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Abstract: We examine the asymptotic behavior of the eigenval(g and correspond-
ing eigenfunction associated with the variational problem

wy=  inf Jo |GV +hA)YY|? dx dy
veHi @) [qyI* dxdy

in the regimer >> 1. HereA is any vector field with curl equal to 1. The problem
arises within the Ginzburg—Landau model for superconductivity with the fungtiéin
yielding the relationship between the critical temperature vs. applied magnetic field
strength in the transition from normal to superconducting state in a thin mesoscopic
sample with cross-sectidd ¢ R?. We first carry out arigorous analysis of the associated
problem on a half-plane and then rigorously justify some of the formal arguments of
[BS], obtaining an expansion farwhile also proving that the first eigenfunction decays

to zero somewhere along the sample boundaeywhen is not a disc. For interior
decay, we demonstrate that the rate is exponential.

1. Introduction

When a superconducting sample is subjected to a large applied magnetic field it is well-
known that the effect is to drive down the critical temperature below which one first
detects the presence of a supercurrent. Above this critical value, the sample is said to
be in its normal state, characterized by the lack of a supercurrent and the complete
permeation of the sample by the applied field. Mathematically, this relation between
critical temperature and applied field can be characterized as an eigenvalue problem
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Grants 1960698 and 1970775.
** Research supported by N.S.F. grant DMS-9322617 and a U.S.-Israel Bi-national Grant.
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using the Ginzburg—Landau model ([GL,DGP]) and it is this eigenvalue problem that is
the subject of the present study.

For the particular phenomenon under investigation, the Ginzburg—Landau theory is
widely viewed as an effective model. We consider the case of a thin sample of constant
cross-section, immersed in an insulating medium and subjected to a constant applied
magnetic field of magnitudé directed normal to the cross-section. In experiments a
typical domain radiu for these samples is very small, on the order of 1 tarb(cf.
[BGRW, BRPVM, MGSJQVB] and the references therein). Non-dimensionalizing with
respect to the lengthscak® and using the 2-d Ginzburg—Landau energy to model the
problem, the energy can be written as

2

A 1. vwl? B owiz_ 142
G(w,A>=/ Z|@v + Al + -2 +
02 4 o

~ 2
‘V x A — h?‘ dxdy.
R2
(1.1)

Here2 c R? represents the cross-section of the sample (scaled to be orde%:l) by
The function¥ : Q@ — C is an order parameter withl|> measuring the density

of superconducting electron pairs aAd: R2 — R? is the (dimensionless) induced
magnetic potential (whose curl is then the induced magnetic field). The parameter

is the dimensionless Ginzburg—Landau parameter (not to be confused with curvature
which is denoted by later in the paper) and is given by

_ R¥T.-T)
EET.

whereT is temperatureT, is the critical temperature in the absence of any applied field
andé&g is a material dependent lengthscale ([BR1]).

Physically realizable states within this theory are then given by the stable critical
points of G, where, for example, positivity of the second variatiorGoébout a critical
point can be used as a criterion for stability. The afore-mentioned normal state corre-
sponds in Ginzburg—Landau theory to the critical pdine 0, A = kA, whereA is any
vector field satisfying the condition

: (1.2)

VxA=(00A?-AD) =001 inQ. (1.3)

In other words, in the normal state, the induced magnetic field exactly matches the
applied magnetic field. If we calculate the second variatioid;adbout this state we
obtain the functional

2
82G((0,hA); ¥, B) = / |GV + hAW|? — w | dxdy + %/2 |V x B|? dxdy.
Q R

We then see that the normal state first loses stability when the temperature-related pa-
rameteru drops below the value

I Jo 1GY + hA)YY|? dx dy
venl@ [y lwl2dxdy

The variational problem (1.4) is the primary focus of this paper. Before describing our
work on this problem let us mention some of the earlier results on the subject.

(1.4)
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Saint-James and de Gennes [SD] considered the case @hisra half-plane or
an infinite slab. Their formal calculation revealed a first eigenfunction for (1.4) which
concentrated along the boundary with an exponentially small tail within the interior of
the domain. This phenomenon is seen in experiments on the critical temperature/applied
field relationship and is commonly known as “surface superconductivity”. More recently,
Chapman ([C1, C2]) carried out a more detailed formal mathematical treatment of the
half-plane problem as part of a general analysis of onset for decreasing fields, starting
from a perturbation theory developed by Millman and Keller [MK]. Subsequently, Lu
and Pan [LP1] carried out a rigorous analysis of (1.4) in alRéfand in a half-plane
and we will make use of several of their observations in our analysis.

Animportant advance was made by Bauman, Phillips and Tang ([BPT]) who analyzed
the full nonlinear problem wheg is a disc from the standpoint of bifurcation theory.
By separating variables and using a highly nontrivial O.D.E. analysis, they rigorously
showed that for a disc, the value @th) is lowered below the half-plane value of Saint
James and de Gennes by a term of ofdé# proportional to the curvature of the disc
(not to be confused with the Ginzburg—Landau parameter). That is, they prove

w(h) = Agh — SLIhl/z +o(hY?) ash — oo, (1.5)
0

where) is the eigenvalue corresponding to the half-plane (see Proposition 2.2 for its
definition) and wheréy is a universal constant (see Lemma 2.3 below). Note that in light

of (1.2), a smaller value qf corresponds to a higher critical temperature. As in the case

of a half-plane, they found that a first eigenfunction associated with (1.4) concentrates
along the entire boundary of the disc while decaying exponentially in the interior. We
should note here that in [BPT] as well as in most of the other studies quoted above, the
authors non-dimensionalized the Ginzburg—Landau energy with respect to a lengthscale
given by the penetration depth rather than a characteristic domain radius. Hence these
results must be appropriately recast in order to make a comparison with this paper.

WhenQ is not a disc, this problem has been recently studied by Bernoff and the third
authorin [BS]. Through the method of matched asymptotics, they formally establish that
unlike the case of a disc, a first eigenfunction associated with &9 not concentrate
along the entire boundaryput rather does so near points of maximum curvature, tailing
off exponentially away from these points.

The sensitivity of the concentration behavior of the first eigenfunction to even the
slightest perturbation of the domain from a disc suggested by the analysis in [BS] makes
the whole phenomenon quite subtle. The techniques and results in this paper, largely
motivated by the above conjecture, constitute an effort towards the ultimate goal of a
complete and rigorous description of the concentration behavior. In particular, our main
result establishes the fact that when the domain is not a disc, the first eigenfunction
does not concentrate along the entire bounddtymust decay to zero with large
somewhere along the boundary, while simultaneously decaying at an exponential rate
inside the domain.

Theorem 1.1.Let 2 C R? be a bounded, open, simply connected domain 9§the
320 for somexg € (0, 1). If {¥"} denotes a sequence of eigenfunctions corresponding
to the first eigenvalugw (k) given by(1.4), normalized so thaﬂ\llh = 1, then

there exists amg > 0 such that for allz > hg we have

” Loo(S2)

‘\I—’h (z)’ < cle_czhl/2 dist(z.02)  for all 7 = (x, y) € Q, (1.6)
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for constants:; andc; independent of. Moreover, if€2 is not a disc, then we have

; ; h
im (mave] ) =0 @)
Property (1.6) is proved in Theorem 4.3 below, while property (1.7) is proved in
Theorem 4.5. To get a feel for the significance of (1.7), one might compare the case of
a disc to the case of a domanhwhich is nearly a disc in the sense tli& agrees with

a circle except along a small arc.

A crucial step in our analysis is a complete characterization of the first eigenfunc-
tion for the associated problem on a half-plane (cf. Theorem 3.2). This result, in turn,
relies heavily on an a priori exponential decay result, in the same vein as (1.6), for any
eigenfunction in the half-plane (cf. Theorem 3.1).

As a by-product of our arguments we recover the expansion (1.5) for a disc and we
obtain, in the case of a general dom&inthe following sharp upper bound far(h):

ju(h) < Ah — "3L;‘0Xh1/2 +o(hY?) ash — oo, (1.8)

(cf. Proposition 4.1) wherenax denotes the maximum curvatureds®.
In [BS] a higher order expansion far(h) was obtained by the method of formal
matched asymptotics, namely

Km

w(h) ~ Agh — —ZpY2 L Copl/4,
KIf)

whereCy = C2(3R2) is a positive constant depending on the second derivative of the
curvature at the maximal point, a value assumed to be strictly negative (see Remark
4.2). The higher order term in the expansion seems to be related to the decay of the
eigenfunction along the boundary. Intriguingly enough, the expected decay away from
points of maximum curvature has a considerably slower rate than the decay towards the
interior of @ as given by (1.6). In particular, it is a rate which strongly depends on the
geometry of the domain, as is clearly indicated by the case of a disc where no decay on
the boundary takes place at all. We believe it is precisely upon this point that the subtlety
of the phenomenon rests.

