m, = lim igf e NI () > Iyey(w) = b¥9, (2.27)

E—>

Now we complete the argument. We define the funcipn : B — A as
@er(x) = B(n:(x,1)). We see thap,, : B — AT, so that it does not quite
belong toI". However, we see from the linking assumption, that if the class
is defined in the same way &% but allowing the test paths to take valuestin,
then the min-max value* remains unchanged if we replateby I"*. Thus, for
everye > 0 we can find a point, € B such that

V(@i (x0)) = .

Takingz, = ¢.,(x.) we have that for every > 0

supJe (e (x, 1)) = Jo(ne(xe, 1)) > me,

xeB

and then the result follows from (2.27). O

3. Estimates on the flow

The purpose of this section is to prove the following basic facts of the flow in
(2.17).

Proposition 3.1. (i) The flown, (x, ¢) given by (2.17) is well defined for al> 0.
(i) There is a constark independent of so that

IneCe, Dl pze < VK and |ne(x, )|l < K,

forallr > 0and allx € B.

Before proving the proposition lets us consider the following estimate of the
gradient ofJ,.

Lemma 3.2. Given anyg > Othere aresg > 0, 0 > 0and$ > 0 such that

VIl < ao

forall 0 < & < gg andu € MY *°.
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Proof. It is not hard to check tha¥ J. («) is Lipschitz continuous ovefvlff*ﬂ’.

Let us assume that the result of the lemma is not true and le¢ a minimizer

of J, over M,. A concentration compactness argument allows then to prove
thate =V J,(u,) — c* — 8, ase — 0. Thus, choosing + o small enough and

using thatv J, is Lipschitz continuous oveM’;"*“’ we find a contradiction with
VI« > ao. O

Proof of Proposition 3.1L et us recall that the vector fielgl defines a negative
gradient onM.. Thus, whilen(x, ¢) is well definedy(x, 1) € MX, for certain

K > Oindependent aof. From Lemma 2.1 we see then that in this time interval
n(x, t) is bounded inH! norm, uniformly inx. On the other hand, also from
that lemma we have that the numlagn(¢)), given in (2.19) is well defined and
bounded. Consequentf) is bounded along the flow, and thus global existence
of it follows from standard ODE theory. This completes the proof of part (i).

In the proof of (ii) it will be more convenient to work with stretched variables.
We consider the change of variables= ¢y. Let V,(y) = V(ey). We make
this change of variables in, p., g(x, u), J., F¢, G, and(, -),. We shall avoid
relabelling these objects after the change of variables is made in order to keep
notational simplicity. For instance now de denote

(v, V2)y = f(vvlvv2 + V(ey)viva)dy (3.1)

1
Je(v) = 5/(|Vv|2+ V(ey)v?)dy —/G(sy, v)dy.

First we make the vector field. more explicit. Using the definition of the inner
product (3.1) we find

Vie(u) =u— A;g(y, u)
and
VFe(u) =2u — A (' (y, wu — g(y, u)),

whereA, = (A — V,)~L. Using local elliptic estimates, and taking into account
that V is bounded, we find that for > 1 A, : L” — W2’ defines a bounded
operator whose norm is bounded independently. éf we define

h(y,u) = —g(y,u) —du)(g'(y, wu — g(y, u)),
then equation (2.17) can be written as

d
d—’z = —(L—2d(M)n + Ach(y.n),  1(0) = p.(x), (3.2)
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for eachx € B. We denote its solution below simply agsz), dropping the
dependence on. SinceJ, decreases along the flow, which stays on the Nehari
manifold,n remains bounded i&*, for all 1 > 0. This estimate is independent
of x, t ande, that is, there is a constakt such that

Inlgr < K forall ¢>0. (3.3)

This global estimate implies by means of the Sobolev embeddings thad fer
2N /(N — 2) we have

(@l < K forall z=0. (3.4)

