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Abstract: We examine the asymptotic behavior of the eigenvalueµ(h) and correspond-
ing eigenfunction associated with the variational problem

µ(h) ≡ inf
ψ∈H1(�;C)

∫
�

|(i∇ + hA)ψ |2 dx dy∫
�

|ψ |2 dx dy
in the regimeh >> 1. HereA is any vector field with curl equal to 1. The problem
arises within the Ginzburg–Landau model for superconductivity with the functionµ(h)

yielding the relationship between the critical temperature vs. applied magnetic field
strength in the transition from normal to superconducting state in a thin mesoscopic
sample with cross-section� ⊂ R2.We first carry out a rigorous analysis of the associated
problem on a half-plane and then rigorously justify some of the formal arguments of
[BS], obtaining an expansion forµwhile also proving that the first eigenfunction decays
to zero somewhere along the sample boundary∂� when� is not a disc. For interior
decay, we demonstrate that the rate is exponential.

1. Introduction

When a superconducting sample is subjected to a large applied magnetic field it is well-
known that the effect is to drive down the critical temperature below which one first
detects the presence of a supercurrent. Above this critical value, the sample is said to
be in its normal state, characterized by the lack of a supercurrent and the complete
permeation of the sample by the applied field. Mathematically, this relation between
critical temperature and applied field can be characterized as an eigenvalue problem
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?? Research supported by N.S.F. grant DMS-9322617 and a U.S.-Israel Bi-national Grant.
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using the Ginzburg–Landau model ([GL,DGP]) and it is this eigenvalue problem that is
the subject of the present study.

For the particular phenomenon under investigation, the Ginzburg–Landau theory is
widely viewed as an effective model. We consider the case of a thin sample of constant
cross-section, immersed in an insulating medium and subjected to a constant applied
magnetic field of magnitudeh directed normal to the cross-section. In experiments a
typical domain radiusR for these samples is very small, on the order of 1 to 5µm (cf.
[BGRW, BRPVM, MGSJQVB] and the references therein). Non-dimensionalizing with
respect to the lengthscaleR, and using the 2-d Ginzburg–Landau energy to model the
problem, the energy can be written as

G(9, Ã) =
∫
�

1

2

∣∣∣(i∇ + Ã)9
∣∣∣2 + µ

4
(|9|2−1)2 dx + κ2

2µ

∫
R2

∣∣∣∇ × Ã − hẑ
∣∣∣2 dx dy.

(1.1)

Here� ⊂ R2 represents the cross-section of the sample (scaled to be order 1 by1
R

.)
The function9 : � → C is an order parameter with|9|2 measuring the density
of superconducting electron pairs andÃ : R2 → R2 is the (dimensionless) induced
magnetic potential (whose curl is then the induced magnetic field). The parameterκ

is the dimensionless Ginzburg–Landau parameter (not to be confused with curvature
which is denoted byκ later in the paper) andµ is given by

µ = R2(Tc − T )

ξ2
0Tc

, (1.2)

whereT is temperature,Tc is the critical temperature in the absence of any applied field
andξ0 is a material dependent lengthscale ([BR1]).

Physically realizable states within this theory are then given by the stable critical
points ofG, where, for example, positivity of the second variation ofG about a critical
point can be used as a criterion for stability. The afore-mentioned normal state corre-
sponds in Ginzburg–Landau theory to the critical point9 = 0, Ã = hA, whereA is any
vector field satisfying the condition

∇ × A ≡ (0,0,A(2)x − A(1)y ) = (0,0,1) in �. (1.3)

In other words, in the normal state, the induced magnetic field exactly matches the
applied magnetic field. If we calculate the second variation ofG about this state we
obtain the functional

δ2G
(
(0, hA);ψ,B) =

∫
�

|(i∇ + hA)ψ |2 − µ |ψ |2 dx dy + κ2

µ

∫
R2

|∇ × B|2 dx dy.

We then see that the normal state first loses stability when the temperature-related pa-
rameterµ drops below the value

µ(h) ≡ inf
ψ∈H1(�)

∫
�

|(i∇ + hA)ψ |2 dx dy∫
�

|ψ |2 dx dy . (1.4)

The variational problem (1.4) is the primary focus of this paper. Before describing our
work on this problem let us mention some of the earlier results on the subject.
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Saint-James and de Gennes [SD] considered the case where� is a half-plane or
an infinite slab. Their formal calculation revealed a first eigenfunction for (1.4) which
concentrated along the boundary with an exponentially small tail within the interior of
the domain. This phenomenon is seen in experiments on the critical temperature/applied
field relationship and is commonly known as “surface superconductivity”. More recently,
Chapman ([C1, C2]) carried out a more detailed formal mathematical treatment of the
half-plane problem as part of a general analysis of onset for decreasing fields, starting
from a perturbation theory developed by Millman and Keller [MK]. Subsequently, Lu
and Pan [LP1] carried out a rigorous analysis of (1.4) in all ofR2 and in a half-plane
and we will make use of several of their observations in our analysis.

An important advance was made by Bauman, Phillips and Tang ([BPT]) who analyzed
the full nonlinear problem when� is a disc from the standpoint of bifurcation theory.
By separating variables and using a highly nontrivial O.D.E. analysis, they rigorously
showed that for a disc, the value ofµ(h) is lowered below the half-plane value of Saint
James and de Gennes by a term of orderh1/2 proportional to the curvatureκ of the disc
(not to be confused with the Ginzburg–Landau parameter). That is, they prove

µ(h) = λ1h− κ

3I0
h1/2 + o(h1/2) ash → ∞, (1.5)

whereλ1 is the eigenvalue corresponding to the half-plane (see Proposition 2.2 for its
definition) and whereI0 is a universal constant (see Lemma 2.3 below). Note that in light
of (1.2), a smaller value ofµ corresponds to a higher critical temperature. As in the case
of a half-plane, they found that a first eigenfunction associated with (1.4) concentrates
along the entire boundary of the disc while decaying exponentially in the interior. We
should note here that in [BPT] as well as in most of the other studies quoted above, the
authors non-dimensionalized the Ginzburg–Landau energy with respect to a lengthscale
given by the penetration depth rather than a characteristic domain radius. Hence these
results must be appropriately recast in order to make a comparison with this paper.

When� is not a disc, this problem has been recently studied by Bernoff and the third
author in [BS]. Through the method of matched asymptotics, they formally establish that
unlike the case of a disc, a first eigenfunction associated with (1.4)does not concentrate
along the entire boundary, but rather does so near points of maximum curvature, tailing
off exponentially away from these points.