We should also mention some recent work by Lu and Pan ([LP2, LP3]) in which the
authors consider a general smooth, bounded dof2&and variable magnetic field) and
among other things, show that for a constant applied field, one has

lim M:

M. 1.9
Jm — 1 (1.9

(Our analysis recovers this result as well, cf. Theorem 4.5.) They also show that the
first eigenfunction tends to zero inside for large i, though they do not obtain the
exponential decay as in (1.6), nor do they capture any decay along the boundary. (See
also [B, BH, BR2, GP] and [O].)

One might also ask about the effect on the critical temperature/applied field relation-
ship when a domain is not smooth so that a maximum of curvature does not exist. That
is the subject of ongoing research, but see [JRS] for a preliminary investigation.

We organize the paper as follows. In Sect. 2 we establish some preliminary lemmas.
In Sect. 3 we treat the case of a half-plane, and in Sect. 4 we treat a general smooth
bounded domain. The various results of Theorem 1.1 are proven here in Theorems 4.1,
4.3 and 4.5.
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2. Preliminary Lemmas and Notation

2.1. Sturm-Liouville operators with a quadratic potential on a half-liféaroughout
this paper, a crucial role will be played by the family of ordinary differential operators

Lglul = —u" + (x — B)? forg eR. (2.1)
We begin with a summary of some known resultsign

Proposition 2.1.Foranyg € R the spectrum of the operatdsg onL?([0, o)) consists
of a sequence of eigenvalu@s< )Jf < Ag < ... with /\f — oo ask — oo. The
corresponding orthogonal sequence of eigenfunct{@fs}, satisfying

Lglyf1=20yf for 0<x <00, ()0 =0,
forms a basis for.2([0, 00)).
Proof. Properties of the spectrum and the completeness of the eigenfunctions follow
from the general theory of Sturm—Liouville operators on a half-line with an unbounded

potential (cf. [LS], Sect. 4.7]).0

For anys € R, the eigenvalue\’f can be characterized variationally through an
associated Rayleigh quotient, namely

00, 1\2 o242
Mo g @R+ G prgtdx

2.2
$eH1(]0,00)) Jol ¢?dx 22)

We can then consider the minimization)(ff over all 8. We summarize the results about
this problem in the following proposition and lemma.

Proposition 2.2. There exists a uniqgue numbgt satisfying

W= int e (2.3)
One findD < g* = \/)F Wherekf* ~ .59,
Proof. See [DH] and [BH]. The numerical approximationxﬁ* is discussed in [JRS].
Notation. We will henceforth denote the eigenvalqeg*} associated with the operator

Lg« simply by {1} and the corresponding eigenfunctidﬂ@f*} will be written simply
as{yn}.

Lemma 2.3.Definel; as thek! moment of the first eigenfunctign of Lgs:

[
[k = / xkllffdx,
0
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where we choose the normalizatign (0) = 1. Then for every positive integér one
can expresg; in terms ofg* and Iy. In particular,

I1 = B*Io,
3 3

L= =(B")%Io (= =r1lo), and
2 2
1 5

I3 ==+ =(85%.

3 6+ 2(/3 ) 1o

This is proved in the appendix to [BS] with a slightly different scaling so we omit
the proof here.
We will also need the following lemma regarding a related inhomogeneous problem.

Lemma 2.4.For any numbei. < 11, for any functionf € L2([0, c0)) and anyr € R,
consider the problem

(Ligr—ry — )¢l = —¢" (x) + (x — B* + %P (x) — Ao (x)
= f(x) for0 < x < oo,
¢'(0) =0, ¢(c0) =0. (2.5)

(2.4)

For A = A1, and anyr # 0, a unique solutiorg € C*° (R4 x R\ {0}) exists and satisfies

2

dx <COIf172m,,  (26)

2 2

> 2|0 Kl
/0 |h(x, t)]” + ‘axh(x,t) + 'axzh(x,t)

— _ 08
forh = g orh = 37, where

supC(t) < oo for eacha > 0.
[t|>a

For anya < A1 and anyr € R, a unique solutiory € C*° (R4 x R) exists and satisfies
(2.6)with C(r) replaced by a constar independent of.

Proof. We will present the cask = A;. The case. < A1 follows along similar lines.

This result is a fairly standard consequence of Fredholm theory. However, for the sake
of completeness, we present the argument. Existence follows from Proposition 2.2 since
A1 is not in the spectrum of. g-_;) for any nonzera. To see an existence argument
more explicitly and to establish (2.6), consider first the following variational problem
on afinite interval0, N], whereN is a positive integer:

)‘gl_v(t) = inf fON (¢/)2 4+ -+ l)2¢2 dx |
¢eHL([0,N]), p(N)=0 fON ¢2 dx

2.7)

By extending any admissiblgin (2.7) to be zero fox > N we immediately see that
Wy =20 =, (2.8)

where the last inequality is strict for£ 0. Now define

N
In(p) = /O @)+ [(x — B* + 1% — 111¢? — 2f P dx.
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From (2.8) we easily find thaty is bounded from below within the class
{¢ € HY([O, N]) : ¢(N) = 0}, and then we can apply the Direct Method to obtain
a minimizeruy for each positive intege¥. Standard regularity theory and continuous
dependence theory show that, = uy(x, ) will be a smooth function of and:.
Furthermore, the variational characterizationt@fimplies that

N N
(Allv(t)—/\l)/ uzzvdx—Z/ Sfuydx < Jy(un) < In(0) =0,
0 0
so that by Cauchy—Schwartz and (2.8) we find
lunl =< 2 (WAl (2.9)
UNI|y2 0, =S s 2(10, . .
L~([O,N]) k(lﬁ ) — A L=([O,N])

Applying the condition/y () < 0 then immediately leads to a bound on ftfenorm
of uly:

N N
/0 (uy)? dx 5/0 A+ nuf, + f2dx

C N,
N = B Zf fedx
()Ll A1)c J0

for some constant independent of andN .
Lettinguy = ag—tN we then note thaiy satisfies

(2.10)

Lp—nlin]l = =2(x — B* + Duy, @n)'(0,1) =0, uy(N,t)=0. (2.11)

We can bound thé.2-norm of the right-hand side of this O.D.E. by again using that
Jn(uy) < 0so that

N N
/ A(x — p* +f)2u/2v dx < 4/ Alulzv +2fuydx
0 0
N
< 4[ (14 rp)ud + f2dx (2.12)
0

o) N,
S — fedx.
P )2 /o

After multiplying (2.11) byit ;5 and integrating by parts, we immediately obtain bounds
onuy and(iy)’ in the same manner as we did o andu/y .

In order to bound/l(, in L2 we note that
N N
/O (u;(,)2 = /0 (x — B* + t)2uNuX, — dunuy — fuly dx

N
= —/ (x — B* + t)z(u/N)2 +2(x — B* 4+ Dunuly + runuy + fuly dx.
0
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Hence,

N
””X/HEZ([O,N]) = /0 (x—p* = t)2”12v + (”§v)2dx
+ A llunllzzqony |43 | 2gony + 1 Izqony [un ] L2qo.np -

Using the inequality:b < —12a2 + %bz on the last two terms it then follows from (2.9),
(2.10) and (2.12) that

c
4
laiell 2oy < w5 M lzaon - (2.13)
1 — Al

Such a bound Otﬂ(i{N)UHLZ([O xy, follows in a similar manner. Consequently, we find
thatuy, u'y, uy, iy, (iy) and(iy)” all are bounded iL2([0, N1) by the quantity

C
— o Iz
A(lﬁ 0 _ 3, (10,00))

for someC independent of andN.

Using a diagonalization argument, we then obtain a subsequential limiydfvhich
converges on compact subsetd@foo) and satisfies (2.5) as well as (2.6) in view of
Proposition 2.2. O

2.2. Gauge invariance and preliminary results for plane, half-plane and di4ach of
this paper is devoted to the study of the functional

Jo |GV +A)y|? dxdy

where$ is an open, simply connected subse®3f A : @ — R2andy : Q@ — C.
As was noted in the introduction, this functional arises as the second variation of the
full Ginzburg—Landau energy computed about the normal state. In the lemma below we
record the gauge invariance property thiatinherits from the full energy (1.1).
Lemma 2.5.Given anyy € HY(Q; C), A € L%(©; R?) and¢ € HL(Q; R), we have
Ja+ve) (We'?) = Ja().
Furthermore, ifyr, A and¢ are smooth andr satisfies the equation
(iV+A)%y =iy inQ forsomer € R,
then the function) = y¢'? satisfies the equation
(V+A+VY)2y =ry in Q.