A better estimate satisfies the initial condition. In fagt(x) € W2 (R") for all
r > 1. Moreover thé¥?" norm is independent afand ofr in a closed, bounded

interval contained irf0, co).
t

Nextwe regard (n(r)) as afunction of, and we definé(r) = t—2 [ d(z)dx.
0
Thanks to Lemma 2.1, there is a const&nsuch that

(VIe(n), VFe ()«
IVFm)Z

ld(1)| = | | < KIIVI()]lx

and then, assuming that an appropriate choiégdimof.emma 3.2 has been made,
we see thatl satisfiesd(r) < 1/4 for all+ > 0. Here we note that the constant
k, appearing in (2.10) does not depend&®rAs a consequence we have that
b(t) > t/2 and that

t
e t® / "L +d(r)dr < ge“’)(e"(f) -1 <
0

NI o1

(3.5)

Continuing with the analysis of the flow, we us®” as multiplier in (3.2) and
we obtain thay) satisfies

t

"Dn(t) = n0) + / "D ANy, n)dr. (3.6)
0

On the other hand, from assumptions (f1) and (f3) we get that
1f'&I<Als”t ifs<1 and |f'()] <Als)” ifs > 1,
thus

|h(y, )] = AQ+d@)In@®|* if n(r) =1 and
|h(y, n))] = AQ+d@)In®)|” if n(t) > 1.
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Next we decomposk(r) = h(-, n(t)) setting for each > 0,

2:1) ={y/n@®)(y) <1} and 2:() ={y/n)(y) > 1},

and themr; (t) = xg,nh(t) fori = 1, 2. Certainly we havés = hqi + hy. We
note that ifr; = po/q andr, = po/p thenh; : Ry — L'i(R") is continuous
and bounded fof = 1, 2. Here we use the glob&* bound of the flow given in
(3.3).
From (3.6) we can define the following decompositiom @l (1) = n1(t) +
n2(t) with
t
SO =@ + [ O Ab @z, (3.7)
0

i = 1,2, wheren(0) = n(0) andn»(0) = 0. Next we perform a bootstrap
iteration. From the discussion above and the properties of the operatoe
have

[Achillyzrn < K(1+d(2)).
Thus, from (3.7) we have

t

17 Ollywer < el Q) llyan + Ke™"? / "1+ d(v))dr.
0

But then, from (3.5), we conclude thf; (r)|l2» < K fori = 1, 2. Next we
use the Sobolev embedding to fipgd > pg such that

In@®|l,n < K forall #>0. (3.8)
We can repeat this bootstrap procedure until obtaining
@l gzeyy < K vVt >0

for a certain constarit . We do not do the details. With some more iterations we
also get the.*> estimate. |

4. The proof of Theorem 1.1

As we have already shown, the min-m@xis a critical value for the functional

J.. Hence to complete the proof of Theorem 1.1 we only need to prove that there
is a critical point of/J, associated to this level, which is also a critical point of
E.. Let us define

K ={xeA/Vk) =c,VV(x)=0}

and letAq be a small neighborhood @ such that dis¢Ag, 34) > 0.
The following is the main step in the proof of the theorem.
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Proposition 4.1. Let Ag be as above and; a domain such that
Ao C A1 C Ay C A.

Then there exists a positive numlaesuch that whenevet (. (x, 1)) € 9 A; for
x € B andr > Owe have

Je(e(x, D) < eV — k)

Let us assume for the moment the validity of this result and conclude the
proof of our first main result.

Proof of Theorem 1.1.From Ekeland’s variational principle we can find se-
quences:’, t, > 0 andx, € B such that

u' = u,, VIw") =0, Ju") = Co> b +o(l)e"
and
dist(u}, n:(xp, t,)) — O.

Thus J,(1:(x,, 1)) — C. = (b + o(1))e". Then, by Proposition 4.1, we
conclude thag (u?) is away from the boundary. This together with the decay of
u., being a solution of (2.5), implies that is a solution of (1.1). Choosing 1
closertoAg if necessary, we can prove thii . ) belongs to a small neighborhood
of Ao. Finally, shrinking successively the s&g towardsk¢”, we get the rest of
the statement of Theorem 1.1. |

It remains to prove Proposition 4.1. To this end, some lemmas are in order.
The next result shows the presence eb#ar around the critical points of at
level ¢*. On this collar the gradient df is nonzero.