The sensitivity of the concentration behavior of the first eigenfunction to even the
slightest perturbation of the domain from a disc suggested by the analysis in [BS] makes
the whole phenomenon quite subtle. The techniques and results in this paper, largely
motivated by the above conjecture, constitute an effort towards the ultimate goal of a
complete and rigorous description of the concentration behavior. In particular, our main
result establishes the fact that when the domain is not a disc, the first eigenfunction
does not concentrate along the entire boundary. It must decay to zero with largeh
somewhere along the boundary, while simultaneously decaying at an exponential rate
inside the domain.

Theorem 1.1.Let� ⊂ R2 be a bounded, open, simply connected domain with∂� ∈
C3,α0 for someα0 ∈ (0,1). If {9h} denotes a sequence of eigenfunctions corresponding
to the first eigenvalueµ(h) given by(1.4), normalized so that

∥∥9h∥∥
L∞(�) = 1, then

there exists anh0 > 0 such that for allh ≥ h0 we have∣∣∣9h(z)∣∣∣ ≤ c1e
−c2h1/2 dist(z,∂�) for all z = (x, y) ∈ �, (1.6)
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for constantsc1 andc2 independent ofh. Moreover, if� is not a disc, then we have

lim
h→∞

(
min
z∈∂�

∣∣∣9h(z)∣∣∣ ) = 0. (1.7)

Property (1.6) is proved in Theorem 4.3 below, while property (1.7) is proved in
Theorem 4.5. To get a feel for the significance of (1.7), one might compare the case of
a disc to the case of a domain� which is nearly a disc in the sense that∂� agrees with
a circle except along a small arc.

A crucial step in our analysis is a complete characterization of the first eigenfunc-
tion for the associated problem on a half-plane (cf. Theorem 3.2). This result, in turn,
relies heavily on an a priori exponential decay result, in the same vein as (1.6), for any
eigenfunction in the half-plane (cf. Theorem 3.1).

As a by-product of our arguments we recover the expansion (1.5) for a disc and we
obtain, in the case of a general domain�, the following sharp upper bound forµ(h):

µ(h) ≤ λ1h− κmax

3I0
h1/2 + o(h1/2) ash → ∞, (1.8)

(cf. Proposition 4.1) whereκmax denotes the maximum curvature of∂�.
In [BS] a higher order expansion forµ(h) was obtained by the method of formal

matched asymptotics, namely

µ(h) ∼ λ1h− κmax

3I0
h1/2 + C2h

1/4,

whereC2 = C2(∂�) is a positive constant depending on the second derivative of the
curvature at the maximal point, a value assumed to be strictly negative (see Remark
4.2). The higher order term in the expansion seems to be related to the decay of the
eigenfunction along the boundary. Intriguingly enough, the expected decay away from
points of maximum curvature has a considerably slower rate than the decay towards the
interior of� as given by (1.6). In particular, it is a rate which strongly depends on the
geometry of the domain, as is clearly indicated by the case of a disc where no decay on
the boundary takes place at all. We believe it is precisely upon this point that the subtlety
of the phenomenon rests.

We should also mention some recent work by Lu and Pan ([LP2, LP3]) in which the
authors consider a general smooth, bounded domain� (and variable magnetic field) and
among other things, show that for a constant applied field, one has

lim
h→∞

µ(h)

h
= λ1. (1.9)

(Our analysis recovers this result as well, cf. Theorem 4.5.) They also show that the
first eigenfunction tends to zero inside� for largeh, though they do not obtain the
exponential decay as in (1.6), nor do they capture any decay along the boundary. (See
also [B, BH, BR2, GP] and [O].)

One might also ask about the effect on the critical temperature/applied field relation-
ship when a domain is not smooth so that a maximum of curvature does not exist. That
is the subject of ongoing research, but see [JRS] for a preliminary investigation.

We organize the paper as follows. In Sect. 2 we establish some preliminary lemmas.
In Sect. 3 we treat the case of a half-plane, and in Sect. 4 we treat a general smooth
bounded domain. The various results of Theorem 1.1 are proven here in Theorems 4.1,
4.3 and 4.5.
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2. Preliminary Lemmas and Notation

2.1. Sturm–Liouville operators with a quadratic potential on a half-line.Throughout
this paper, a crucial role will be played by the family of ordinary differential operators

Lβ [u] ≡ −u′′ + (x − β)2 for β ∈ R. (2.1)

We begin with a summary of some known results onLβ .

Proposition 2.1.For anyβ ∈ R the spectrum of the operatorLβ onL2([0,∞)) consists

of a sequence of eigenvalues0 < λ
β
1 < λ

β
2 < . . . with λβk → ∞ as k → ∞. The

corresponding orthogonal sequence of eigenfunctions{ψβk }, satisfying

Lβ [ψβk ] = λ
β
k ψ

β
k for 0< x < ∞, (ψ

β
k )

′(0) = 0,

forms a basis forL2([0,∞)).

Proof. Properties of the spectrum and the completeness of the eigenfunctions follow
from the general theory of Sturm–Liouville operators on a half-line with an unbounded
potential (cf. [LS], Sect. 4.7]).ut

For anyβ ∈ R, the eigenvalueλβ1 can be characterized variationally through an
associated Rayleigh quotient, namely

λ
β
1 = inf

φ∈H1([0,∞))

∫ ∞
0 (φ′)2 + (x − β)2φ2 dx∫ ∞

0 φ2 dx
. (2.2)

We can then consider the minimization ofλβ1 over allβ. We summarize the results about
this problem in the following proposition and lemma.

Proposition 2.2.There exists a unique numberβ∗ satisfying

λ
β∗
1 = inf

β∈R
λ
β
1 . (2.3)

One finds0< β∗ =
√
λ
β∗
1 , whereλβ

∗
1 ≈ .59.

Proof. See [DH] and [BH]. The numerical approximation ofλβ
∗

1 is discussed in [JRS].

Notation. We will henceforth denote the eigenvalues{λβ∗
k } associated with the operator

Lβ∗ simply by{λk} and the corresponding eigenfunctions{ψβ∗
k } will be written simply

as{ψk}.
Lemma 2.3.DefineIk as thekth moment of the first eigenfunctionψ1 ofLβ∗ :

Ik ≡
∫ ∞

0
xkψ2

1 dx,
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where we choose the normalizationψ1(0) = 1. Then for every positive integerk, one
can expressIk in terms ofβ∗ andI0. In particular,

I1 = β∗I0,

I2 = 3

2
(β∗)2I0

( = 3

2
λ1I0

)
, and

I3 = 1

6
+ 5

2
(β∗)3I0.

This is proved in the appendix to [BS] with a slightly different scaling so we omit
the proof here.

We will also need the following lemma regarding a related inhomogeneous problem.