Both statements are easily proved by direct calculation.
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Corollary 2.6. Supposé\, B ¢ H1(Q; R?) satisfy
VxA=(00A%-AP)=VxB inQ.

Then
Ja(y) = inf  Jg(¥).

i
W1, 20)=1 91,20 =1

We next present some results on the eigenvalue problem associated with the whole
plane. These will be useful ingredients in our subsequent analysis of the problem on a
half-plane and a general bounded domain.

Proposition 2.7.LetA : R2 — R? be any vector field satisfying.3). Then
i Jr2 |GV + AW 2 dxdy L
weHL(R2,C) Jr2 W2 dx dy N

(2.14)

Remark 2.8This result is well-known in the physics literature and in some form goes

back to Landau. The proof we present below is in the general spirit of the proof of the
same result to be found in [LP1]. Unfortunately, we found this latter proof to contain

numerous errors, necessitating the presentation below.

Proof. Invoking Corollary 2.6, we fixA = %(—y,x). Insertion of the test function
2,2

W = ¢ into the Rayleigh quotient (2.14) yields the claimed infimum of one,
establishing an upper bound. Indeed, it will then follow from the lower bound of one
that this choice is in fact a first eigenfunction.

To establish the lower bound, it suffices to consider any functioa Cgo(RZ; o).
Converting to polar coordinates, we expabid-, §) = W (r cosd, r sind) in a Fourier
series as

o0

U 0)= Y u(ret,

k=—00
where the smooth functions : [0, co) — C are given by

1 (7. ,
up(r) = 5/ O(r,0)e % a6, (2.15)
—TT

Note in particular that
ur(0) =0 fork #0. (2.16)

Inserting this expansion into the numerator of the Rayleigh quotient gives

/R2 |GV + A)W|? dx dy

o0 00 k
=27 Z./o <|u;((r)|2—|—(;—g)2|uk(l’)|2>rdl’

k=—o00

00 / 2 k r\2 2
o w4 E = 2 )P rdry oo
=27 Z (fo <| ‘ | ’ ‘ ) )/ |Mk(r)|2rdr
0

Jo* lugr) 1 r dr

[e.e]

=27 ) Jk(uk)/ lu (r)|? r dr.
0

k=—o00
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Denote byA; = {u € Cé([o, o0); R) : u(0) = 0 if k £ 0}. Since all coefficients it
are real we invoke (2.16) to find

I (1P = 52 ) P
Titue) = inf { }

Jo° lug () r dr

{2fo°°(’% - %)u(r)u’(r)rdr} .,

> inf
f;o lu(r)|2rdr

=4

where the last equality results from an integration by parts. Consequently,
o 00
/ |GV + A2 dxdy =21 Y f |uk(r)|2rdr:/ W% dx dy.
R2 e )0 R2

We conclude that the infimum of the Rayleigh quotient in (2.14) is greater than or equal
to one; hence it equals one, completing the proof.

Proposition 2.9 Cf. [LP1], Prop. 2.3. LetA : R2 — R2 be any vector field satisfying
(1.3). Letx < 1. Then the only bounded;? solution to

(iV +A)°¥ = AV onR?
iswv =0.

The proof of Proposition 2.9 is an elementary contradiction argument utilizing the prod-
uct of & and a smooth cut-off function in the Rayeigh quotient. Taking the support of the

cut-off function to be larger and larger, one contradicts Proposition 2.7. We also mention
here the following result relating the one-dimensional eigenvalue problem on a half-line
to the two-dimensional problem on a half-plane.

Proposition 2.10 Cf. [LP1], Theorem 5.3, Step)1LetA : R_% — R? satisfyV x A =
(0,0,1). Then

Jr2 GV + A% dx dy
— H +
A= inf 5

WweH(RZ;C) fRi W% dxdy

(2.17)

wherei; (= Af*) is the value arising if{2.3).

The proof that the infimum above is less than or equal tiollows easily from using
o (»)¥r1(x) as atest function in the Rayleigh quotient whigig is a sequence of smooth
cut-off functions with expanding support. The lower bound follows by computing the
value of the Rayleigh quotient for any € ch(R_i) in terms of the Fourier transform
of W in they variable.

As a final result in this subsection, we present a description of the first eigenspace for
our problem when the domain is a disc. The analysis of the disc was previously carried
outin detail in [BPT] (see introduction) and the result below can be found in the opening
of that paper. The proof follows readily by expressing any competitor in the eigenvalue
problem as a Fourier series.
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Proposition 2.11 Cf. [BPT], Lemma 2.3. Let D c R? be a disc of radiu® > 0. Let
A : D — R?be any vector field satisfyir(@.3). Then for every positive numbkerthere
exists a finite set of intege(sy,,, kp,, ... , kny}, WhereN = N (h) such that the set of
minimizers of the variational problem

e dplGV+ hAY|? dx dy
WeHL(D:C) I W2 dxdy

consists of the span of the set
{h, (e g, (e, g, (e,
where{gk,ll, Ckiys - -+ » ;khN} is the set of solutions to the— d variational problem,

it Jo! (‘g/(r)|2+(l;‘—%r)zl{(r)|2>rdr
In .
£eH 0.RD Jo' 1P rdr

Remark 2.12In fact, in [BPT] it is shown that off of a discrete set bfvalues, the
eigenspace is one-dimensional; thaiNg/z:) = 1, but we will not need this information
for our purposes.

2.3. Local coordinates near the boundary and a local representation of the magnetic
potential. In Sect. 4 we will take2 to be a bounded, simply connected domaiRfrwith
Q2 € €32 for someng € (0, 1). We will frequently need to work in a local coordinate
system valid neab<2. For this purpose we let denote arclength along the boundary
with some pointg € 92 chosen to correspond to= 0. We letn denote distance from
a pointz € Q to 3Q. We will generally denote the curvature of the boundarycky)
though occasionally, where no confusion can result, we will also write «(z) for
z € 0Q2.

This local coordinate system will be well-defined in the rectangle

S={(s,m:—-L/2<s<L/2, 0<n<3$},

where L denotes the arclength of the boundary, ang ﬁax is a positive constant
depending orf2. We adopt the convention that f@ra disc,« is positive. We denote by
t = t(s) a unit tangent vector t82 and we leth = n(s) denote the inner unit normal
vector. Thus, in particular, any vector fiekddefined in a neighborhood 62 can be
expressed aB(s, n) = F1(s, nt(s) + Fa(s, n)n(s).

As we will be computing various derivatives in these new coordinates, it will be helpful
to record here the following identities. For any scalar-valued funcfiea f (s, n) one
has the identities:

1
Vf=29,fn
! nf +1—/<r]

3 ft, (2.18)

as(%)asf, (2.19)

K
Af:&,mf—l_—l{nanf‘i‘ —«q

1—«n
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and for any vector fieléF = F1(s, n)t + Fa(s, n)n we have

1—«
V x F =div (Fot — F1n)z. (2.22)

1 1
divF = 3 F1+ (1 — k) F2l, (2.20)
1 n

For much of our analysis it will be useful to find a solution to (1.3), gay q(s, 1),
defined onS, such thag satisfies the additional properties

L L
g-n=0 inS, q(,0=0 for_EESEE' (2.22)
Seeking a solution to (1.3) and (2.22) in the fagma= ¢ (s, n)t, we can solve for the
scalarg through the use of (2.20) and (2.21). We find thahust satisfy the first order
differential equation

-1
1—«

77Bn((l —«mg) =1, q(s,0)=0,

so that

1—«(s)n/2

oo )t(s). (2.23)

ats, ) =q(s, Mt(s) = —n(

We should emphasize thatis only locally defined nea¥2. No such vector field could
exist throughouf? for it would violate Stokes Theorem.

3. Analysis in a Half-Plane

We denote bﬁi the sef{(x, y) : x > 0}. Our first goal will be to establish exponential
decay of certain solutions to the eigenvalue problem

Wy 4+ Wy — 2ixWy —x?W + AW =0 inR3, (3.1)
v, (0,y)=0 fory eR. (3.2)

In light of Lemma 2.5 we have takeh = (0, x) in writing down the equationi VvV +
A)°¥ = AU to obtain (3.1) .

