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CNRS-UChile), Universidad de Chile, Casilla 170,
Correo 3, Santiago, Chile

2Departamento de Matemáticas, FCFM Universidad de
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1. INTRODUCTION AND STATEMENT

OF MAIN RESULTS

Let O be a smooth bounded domain in R
N , N � 2. For any p > 1,

with p � N=ðN � 2Þ if N � 3, we have the validity of the Sobolev trace
embedding of H1

ðOÞ into Lpþ1
ð@OÞ, namely there exists a positive constant

S such that

Skuk2
Lpþ1ð@OÞ � kuk2

H1ðOÞ
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for all u 2 H1
ðOÞ: The best constant for this embedding is the largest S for

which the above relation holds, namely the number SðOÞ defined as

SðOÞ ¼ inf
u2H1ðOÞnf0g

R
O jruj2 þ u2R
@O juj pþ1

� � 2
pþ1

Moreover, if 1 < p < N=ðN � 2Þ the embedding is compact which translates
into existence of extremals for it, namely, functions u at which this infimum
is achieved.

Let us fix 1 < p < N=ðN � 2Þ and a bounded smooth domain O. For a
large positive number � we consider the family of expanding domains

O� ¼ �O ¼ f�x j x 2 Og:

Our purpose in this paper is to describe the asymptotic behavior as � ! þ1

of the best constants SðO�Þ as well as that of the associated family of
extremals u�. In what follows we shall denote by u� an extremal normalized
so that the relationZ

O�

jru�j
2
þ u2

� ¼

Z
@O�

ju�j
pþ1

holds. Of course, from the homogeneity of the Raleigh quotient, this rela-
tion is achieved by multiplying an arbitrary minimizer by an appropriate
constant. This normalization is convenient, since the corresponding Euler-
Lagrange equation satisfied by u� reduces simply to

�u� � u� ¼ 0 in O�,

@u�
@�

¼ ju�j
p�1u� on @O�:

ð1:1Þ

Standard regularity theory and strong maximum principle then tell us that
u� is smooth up to the boundary and strictly one signed. Thus, we assume
from now on that u� > 0 in O�.

It is worth mentioning that problem 1.1 becomes, once conveniently
scaled back to the variable in O,

"2�u� u ¼ 0 in O
@u

@�
¼ up on @O

where " ¼ 1=�. This type of nonlinear boundary value condition arises in
reaction-diffusion equations in heat transfer, chemical reactions and popu-
lation dynamics, see [8] and references therein. For the associated heat flow
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of this problem, smallness of " may be interpreted as slow diffusivity of the
measured quantity.

Associated to problem (1.1) is the energy functional

J�ðuÞ ¼
1

2

Z
O�

jruj2 þ u2
� �

dy�
1

pþ 1

Z
@O�

u
pþ1
þ d	: ð1:2Þ

Positive solutions of 1:1 are precisely the critical points of J� in H1
ðO�Þ.

Now, it is straightforward to check that u� is a critical point of J� at the
energy level

J�ðu�Þ ¼ c� � inf fJ�ðuÞ = u 6¼ 0 is a critical point of J�g,

namely, u� is a (positive) least-energy solution of 1.1 Moreover,

c� ¼
p� 1

2pþ 2
SðO�Þ

pþ1
p�1:

Thus, our problem is reduced to studying the asymptotic behaviour of least-
energy solutions of 1.1 and their associated energies.

If we stand at a point of @O� and we let � ! 1 then we will see the
domain to become a half space which, after a convenient rotation and
translation, may be assumed to be R

N
þ ¼ f ðx0,xNÞ j xN > 0 g: Thus, it is

natural to suspect that SðO�Þ converges to the corresponding quantity
for the half-space, and u� to an associated extremal. Our first result states
that SðO�Þ indeed approaches SðRN

þÞ, corrected by a negative factor of the
maximum mean curvature of @O.

Theorem 1.1. There is a constant 
 ¼ 
ð p,NÞ > 0 such that the following
expansion holds

SðO�Þ ¼ SðRN
þÞ � ��1
 max

x2@O
HðxÞ þ oð��1

Þ,

as � ! þ1. Here HðxÞ denotes the mean curvature of the boundary at the
point x.

Our second result says that, as expected, the extremals u� constitute a
single bump at the boundary, whose shape is asymptotically that of
an extremal for the half-space embedding. This bump is centered (in the
O-coordinates) around a point of maximum mean curvature of @O.
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Theorem 1.2. Let y� 2 @O� be a maximum point of u�. Then x
�
¼ ��1y� 2 @O

satisfies

Hðx�Þ ! max
x2@O

HðxÞ

as � ! 1: Also, there are constants �,� > 0 such that

u�ðyÞ � � expf�� jy� y�jg,

for all y 2 O�. Besides, given a sequence �n ! 1 there is a subsequence, still
denoted the same way, an extremal w of SðRN

þÞ and a rotation Q such that

sup
y2O�n

ju�n ðyÞ � wðQðy� y�nÞÞj ! 0:

as n! 1.