Lemma 4.2. There exist numbers > 0, 0 > 0 and a closed seb C A4 such
that

(i) VV(x) #£0,forall x € D,
(i) If y isacurve inA so thaty(0) € Agandy () € 9 A1 with

V(y(@) <c* +o,

then there exists;, r, € [0, ¢] such thaty(r) € D for all ¢ € [t;, 7] and
ly (t1) — y(2)| = k.

Proof. Let us denote .
R={xe A1/VV(x) #0}.

Using hypothesis ol b) we findo > 0sothatl. = 0 A1N{x/|V(x)—c| <o} C
R. Then we findk > 0 sosmallthal;, = {x € A1/k < dist(x, L) < 2k} C R.
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On the other hand we defirg = max.csa, V (x) andcy = inf 4, V(x). Then
we use Sard’'s Lemmato find < ¢3 < ¢, so that

Ve ={xe A/V(x)=c3} CR.

Modifying Aq if necessary, we may assume that- o < c3. Next we decrease
k > 0, if necessary, so that

L, = {x € A/k < dist(x, V) < 2k} C R.

Then, definingD = L, U L) we see that (i) is satisfied automatically. To prove
(i) we just observe that i’ is as in (ii), then it has to cross eithey or L;, from
where the conclusion readily follows. ]

Lemma 4.3. Given K there existeg > 0,0 > 0 andk > 0 such that the
following holds. 1f0 < ¢ < gp andw, € H?(R") satisfy

(i) Nwellpz <K, )
(i) Foru,(x) = w.(%) we haver, € M? +7,
(i) B(ue) € D,

then
”gs(us) |« > ke.

Proof. Suppose the lemma is not true, then there are sequénces 0
ande, — O such thatg(u,,) € D and |G, (ue,)ll« < ky&,. This implies
that ||V Je, (ue, )« < kmem, With k, — 0, as can be seen from the fact that

ue, € MY+ and Lemma 2.1,

Next we assume, without loss of generality, ti&at., ) — xo and we show
thatVV (xg) = 0, reaching a contradiction. Using (ii) and a concentration com-
pactness argument we can prove tat(y) = u., (xo + &,y) converges ind*
to a solutionw of the equation

Aw — V(xg)w + f(w) =0.

Now we usedw,, /dx; as a test function on the gradient.fto find

Jw w
= — f(we,) 5 :
Xi

n

0w,
VanvT + V(XO + sy)wsn

= kngn ”wsn ||H2-
X; 0Xx;

N
Using thatw,, € H?, we integrate by parts to obtain
d ) _
av(xo +eny)wy (V)| < knllwe, [l w2,

N



20 M. del Pino, P. Felmer

and then taking limits we g%%V(xo) = 0. Note that we have also used that
is bounded. |

Lemma 4.4. GivenK > 0 there are numbera > 0, R > 0 such that, given
any sufficiently smakt andu € MX, there exists € A satisfying

/ u? > eVa. (4.1)
B(X,sR)

Proof. For the proof of this fact, it is convenient to rescale the functidefining
v.(y) = u(ey), andA, = e 1A.