Theorem 3.1.For anyx < 1, let W be any bounded? solution to the problen(3.1)-
(3.2). Then for every multi-index, there exist positive constards andb, such that
forall (x, y) € R% one has

‘D“\D(x, y)’ < age Px, (3.3)

Proof. Without loss of generality, we normalize so tmanw(Ri) = 1. First note that

by standard elliptic theory, ang? solution to (3.1) is necessarily i for x > 0.
For anyR > 0 and positive integek, denotesz’;e = {(x, y) : x > kR}. We will obtain
exponential decay by establishing the following claim:

There exists aRg > 0 such that

1
”\IIHLOO(Q]I\':’J-) < 5 ||\IJ||LOO(Q§) (34)
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for all R > Rg and all positive integerk.
We proceed by contradiction. If claim (3.4) fails then there exists a sequgnee oo
and a sequence of positive integérg} such that

1
v 41 > = ||W -
0ty 2 3 gt
Let
~ v
V= ——,
(R4 ki
L°°(S2Rj)

S0 thatH\Ifj HLOC(ij) = 1 and we can find a sequence of pointg, y;) with x; >
(kj + 1 R; such t[;ifat
“i/j(x]‘,yj)‘ > %
Now definef/ e C2(B(0, R;)) by the formula
FI0y) =Wj(x) +x, yj + y)e Y
Note that

‘fj(o’ 0)) = % while Hfj HLOO(B(O,R_,-)) =L (3.5)

and thatf/ satisfies the equation:
flo+ fl = 2ixf] —x2f7 4 api = 0. (3.6)

With an eye towards establishing compactness of the seqyg¢rg¢ewe now fix any
o > 0and consider a smooth cut-off functigne ch(RZ) suchthaty = 10onB(0, p),

x = 0inR2— B(0, p + 1) and|Vy| < 2. If one multiplies (3.6) byx2f/ (where-
denotes complex conjugation) and integrates &, p + 1), then an integration by
parts yields

2 . — 2
[ s 2w v @i a2
B(0,p+1) (3.7
2
—A‘f" ydxdy = 0.
Applying the Cauchy-Schwartz inequality to the second and third terms, and using the
uniform L°° bound on the sequené¢’}, we conclude that for eagh > 0:

.12
/ (fo) dxdy < C,. (3.8)
B(0,p)

If one then writesf/ in terms of its real and imaginary part§/ = u/ + iv/, (3.6)
becomes the uniformly elliptic system

Aul = —vafi + (2 = M,
AV = 2xu + (6% — Mo/,



426 M. del Pino, P. L. Felmer, P. Sternberg

and theL? control of the right-hand sides leads, via standard interior elliptic estimates,
bootstrapping and Sobolev embedding, to an estimate of the form

|7
for somey € (0, 1).

In light of estimate (3.9), one can extract a subsequéride which converges in
€2 on compact subsets 8 to a limit which we denote by. In view of (3.5),g must
be a bounded, nontrivial solution to Eq. (3.1) on alR3f contradicting Proposition 2.9
sinceX < 1. This establishes claim (3.4).

From (3.4) we readily conclude that there exist positivendb such that

<C 3.9
c2rBOp) ~ (3.9)

|W(x, y)| <ae ? forx > 0. (3.10)
It remains to establish (3.3) for multi-indices# 0. This is a consequence of manip-
ulations similar to those used above in obtaining (3.9). Specifically, using an identity

analogous to (3.7), but applied @ in any ballB C Ri of radius 1 centered at a point
(x0, yo), we find through the use of (3.10) that

/ IV |2 dx dy < nge_beo.
B

Hence, we obtain that for any multi-index

sup|D*¥| < age b
B

for some positive constanég andb,, using the same reasoning that led to (3.9).

We now recall that from Proposition 2.10, we have the relation

fRi |GV + A)y|? dx dy

A1r= 1In
HRY  frz W12 dxdy

(3.11)

where, as beford : R2 — R? s any vector field satisfying (1.3). Itis a result of [LP1]
that noLZ(Ri) eigenfunction can exist corresponding to the eigenvalugiowever,
the analysis of the next chapter will require a complete understanding dfamded
solution to the associated P.D.E. To this end, we now establish

Theorem 3.2.Let¥ € C2(R?) be a bounded solution {@.1)3.2). If A = A1, then¥
must take the forn¥ (x, y) = cyr1(x)e'?™> for some complex numbeywherey, is the
first eigenfunction of the operatdrg:. If 1 < A1, thenW = 0.

Remark 3.3In the preprint [LP1] one can find the same claim. However, the proof
contains many gaps. As we will crucially need this result, we present below our own
argument which follows very different lines.
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Proof. We will first consider the case = A1. Let & be~a smooth bounded solution to
(3.1)—(3.2). Definel via the gauge transformatioh = We—#"Y_ This has the effect of
replacing the choic& = (0, x) by (0, x — 8*) so that¥ satisfies the problem
— AW +2i(x — BV, + (x — BH?W = ¥ inR3, (3.12)
v,(0,y)=0 foryeR. (3.13)

In light of Theorem 3.1, there exists a positive constéhsuch that any bounded,
nontrivial smooth solutionr to (3.12)—(3.13) satisfies the condition

00 1/2
(/ W (x, y)|? dx) <M foreachy € R.
0

Now we will express¥ in terms of the basis of eigenfunctiogg associated with the
operatorL g« (cf. Sect. 2.1). Thus, we writ& as

Wx,y) =Y w3V (), (3.14)

k=1

where for this proof we will take eaaly to haveL2-norm 1. (In other parts of this paper
we favor the normalizatiogy1(0) = 1.)
Then the smooth functions; : R — R are given by

wi(y) Z/o W (x, Y)Y (x) dx (3.15)

and by Cauchy—Schwartz we have
lwe(y)| < M forally e R and all positive integerk. (3.16)

As a consequence of (3.16), each defines a tempered distribution 8hand as such
we can take its Fourier transfornd. The main content of the proof is the following
claim:

Claim 1.
suppwy C {0} for eachk.

We delay for a moment the proof of this claim and demonstrate how the proof of the
theoremis completed once Claim 1is established. It follows from elementary distribution
theory that for each,

Ni
N ko (@)
Wy = E ciég
i=1

for some positive integeN; and constantsf.‘ (wheresg) denotes the” derivative of
the Dirac distribution with suppof0}). But this implies that eachy, is a polynomial
of degreeN; and so as a consequence of (3.16), we find that for each

wi = dy

for some constani;. In particular, we see thdt isindependent of. Butthen¥ = W (x)
is necessarily a first eigenfunction of the operdtgr and so by the results of [DH] we
conclude thatl = c;.
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We turn now to the proof of Claim 1. To this end, we fix any positive intdgand
let¢ € C5°(R) be an arbitrary test function such that

0 ¢ supp(¢). (3.17)
To establish the claim we must show
(i, ) = (wr., §) = 0. (3.18)

We first invoke Lemma 2.4 and denote fly= gx(x, t) the solution to

(L(ﬂ*,t) — Xl)(gk) =1y fort #0, 0<x < oo, (3.19)
(8K)x(0,1) =0, gr(co, 1) =0 (3.20)

for r #£ 0. We also defin@,, by the relation
O(x,t) = p()gk(x,1) fort #0, x € Ry, (3.21)

so that by linearityd,, satisfies (3.19)-(3.20) witky, replaced bypy. From (3.17) it
follows that we can extendt; smoothly to allx, r) € R4 x R by defining®, (x, 0) = 0
forall x € R;. Ask is fixed throughout this argument, we will now suppress the depen-
dence ofd; uponk and write simply®. Clearly, ® enjoys the integrability properties
guaranteed by (2.6); thus, there exists a consfant0 such that

2

dx < C (3.22)

2 2
+ ‘_zh(xvt)
X

o0 0
f e, )2+ ‘—h(x, 0
0 ax

forh=®orh = 30? We also note that singe is smooth and compactly supported in
we can define for each € R, its (partial) Fourier transfornd = ®(x, y) with respect
tor.

The next claim is crucial to our analysis.