The results here stated have a similar analogue for best constant and
extremals of the usual embedding of H1

ðOÞ into Lqþ1
ðOÞ. In fact, let us now

fix 1 < q < ðN þ 2Þ=ðN � 2Þ and define

CðO�Þ ¼ inf
u2H1ðOÞnf0g

R
O�

jruj2 þ u2

ð
R
O�

jujqþ1Þ
2=ðqþ1Þ

:

Let us select a family of minimizers u� � 0 withZ
O�

jru�j
2
þ u2

� ¼

Z
O�

ju�j
qþ1,

then u� > 0 in O� and solves

�u� � u� þ u
q
� ¼ 0 in O�,

@u�
@�

¼ 0 on @O�:
ð1:3Þ

Moreover, u� is a least-energy solution of ð1:3Þ. These solutions and their
asymptotic behavior have been analyzed by Lin, Ni and Takagi in [5], [6]
and [7]. They find exactly the same: an expansion for CðO�Þ similar to
Theorem 1.1 and the fact that u� is a single bump, whose maximum lies
on the boundary, near a point of largest mean curvature, in the same sense
as Theorem 1.2 states.

There is, however, an important difference between the situation
treated in this paper and that just described which comes from the different
nature of the limiting equations. In fact for Problem (1.1) it is important to
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understand least energy solutions of

�w� w ¼ 0 in R
N
þ ,

@w

@�
¼ wp on @RN

þ ,

w > 0 in R
N
þ ,

ð1:4Þ

while for problem (1.3) the corresponding equation is

�w� wþ wq ¼ 0 in R
N
þ ,

@w

@�
¼ 0 on @R

N
þ ,

w > 0 in R
N
þ ,

ð1:5Þ

In problem (1.5) it is well known that positive solutions are radially
symmetric around some point, and that the radial solution is unique, a
result due to Kwong, [4]. In the approach devised in the cited works this
fact is of fundamental importance. Not only this, a by-product of Kwong’s
uniqueness proof is its nondegeneracy up to translations, namely the fact that
only linear combinations of the partial derivatives of w lie in the kernel of
the linearized operator. On the other hand, the proof of this fact relies on a
delicate analysis for the ODE satisfied for the radial solution of (1.5).
Problem (1.4) instead is of a different nature. As we shall see, a least
energy solution is radial in the tangential variables but certainly not glob-
ally, so that an ODE approach to establish uniqueness or some form of
nondegeneracy seems in principle hopeless. This condition in the framework
of (1.5) for more general nonlinearities has been lifted in the work [3], and
we borrow some of the ideas there employed in the last section. The scheme
of the paper is as follows. In § 2 we work out a further variational char-
acterization of extremals of the Sobolev embedding and establish existence
of such extremals for the problem in the half space. In § 3 we work out
uniform estimates for least energy solutions. Of special importance is their
uniform exponential decay away from their maximum points. Finally, in § 4
we exploit the variational characterization of these solutions to conclude
the proof of the main results.

2. EXISTENCE OF LEAST-ENERGY SOLUTIONS

Let O � R
N be a bounded smooth domain or O ¼ R

N
þ . Let us consider

the best Sobolev constant for the embedding of H1
ðOÞ into Lpþ1

ðOÞ,

SðOÞ ¼ inf
u2H1ðOÞnf0g

R
O jruj2 þ u2

ð
R
@O juj pþ1Þ

2=ðpþ1Þ
ð2:1Þ
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with 1 < p < N=ðN � 2Þ. As we have mentioned in the introduction, it is
convenient for our purposes to obtain a further characterization of this value
and its extremals in terms of the energy functional

JOðuÞ ¼
1

2

Z
O
ðjruj2 þ u2

Þ dx�
1

pþ 1

Z
@O
u
pþ1
þ d	, ð2:2Þ

where d	 is the surface measure on @O. It is standard to check that JO
is of class C1 in H1

ðOÞ, that it has a mountain-pass structure, and that
its nontrivial critical points correspond precisely to the solutions of
the problem

�u� u ¼ 0 in O,
@u

@�
¼ up on @O,

u > 0 in O:

ð2:3Þ

C1
ðOÞ-smoothness of the solutions of (2.3) follows for instance from

general regularity results by Amann in [1]. Let us consider the number

cO � inf
u2H1ðOÞ
u 6¼0

sup
t>0

JOðtuÞ: ð2:4Þ

It is easy to see that if uþ 6¼ 0, the function t!JOðtuÞ has a maximum
t ¼ �tt > 0 which is its unique critical point. Then �ttu 2MO, where

MO ¼ u 2 H1
ðOÞ=u 6¼ 0,

Z
O
½jruj2 þ u2

� dx ¼

Z
@O
u
pþ1
þ d	

� �
, ð2:5Þ

is the so-called Nehari’s manifold of JO. It follows from this fact that

cO ¼ inf
u2MO

JOðuÞ:

Since all nontrivial solutions of (2.3) lie in MO, the above number is
called the least energy value for JO and a solution u of (2.3) with JOðuÞ ¼ cO,
a least energy solution. These solutions and extremals of SðOÞ are related
in the following way: if u is a least energy solution, then it is a extremal of
SðOÞ. Reciprocally, if �uu � 0 minimizes the Raleigh quotient (2.1), then
u ¼ t �uu is a least energy solution of (2.3) where

t p�1
¼

R
O jr �uuj2 þ �uu2R

O �uupþ1
:
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In fact we always have the exact relation

cO ¼
p� 1

2pþ 2
SðOÞ

pþ1
p�1:

As we have mentioned, for O bounded the compactness of the
associated trace embedding yields the existence of extremals for SðOÞ
and correspondingly of critical points of JO at level cO. The existence of
extremals when O ¼ R

N
þ is less obvious, but it is still true. To establish this,

we shall make use of a concentration-compactness type argument borrowed
from Coti-Zelati and Rabinowitz, Lemma 2.18 in [2], applied to a suitable
P.S. sequence.

Proposition 2.1. There exists a critical point of J
R
N
þ
at the level c

R
N
þ
.

For the proof we will make use of two preliminary results which we
state and prove next.

Lemma 2.1. There exists a sequence um in MR
N
þ
such that

J
R
N
þ
ðumÞ & c

R
N
þ
, and DJ

R
N
þ
ðumÞ ! 0: ð2:6Þ

Furthermore, um can be chosen satisfying

Z
R
N�1

ðumÞ
pþ1
þ d	 > a ð2:7Þ

for all m, with a > 0 a positive constant.

Proof: The existence of um in M
R
N
þ

satisfying (2.6) is a consequence of
Ekeland’s variational principle applied to a minimizing sequence of J

R
N
þ

over M
R
N
þ
. Now, for m sufficiently large,

cðRN
þÞ

2
� JþðumÞ �DJþðumÞum ¼

1

2
�

1

pþ 1

� �Z
R
N�1

ðumÞ
pþ1
þ d	,

which shows (2.7). &

The following Lemma rules out the posibility that um asymptotically
vanishes.
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Lemma 2.2. Let um be the sequence of Lemma 2.1. For y0 2 R
N�1 put

�ðy0Þ ¼ f x0 2 R
N�1 : jx0 � y0j � 1 g: Then for each r 2 �2, ð2N � 2Þ=ðN � 2Þ½,

there exists a > 0 and � 2 �0, 1½ such that

kðumÞþkLrðRN�1Þ � a sup
y02R

N�1

Z
�ðy0Þ

ðumÞ
2
þ d	

( )�=2

: ð2:8Þ

In particular

sup
y02R

N�1

Z
�ðy0Þ

ðumÞ
2
þ d	 � b ð2:9Þ

for some b > 0.

Proof: Let us fix r 2 �2, 2N�2
N�2 ½. If y0 2 R

N�1 then by H €oolder’s inequality

kukLrð�ðy0ÞÞ � kuk1��
L2ð�ðy0ÞÞkuk

�
Lð2N�2Þ=ðN�2Þð�ðy0ÞÞ

for each u 2 H1
ðR

N
þÞ, where � ¼ ðr� 2=rÞðN � 1Þ. For r � 2N=ðN � 1Þ we

have �r � 2 and by the limiting trace embedding H1
ðBðy0ÞþÞ ,!

Lð2N�2Þ=ðN�2Þ
ð�ðy0ÞÞ, where

Bðy0Þþ ¼ x 2 R
N
þ = jx� y0j � 1

� �
,

we obtain a constant C independent of y0 with

Z
�ðy0Þ

ur d	 � C0 sup
y02R

N�1

Z
�ðy0Þ

u2 d	

 !ð1��Þr=2

kuk�r�2

Z
Bðy0Þþ

ðu2
þ jruj2Þdx:

ð2:10Þ

Now we choose a family fBðy0iÞþg whose union covers R
N�1 and such that

each point of R
N�1 is contained in at most k such balls. Summing up

inequalities (2.10) over this family, we find that

Z
R
N�1
ur d	 � kC sup

y02R
N�1

Z
�ðy0Þ

u2 d	

 !ð1��Þr=2

kuk�r�2

Z
R
N
þ

ðu2
þ jruj2Þ dx

¼ kC sup
y02R

N�1

Z
�ðy0Þ

u2 d	

 !ð1��Þr=2

kuk�r:
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This yields (2.8) by setting u ¼ ðumÞþ. If 2 < r < 2N=ðN � 1Þ, the
result follows from Hölder’s inequality and the case just established.
Finally, (2.9) is an inmediate consequence of Lemma 2.1 and (2.8)
with r ¼ pþ 1. &

The invariance by tangencial translations of R
N
þ and the above

lemmas allow us to build up a relatively compact P.S. sequence for J
R
N
þ

at
the level c

R
N
þ

which does not vanish uniformly. This implies the existence of a
least-energy solution of (2.3) in O ¼ R

N
þ .