Lemma 2.4.For any numberλ ≤ λ1, for any functionf ∈ L2([0,∞)) and anyt ∈ R,
consider the problem(

L(β∗−t) − λ
)[φ] ≡ −φ′′(x)+ (x − β∗ + t)2φ(x)− λφ(x)

= f (x) for 0< x < ∞,
(2.4)

φ′(0) = 0, φ(∞) = 0. (2.5)

For λ = λ1, and anyt 6= 0, a unique solutiong ∈ C∞(R+ ×R \ {0}) exists and satisfies

∫ ∞

0
|h(x, t)|2 +

∣∣∣∣ ∂∂x h(x, t)
∣∣∣∣
2

+
∣∣∣∣ ∂2

∂x2h(x, t)

∣∣∣∣
2

dx ≤ C(t) ‖f ‖2
L2(R+) (2.6)

for h = g or h = ∂g
∂t

, where

sup
|t |>a

C(t) < ∞ for eacha > 0.

For anyλ < λ1 and anyt ∈ R, a unique solutiong ∈ C∞(R+ × R) exists and satisfies
(2.6)withC(t) replaced by a constantC independent oft .

Proof. We will present the caseλ = λ1. The caseλ < λ1 follows along similar lines.
This result is a fairly standard consequence of Fredholm theory. However, for the sake
of completeness, we present the argument. Existence follows from Proposition 2.2 since
λ1 is not in the spectrum ofL(β∗−t) for any nonzerot . To see an existence argument
more explicitly and to establish (2.6), consider first the following variational problem
on a finite interval[0, N ], whereN is a positive integer:

λN1 (t) ≡ inf
φ∈H1([0,N ]), φ(N)=0

∫ N
0 (φ

′)2 + (x − β∗ + t)2φ2 dx∫ N
0 φ2 dx

. (2.7)

By extending any admissibleφ in (2.7) to be zero forx > N we immediately see that

λN1 (t) ≥ λ
(β∗−t)
1 ≥ λ1, (2.8)

where the last inequality is strict fort 6= 0. Now define

JN(φ) =
∫ N

0
(φ′)2 + [(x − β∗ + t)2 − λ1]φ2 − 2f φ dx.
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From (2.8) we easily find thatJN is bounded from below within the class
{φ ∈ H 1([0, N ]) : φ(N) = 0}, and then we can apply the Direct Method to obtain
a minimizeruN for each positive integerN . Standard regularity theory and continuous
dependence theory show thatuN = uN(x, t) will be a smooth function ofx and t .
Furthermore, the variational characterization ofuN implies that

(λN1 (t)− λ1)

∫ N

0
u2
N dx − 2

∫ N

0
f uN dx ≤ JN(uN) ≤ JN(0) = 0,

so that by Cauchy–Schwartz and (2.8) we find

‖uN‖L2([0,N ]) ≤ 2

λ
(β∗−t)
1 − λ1

‖f ‖L2([0,N ]) . (2.9)

Applying the conditionJN(uN) ≤ 0 then immediately leads to a bound on theL2-norm
of u′

N :

∫ N

0
(u′
N)

2 dx ≤
∫ N

0
(1 + λ)u2

N + f 2 dx

≤ C

(λ
(β∗−t)
1 − λ1)2

∫ N

0
f 2 dx

(2.10)

for some constantC independent oft andN .
Letting u̇N = ∂uN

∂t
, we then note thaṫuN satisfies

L(β∗−t)[u̇N ] = −2(x − β∗ + t)uN , (u̇N )
′(0, t) = 0, u̇N (N, t) = 0. (2.11)

We can bound theL2-norm of the right-hand side of this O.D.E. by again using that
JN(uN) ≤ 0 so that

∫ N

0
4(x − β∗ + t)2u2

N dx ≤ 4
∫ N

0
λ1u

2
N + 2f uN dx

≤ 4
∫ N

0
(1 + λ1)u

2
N + f 2 dx

≤ C

(λ
(β∗−t)
1 − λ1)2

∫ N

0
f 2 dx.

(2.12)

After multiplying (2.11) byu̇N and integrating by parts, we immediately obtain bounds
on u̇N and(u̇N )′ in the same manner as we did foruN andu′

N .
In order to boundu′′

N in L2 we note that

∫ N

0
(u′′
N)

2 =
∫ N

0
(x − β∗ + t)2uNu

′′
N − λ1uNu

′′
N − f u′′

N dx

= −
∫ N

0
(x − β∗ + t)2(u′

N)
2 + 2(x − β∗ + t)uNu

′
N + λ1uNu

′′
N + f u′′

N dx.
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Hence,

∥∥u′′
N

∥∥2
L2([0,N ]) ≤

∫ N

0
(x − β∗ − t)2u2

N + (u′
N)

2 dx

+ λ1 ‖uN‖L2([0,N ])
∥∥u′′

N

∥∥
L2([0,N ]) + ‖f ‖L2([0,N ])

∥∥u′′
N

∥∥
L2([0,N ]) .

Using the inequalityab ≤ 1
ε2a

2 + ε2

4 b
2 on the last two terms it then follows from (2.9),

(2.10) and (2.12) that

∥∥u′′
N

∥∥
L2([0,N ]) ≤ C

λ
(β∗−t)
1 − λ1

‖f ‖L2([0,N ]) . (2.13)

Such a bound on
∥∥(u̇N )′′∥∥L2([0,N ]) follows in a similar manner. Consequently, we find

thatuN , u′
N , u′′

N , u̇N , (u̇N )′ and(u̇N )′′ all are bounded inL2([0, N ]) by the quantity

C

λ
(β∗−t)
1 − λ1

‖f ‖L2([0,∞))

for someC independent oft andN .
Using a diagonalization argument, we then obtain a subsequential limit of{uN } which

converges on compact subsets of[0,∞) and satisfies (2.5) as well as (2.6) in view of
Proposition 2.2. ut

2.2. Gauge invariance and preliminary results for plane, half-plane and disc.Much of
this paper is devoted to the study of the functional

JA(ψ) =
∫
�

|(i∇ + A)ψ |2 dx dy∫
�

|ψ |2 dx dy ,

where� is an open, simply connected subset ofR2, A : � → R2 andψ : � → C.
As was noted in the introduction, this functional arises as the second variation of the
full Ginzburg–Landau energy computed about the normal state. In the lemma below we
record the gauge invariance property thatJA inherits from the full energy (1.1).

Lemma 2.5.Given anyψ ∈ H 1(�; C), A ∈ L2(�; R2) andφ ∈ H 1(�; R), we have

J(A+∇φ)(ψeiφ) = JA(ψ).

Furthermore, ifψ, A andφ are smooth andψ satisfies the equation

(i∇ + A)2ψ = λψ in � for someλ ∈ R,

then the functioñψ = ψeiφ satisfies the equation

(i∇ + A + ∇φ)2ψ̃ = λψ̃ in �.

Both statements are easily proved by direct calculation.
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Corollary 2.6. SupposeA, B ∈ H 1(�; R2) satisfy

∇ × A ≡ (0,0, A(2)x − A(1)y ) = ∇ × B in �.