Claim 2. The following integrals are all well-defined and the corresponding equalities

hold:
32d EEVAR
RyxR 0X RyxR 0X
0P owv .
[ s )w—z—/ O BELT (3.24)
R xR Ry xR y
32d %W
f v 22 =/ Gy (3.25)
RyxR 0y RyxR 0
/ (x — BH%wd and wd  are well-defined. (3.26)
Ry xR R+ xR

We first show that the left-hand side of (3.23) is well-defined. Through an appeal to

Theorem 3.1 we find that
L[ e 22 o avav= [ ["aet |23 ayax
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However, the Cauchy—Schwartz inequality, Parseval’s identity and (3.21) imply that

/ / V1+y2

1 [ 92 d>

< Z 14 v2) =

< 2/_00( +y9) 532
1 oo

=352 el
1 9% g1 2

= —/ P20 |5 (. 0| +
2 suppg

Then as a consequence of (3. ZPF)“R Vs 32&’ is finite. In a similar manner one finds

that 39 Y9 e LYR, x R). The equwalence (3.23) then follows after two integrations

by parts where the boundary terms all vanish in light of Theorem 3.1, (3.13), (3.20) and
(3.21).

Essentially the same approach works on identity (3.24). One invokes Theorem 3.1 to

obtain
* *© * 8&) © o0 —blx\ 8&)
|x = B*| 1w (x, )| |[=—(x, )| dydx < ae | dydx.
0 —00 dy 0 —0 ad

Then we observe that

[.[5

82q> BZCD
dy
1 + y

dy+C

2> |92 90

22 dt+C

o, % [
‘a((ﬁ(f)ﬁ(x,t)) dt+C

dy—/ Y142

1 [ aci>2

< = 142y | 2=
—2/_00( TIN5

— 1/00 ltd|? + 9 (tD)
2 ot

—00

1+y

dy+C

2
dt + C.

Hence, the integralsin (3.24) are well-defined in light of (3.22) and their equivalence then

follows from Fubini’s Theorem and integration by parts. Properties (3.25) and (3.26) of
Claim 2 are handled similarly.

We are now prepared to establish (3.18). To this end, note that by (3.15) we have

(W, ¢) = / / W(x, Yk ()G(y) dx dy.

Now recall thatd; solves
2
—~ Wj(x, 1)+ (x — )20k (x, 1) + 2(x — B Dy (x, 1) + (12 — 1) Dy (x, 1)
= ()Y (x)
(3.27)
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forr € R andx > 0. Since bothp andr — ®y(x, ) areC* compactly supported
functions oft, we can take the (partial) Fourier transform of (3.27) to obtain
2§ & 2§

) ~ od 20cd
L y) + (= 2Dy (x, y) — 2i(x — ﬂ*)a—yk(x, y) — Tzk(x’ y)

92 (3.28)

— M Pi(x, ¥) = P (x).

From (3.23)—(3.26) we have that the integralloAgainst each term on the left-hand side
of (3.28) over the seR, x R is well-defined. Using the identities of Claim 2, (3.28),
(3.12) and (3.15) we reach the conclusion

<wk,¢>=/ /()\If(x,ywk(x)(ﬁ(y)dxdy

*® *® . *8\11 *y 2 S
=/ / — AV 4+ 2i(x — B ) — 4+ (x — BV — MV |Drdxdy =0
—00 JO dy

and Claim 1 is established.

The case. < A1 is handled similarly. The only difference is that Claim 1 changes to
the statement supfy = @ for eachk. This follows since foi. < A1 we no longer need
the stipulation (3.17) fop. O

4. Analysis in a Bounded Domain

We now consider the eigenvalue problem on a bounded domain associated with the onset
of superconductivity in the presence of high magnetic fieldsSLet R? be a bounded,
simply connected domain with2 € C3°, aq € (0, 1). Then recall that for any € R,

the valuew (h) is given by the infimum:

iV +hA)Y|? dxd
w(hy= inf )= inf Jo|GV + : 1" dxdy
veHL(RQ) veHL(RQ) Jo W dxdy
whereA : @ — R? is any smooth vector field satisfying (1.3).
First we establish an upper bound @t#).
Proposition 4.1.The eigenvalug (k) satisfies the asymptotic upper bound

. h) — A1h K

lim supu( )1 . 1 < max’

h—00 hY 3o
wherel is the first eigenvalue introduced in Proposition 22 js the first moment of
the corresponding eigenfunction arglax is the maximum of curvature 6f2.

, (4.1)

Remark 4.2If one makes the further assumption tld& achieves a maximum of cur-
vature at a unigue poing and that this maximum is strict in the sense that0) < 0
(with s = O corresponding t@p), then one can capture another term in an upper bound
for w(h) following the construction in [BS]. This involves more careful consideration
of the tangential variation (i.e-dependence) of the amplitude and is accomplished by
replacing the factoe~""*s* in definition (4.4) below by a factar"‘"l/“sz, wherea is a
positive constant depending eg (0). One then obtains the bound

_)\i/szs 0

Kmax, 1/2
h) < AMh— —h"/“+
uh) < A1 30, (

which we believe to be sharp.
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Proof. This result is based upon the use of the approximate first eigenfunction derived
in [BS] as a test function in the enerdy defined in (4.1).

Here we recall the local coordinatés n) valid in a neighborhood af 2 that were
introduced in Sect. 2.3. We choose the painibn 92 corresponding te = 0 to be a
point where the curvature is maximized.

Fix any vector fieldA satisfying (1.3). Recalling the definition of the vector figld
given in (2.23), we then define a vector figld § — RZ by the relationA = p +q,
whereA(s, n) = A(x(s, 1), y(s, n)). Note in particular thap will then be L-periodic
and conservative:

Vxp=0 in §. 4.2)

Motivated by the gauge invariance (cf. Lemma 2.5), and utilizing (4.2), we now
introduce a phasé on the rectangle through the relatiov® = p. Hence, for any
(s,n) € §,we let

14
wherey is any path inS joining (0, 0) to (s, n).

We are now ready to define a sequence of test funcfigris for the energy/;, given
by (4.1). First we define rectangl@§! and 2 in terms ofs — n coordinates by

1 1 1
Nhl: {(s,n): _m <s < 1/16° O<n< m)}s
2
2 ) .
N2 ={(s.n): — 7T <5 < 711" 0<n< W)}.

We choosel” to take the form

: 211/2 .
o whezhtbe—zh /2% |n./\/2,
0 elsewhere

We takey” = " (s, n) to be a smooth real-valued function vanishing outsfiq%
and given by

Yh(s,m) = wl(hl/zn)e_h1/4"2 in AV (4.4)

Here y1 denotes the first eigenfunction of the operalgs, with y1 normalized so
that¥1(0) = 1. In light of the exponential decay of botjy as a function of; and

¢~"'*s* as a function of, we note that the smooth transition to zero outside/gfcan

be accomplished with only an exponentially small contribution to the numjlar”).
Invoking Lemma 2.5 and (2.18) we then find that for sgme 0 we have

In |GV = Vils, D! > @ = )y ds dn
St [W 2 @ = e(s)m) ds dn

S (W12 4+ 8 + V2G5, @) (A = k() dn ds

Jn(¥hy = + 0™

Kk (s)n)

+(’)(e_hy),
In W ? @ = k) dnds
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where 1/2
Vi(s. 1) = h(n(l K(i)n/Z) h™“pB
— K (s)n
and the factor of - «(s)n in the numerator and denominator of (3.23) represents the
Jacobian associated with the change of variables) — (s, n).
We now make one further change of variables and introduce

r=hY8 and & =n¥?%. (4.5)

For t-¢ values corresponding 1@, n) € A2, a brief calculation yields that, (z, &) =
Vi(z/hY8, &/ h1/?) satisfies

¥ 1
Vi(z, §) = hl/z(g - B+ Kmax(zgz - B*E) + O(h71/4).

Here we have used the smoothnesa®@fto Taylor expand the curvature as a function of
t aboutr = 0 and we have used that(0) = 0 since curvature is maximized at= 0.
Consequently, we obtain

Ah + BhY?2 £ O A B AD

hy _ _ = o7 1/2 1/2
WD = o ~ ¢t (g = g2+ o™,

where
Bl/4

A= fo [P0l + (€ — B2y,

Rl/4
B = Kmax /0 ((52 — 2B%E)(E — BT — E[(Y1)e]? — E(€ — ﬂ*)2w12> d,

B4
C= v2de, and
0

hl/4

D:Kmax/ ledé‘
0

We note that up to order’/2, ther dependence only enters each term/as 2" dt

and so it cancels out of the computation. In light of the exponential decgy aihd

its derivative, we may replace the domain of integration in each of the integrals above
with f(;’o and only introduce an exponentially small error. Then invoking the moment
identities of Proposition 2.3, a tedious but straightforward calculation yields the desired
result, namely

ju(h) < Jy(Why = aqh — ’;L;‘Xhlfz oY, o
0

We will now invoke methods similar to those in the proof of Theorem 3.1 to establish:

Theorem 4.3.Let {W"} be any sequence of eigenfunctions solving the minimization
problem(4.1), normalized so thaf ¥" HLOO(Q) = 1. Then there exists a constanf > 0

and for every multi-indext with || < 2, there exist positive constant§ and c5
independent of such that

(th(z)) < h2ll g emesh RSO for gl 7 = (x, y) € Q (4.6)

providedh > hg.
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Remark 4.4Note that we do not assert the uniqueness of eigenfunctions here. Indeed,
it was shown in [BPT] that fof2 a disc, there exists a sequence of vallieg — oo
such thafu(h ;) is a double eigenvalue. (See Remark 2.12.)