Proof of Proposition 2.1. First we note that by (2.9) there exists a sequence
um in M

R
N
þ

satisfying (2.6) and such that

0 <
b

2
�

Z
�ðy0mÞ

u2
m d	

for certain points y0m 2 R
N�1. Thus, if we consider the translations

umð� þ y
0
mÞ, this new sequence of functions, which we denote the same

way, satisfies (2.6) and

b

2
�

Z
�ð0Þ

u2
m d	 ð2:11Þ

for all m 2 N. This is the sequence with which we will work. Since um is
bounded in H1

ðR
N
þÞ, we may assume that um * u weakly in H1

ðR
N
þÞ. It is

clear that u is a critical point of J
R
N
þ
. It remains to show that J

R
N
þ
ðuÞ ¼ cðRN

þÞ.
The embeddings

H1
ðOÞ ,!L2

ðOÞ, H1
ðOÞ ,! Lrð@O \ R

N�1
Þ

are compact for all r < ð2N � 2Þ=ðN � 2Þ, provided O bounded. It follows
that for each compactly supported smooth function � on R

N one hasZ
R
N
þ

f�jrumj
2
þ �u2

mg dx

¼

Z
R
N
þ

rumðumr�Þ dxþ

Z
R
N�1

�upþ1
m d	 �DJ

R
N
þ
ðumÞ�um

¼

Z
R
N
þ

ruður�Þ dxþ

Z
R
N�1

�upþ1 d	 þ oð1Þ

¼ �DJ
R
N
þ
ðuÞ�uþ

Z
R
N
þ

f�jruj2 þ �u2
g dxþ oð1Þ:
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Thus we get thatZ
R
N
þ

f�jrumj
2
þ �u2

mg dx!

Z
R
N
þ

f�jruj2 þ �u2
g dx:

From (2.11) we conclude that u 6¼ 0 and, furthermore, since J
R
N
þ
ðumÞ ¼

ð1=2 � 1=ð pþ 1ÞÞ
R
R
N
þ
ðjrumj

2
þ u2

mÞ dx, we obtain J
R
N
þ
ðuÞ ¼ c

R
N
þ
, as desired.

&

3. ESTIMATES ON DECAY

First we use a Moser’s iteration procedure to prove an important
L1-estimate for the solutions of (1.1).

Lemma 3.1. Let v be a solution of (1.1). Then there are constants
B ¼ BðO, p,NÞ and � ¼ �ðO, p,NÞ, independent of 1 � � < 1, such that

kvk1 � BJ�ðvÞ
�: ð3:1Þ

Proof: Let � > 1. Multiplying (1.1) by v2��1 and integrating by parts we
obtain

2�� 1

�2

Z
O�

jrv�j2 dyþ

Z
O�

v2� dy ¼

Z
@O�

v pþ2��1 d	: ð3:2Þ

Hence,

1

�

Z
O�

jrv�j2 dyþ

Z
O�

v2� dy

�
� �

Z
@O�

v pþ2��1 d	: ð3:3Þ

Now, the trace embedding at the critical exponent q� ¼ 2ðN � 1Þ=ðN � 2Þ
tells us that

C

Z
O�

½jrzj2 þ z2 � dy �

Z
@O�

zq
�

d	

� �2=q�

ð3:4Þ

for all z 2 H1
ðO�Þ. The constant C depends on N,O and �, but it can

be chosen invariant for 1 � � < 1. Combining (3.3) and (3.4) we obtain
the iterative inequality

Z
@O�

vq
�

d	

� �2=q�

� C�

Z
@O�

vpþ2��1 d	: ð3:5Þ
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Next we consider the sequence of positive numbers �j, j ¼ 0, 1, 2, . . . ,
defined inductively as

pþ 2�0 � 1 ¼ q�

pþ 2�jþ1 � 1 ¼ �jq
� , for j ¼ 0, 1, . . . , ð3:6Þ

or, explicitly,

�j ¼
ðq�=2Þ jþ1

ðq� � p� 1Þ þ p� 1

q� � 2
: ð3:7Þ

Note that �j > 1 and �j % 1 as j ! 1. By (3.4),

Z
@O�

v pþ2�0�1 d	

� �2=q�

¼

Z
@O�

vq
�

d	

� �2=q�

� C

Z
O�

½jrvj2 þ v2 � dx ð3:8Þ

¼ C
1

2
�

1

pþ 1

� �
J�ðvÞ:

We will construct a suitable sequence of positive numbers Mj such thatZ
@O�

v pþ2�j�1 d	 �Mj ð3:9Þ

for all j ¼ 0, 1, . . . Inequality (3.9) gives us M0. Assuming that (3.9) holds
for j we have by (3.5) thatZ

@O�

vpþ2�jþ1�1 d	 ¼

Z
@O�

v�jq
�

d	

� C�j

Z
@O�

vpþ2�j�1 d	

� �q�=2

� C�jM � j
� �q�=2

:

Hence, (3.9) holds for Mj defined by

M0 ¼ C
1

2
�

1

pþ 1

� �
J�ðvÞ

� �q�=2
ð3:10Þ

Mjþ1 ¼ C�jMj

� �q�=2
for j ¼ 0, 1, . . . :
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From these relations, we can obtain constants C1, C2 depending only on
C, p,N such that

Mj � exp ð�C logM0Þ exp C2�j�1ð1 þ logM0Þ
� �

ð3:11Þ

and using (3.7), (3.9),

kvkL�j q�ð@O�Þ
� exp ðC � 1 logM0Þð Þ

1=�jq
�

exp ðC2=q
�
ð1 þ logM0ÞÞ:

ð3:12Þ

Letting j ! 1 we obtain the result applying the maximun principle. &

Next we will establish three crucial properties of solutions of the
limiting problem (1.4). The first one is a uniform estimate on least energy
solutions.

Lemma 3.2. There is a constant C ¼ Cð p,NÞ such that

kr
jwk1 � C

for each least energy solution of (1.3), with 0 � j � 3.

Proof: The result follows from Proposition 3.1 and standard elliptic
estimates. &

The second property establishes uniform exponential decay of least energy
solutions.

Lemma 3.3. If w is a least energy solution of (1.4) then there exists positive
constants a, b, such that

jwðxÞj þ jrwðxÞj � a exp ð�bjxjÞ

for all x 2 R
N
þ :

Proof: For � > 0, let us set zðx0, xNÞ ¼ exp ð��xNÞzðx
0
Þ, where z is a positive

solution on R
N�1 of

�z� ð1 � �2
Þz ¼ 0
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which decays exponentially at infinity. The function z solves the linear
problem

�z� z ¼ 0 in R
N
þ ,

@ z

@ �
¼ �z on R

N�1,

and decays exponentially at infinity. Let us consider the difference
� ¼ Aw� z, with A > 0. We have

Z
R
N
þ

�2
þ þ jr�þj

2
� �

dx ¼

Z
R
N�1

ðAwp � �zÞ�þ dx
0:

Now, the Sobolev trace embedding of H1
ðR

N
þÞ into L2

ðR
N�1

Þ, gives the
existence of 
 > 0 such that




Z
R
N�1

�2
þ dx

0
�

Z
R
N�1

Awp � �zð Þ�þ dx
0: ð3:13Þ

If we fix numbers 0 < � < 
 and R > 0 such that wp�1
ðxÞ � � for jxj � R

and we choose A such that Aw � �z for jxj � R, then we find that �þ ¼ 0
for jxj � R. Thus by (3.13),




Z
jxj�R

�2
þ

� �
dx0 � �

Z
jxj�R

�2
þ dx

0:

This implies that �þ � 0 and gives the desired exponential decay for w.
The decay of jrwj is proved in a similar way, by comparing the
functions zi ¼ Diw with z, using the equation satisfied by each of the
functions zi. &

Using the above established decay, a direct application of Theorem 0.1
in [9] gives the fact that least energy solutions of the limiting problem are
radially symmetric with respect to the first N � 1 variables.

Lemma 3.4. Let w be a least energy solution of (1.3) in R
N
þ which maximizes

at the origin. Then, w ¼ wðx0, xNÞ is radially symmetric with respect to the
variable x0 2 R

N�1, and wr < 0, r ¼ jx0j.

We end this section by establishing uniform exponential decay on the
least energy solutions u� to (1.1).
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Lemma 3.5. There exists positive constants �,� such that

u�ðyÞ � � exp ð��jy� y�jÞ

for all y 2 O� and � sufficiently large. Here y� denotes any maximum
point of u�.

Proof: First, we will see that the functions u� decay uniformly at infinty.
By contradiction, we assume that there exist sequences �n ! 1 and yn such
that jy�n � ynj ! 1 and u�nðynÞ � � for some � > 0 fixed. In this case, using
an appropriate cut-off function and reasoning as in the proof of Proposition
2.1, we can see that limn!1 J�n ðu�nÞ � 2cðRN

þÞ, a contradiction. This proves
that for each � > 0 there exists �0 and R > 0 such that u�ðy� y

�
Þ � � for

� � �0 and jy� y�j � R. The desired exponential decay will be a conse-
quence of the following

Claim: There exists R0 > 0 and �0 > 0 such that for all R > R0

sup
jy�y�j�R

u�ðyÞ � 2 sup
jy�y�j�Rþ�0

u�ðyÞ

for all � sufficiently large.
By contradiction, let us assume that there exist sequences Rn ! 1,

�n ! 1, �n ! 1 and yn 2 O�n
with jyn � y�n j � Rn þ �n such that

u�n ð y
n
Þ > 1=2Mn, where

Mn ¼ sup
jy�y�n j>Rn

u�n ðyÞ:

From the uniform decay established above, we see that Mn ! 0. Let us set

vnðyÞ ¼M�1
n u�n ðyþ ynÞ:

Then vn is bounded, vnð0Þ > 1=2 and satisfies �vn � vn � 0 in O�n
� yn, with

@ vn=@ � ¼Mp�1
n vpn on the boundary. Letting n! 1 we obtain a contradic-

tion since vn converges locally uniformly to a positive solution v of the
limiting problem �v� v ¼ 0 in the entire space R

N or in the half-space
R
N
þ , with @ v=@ � ¼ 0 on R

N�1. This object does not exist. Thus, the claim
holds and we have the uniform exponential decay of the functions u�. By
standard arguments involving local elliptic estimates, we obtain the validity
of the same property for the derivatives of u�. &
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4. PROOF OF THE MAIN RESULTS

In this section we will prove Theorems 1.1 and 1.2. In what follows
u� will denote a least energy solution of (1.1), namely a critical point of
J� defined in (1.2) such that J�ðu�Þ ¼ c� ¼ cO�

, see (2.4).

4.1. Upper Bound on c�

The first step is to obtain a good upper bound on c�. For this we use
the characterization (2.4) that gives c� � supt>0 J�ðt uÞ for all u 2 H1

ðO�Þ. In
order to find an upper bound we will construct a suitable test function.
Given w a solution of the limiting equation (1.4) we consider the extension

wðx0, xNÞ ¼
wðx0, xNÞ if xN > 0,

�xNw
p
ðx0, 0Þ þ wðx0, 0Þ if xN � 0:

(
ð4:1Þ

Fix z 2 @O. After a translation and rotation of the coordinate system
we may assume that z is the origin and the inner normal to O at z is pointing
in the direction of the positive xN-axis. On the other hand, there exists
a C2 function G : B0

! R defined in a ball B0
¼ fx0 ¼ðx1, . . . , xN�1Þ :

jx0j < �0g, such that Gð0Þ ¼ 0, rGð0Þ ¼ 0 and

@O \U ¼ fðx0, xNÞ : xN ¼ Gðx0Þg

O \U ¼ fðx0, xNÞ : xN > Gðx0Þg, ð4:2Þ

where U is a neighborhood of z. Our test function (associated to the
point z) will be wzðxÞ ¼ wðx� zÞ and if we denote by t� the only positive
number such that

J�ðt�wÞ ¼ sup
t>0

J�ðtwÞ ð4:3Þ

we have that c� � J�ðt�wÞ: By estimating the right-hand side of this inequal-
ity we will show the following fact.

Proposition 4.1. There exists a positive constant 
, depending only on N and
p, such that

c� � cðRN
þÞ �

1

�

HðzÞ þ oð1=�Þ ð4:4Þ

EMBEDDINGS IN EXPANDING DOMAINS 2203

D
ow

nl
oa

de
d 

by
 [

T
he

 U
C

 I
rv

in
e 

L
ib

ra
ri

es
] 

at
 1

3:
30

 2
5 

O
ct

ob
er

 2
01

4 



ORDER                        REPRINTS

as � ! 1, for any z 2 @O. Here HðzÞ denotes the mean curvature of @O at
point z.

With no loss of generality, we may assume that HðzÞ � 0. For the
proof of this result we need the following lemma.

Lemma 4.1. Let w be a least energy solution of (1.3) and

gðx0Þ ¼ hD2Gð0Þx0, x0i:

Then, as � ! 1,

R1ð�Þ :¼

Z
O�

ðjrwj2 þ w2
Þ dx�

Z
R
N
þ

ðjrwj2 þ w2
Þ dx

¼ �
1

�

Z
R
N�1

jrwðx0, 0Þj2 þ wðx0, 0Þ2
� �

gðx0Þ dx0 þ o
1

�

� �
ð4:5Þ

and

R2ð�Þ ¼
1

pþ 1

Z
@O�

wpþ1 d	 �
1

pþ 1

Z
R
N�1
wpþ1 dx0

¼ �
1

�

Z
R
N�1
wxN ðx

0, 0Þ2gðx0Þ dx0 þ o
1

�

� �
: ð4:6Þ

Moreover, there exists a constant � > 0 such that

t� ¼ 1 þ
1

�
�þ oð1=�Þ: ð4:7Þ

Proof: Let us set V ¼ O \U and V� ¼ �V: By the exponential decay of
w we have

R1 ¼

Z
V�

ðjrwj2 þ w2
Þ dx�

Z
R
N
þ

ðjrwj2 þ w2
Þ dxþ oð1=�Þ

¼

Z
V�nR

N
þ

ðjrwj2 þ w2
Þ dx�

Z
R
N
þnV�

ðjrwj2 þ w2
Þ dxþ oð1=�Þ: ð4:8Þ

But

V� ¼ f ðx0, xNÞ = xN=� > Gðx0=�Þ g,
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with x0 2 B0
� ¼ �B0 (see (4.2)), and using the exponential decay of w and that