Then
inf‖ψ‖
L2(�)=1

JA(ψ) = inf‖ψ‖
L2(�)=1

JB(ψ).

We next present some results on the eigenvalue problem associated with the whole
plane. These will be useful ingredients in our subsequent analysis of the problem on a
half-plane and a general bounded domain.

Proposition 2.7.LetA : R2 → R2 be any vector field satisfying(1.3). Then

inf
9∈H1(R2;C)

∫
R2 |(i∇ + A)9|2 dx dy∫

R2 |9|2 dx dy = 1. (2.14)

Remark 2.8.This result is well-known in the physics literature and in some form goes
back to Landau. The proof we present below is in the general spirit of the proof of the
same result to be found in [LP1]. Unfortunately, we found this latter proof to contain
numerous errors, necessitating the presentation below.

Proof. Invoking Corollary 2.6, we fixA = 1
2(−y, x). Insertion of the test function

9 = e−
(x2+y2)

4 into the Rayleigh quotient (2.14) yields the claimed infimum of one,
establishing an upper bound. Indeed, it will then follow from the lower bound of one
that this choice is in fact a first eigenfunction.

To establish the lower bound, it suffices to consider any function9 ∈ C∞
0 (R

2; C).
Converting to polar coordinates, we expand9̃(r, θ) ≡ 9(r cosθ, r sinθ) in a Fourier
series as

9̃(r, θ) =
∞∑

k=−∞
uk(r)e

ikθ ,

where the smooth functionsuk : [0,∞) → C are given by

uk(r) = 1

2π

∫ π

−π
9̃(r, θ)e−ikθ dθ. (2.15)

Note in particular that

uk(0) = 0 for k 6= 0. (2.16)

Inserting this expansion into the numerator of the Rayleigh quotient gives∫
R2

|(i∇ + A)9|2 dx dy

= 2π
∞∑

k=−∞

∫ ∞

0

(∣∣u′
k(r)

∣∣2 + (
k

r
− r

2
)2 |uk(r)|2

)
r dr

= 2π
∞∑

k=−∞

(∫ ∞
0

(∣∣u′
k(r)

∣∣2 + ( k
r

− r
2)

2 |uk(r)|2
)
r dr∫ ∞

0 |uk(r)|2 r dr
) ∫ ∞

0
|uk(r)|2 r dr

≡ 2π
∞∑

k=−∞
Jk(uk)

∫ ∞

0
|uk(r)|2 r dr.
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Denote byAk = {u ∈ C1
0([0,∞); R) : u(0) = 0 if k 6= 0}. Since all coefficients inJk

are real we invoke (2.16) to find

Jk(uk) ≥ inf
Ak

{∫ ∞
0

(∣∣u′
k(r)

∣∣2 + ( k
r

− r
2)

2 |uk(r)|2
)
r dr∫ ∞

0 |uk(r)|2 r dr
}

≥ inf
Ak

{
2

∫ ∞
0 ( k

r
− r

2)u(r)u
′(r)r dr∫ ∞

0 |u(r)|2 r dr
}

= 1,

where the last equality results from an integration by parts. Consequently,

∫
R2

|(i∇ + A)9|2 dx dy ≥ 2π
∞∑

k=−∞

∫ ∞

0
|uk(r)|2 r dr =

∫
R2

|9|2 dx dy.

We conclude that the infimum of the Rayleigh quotient in (2.14) is greater than or equal
to one; hence it equals one, completing the proof.ut
Proposition 2.9 (Cf. [LP1], Prop. 2.3). Let A : R2 → R2 be any vector field satisfying
(1.3). Letλ < 1. Then the only bounded,C2 solution to

(i∇ + A)29 = λ9 on R2

is9 ≡ 0.

The proof of Proposition 2.9 is an elementary contradiction argument utilizing the prod-
uct of9 and a smooth cut-off function in the Rayeigh quotient. Taking the support of the
cut-off function to be larger and larger, one contradicts Proposition 2.7. We also mention
here the following result relating the one-dimensional eigenvalue problem on a half-line
to the two-dimensional problem on a half-plane.

Proposition 2.10 (Cf. [LP1], Theorem 5.3, Step 1). LetA : R2+ → R2 satisfy∇ × A =
(0,0,1). Then

λ1 = inf
9∈H1(R2+;C)

∫
R2+

|(i∇ + A)9|2 dx dy∫
R2+

|9|2 dx dy , (2.17)

whereλ1 (= λ
β∗
1 ) is the value arising in(2.3).

The proof that the infimum above is less than or equal toλ1 follows easily from using
ρk(y)ψ1(x)as a test function in the Rayleigh quotient where{ρk} is a sequence of smooth
cut-off functions with expanding support. The lower bound follows by computing the
value of the Rayleigh quotient for any9 ∈ C∞

0 (R
2+) in terms of the Fourier transform

of 9 in they variable.
As a final result in this subsection, we present a description of the first eigenspace for

our problem when the domain is a disc. The analysis of the disc was previously carried
out in detail in [BPT] (see introduction) and the result below can be found in the opening
of that paper. The proof follows readily by expressing any competitor in the eigenvalue
problem as a Fourier series.
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Proposition 2.11 (Cf. [BPT], Lemma 2.3). LetD ⊂ R2 be a disc of radiusR > 0. Let
A : D → R2 be any vector field satisfying(1.3). Then for every positive numberh, there
exists a finite set of integers{kh1, kh2, . . . , khN }, whereN = N(h) such that the set of
minimizers of the variational problem

inf
9∈H1(D;C)

∫
D

|(i∇ + hA)9|2 dx dy∫
D

|9|2 dx dy
consists of the span of the set

{ζkh1
(r)eikh1θ , ζkh2

(r)eikh2θ , . . . , ζkhN
(r)eikhN θ },

where{ζkh1
, ζkh2

, . . . , ζkhN
} is the set of solutions to the1 − d variational problem,

inf
ζ∈H1([0,R])

∫ R
0

(∣∣ζ ′(r)
∣∣2 + ( k

r
− hr

2 )
2 |ζ(r)|2

)
r dr∫ R

0 |ζ(r)|2 r dr
.

Remark 2.12.In fact, in [BPT] it is shown that off of a discrete set ofh-values, the
eigenspace is one-dimensional; that is,N(h) = 1, but we will not need this information
for our purposes.

2.3. Local coordinates near the boundary and a local representation of the magnetic
potential. In Sect. 4 we will take� to be a bounded, simply connected domain inR2 with
∂� ∈ C3,α0 for someα0 ∈ (0,1). We will frequently need to work in a local coordinate
system valid near∂�. For this purpose we lets denote arclength along the boundary
with some pointz0 ∈ ∂� chosen to correspond tos = 0. We letη denote distance from
a pointz ∈ � to ∂�. We will generally denote the curvature of the boundary byκ(s)

though occasionally, where no confusion can result, we will also writeκ = κ(z) for
z ∈ ∂�.