Sinceu € M, andJ, (1) < ¢" K, we find From Lemma (2.1) thdit, || 51 is
bounded below by a constant independerd.of

On the other hand, we have the validity of the following fdadt {v,} be a

bounded sequence #' ande = ¢, — 0 be such that for som® > 0 one has

lim sup lva |2 =0, (4.2)

"% yeAe JB(y,R)
theanF |v,|"t* — O for eachr e (1, x—fg). This is actually a slight variation
of Lemma 2.18 in [6] for which the same proof applies, so we omit it.
To complete the proof, we assume by contradiction that for skme0 there
are sequences= ¢, — 0 and{u,} € M, with J,(u,) < Ke&" such that for
v, (y) = u,(e,y) One has

lim sup [Ve.n]? = 0. (4.3)

"= yeA: JB(y.R)

Then by the above result, we find that — 0 in L"+1(A,). But this and the
fact thatu,, lies on Nehari's manifold imply that, , — 0 in H*. We have thus
reached a contradiction, which proves the validity of the lemma. |

Lemma 4.5. Given positive numbeis,, a, there exist positive number), g

andk such that for allR > Ry, the following holds. 1D < ¢ < g, u € M?C*”
are so that

/ w?>eVo;, i=1,2 (4.4)
B(x;,eR)

with B(x1, 2¢R) N B(xp, 2¢R) = @, then||VJ,(u)]|, > k.

Proof. Suppose the lemma is false. Then theremre- 0 anday > 0 such

that for a givenkR > O we can find sequences — 0, k, — 0 andu, € M.,
such that (4.4) holds for certai,, i = 1,2, and||VJ, ()|« — 0. We rescale
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u, definingv,(y) = u,(x1, + &,y). By standard arguments we prove that
converges inH?!, after taking a subsequence, to a non-trivial solution of the
limiting equation. Here we use that the valued/oflo not vary much oven to
avoid dichotomy. Now we choog® > 0 large enough so that for every solution
z of the limiting equation centered at the origin we have

(07
f 22 =< —2-
RN\B(O,R) 2

Then we get a contradiction, since on one hem’dxln — X2,| — oo anon other
hands, N J., (u,) < c* +o. O

Proof of Proposition 4.1 A deformation argument allows us to assume that the
basic pathp, satisfies

V(pe(x)) <c*—o forall ¢.(x) ¢ Ao.

for certain small constawnt > 0. With this in mind we observe thatgf. (x) ¢ Ag
then

J.(e(x, 1) < eV —0o) forall ¢>0.

Thus the only interesting case appears whgx) € Ap, and we assume this
now. For simplicity we will writen, (x, 1) = n.(¢)

An application of Lemmas 4.4 and 4.5 yields the existence of 0 and
R > 0 such that if we saty = «/2(20)", then for eachr > 0 there is a point
x; € A with

/ n:(t)> > eV, and ne(1)? < eVay, (4.5)
B(.eR) B.cR)

for all x € RN with |x — X,| > 4R. At this point we consider a slightly different
notion of center of mass, which is more robust ti#an front of small variations

of the function far away from the center of mass. Let us consider a partition
{R; /i € N} of RV consisting of cubes with sid&/10. Let us fix points

x{ € eR; foreachi, and a numbex > 0. Foru € M, we letits modified center

of mass be X N
ZieNxf(st,-u —ETaN)+

ZieN(st,- u? —eNay)y

well defined whenever the denominator of the above quotient is non-zero. In
particular this object is well defined on the functionst), provided thatr was
chosen sufficiently small. Moreover, if we sgtr) = Br(n:(t)), we see that
there is a consta > 0 such that

Br(u) =

|J/£(tl) - Vs(t2)| = 2Re Imp“es ”ne(tl) - 7]602)” = SNM- (46)
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On the other hand, the result of Lemma 4.3 holds gitteplaced by8g, since
B — Br = 0(1) ase — 0. Thus we may assume in the remaining of the proof,
that r (1. (1)) € 3 As.