Gð0Þ ¼ 0, rGð0Þ ¼ 0 we can show thatZ
V�nR

N
þ

ð jrwj2 þ w2
Þ dx ð4:9Þ

¼ �
1

�

Z
B0
�\fx=Gðx

0=�Þ<0g

ðjrx0wðx
0, 0Þj2 þ wðx0, 0Þ2p þ wðx0, 0Þ2Þgðx0Þ dx0 þ o

1

�

� �
,

and Z
R
N
þnV�

ð jrwj2 þ w2
Þ dx

¼
1

�

Z
B0
�\fx

0=Gðx0=�Þ>0g

jrwðx0, 0Þj2 þ wðx0, 0Þ2
� �

gðx0Þ dx0 þ o
1

�

� �
: ð4:10Þ

Combining (4.9), (4.9) and (4.10) we obtain (4.6), after noticing that
�wxN ¼ wp at xN ¼ 0. Estimate (4.7) is found in a similar way. Finally, to
see (4.7), let us observe that, explicitly,

t
p�1
� ¼

R
O�

ðjrwj2 þ w2
Þ dxR

@O�
wpþ1 dx

:

Since w satisfiesZ
R
N
þ

ð jrwj2 þ w2
Þ dx ¼

Z
R
N�1

jwðx0, 0Þj pþ1 dx0,

the desired result readily follows from estimates (4.6) and (4.7). &

Proof of Proposition 4.1. Let us consider w, a least energy solution of (1.4).
From Lemma 4.1 we obtain that

c� �
1

2

Z
R
N
þ

jrwj2 þ w2
� �

dxþ 2�=�

Z
R
N
þ

jrwj2 þ w2
� �

dx

 

�1=�

Z
R
N�1

ð jrwj2 þ w2
Þ gðx0Þ dx0

�
�

1

pþ 1

Z
R
N�1
wpþ1 dx0

�

þð pþ 1Þ�=�

Z
R
N�1
wpþ1 dx0

�
þ 1=�

Z
R
N�1
w2
xNgðx

0
Þ dx0 þ oð1=�Þ

EMBEDDINGS IN EXPANDING DOMAINS 2205

D
ow

nl
oa

de
d 

by
 [

T
he

 U
C

 I
rv

in
e 

L
ib

ra
ri

es
] 

at
 1

3:
30

 2
5 

O
ct

ob
er

 2
01

4 



ORDER                        REPRINTS

¼ cðRN
þÞ � 1=�

Z
R
N�1

1

2
ð jrwj2 þ w2

Þ � w2
xN

� �
gðx0Þ dx0 þ oð1=�Þ:

Since w is radially symmetric with respect to x0, we can compute

Z
R
N�1

1

2
ð jrwj2 þ w2

Þ � w2
xN

� �
gðx0Þ dx0 ¼ ðN � 1ÞHðzÞ

Z 1

0

rNEwðrÞdr,

where EwðrÞ ¼ 1=2ðjrwðr, 0Þj2 þ wðr, 0Þ2Þ � wxN ðr, 0Þ
2, r ¼ jx0j. Now, we put


 ¼ ðN � 1Þmax
w2K

Z 1

0

rNEwðrÞ dr: ð4:11Þ

Here K designates the set of all least energy solutions of (1.4). It is not hard
to check that the number 
 is indeed finite and it is achieved, arguing
similarly as in the proof of Proposition 2.1. Furthermore, multiplying
(1.4) by jx0j2wxN and integrating by parts, we find

Z
R
N�1

jx0j2
1

2
ðjrwj2 þ w2

Þ � w2
xN

�
� dx0 ¼ 2

Z
R
N
þ

wxNx
0
� rx0w dx,

which implies that 
 > 0. This proves the result. &

4.2. Lower Bound on c�

This is the crucial part of the proof. We consider points y� 2 @O� at
which u� maximizes and a subsequence yn ¼ y�n such that xn ¼ �ny

n con-
verges to x 2 @O. Let us set unðyÞ ¼ u�n ðyþ y

n
Þ. After a rotation and a

translation n-dependent, we may assume that xn ¼ 0 and that O can be
described in a fixed neighborhood U of x as the set fðx0, xNÞ = xN >
Gnðx

0
Þ g, with Gn smooth, Gnð0Þ ¼ 0 and rGnð0Þ ¼ 0. We can take Gn such

that Gn converges in C2
loc to a corresponding parametrization at x, G.

We put On ¼ O�n , Un ¼ �nU, Uþ
n ¼ Un \ R

N
þ , U0

n ¼ �nðU \ R
N
þÞ, �n ¼

�nðU \ @OÞ and Vn ¼ �nðU \ OÞ. On can be described in the neighborhood
Un of the origin as the set fðy0, yNÞ : yN > �nGnð�

�1
n y

0
Þ g. Now we extend un
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from Vn to Un by defining unðy
0, yNÞ in the following way:

unðy
0,yNÞ if yN � �nGn

y0

�n

� �

un y0,Gn
y0

�n

� �� �
þ Gn

y0

�n

� �
� yN

� �
upn y0,Gn

y0

�n

� �� �
if yN <�nGn

y0

�n

� �
:

ð4:12Þ

Proposition 4.2. With the notations above, we have that

cn � c
R
N
þ
�

1

�n

HðxnÞ þ oð1=�nÞ, ð4:13Þ

where 
 is the constant defined in (4.11).