This local coordinate system will be well-defined in the rectangle

S ≡ {(s, η) : −L/2< s < L/2, 0< η < δ},
whereL denotes the arclength of the boundary, andδ < 1

κmax
is a positive constant

depending on�. We adopt the convention that for� a disc,κ is positive. We denote by
t = t(s) a unit tangent vector to∂� and we letn = n(s) denote the inner unit normal
vector. Thus, in particular, any vector fieldF defined in a neighborhood of∂� can be
expressed asF(s, η) = F1(s, η)t(s)+ F2(s, η)n(s).

As we will be computing various derivatives in these new coordinates, it will be helpful
to record here the following identities. For any scalar-valued functionf = f (s, η) one
has the identities:

∇f = ∂ηf n + 1

1 − κη
∂sf t, (2.18)

1f = ∂ηηf − κ

1 − κη
∂ηf + 1

1 − κη
∂s

( 1

1 − κη

)
∂sf, (2.19)
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and for any vector fieldF = F1(s, η)t + F2(s, η)n we have

div F = 1

1 − κη
∂sF1 + 1

1 − κη
∂η[(1 − κη)F2], (2.20)

∇ × F = div (F2t − F1n)ẑ. (2.21)

For much of our analysis it will be useful to find a solution to (1.3), sayq = q(s, η),
defined onS, such thatq satisfies the additional properties

q · n = 0 in S, q(s,0) = 0 for − L

2
≤ s ≤ L

2
. (2.22)

Seeking a solution to (1.3) and (2.22) in the formq = q(s, η)t , we can solve for the
scalarq through the use of (2.20) and (2.21). We find thatq must satisfy the first order
differential equation

−1

1 − κη
∂η

(
(1 − κη)q

) = 1, q(s,0) = 0,

so that

q(s, η) = q(s, η)t(s) = −η(1 − κ(s)η/2

1 − κ(s)η

)
t(s). (2.23)

We should emphasize thatq is only locally defined near∂�. No such vector field could
exist throughout� for it would violate Stokes Theorem.

3. Analysis in a Half-Plane

We denote byR2+ the set{(x, y) : x > 0}. Our first goal will be to establish exponential
decay of certain solutions to the eigenvalue problem

9xx +9yy − 2ix9y − x29 + λ9 = 0 in R2+, (3.1)

9x(0, y) = 0 for y ∈ R. (3.2)

In light of Lemma 2.5 we have takenA = (0, x) in writing down the equation(i∇ +
A)29 = λ9 to obtain (3.1) .

Theorem 3.1.For anyλ < 1, let9 be any boundedC2 solution to the problem(3.1)–
(3.2). Then for every multi-indexα, there exist positive constantsaα andbα such that
for all (x, y) ∈ R2+ one has ∣∣Dα9(x, y)∣∣ ≤ aαe

−bαx. (3.3)

Proof. Without loss of generality, we normalize so that‖9‖L∞(R2+) = 1. First note that

by standard elliptic theory, anyC2 solution to (3.1) is necessarily inC∞ for x > 0.
For anyR > 0 and positive integerk, denote�kR = {(x, y) : x > kR}. We will obtain
exponential decay by establishing the following claim:

There exists anR0 > 0 such that

‖9‖
L∞(�k+1

R )
<

1

2
‖9‖L∞(�kR)

(3.4)
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for all R ≥ R0 and all positive integersk.
We proceed by contradiction. If claim (3.4) fails then there exists a sequenceRj → ∞

and a sequence of positive integers{kj } such that

‖9‖
L∞(�

kj+1

Rj
)
≥ 1

2
‖9‖

L∞(�
kj
Rj
)
.

Let

9̃j ≡ 9

‖9‖
L∞(�

kj
Rj
)

,

so that
∥∥∥9̃j∥∥∥

L∞(�
kj
Rj
)

= 1 and we can find a sequence of points(xj , yj ) with xj >

(kj + 1)Rj such that ∣∣∣9̃j (xj , yj )∣∣∣ ≥ 1

2
.

Now definef j ∈ C2(B(0, Rj )) by the formula

f j (x, y) = 9̃j (xj + x, yj + y)e−ixj y .

Note that ∣∣∣f j (0,0)∣∣∣ ≥ 1

2
, while

∥∥∥f j∥∥∥
L∞(B(0,Rj ))

≤ 1, (3.5)

and thatf j satisfies the equation:

f
j
xx + f

j
yy − 2ixf jy − x2f j + λf j = 0. (3.6)

With an eye towards establishing compactness of the sequence{f j }, we now fix any
ρ > 0 and consider a smooth cut-off functionχ ∈ C∞

0 (R
2) such thatχ ≡ 1 onB(0, ρ),

χ ≡ 0 in R2 − B(0, ρ + 1) and|∇χ | ≤ 2. If one multiplies (3.6) byχ2f j (where·
denotes complex conjugation) and integrates overB(0, ρ + 1), then an integration by
parts yields∫

B(0,ρ+1)
χ2

∣∣∣∇f j ∣∣∣2 + 2f jχ∇χ · ∇f j + χ2(2ixf jf jy + x2
∣∣∣f j ∣∣∣2

− λ

∣∣∣f j ∣∣∣2) dx dy = 0.

(3.7)

Applying the Cauchy–Schwartz inequality to the second and third terms, and using the
uniformL∞ bound on the sequence{f j }, we conclude that for eachρ > 0:∫

B(0,ρ)

∣∣∣∇f j ∣∣∣2 dx dy ≤ Cρ. (3.8)

If one then writesf j in terms of its real and imaginary parts,f j = uj + ivj , (3.6)
becomes the uniformly elliptic system

1uj = −2xvjy + (x2 − λ)uj ,

1vj = 2xujy + (x2 − λ)vj ,
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and theL2 control of the right-hand sides leads, via standard interior elliptic estimates,
bootstrapping and Sobolev embedding, to an estimate of the form

∥∥∥f j∥∥∥
C2,γ (B(0,ρ))

≤ Cρ (3.9)

for someγ ∈ (0,1).
In light of estimate (3.9), one can extract a subsequence{f jk } which converges in

C2 on compact subsets ofR2 to a limit which we denote byg. In view of (3.5),g must
be a bounded, nontrivial solution to Eq. (3.1) on all ofR2, contradicting Proposition 2.9
sinceλ < 1. This establishes claim (3.4).