Sincey,(0) € Ag, y:(f) € dA; andV (y,(7)) < ¢* + o, by Lemma 4.2 there
existry, t, such thaty,(t) € D fort € [t1, 2] and|y.(t1) — y:(t2)| > k1. Then
we use Lemma 4.3 to finksuch that

G = ke Vi € [, t2].
Thus

7] 7]
Je(t2) — Jo(na(12)) = / (VI 1e(0)). 1) < —ek / le@ldr. (47)
11 41

On the other hand, there exists a partition of the intefmak,] such thatsg =
1 <8§1<...<S8p =t2,n.+1>ki/2Re and|y (si+1) — v (si)| > 2Re. Then,

from (4.6) we have, forall < i < n, — 1, that

Si+1

MM < Ine(si1) — ne(s)ll < f e ldr. (4.8)

Combining equation (4.8) and (4.7) we obtain a constasich that

Js(ne(t2)) - Js(ns(tl)) =< ng

and consequently

Je(n: () = Je(1:(0) < —ke",

from where the result follows. O

5. Some preliminaries for the study of multipeak solutions

In this section we introduce some definitions and we do a preliminary analysis
leading to the proof of Theorem 1.2 on the existence of multipeak solutions. Thus,
we consider setd;,i = 1, --- , £ as in the statement of the theorem, and cor-
responding set8;, By ; as in the definition of local linking, with corresponding
classes of paths; and critical values?. See Definition 1.1.

Let us choose small neighborhoad$ of A;, in such away thati;f N A} =
g, foralli # j. We definex = RV \ |J'_, A} and we leto; : RV — [0, 1] be
C® functions such that

1 xeAf

pi(x) =10 xel A,
i#j
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i=1,...,4, andz pi(x) = 1 forallx € RY. We consideiA = U A;, and

define a penallzed functlonaﬂ as in (2.3) and the Nehari manlfold asin (2.7)
and (2.8). We will also considéncal Nehari manifolds

Mis = {Lt 7+— 0 / f.,g(l/t) = O}v
where
Fieu) = J.(w)(pu), i=1,..¢

We observe that and that all critical points.ifbelong to allM;,’s. These sets
will be actual manifolds only at some regions. On the other hand, we clearly

4
have that ) M;. C M..
i=1
Now construct next a suitable test path. We first choose for each e
{1,.--, ¢} apathg;, € I; such that

V(gie(x)) < cf +¢* forall x e B;.

Asin Sect. 2, we assume that has been chosen so tha€ B; andV (g;.(x)) €
[c}, cf + &2] implies|VV (¢ (x))| < 2. Then we define

as
(pza(xt) _
pe(X) = Z Wer pi (e (x7),

wherex = (x4, ..., x¢), p; is a cut-off function such thas;, = 1 over a small
neighborhood ofA;, supp(5;) C A}, so that in particulap; p; = p;. we: IS a

least energy critical point of.: andz.(x;) is chosen so that.(x)p; € M. for

alli =1, £. We observe thap.(x) € M,; foralli =1, ..., ¢, by the choice of
pi- We also note thap,.(x)(y) =0 forally € X.

Next we define the gradient flow fok, projected onto the manifold&1;,.
Unlike the single peak case, here we shall introduce an inner product depending
on the point. The evolution problem defining the gradient flow will become fairly
simple, allowing the extra properties we need for multipeaks.

Given a vectord = (di,...,d;) € R with small norm, we define the
following inner product in?, for ¢, ¢ € H*

6. 9)a = / (1= d)PVeVp + (1— DV () — Polde,  (5.1)
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14 l
whered =2 d;p;,andw = Y _ d; Ap;. We denote by} - ||4 the norm associated
i=1 i=1

to (-, -)q. For a given functiony € N;_; M;, we letVJ,(y) andV.F;. () be the
gradients of/, and.F;, with respect to the inner (5.1). Then we define the vector
field G, as the projection of the gradient éf onton;_,; M;.. Explicitely, we let

4
Ge () = VI () = Y _diVFi (), (5.2)
i=1
whered = (dy, ... , d;) is chosen so that it satisfies the nonlinear system
14
Y diay(d) =bi(d), j=1,..¢ (5.3)
j=1

where

a;j(d) = (VFje(¥), VFie(¥))a  and b;(d) = (VI (), VFje(¥))a,

whenever system (5.3) is uniquely solvable. Assuming for the moment that this
is the case for alfr in certain class of function$ which containg, (x), and as-
suming additionally thad depends oy in a Lipschitz manner, we may consider
for each giverx the differential equation

n=-G.(m, 1) =pX. (5.4)

Equivalently, while the flow is defined we have

(1, 9)a ==, 9)a + f h(x, e, foree HY,
RN
where
e
h(x,s) =g(x,s) = Y _dipi(sg'(x,5) + g(s)).
i=1
Let us consider the divergence form operator

Le¢ = —e2div(1 —d)Ve) + (1 —d)V (x) — ’w}p, forp e H.