Proof. The estimates up to the boundary contained in (4.6) will follow from a standard
“flattening of the boundary”. As this type of formulation and estimate is carried outin the
proof of Theorem 4.5, we omit it here and focus on the interior decay. Since the argument
follows along the same lines as the one used to prove Theorem 3.1, we only sketch the
main idea here. It will be convenient to take= 1/2(—y, x). Once the estimates (4.6)

are demonstrated for this choice, it will follow for all others since a different gauge will
only alter the values ofD*W" (z)| by anh-independent constant.

Note that a minimizer" to the problem (4.1) will satisfy the equation
(iV 4+ hA2Y" = L(H)Y" in Q. 4.7)

Now letQ(k, h, R) = {z €  : dist(z, Q) > {5 R} for any positive integek and
anyh > 0 andR > 0. Decay follows from the claim:
There exists ang > 0 and anRgp > 0 such that

1
o <5[v (@8)
L®(Qk+1,h,R) 2 L®(Q(k,h,R))

forall h > hg, all R > Rg and all positive integerk.

Proceeding by contradiction, we note thatif claim (4.8) fails then there exist sequences
hj — oo andR; — oo and a sequence of positive integéts} such that

1

1
H\yhf > prhf =Sm;. (4.9)

L®(Q(k;+1,h;,R) — 2

L>*(Q(kj,hj,R;))
Then definel”i by the formula

cho WhjeihjA(z))-z
V(@) = ———,
mj
where the sequence of poirts;}, each lying in the se2(k; + 1, 2, R;), are chosen
so that

1
jwe|z 3 v

L®(Qkj,hj,R)))
Hence,

‘\f/hf(z,-)‘z% while Hﬁﬂw (4.10)

Lo(QKk;,hj.R))

Now we introducef; : B(0, R;) — C by the relation

fi) =Wz + %)‘

Vhj

In view of Lemma 2.5 and (4.7), we easily find thtsatisfies the P.D.E.

n(hj)

(iV+A2f = -
J

fj on B(0, Rj).
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Note that by Proposition 4.1, we know

u(hj)

J

<am<1 (4.11)

for h; sufficiently large. Invoking the same elliptic theory as in the proof of Theorem
3.1, we can then extract a subsequencgfef which converges irC%C(Rz) to a limit
fo satisfying
(iV+A)2fo=pu*fo onR?

whereu* < 1 arises as a subsequential Iimit{éﬁ%}. Since fp(0) > % in light of
(4.10), we reach a contradiction of Proposition 2].9; hence Claim (4.8) is established.
The exponential decay ¢f/" | follows immediately.

To obtain decay of derivatives @f", fix any pointzg € Q. DefineF” by the formula

Fh(z) = Wh(g)e" A0

and then change variablesio= h%/2(z — zg) and introduce

F'(w) = F'(zo + (4.12)

w
w2
As in the earlier part of this proof, one finds tht satisfies the P.D.E.

- h) ~
(iV + A2F" = %F’q forw € B(0, 1)
for h large, wheréd = A(w) = %(—wz, w1). Through the use of a cut-off function and
the same manipulation as in the derivation of (3.8), one obtains uniform estimates on

any derivative ofF"* of the form

o —h 2 -h 2
/ )D 2 (w)( dw 5ca/ ‘F (w)‘ dw
B(0,1/2) B(0,1)

for a constantC,, independent of. Consequently, one concludes from the embedding
of H'(B(0, 1)) in C¥(B(0, 1)) for [ large that

y y 2 1/2
sup ‘D"‘Fh(w)‘ < c(;(/ ‘Fh(w)‘ dw)
B(0,1/2) B(0,1)

for a constanC;,. Reverting back to the variableand invoking the exponential decay
just established fopl'"|, one arrives at the estimates (4.6

We conclude with a result yielding a proof of property (1.7) of Theorem 1.1 as well
as properties (1.5) and (1.9).

Theorem 4.5.Let 2 C R? be a bounded, open, simply connected domain dthe
C3@0 for somexg € (0, 1). Then the minimal eigenvalye(h) given by(1.4) satisfies
the condition

max

Mh — o(h) < ju(h) < Agh — K?Thl/z +o(hY?) ash — oo. (4.13)
0
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If Qis adisc, then one has

) = aah = 22+ o(h?) ash — oc. (4.14)
0

Furthermore, if(¥"} denotes a sequence of eigenfunctions corresponding to the eigen-
value(h), normalized so thaf w” HLOO(Q) = 1, then for any that is not a disc we

have

im (vl )= (19
Remark 4.6In light of the formal results of [BS], we expect (4.14) to hold for any
domain$2 (with «x replaced bymay) and we expect

lim ‘\l/h(z)‘ -0
h— 00

for all z € 32, wherex # kmax. However, we do not yet have a proof of these stronger
claims. This predicted (exponential) decay aldfy seems very much related to an
assumption of nondegeneracy at the point of maximum curvature, an assumption we
do not make in this paper. The issue is complicated by the subtlety of the boundary
concentration problem. For example, the analysis in [BS] predicts a decay rate for the
first eigenfunction which is different for the tangential and normal directions. Hence the
seemingly natural scaling /2 in the normal direction turns out to be an inappropriate
scaling to capture tangential decay of the amplitude of the eigenfunction, a decay that
we believe manifests itself on a lengthscale no shorter #dff. We are optimistic,
however, that a modification of the techniques presented here will ultimately yield a
rigorous confirmation of the full set of results predicted in [BS] and we are presently
pursuing these questions.

Proof. Let {¥"} denote any sequence of minimizers to (4.1). Recall that in the case
whereQ is a disc, Proposition 2.11 asserts the existence for kadtan eigenfunction

with a radially dependent amplitude. Hence, throughout the proof when considering a
disc, we will take

V(@) = W] e, (4.16)

where(r, 6) are polar coordinates atg is an integer. Since Theorem 4.5 only involves
statements about(h) and not aboud” for the case of a disc, this assumption is justified.
Consider any sequence of poifitg} in 2 satisfying

lim ’\Dh(zh)‘ -1 (4.17)

h—o00
In light of Theorem 4.3, any such sequence must satisfy

. Co
dist(zy, Q) < Wiz for someCq > 0. (4.18)

Supressing subsequential notation, we denotghy 92, the limit of {z,}.

At this point we recall the discussion in Sect. 2.3 in which we iqtroduced a lo-
cal coordinate systerts, n) describing a neighborhood af2. We write W, (s, n) =
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Wh(x(s, n)., y(s, 7)) and note that for each, ¥, is a smooth function defined on the
rectangle
S={(s,n):-L/2<s<LJ/2, 0<n<3$),

whereL denotes the arclength of the boundary, &isla positive constant depending on
Q suchthatthe local coordinate system is well-defined for2 satisfying distz, 0Q2) <
3. Working in a smaller neighborhood 6f2 if necessary, we now assume

8 (4.19)

< .
2Kmax

Without loss of generality, we take the arclength value O to correspond to the point
zo. Define now the sequendg,} C 992 as the sequence satisfying the relation

|z — Zn| = dist(zp, 0€2), (4.20)

and then lefs;,} denote the sequence of arclength values corresponding to the boundary
pointsz, so thats, — 0 ash — oo. As in the proof of Proposition 4.1, we introduce the
function® through formula (4.3) and then introduce a sequence of funcfibnss — C
defined by

By(s, n) = (s, el BOEm=h2E%s) (4.21)

Note that we are not asserting thét is real.
Through the use of Lemma 2.5 we find tht satisfies the equation

iV +ha+ kY28 V)2 ' = w(h) f* inS, (4.22)
whereq is given by (2.23). The functiong” also satisfy the boundary condition

afh
8_(S’ 0)=0for |s| < L/2. (4.23)
n

In light of the smoothness of the functiol = W"(z), note thatl, = U, (s, n) is
necessarily periodic in. Thus, from (4.21) we conclude that

ok i(hd _nl2g%¢y ok i _nl2g%gy
me’( m=TEES) gh, n)u:m=m€'( MBS P (s )y, (4.24)

for k = 0,1 and for 0< » < §. Utilizing the fact thatp is periodic and conservative,
and thatp(s, 0) = A(x(s, 0), y(s, 0)), we conclude through (4.3) that