From (3.4) we readily conclude that there exist positivea andb such that

|9(x, y)| ≤ ae−bx for x > 0. (3.10)

It remains to establish (3.3) for multi-indicesα 6= 0. This is a consequence of manip-
ulations similar to those used above in obtaining (3.9). Specifically, using an identity
analogous to (3.7), but applied to9 in any ballB ⊂ R2+ of radius 1 centered at a point
(x0, y0), we find through the use of (3.10) that

∫
B

|∇9|2 dx dy ≤ Cx2
0e

−2bx0.

Hence, we obtain that for any multi-indexα:

sup
B

∣∣Dα9∣∣ ≤ aαe
−bαx

for some positive constantsaα andbα, using the same reasoning that led to (3.9).ut

We now recall that from Proposition 2.10, we have the relation

λ1 = inf
H1(R2+)

∫
R2+

|(i∇ + A)ψ |2 dx dy∫
R2+

|ψ |2 dx dy , (3.11)

where, as before,A : R2+ → R2 is any vector field satisfying (1.3). It is a result of [LP1]
that noL2(R2+) eigenfunction can exist corresponding to the eigenvalueλ1. However,
the analysis of the next chapter will require a complete understanding of anybounded
solution to the associated P.D.E. To this end, we now establish

Theorem 3.2.Let9̃ ∈ C2(R2+) be a bounded solution to(3.1)–(3.2). If λ = λ1, then9̃
must take the form̃9(x, y) = cψ1(x)e

iβ∗y for some complex numberc, whereψ1 is the
first eigenfunction of the operatorLβ∗ . If λ < λ1, then9̃ ≡ 0.

Remark 3.3.In the preprint [LP1] one can find the same claim. However, the proof
contains many gaps. As we will crucially need this result, we present below our own
argument which follows very different lines.
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Proof. We will first consider the caseλ = λ1. Let 9̃ be a smooth bounded solution to
(3.1)–(3.2). Define9 via the gauge transformation9 = 9̃e−iβ∗y . This has the effect of
replacing the choiceA = (0, x) by (0, x − β∗) so that9 satisfies the problem

−19 + 2i(x − β∗)9y + (x − β∗)29 = λ19 in R2+, (3.12)

9x(0, y) = 0 for y ∈ R. (3.13)

In light of Theorem 3.1, there exists a positive constantM such that any bounded,
nontrivial smooth solution9 to (3.12)–(3.13) satisfies the condition( ∫ ∞

0
|9(x, y)|2 dx

)1/2

≤ M for eachy ∈ R.

Now we will express9 in terms of the basis of eigenfunctionsψk associated with the
operatorLβ∗ (cf. Sect. 2.1). Thus, we write9 as

9(x, y) =
∞∑
k=1

wk(y)ψk(x), (3.14)

where for this proof we will take eachψk to haveL2-norm 1. (In other parts of this paper
we favor the normalizationψ1(0) = 1.)

Then the smooth functionswk : R → R are given by

wk(y) =
∫ ∞

0
9(x, y)ψk(x) dx (3.15)

and by Cauchy–Schwartz we have

|wk(y)| ≤ M for all y ∈ R and all positive integersk. (3.16)

As a consequence of (3.16), eachwk defines a tempered distribution onR and as such
we can take its Fourier transform,ŵ. The main content of the proof is the following
claim:

Claim 1.
suppŵk ⊂ {0} for eachk.

We delay for a moment the proof of this claim and demonstrate how the proof of the
theorem is completed once Claim 1 is established. It follows from elementary distribution
theory that for eachk,

ŵk =
Nk∑
i=1

cki δ
(i)
0

for some positive integerNk and constantscki (whereδ(i)0 denotes theith derivative of
the Dirac distribution with support{0}). But this implies that eachwk is a polynomial
of degreeNk and so as a consequence of (3.16), we find that for eachk,

wk ≡ dk

for some constantdk. In particular, we see that9 is independent ofy. But then9 = 9(x)

is necessarily a first eigenfunction of the operatorLβ∗ and so by the results of [DH] we
conclude that9 = cψ1.
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We turn now to the proof of Claim 1. To this end, we fix any positive integerk and
let φ ∈ C∞

0 (R) be an arbitrary test function such that

0 6∈ supp(φ). (3.17)

To establish the claim we must show

〈ŵk, φ〉 ≡ 〈wk, φ̂〉 = 0. (3.18)

We first invoke Lemma 2.4 and denote bygk = gk(x, t) the solution to(
L(β∗−t) − λ1

)
(gk) = ψk for t 6= 0, 0< x < ∞, (3.19)

(gk)x(0, t) = 0, gk(∞, t) = 0 (3.20)

for t 6= 0. We also define8k by the relation

8k(x, t) = φ(t)gk(x, t) for t 6= 0, x ∈ R+, (3.21)

so that by linearity8k satisfies (3.19)-(3.20) withψk replaced byφψk. From (3.17) it
follows that we can extend8k smoothly to all(x, t) ∈ R+×R by defining8k(x,0) = 0
for all x ∈ R+. Ask is fixed throughout this argument, we will now suppress the depen-
dence of8k uponk and write simply8. Clearly,8 enjoys the integrability properties
guaranteed by (2.6); thus, there exists a constantC > 0 such that

∫ ∞

0
|h(x, t)|2 +

∣∣∣∣ ∂∂x h(x, t)
∣∣∣∣
2

+
∣∣∣∣ ∂2

∂x2h(x, t)

∣∣∣∣
2

dx < C (3.22)

for h = 8 orh = ∂8
∂t

. We also note that since8 is smooth and compactly supported int

we can define for eachx ∈ R+ its (partial) Fourier transform̂8 = 8̂(x, y) with respect
to t .

The next claim is crucial to our analysis.

Claim 2. The following integrals are all well-defined and the corresponding equalities
hold: ∫

R+×R
9
∂28̂

∂x2 =
∫

R+×R

∂29

∂x2 8̂ (3.23)

∫
R+×R

(x − β∗)9 ∂8̂
∂y

= −
∫

R+×R
(x − β∗)∂9

∂y
8̂ (3.24)

∫
R+×R

9
∂28̂

∂y2 =
∫

R+×R

∂29

∂y2 8̂ (3.25)∫
R+×R

(x − β∗)298̂ and
∫

R+×R
98̂ are well-defined. (3.26)

We first show that the left-hand side of (3.23) is well-defined. Through an appeal to
Theorem 3.1 we find that∫ ∞

0

∫ ∞

−∞
|9(x, y)|

∣∣∣∣∣∂
28̂

∂x2 (x, y)

∣∣∣∣∣ dy dx ≤
∫ ∞

0

∫ ∞

−∞
ae−b|x|

∣∣∣∣∣∂
28̂

∂x2

∣∣∣∣∣ dy dx.
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However, the Cauchy–Schwartz inequality, Parseval’s identity and (3.21) imply that

∫ ∞

−∞

∣∣∣∣∣∂
28̂

∂x2

∣∣∣∣∣ dy =
∫ ∞

−∞

√
1 + y2

∣∣∣∣∣∂
28̂

∂x2

∣∣∣∣∣ 1√
1 + y2

dy

≤ 1

2

∫ ∞

−∞
(1 + y2)

∣∣∣∣∣∂
28̂

∂x2

∣∣∣∣∣
2

dy + C

= 1

2

∫ ∞

−∞

∣∣∣∣∂28

∂x2

∣∣∣∣
2

+
∣∣∣∣ ∂2

∂x2

(∂8
∂t

)∣∣∣∣
2

dt + C

= 1

2

∫
suppφ

φ2(t)

∣∣∣∣∂2gk

∂x2 (x, t)

∣∣∣∣
2

+
∣∣∣∣ ∂∂t

(
φ(t)

∂2gk

∂x2 (x, t)
)∣∣∣∣

2

dt + C.