It can be proved that the operaforis invertible and that its inversé&. is bounded
as an operator fromy” into W27 for all » > 1. Thus (5.4) is equivalent to
dn

S =t Ach(n),  1n(0) = p.(X). (5.5)

We point out here that this equation makes sense only if the inner prodygt
and the operatad, are well defined. This is the case whgm) € S, whereS is
to be precisely defined later.
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In the next lemma we study system (5.3), giving a crucial information on the
projections and the flow defined by (5.5). For a®et. RY we denote by} - 4.
the norm inH(£2) obtained agf - ||q but integrating only over?.

Given positive numberk,, K andé; we define now the set

S={y enN_ M/ Vloz <e¥s1, II¥llo<e"K, [VI(¥)lo <1
and|| ¢l o+ > eVko foralli =1,...,¢}.

We observe that whethis small, the normg - || and|| - ||o are equivalent.

Lemma 5.1. There isyp > 0, &g > 0, and K > 0 such that for every) < ¢ <
g0, 0 < y < ypthere exist&y > 0ands; > 0so that whenevey € S we have
that system (5.3) has a unique solutri B(0, y).

Proof. We fix k, 81 so that

/A S = ke (5.6)

for all ¥ € S. We notice that for any givea > 0 there exist$; > 0 such that
for all ¢ € S we have distf;y, M,) < ¢¥o for all i. Then (5.6) also implies
that||VF.(o:¥) g > k, for certaink > 0. Then, making, smaller if necessary,
we have||VF;, ()|l > k/2. Thus we have that for sonkg > 0

a”(d)zk1>0 i=1...,¢ (57)
Next we divide each equation in (5.3) and we defineR" — R" as

¢
. _ _Z a;j(d) o bj(d)) -
T = (aii(d)d/ a;; (d) (=Lt

Jj=i

j#i

Then (5.3) is equivalent to the fixed point problem
d=T7(),

We will prove next thaf” : B(0, y) — B(0, y). We definep; = V.F;.(y) and
we see that

supp¢;) C AFU X, foralli=1,...,¢.
Then, fori £ j, we find that

laij (D] < [(¢i, d))dl < Dilla,=ldjlla, =,
but

loilas = sup B9

=ml|l¥llq,x. (5.8)
peH(X) el
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On the other hand, for some > 0

i ()] < [IVI(WlallVFie(W)lla < mball lla. (5.9)

Thus, we have thdf (d) € B(0, y) foralld € B(0, y), if §; is small enough.
To prove thatT is a contraction we differentiaté and use the Mean Value

Theorem. We take into account the definitioagfandb; and we use an argument

as above. We omit the details. |

Remark 5.2.Lemma 5.1 above defines a function
d:Sc H' - R,

which is locally Lipschitz.

6. Analysis of the gradient flow for multipeak solutions

In this section we make the analysis of the flow defined by (5.5). In particular we
will prove that the flow exists for all > 0, by proving thay(¢) € S forallz > O.

In proving this we will obtain a close control gfz) away from the sed. It will

be more convenient to work with stretched variables. Thus we change variables
asx = ey. We denoteV,(y) = V(ey) and we make corresponding change

of variables inn, p., g(x, u), J., M, M;., Fe, Fie, A, Le, S @and (-, -)q. For
simplicity we shall keep the same notation for these objects in the new variables.
In particular now we denote

Je(v) = % / (IVV[? + V(ey)vddy — f G(ey, v)dy,
(¢, 9)a = f L —d)VeVe + {(L—d)V(ey) — 2w (ey) )y,
RN

Le¢ = —div((1 — d(ey))Ve) + {(L — d(ey)V (ey) — 2w}

Let us fix a poinx and letT > 0 be so that the solution(r) of (5.5) exists and
n(t) € Sforallz € [0, T]. Such aI' > 0 indeed exists. In the next lemma we
establish the positivity of.