O(L/2, 1) = P(=L/2,m) = P(L/2,0) = ®(-L/2,0)

L/2
=f p(s,0)~(1,0)ds=/ A - dt
/2 aQ

:/VxA~2dxdy:|Q|.
Q

Hence, the boundary conditions (4.24) can be phrased as

k

9 .
TS5 My (4.25)

8k
_fh (s, n)l —
dsk s=L/2 7 g
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fork =0, 1 and for 0< n < §, where
vh = —h|Q| + h'?B*L. (4.26)

Using the definition ofy given in (2.23) as well as the transformation formula (2.18),
we find that (4.22) takes the form

iV — hY2Vh (s, M2 = w(h) 7 in S, (4.27)
whereV" is given by

. hY25(1 — k(s)n/2) — B*
h _
Vi, m) = - :

We now invoke a blow-up procedure about the paint 0) € S by introducing the
stretched coordinatas= h1/2(s — s;,) and¢ = hl/2y. Let

Sp = lan, b] x [0, 8hY2),

where
_ 12/ L _ 12, L
ap = —h (E +s,) and by, =h (E —sp). (4.28)
Then define the sequence of functias : S, — C through the formula
1 1
Yh(r,£) = fh(Sh + ml’, mf)

It will also be convenient to introduce the functiefi : [a;, by] — R through the
relation

1
Kh(‘[) = K(Sh + mf) (429)
and the functiond” : 5, — C given by
h 1
A'(1,€) = (4.30)

1— h2gxch(7)

We note here that the functiood" are smooth and, in light of (4.19) and the fact that
AQ € €3, they satisfy

‘Ah‘ > i |
1+ 2_L

Kmax

o |

4.31
Cl,oz(sh) < ( )

for someC independent of. We also define the functiovi” on S, by the formula

. 1 ¢ QI
Vi, §) = Vh(SzHrmr, i) =Ah(r,€)[§(1— Siz) — B } (4.32)
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With an appeal to (2.18) and (2.19) we can now convert the problem (4.22)—(4.24)
satisfied byf” on S into the equation

1
—iy — AN(AMYR), + g Aty — 20 APV g

hl/2
( ) (4.33)
— i Ayt 4 vyt = By for (¢, 8) € ),
and the conditions
W(” S)) <c1e”% for (r,£) € Sp, (4.34)
Yl (.00 =0 forr € [ay, by, (4.35)
A o 0
mllf (T, )iy, = elyl’mw (t,8)),_,, fork=01 (4.36)

The condition (4.34) is simply the content of Theorem 4.3 expressed in term8.of
Note that the positive constantsandc; appearing in (4.34) are independent of both
andh.

We will present the remainder of the proof in a sequence of steps.

Step 1 We wish to decompose the operator on the left-hand side of (4.33) into the
sum of three operators acting gtf. This is a routine but tedious calculation requiring
the expansion o¥”, V!, A" and A”. Details can be found in the appendix, but the
conclusion is that the Eq. (4.33) can be written as

Loly"1+ hl/zph[w 1+ - Q [ = “; Ly (4.37)
where
Loly™ = =yl — Yl — 26 — BYWE + & — B9, (4.38)
P! = Ayl 2406yt + 2 A2 Seh + 240 — G — B,
(4.39)
and
Only™] = — (AMZE2 (M2, — (A& !
+2i(A"2E2 (M (B — %)wf +ig (A3 (B — %)(K"W (4.40)

+ (Ah)ZSz(Kh)Z(ﬁ* _ éz-)zlph

Here(x")’ denotes the quantitﬁ‘;x(s) evaluated at = s, + hfﬁ

Step 2 Our next immediate goal is to establish compactness of the seqégfite

by establishingi-independent?“ bounds. Since the procedure is very similar to one

carried out earlier in the proofs of Theorems 3.1 and 4.3, we only outline the argument.
For anyR > 2Co, whereCy is given by (4.18), leB(R) denote the ball of radiug

and centelr, £) = (s;,, 0). Then letBT(R) denote the half-balB(R) N S;,. Note that

within BT (R), all coefficients in the uniformly elliptic system (4.33) can be bounded
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in C%¢ by a constant = C(R) which is in particular independent éf This follows

from the C30 assumption oM< leading toC¢ control of curvature and so od"
andV" as well. In particular, this will give ah-independent bound on t& (B (R))-

norm of all terms in (4.33) involving/” undifferentiated. Then, we can multiply (4.33)
by v x? and integrate oveB*(R), wherey € C(B(R)) andy = 1 on B(R/2).
Utilizing the Neumann boundary condition (4.35), we find after an integration by parts
that this leads to uniform bounds 4" ||H1(B+(R/2)). Writing (4.33) as a system in

terms of Rey” and Imy"*, we apply standard elliptic theory to each equation separately
to obtainz-independent bounds diy” | 12(8+ (k2 Which by Morrey’s Theorem lead

; h
to h-independent bounds dny ”CO’O‘(B*(R/Z))' It then follows from Schauder theory

for elliptic systems (cf. [ADN], Theorem 9.3) that there exists a positive con€tgiR)
independent of such that the sequen¢g”} satisfies the uniform bound

h
C1(R). 4.41
H HcZa(BﬂR/Z)) <GB ( )

Now in light of the uniformC2 bounds provided by (4.41), we conclude that there
exists a subsequengg’i } converging inC2* on compact sets in the half-plafe;, &) :
& > 0} to a limity*. The upper bound on (k) provided by Theorem 4.1 implies, after
perhaps passing to another subsequence, that

jim A1)

Jj—> 00 j

= A wherex < Aq.

As (4.41) also implies a uniform bound ¢jiP”" ||L(,<,(B+(0 &) @nd | o" ||L°°(B+(o &y fOr
eachR > 0, we infer from (4.35) and (4.37), thgt* must satisfy the equation

Loy l=Aay™for —oco <1 <00, 0<& <00

and the boundary condition
wg(r, 0) =0 forall .

Additionally, we find through assumption (4.17) and the normaIizdﬁbh”Loo(Q) =1
that

0<| 1.

[ | Lo sy =
Through an appeal to Theorem 3.2, we then conclude that in fact1 andy* = Byq
for some nonzer® € C; that is,

v"i converges tdBy1 in C>“ on compact subsets 6fr, &) 1 £ > 0} (4.42)

for some nonzer® e C. In particular, we have established (4.13).
We shall henceforth denote quantities indexed pgimply with a sub- or superscript
j. In particular, we will writeys/ for " ands; for Sp;.
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Step 3 We now multiplyLo[v/] by v/, the conjugate of// (cf. (4.38)), and integrate
overS; to obtain

/ / Loly/ 197 d dé
S

- 2 . |2
= [ [ Wl |ud] 2 = g + 6 = g2 || avae

b g=on7? 5h}/2_. qr=b;
-/ vffx/fg] ar— [ ww] dt.
aj 0

£=0 T=a;

Invoking (4.34) and (4.35), we then find that

Re// ao[wf']wczrdg=f/ ’(iV+(,3*—§,O))wj‘2drd$
Sj Sj

shY? _ qu=b; 12 (4.43)
—Re/o ' 1,//./1/4} dg + 02",

T=aj;

Note that the second term on the right vanishes in light of (4.36).
We now define an extensiaf’ : [a;, b;] x [0, co) of ¥/ as follows. Let

Wi for & e [0, 8h%/3]
Yi(r.&) = {linearing for& e (5h7% 28h7%) .
0 for& > 28shY/?

J
In light of the exponential decay @f/ and its derivatives provided by (4.6) we find that
¥/ will be a Lipschitz continuous function satisfying

S Js, 1G9 + 6"~ . 0)y [P d v a
[ Js, v dw de
-2
(iV+© g — )| drds B
- —O(e 7))
fooo fajj
for some positive constant

Now we introduce a periodic extensiaﬁ}’; of ¥/ defined on the entire half-plane
{(r, &) : &£ > 0} as follows. For each integérwe denote by* the interval

[aj +k(bj —aj),bj +k(bj —aj)],

(4.44)

b
R

~ 12
1//1" dtde

and then on each half-striff x [0, co) we define&{; by the formula
Ip(e.6) = MG (1 — kib; —a). 6),

wherey; (= yx;) is given by (4.26). Note thaﬁ,’; will be Lipschitz continuous in view
of (4.36).
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For each positive integdt we then leto; = p;(t) be a smooth cut-off function
satisfying
0 fOI"L'faj—l(bj—aj)—l
pi(t) =31 foraj—l(bj—aj)fr§bj+l(bj—aj);
0 fOI"L’Ebj—i-l(bj—aj)—i-l.