Then as a consequence of (3.22),
∫

R+×R 9
∂28̂
∂x2 is finite. In a similar manner one finds

that ∂
29
∂x2 8̂ ∈ L1(R+ × R). The equivalence (3.23) then follows after two integrations

by parts where the boundary terms all vanish in light of Theorem 3.1, (3.13), (3.20) and
(3.21).

Essentially the same approach works on identity (3.24). One invokes Theorem 3.1 to
obtain∫ ∞

0

∫ ∞

−∞
∣∣x − β∗∣∣ |9(x, y)|

∣∣∣∣∣∂8̂∂y (x, y)
∣∣∣∣∣ dy dx ≤

∫ ∞

0

∫ ∞

−∞
ae−b|x|

∣∣∣∣∣∂8̂∂y
∣∣∣∣∣ dy dx.

Then we observe that∫ ∞

−∞

∣∣∣∣∣∂8̂∂y
∣∣∣∣∣ dy =

∫ ∞

−∞

√
1 + y2

∣∣∣∣∣∂8̂∂y
∣∣∣∣∣ 1√

1 + y2
dy

≤ 1

2

∫ ∞

−∞
(1 + y2)

∣∣∣∣∣∂8̂∂y
∣∣∣∣∣
2

dy + C

= 1

2

∫ ∞

−∞
|t8|2 +

∣∣∣∣ ∂∂t (t8)
∣∣∣∣
2

dt + C.

Hence, the integrals in (3.24) are well-defined in light of (3.22) and their equivalence then
follows from Fubini’s Theorem and integration by parts. Properties (3.25) and (3.26) of
Claim 2 are handled similarly.

We are now prepared to establish (3.18). To this end, note that by (3.15) we have

〈ŵk, φ〉 ≡ 〈wk, φ̂〉 =
∫ ∞

−∞

∫ ∞

0
9(x, y)ψk(x)φ̂(y) dx dy.

Now recall that8k solves

− ∂28k

∂x2 (x, t)+ (x − β∗)28k(x, t)+ 2(x − β∗)t8k(x, t)+ (t2 − λ1)8k(x, t)

= φ(t)ψk(x)

(3.27)
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for t ∈ R andx > 0. Since bothφ and t → 8k(x, t) areC∞ compactly supported
functions oft , we can take the (partial) Fourier transform of (3.27) to obtain

−∂
28̂k

∂x2 (x, y)+ (x − β∗)28̂k(x, y)− 2i(x − β∗)∂8̂k
∂y

(x, y)− ∂28̂k

∂y2 (x, y)

− λ18̂k(x, y) = φ̂(y)ψk(x).

(3.28)

From (3.23)–(3.26) we have that the integral of9 against each term on the left-hand side
of (3.28) over the setR+ × R is well-defined. Using the identities of Claim 2, (3.28),
(3.12) and (3.15) we reach the conclusion

〈ŵk, φ〉 =
∫ ∞

−∞

∫ ∞

0
9(x, y)ψk(x)φ̂(y) dx dy

=
∫ ∞

−∞

∫ ∞

0

(
−19 + 2i(x − β∗)∂9

∂y
+ (x − β∗)29 − λ19

)
8̂k dx dy = 0

and Claim 1 is established.
The caseλ < λ1 is handled similarly. The only difference is that Claim 1 changes to

the statement supp̂wk = ∅ for eachk. This follows since forλ < λ1 we no longer need
the stipulation (3.17) forφ. ut

4. Analysis in a Bounded Domain

We now consider the eigenvalue problem on a bounded domain associated with the onset
of superconductivity in the presence of high magnetic fields. Let� ⊂ R2 be a bounded,
simply connected domain with∂� ∈ C3,α0, α0 ∈ (0,1). Then recall that for anyh ∈ R,
the valueµ(h) is given by the infimum:

µ(h) = inf
ψ∈H1(�)

Jh(ψ) ≡ inf
ψ∈H1(�)

∫
�

|(i∇ + hA)ψ |2 dx dy∫
�

|ψ |2 dx dy , (4.1)

whereA : � → R2 is any smooth vector field satisfying (1.3).
First we establish an upper bound onµ(h).

Proposition 4.1.The eigenvalueµ(h) satisfies the asymptotic upper bound

lim sup
h→∞

µ(h)− λ1h

h1/2 ≤ −κmax

3I0
,

whereλ1 is the first eigenvalue introduced in Proposition 2.2,I0 is the first moment of
the corresponding eigenfunction andκmax is the maximum of curvature of∂�.

Remark 4.2.If one makes the further assumption that∂� achieves a maximum of cur-
vature at a unique pointz0 and that this maximum is strict in the sense thatκss(0) < 0
(with s = 0 corresponding toz0), then one can capture another term in an upper bound
for µ(h) following the construction in [BS]. This involves more careful consideration
of the tangential variation (i.e.s-dependence) of the amplitude and is accomplished by
replacing the factore−h1/4s2 in definition (4.4) below by a factore−αh1/4s2, whereα is a
positive constant depending onκss(0). One then obtains the bound

µ(h) ≤ λ1h− κmax

3I0
h1/2 + (−λ1/2

1 κss(0)

6

)1/2
h1/4 + o(h1/4)

which we believe to be sharp.
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Proof. This result is based upon the use of the approximate first eigenfunction derived
in [BS] as a test function in the energyJh defined in (4.1).

Here we recall the local coordinates(s, η) valid in a neighborhood of∂� that were
introduced in Sect. 2.3. We choose the pointz0 on ∂� corresponding tos = 0 to be a
point where the curvature is maximized.