Lemma 6.1. If the numberyy in Lemma 5.1 is fixed sufficiently small, then
n(t) > Oforall t € [0, T].

Proof. If y, is chosen small enough, thédi is small, thusi(y, s) > 0 for all
s € R. Here we note thak(y,s) = 0 if s < 0 and we use hypothesis (f2).
Multiplying the equation

Loy = h(n)
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by ¥_ = min{,, 0} and integrating, we easily conclude thiat= A.h(n) > O.
Now we consider ind! the problem

(e'n) =€ Ah(n),  n(0) = p(X),

whose unique solution satisfiegn)’ > 0. Noting thatp, (x) > 0 inR" we find
then thaty(r) > 0 inRY, forall t € [0, T]. |

Next we obtain an estimate from above for the flow. As we have already
mentioned, for each > 1 L, has a bounded inverse. : L’ — W?2" whose
norm is bounded independently efas follows from local elliptic estimates.
Reproducing the proof of Proposition 3.1 with only minor changes, we can find
a constantk such that||n(#)|.~ < K for all # € [0, T]. Let us consider the
functiony, = KA, xa,, WwhereA, = (1/¢) A.

Lemma 6.2. For each sufficiently smadt there is a functionw, (y) and positive
constantd$ and C such that

w, — oA w, > Y, (6.1)
and
Pe(X) () < we(y) < Ce P04 forall y e RY, (6.2)

forall x € []Bi.

Proof. For a fixed smalb > 0, we consider the fundamental solutiomf
—Ao+o00 =

in RY. Then set
we(y) = M/ o(y — 2)dz,
A

for M > 0 also fixed. It is easily checked that fof chosen sulfficiently large,
estimates (6.2) hold far.. On the other hand,

Low, > —(1—d(ey))Aw, + V,d(ey)Vw, + aw,,

for certainae > 0. Now, the asymptotic behavior 8fo is dominated by that of
0, andV,d(ey) gets small as does. It follows that

o
1- d)_l(Lewe —ow,) > —Aw, + Ewg > MXAS-

Thus choosing < 3 the conclusion follows from the monotonicity df. O
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Lemma 6.3. n(t)(y) < w,(y)
and

[Vyn () (y)| < myexp(—modist(y, Ag)), (6.3)
forally e RV, r € [0, T].

Proof. We first choos& > f/(a) so that
h(y, n()) < on(t) + K xa,(y), forally e RY,

whereK has been enlarged if necessary and we have usebl’thestimate of
n(t). Next we define

p=h(y,n) —on—Kyxs, and ¥ =w, —cAw, — V..

We note thatd, o — 9 € H* andA,¢ — 9 < Oforall (y,7) € RY x [0, T]. We
consider next the ordinary differential equationfrt

p=—-p+oAu+Ap—7=, w0 =n0) — w,. (6.4)

Certainly the functiom(¢) — w, is the solution (6.4). On the other hand the
equation

,l:L = U + GASM— + Ag@ - 19’ M(O) = 77(0) — We, (65)
has a unique solution, sgy. Sincei also satisfies

d
eI = OAf + A~ D) <0 and 2(0) <O,

we find thatii(z) < 0. Butthenu satisfies (6.4), which also has a unique solution,
and consequently(z) < w, forall ¢ € [0, T]. To prove (6.3) we just use elliptic
estimates in the equation

d
LSE(e’n) =e'h(y,n)
then we integrate. a

The following lemma states that the floywexists for all time.
Lemma 6.4. sup{t > 0/n() € Sfort € [0, 7]} = +o0.