We may insert the functioﬁrépl into the Rayleigh quotient for the half-plane and apply
Proposition 2.10 to assert that

<ffR§r

- 2
X (Y + (6"~ £,0)(Thoo)| d v
1=

ffR%r

- .12
LI )(iv+ (8* —5,0))1p/‘ dvdé +Cy
<

- 2
Vin| dede

’

T 2
LS |0 [ e + ¢

where the constants; andC» arise from estimating the corresponding integrals over
the two half-strips wherp; # 0. Estimates (4.34) and (4.41) imply that both constants
are independent dfand;.

Sending — oo, the resulting inequality and (4.44) lead to the conclusion that

/1,

If we combine this inequality with (4.37) and (4.43) we obtain
(M(hj)l_ hhj) Re/ [y, ! PjLy 1y dr d
ni/2 S fs; Wi dv ds
1 Re[ [s, 0jy 1y dv dt (4.45)
WL g o de s

- O(eiCh}/z).

. .12 .12 —chl./z
(iV+ B —£.0)y| drdsleff | d s — 0@ "),
Sj

Step 4 We now pursue a more precise lower bound on the right-hand side of (4.45) as
h; — oo. To this end, let us first define the functian : [a;, b;] — C by

shY/? p—
Jo’ |W| d§
In light of (4.34), (4.39), (4.42) and Lemma 2.3, we note that

Jo© AW + 25 — B G — BY) Yl dt = —i, (4.46)

Jo7 v l? dg 3lo

where the convergence is uniform on compadattervals.

_Iim Olj(‘L’) =
j—o0



442 M. del Pino, P. L. Felmer, P. Sternberg

Suppose now tha® is a disc. One can easily check that in this case, the phase in
(4.21) is linear in the tangential variable and so by (4.16), all integrals on the right-hand
side of (4.45) are independentofind in particulary; is a constant. The same line of
reasoning that leads to (4.46) then applies to yield

l Reffs Qj I/f/ W d":df
ffs, |’W| dr d§
As a consequence of (4.45), (4.46) and (4.47), one obtains for a disc that

hi)—Ah;
|iminf('u“(f)—1f)>_L

j—o00 hjj/z - 310.

(4.47)

j—o0 h

As this lower bound matches the upper bound provided by Proposition 4.7, we have
established (4.14).

Step 5 For the rest of the proof, we assume tkeaits not a disc. It remains to establish
(4.15), so we suppose by way of contradiction that (4.15) fails; that is, suppose

lim sup( m|n }\I/h(z)‘ (4.48)

h—o00

We then claim that (4.46) holds uniformly over the entire intesval< r < b;. To
establish this claim, suppose by contradiction that along some seqlgnee #,)
there exists a sequenegsuch that for alk we have

>0 (4.49)

3l
for someo > 0. Lett’ = t — 1 and defing; = ¢ (', &) by the formula

1 1 1
Ck(T/a £) = l/jhk(rk + 1;/’ £ = fhk (Shk + = h1/2 Tk + —7 hl/z hl/zg)

We can view the sequengé;} as being defined ot-3 hl/2 th/z) x [0, Sh,%/z] by
simply shifting the origin of the ongma* coordmate so that is defined on a new
interval of lengthL centered at = s, + T/g The analysis leading to the compactness

result (4.42) for the sequen¢g”} then apphes equally well to obtain a subsequengce
and a non-zero complex numbgf satisfying:

¢k, converges taB'y in C%% on compact subsets ¢fz’, £) : & > 0}. (4.50)

Note that the conclusioB| > 0in (4.42) followed from the assumption (4.17) while the
analogous conclusion thbﬂ > 0 follows from the condition (4.48). In view of (4.50)

and Lemma 2.3, we reach a contradiction of (4.49) and conclude that the convergence
(4.46) is indeed uniform over the entire interval < ¢ < b; based on the validity of

the earlier contradiction hypothesis (4.48).

Step 6 We continue to assume th@tis not a disc and pursue a contradiction under
the assumption (4.48). We can now use the uniform converger{eg jofo evaluate the
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limit of the right-hand side of (4.45). We begin with the first term on the right-hand side
of this inequality and write

Re/ [s, kel Py YT dr dg Refab, (1 Con; + 1/2)“1(T)f0 W/‘ §)dr

[ \wi? dvas ffs_,. i |? ded
L2
=Re/ K(S)Ol]( 12 (s—s]))dvj(s)
—L/2
(4.51)
where
5/11/ 1/2
I (b (s —5)). €)| dé
dv;(s) _h1/2 | ! )‘ ds. (4.52)

I'ls, IWI dv ds
Upon noting that
L/2
/ dvj(s) = 1 for eachj
—L/2

we may extract a subsequence of} which converges weak+o a probability measure

v. The uniform convergence of— «; (h}/z(s —sj))to —3—}0 established in Step 5 then
yields

Re/ [ il Pi[y/ 1y dt dg 1 L2
lim / — =—— k(s)dv(s). (4.53)

The reasoning used above can be applied equally well to the second term on the
right-hand side of inequality (4.45). In this case, however, the fact%}pleads to the
J

result

1 Ref[s 0, [W]W dfdé

lim —/ (4.54)
j— 00
Combining (4.53) and (4.54), we see from (4.45) that
(k) = Athj) 1 (L2
||erl)|(|>']of T > —3—1(:)/;L/2K(S) dU(S). (455)

J

We will reach a contradiction of the upper bound from Proposition 4.1 if we can show
that

suppv N{s € [-L/2, L/2] : k(s) < kmax} Z ¥ (4.56)
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To this end, lefr1, r2] be any interval contained in the setsefalues wherg < kmax.
Then fix any continuous, nonnegative functifrsupported ofiry, r2]. From (4.52) we
find

r2 r2
f F(s)dv(s) = f f(s){
r1 ry

Now from the uniform upper bound afg(wf |2) provided by Theorem 4.3, along with

(4.48), the bound v/ ||, . = 1 and the uniform exponential decayyaf in &, it follows
that there exist positive constarfs andC, satisfying

1/2

\W W2~ p0.6)| de
}ds.

fLﬁz ‘1/,/ (W25 = s, g)‘ dt ds'

1/2

8h; . 2
lef ! ‘W(r,g)‘ de < Cy forall € [a;,b;].
0

Hence, there exists a positive constagtdepending ory but not; such that

r2
/ f(s)dvj(s) > Czforall j.
rn
Consequently,
r2
/ f(s)dv(s) = Cs,
ri

yielding (4.56) and the desired contradictiom

5. Appendix: Decomposition of Equation(4.33)

In this appendix, we give the details behind the decomposition of (4.33) given by (4.37).
To this end, first note that” defined through (4.32) can be written as

§

Vi = - - hl/zsAh "B = ). (5.1)
Consequently,
N2 w2 1 h N
(VH2=( =B — 75 CAEE - BHPB" — )k
b/ 2 (5.2)
1o 2 2o 502 '
+h§(A)(K)(ﬁ 2)-
Then noting thak” = 4, (")’ (where’ = 4) and that
At =14 —Ahs;ch, (5.3)

hl/2
Al = %S(Ah) ™y, (5.4)
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we calculate from (5.1), (5.3) and (5.4) that

Now

vh = hl/zs(ﬂ — é)[,4’1/(" + A"
= —Z?;Ah(ﬂ* - %)(Kh)/[mgxw’ +1] (5.5)
_ _E N2 % é hy/
= hE(A ) (B 2)(K )

Al (A = A2yl + A Ayt

so that through the use of (5.3) and (5.4) we find

A, =gl + 2 Ayl

+ %sz(x”)z(Ah)wa, + %s(AhF(K”)’w?.

Now from (5.1) and (5.3) we calculate

2iAhvh = 2ivh 4+

Then we use (5.5) to obtain

hl/zgxuhvh
=2i(§—ﬁ*)+h1/2€Ah I & =28 )42 5 2(AM2 ("2 (g B).
(5.6)
A"V = —,’145<Ah)3(ﬂ* — %)(K’l)’. (5.7)

Substitution of these identities into (4.33) then leads to the decompostion (4.37).
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