Proof: We have cn � JOn ðt unÞ for all t > 0. Thus, by the exponential
decay of un,

cn � JVn ðt unÞ þ oð�
�1
n Þ:

We can make the following decomposition:

cn � JUþ
n
ðtunÞ þ

1

2

Z
VnnR

N
þ

ðjtrunj
2
þ jtunj

2
Þ dx

�
1

2

Z
Uþ
n nVn

ðjtrunj
2
þ jtunj

2
Þ dx�

1

pþ 1

Z
�

nðtunÞ
pþ1 d	

þ
1

pþ 1

Z
U0
n

ðt unÞ
pþ1 d	 þ oð��1

n Þ: ð4:14Þ

Now, let us choose t ¼ tn in a such way that

JUþ
n
ðtnunÞ ¼ sup

t>0
JUþ

n
ðt unÞ:

Passing to a subsequence, we may assume that un ! w in the H1-sense,
where w is a least-energy solution of (1.4). Since

c
R
N
þ
¼ inf

v2H1ðRN
þÞ

sup
t>0

JþðtvÞ,
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it is not hard to check that tn ! 1 and JUþ
n
ðtnunÞ � cðRN

þÞ þ oð�
�1
n Þ. From

these facts, it follows that

Cn � cðRN
þÞ þ R1ðnÞ þ R2ðnÞ þ oð�

�1
n Þ, ð4:15Þ

where

2R1ðnÞ ¼

Z
VnnR

N
þ

ðjtnrunj
2
þ jtnunj

2
Þ dx�

Z
Uþ
n nVn

ðjtnrunj
2
þ jtnunj

2
Þ dx

ð4:16Þ

and

ð pþ 1ÞR2ðnÞ ¼ �

Z
�n

ðtnunÞ
pþ1 d	 þ

Z
U0
n

ðtnunÞ
pþ1 d	: ð4:17Þ

Now, since un ! w C1-locally, with uniform exponential decay, Gn ! G,
and tn ! 1, we can do the following computation:Z

Uþ
n nVn

ðjtnr unj
2
þ jtnunj

2
Þ dy

¼

Z
B0
n\fy

0=Gnðy
0=�nÞ>0g

Z �nGnðy
0=�nÞ

0

ðjry0unj
2
ð1 � pyNu

p�1
n Þ

2

þ u2p
n þ ðun � yNu

p
nÞ

2
Þ dyn dy

0
þ oð��1

n Þ

¼

Z
B0
n\fy

0=Gðy0=�nÞ>0g

ð�nGðy
0=�nÞ jry0wðy

0, 0Þj2 þ wðy0, 0Þ2p þ wðy0, 0Þ2
�

�

� �2
nGðy

0=�nÞ
2 pwðy0, 0Þ p�1

jry0wðy
0, 0Þj2 þ wðy0, 0Þp

�
�

þ �3
n=3Gðy

0=�nÞ
3
½ p2wðy0, 0Þ2p�2

jry0wðy
0, 0Þj2

þ wðy0, 0Þ2p �Þ dy0 þ oð��1
n Þ:

But Gð0Þ ¼ 0 and rGð0Þ ¼ 0, thusZ
Uþ
n nVn

ðjtnrunj
2
þ jtnunj

2
Þdy

¼
1

�n

Z
B0
n\fy

0 =Gðy0=�nÞ>0g

�
jry0wðy

0, 0Þj2 þwðy0, 0Þ2pþwðy0, 0Þ2
�
gðy0Þdy0

þ o
1

�n

� �
:
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where gðy0Þ ¼ hD2Gð0Þy0, y0i. Similarly, we can prove thatZ
VnhR

N
þ

ðjtnrunj
2
þ jtnunj

2
Þ dy

¼ �
1

�n

Z
B0
n\fy

0=Gðy0=�nÞ<0g

ðjrwj2 þ w2
Þgðy0Þ dy0 þ o

1

�n

� �
ð4:18Þ

and we conclude from here that

R1ðnÞ ¼ �1=�n

Z
R
N�1

jrwj2 þ w2
� �

gðy0Þ dy0 þ o
1

�n

� �
: ð4:19Þ

We can analyze the quantity R2 in the same fashion and then conclude the
result, similarly as in the proof of Proposition 4.1. &

We are now ready to finish the proofs of Theorems 1.1 and 1.2.
Combining Propositions 4.1 and 4.2, we have

J�ðu�Þ � c
R
N
þ
�

1

�

Hðy�Þ þ oð��1

Þ,

J�ðu�Þ � c
R
N
þ
�

1

�

 max
z2@O

HðzÞ þ oð��1
Þ:

This implies, Hðx�Þ ! maxz2@OHðzÞ. From these estimates, the proof of
Proposition 4.2 and the exponential decay given by Lemma 3.5, we obtain the
validity of all the assertions of the theorems. The proof is thus concluded.
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