Proof. Assume the supremum aboveTis< +o0. Then, using Lemma 6.3 we
find that

dist(pin(1), M,) < mie™ <, (6.6)

for certainm,; andm,. Then, assuming the constagtin Lemma 5.1 has been
chosen small enough, the use of (5.6) yields

In@llga+ = ko Vi €[0,T].

Since the otherinequalities definiSgre also kept true we obtain a contradiction
with the definition ofT". O



Semi-classical states of nonlinear Sudiiriger equations 29

7. Existence of multi-peak solutions: proof of Theorems 1.2

In this section we complete the proof of Theorem 1.2. We use the same idea as
in Sect. 4, after we know that along the flow we keepumps, thanks to the
exponential control of the flow obtained in Lemma 6.3.

Proof of Theorem 1.2 et n be the solution of (5.4) that exists for al 0. We
consider the min-max value

C. =inf sup J.(n(p:(x), 1)). (7.1)

= Xe]_[ B;

We first show thatC, is a critical value forJ,. In this direction we see that
estimating the energy of test pgth with computations as in Sect. 2 we have

14
T(n()) < eV Y (b7 + o(e)), (7.2)
i=1
and also that there exisés> 0 such that
4
sup Je(pe(x)) <& Y (b — o). (7.3)
Xedll B;

i=1
Next we need an Intersection Lemma which reads as follows:

Lemma 7.1.

4
sup J(n(pe(x), 1) = eV Y (b +o(1), forallr>0. (7.4)
xen B; i=1

Proof. Using Lemma 6.3 and the fact thatr) € S, we findk such that

||77(t)||Hl(A,_+) = eNk vt € [0, T],

foralli = 1,...,¢. We define docal center of mass, for € L>(R") and
1<i</¢
f xu?(x)dx
A
Bi(u) = T @ dx’
RN

We observe that the local center of mass are well definegl(for for all 7, thus
we may consider the functiop: [[ B; x [0, 00) — [] Al.+ defined as

@i(X, 1) = Bin(p:(X), 1)) € A

If + = 0 thenn(p.(X),0)) = p.(X) and consequently is homotopic to the
identity.
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We are interested in finding, for each- 0 and O< ¢ < gg a pointx € [[ B;
such that

V(pi(X,1) > cj. (7.5)
This can be achieved solving the systems of equations
fiX) = qi(gi(X, 1) — 0;) =0, (7.6)

whereg; : RY — S; is the orthogonal projection ont§. Here we use the
notations;, 7; for the subspaces &" and O; for the point inA; in Definition
1.2. The functionf : [[ B; x [0, 00) — []S; is homotopic to the identity and
it satisfies

fx0)#£0 forallxed[[B =0

This lastfactis a consequence of (7.3) and an argument asin Lemma 2.2, estimate
(2.27). Then, using degree theory we obtain a solutiofsystem (7.6).
Next, considering,. = ¢; (X, t) and use the argument in Lemma 2.2 again
we obtain
sup J.(n(®)pi) = e" (b + 0(1))
xe[] B
forall1l <i < ¢, and then

12
J:(n(0)) = e Y (b + (D),

i=1
finishing the proof of the lemma. |

Estimates (7.3) and (7.4) imply that,. is a critical value. All we have to
prove is that associated € there is a critical point of . which is also a critical
point of the original functional. But this can be achieved by an argument as in
the case of a single peak. Without presenting all details we just point out that, as
a consequence of Lemma 6:8¢an be decomposed as

4
() =Y _ni(t) +re)
i=1

m

wheren, (1) satisfies supfy;) C A7 and distn; (1), M,) < e¥mie F. The
error termr(¢) is supported in¥ and satisfies

() (y)] < mie” 2410 forally e RV,

We conclude from here that, except for an exponentially small error,)gaxn

be treated is in the case of a single peak. Then the ideas used in the proof of
Theorem 1.1 can be used to prove that there is a critical point associafgd to
that does not touch the penalization. |
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