Fix any vector fieldA satisfying (1.3). Recalling the definition of the vector fieldq
given in (2.23), we then define a vector fieldp : S → R2 by the relationÃ = p + q,
whereÃ(s, η) ≡ A(x(s, η), y(s, η)). Note in particular thatp will then beL-periodic
and conservative:

∇ × p = 0 in S. (4.2)

Motivated by the gauge invariance (cf. Lemma 2.5), and utilizing (4.2), we now
introduce a phase8 on the rectangleS through the relation∇8 = p. Hence, for any
(s, η) ∈ S, we let

8(s, η) =
∫
γ

p · dr , (4.3)

whereγ is any path inS joining (0,0) to (s, η).
We are now ready to define a sequence of test functions{9h} for the energyJh given

by (4.1). First we define rectanglesN 1
h andN 2

h in terms ofs − η coordinates by

N 1
h = {(s, η) : − 1

h1/16 < s <
1

h1/16, 0 ≤ η <
1

h1/4 )},

N 2
h = {(s, η) : − 2

h1/16 < s <
2

h1/16, 0 ≤ η <
2

h1/4 )}.

We choose9h to take the form

9h =
{
ψheih8e−ih1/2β∗s in N 2

h ,

0 elsewhere.

We takeψh = ψh(s, η) to be a smooth real-valued function vanishing outsideN 2
h

and given by

ψh(s, η) = ψ1(h
1/2η)e−h1/4s2 in N 1

h . (4.4)

Hereψ1 denotes the first eigenfunction of the operatorLβ∗ , with ψ1 normalized so
thatψ1(0) = 1. In light of the exponential decay of bothψ1 as a function ofη and
e−h1/4s2 as a function ofs, we note that the smooth transition to zero outside ofN 2

h can
be accomplished with only an exponentially small contribution to the numberJh(9

h).
Invoking Lemma 2.5 and (2.18) we then find that for someγ > 0 we have

Jh(9
h) =

∫
N 1
h

∣∣(i∇ − Vh(s, η)t)ψh
∣∣2 (1 − κ(s)η) ds dη∫

N 1
h

∣∣ψh∣∣2 (1 − κ(s)η) ds dη
+ O(e−hγ )

=
∫
N 1
h

(
(ψhη )

2 + (ψhs )
2

(1−κ(s)η)2 + V 2
h (s, η)(ψ

h)2
)
(1 − κ(s)η) dη ds∫

N 1
h

∣∣ψh∣∣2 (1 − κ(s)η) dη ds
+ O(e−hγ ),
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where

Vh(s, η) ≡ h
(η(1 − κ(s)η/2)− h−1/2β∗

1 − κ(s)η

)
and the factor of 1− κ(s)η in the numerator and denominator of (3.23) represents the
Jacobian associated with the change of variables(x, y) → (s, η).

We now make one further change of variables and introduce

τ = h1/8s and ξ = h1/2η. (4.5)

For τ -ξ values corresponding to(s, η) ∈ N 2
h , a brief calculation yields that̃Vh(τ, ξ) ≡

Vh(τ/h
1/8, ξ/h1/2) satisfies

Ṽh(τ, ξ) = h1/2(ξ − β∗)+ κmax(
1

2
ξ2 − β∗ξ)+ O(h−1/4).

Here we have used the smoothness of∂� to Taylor expand the curvature as a function of
τ aboutτ = 0 and we have used thatκs(0) = 0 since curvature is maximized ats = 0.
Consequently, we obtain

Jh(9
h) = Ah+ Bh1/2 + O(h1/4)

C −Dh−1/2 + O(h−3/4)
= A

C
h+ (B

C
− AD

C2

)
h1/2 + o(h1/2),

where

A =
∫ h1/4

0
[(ψ1)ξ ]2 + (ξ − β∗)2ψ2

1 dξ,

B = κmax

∫ h1/4

0

(
(ξ2 − 2β∗ξ)(ξ − β∗)ψ2

1 − ξ [(ψ1)ξ ]2 − ξ(ξ − β∗)2ψ2
1

)
dξ,

C =
∫ h1/4

0
ψ2

1 dξ, and

D = κmax

∫ h1/4

0
ξψ2

1 dξ.

We note that up to orderh1/2, theτ dependence only enters each term as
∫
e−2τ2

dτ

and so it cancels out of the computation. In light of the exponential decay ofψ1 and
its derivative, we may replace the domain of integration in each of the integrals above
with

∫ ∞
0 and only introduce an exponentially small error. Then invoking the moment

identities of Proposition 2.3, a tedious but straightforward calculation yields the desired
result, namely

µ(h) ≤ Jh(9
h) = λ1h− κmax

3I0
h1/2 + o(h1/2). ut

We will now invoke methods similar to those in the proof of Theorem 3.1 to establish:

Theorem 4.3.Let {9h} be any sequence of eigenfunctions solving the minimization
problem(4.1), normalized so that

∥∥9h∥∥
L∞(�) = 1. Then there exists a constanth0 > 0

and for every multi-indexα with |α| ≤ 2, there exist positive constantscα1 and cα2
independent ofh such that∣∣∣Dα9h(z)∣∣∣ ≤ h

1
2 |α|cα1e−c

α
2h

1/2 dist(z,∂�) for all z = (x, y) ∈ � (4.6)

providedh ≥ h0.



Boundary Concentration in Superconductivity 433

Remark 4.4.Note that we do not assert the uniqueness of eigenfunctions here. Indeed,
it was shown in [BPT] that for� a disc, there exists a sequence of values{hj } → ∞
such thatµ(hj ) is a double eigenvalue. (See Remark 2.12.)

Proof. The estimates up to the boundary contained in (4.6) will follow from a standard
“flattening of the boundary”.As this type of formulation and estimate is carried out in the
proof of Theorem 4.5, we omit it here and focus on the interior decay. Since the argument
follows along the same lines as the one used to prove Theorem 3.1, we only sketch the
main idea here. It will be convenient to takeA = 1/2(−y, x). Once the estimates (4.6)
are demonstrated for this choice, it will follow for all others since a different gauge will
only alter the values of

∣∣Dα9h(z)∣∣ by anh-independent constant.
Note that a minimizer9h to the problem (4.1) will satisfy the equation

(i∇ + hA)29h = µ(h)9h in �. (4.7)

Now let�(k, h,R) = {z ∈ � : dist(z, ∂�) ≥ k
h1/2R} for any positive integerk and

anyh > 0 andR > 0. Decay follows from the claim:
There exists anh0 > 0 and anR0 > 0 such that∥∥∥9h∥∥∥

L∞(�(k+1,h,R))
<

1

2

∥∥∥9h∥∥∥
L∞(�(k,h,R))

(4.8)

for all h ≥ h0, all R ≥ R0 and all positive integersk.
Proceeding by contradiction, we note that if claim (4.8) fails then there exist sequences

hj → ∞ andRj → ∞ and a sequence of positive integers{kj } such that∥∥∥9hj ∥∥∥
L∞(�(kj+1,hj ,Rj ))

≥ 1

2

∥∥∥9hj ∥∥∥
L∞(�(kj ,hj ,Rj ))

≡ 1

2
mj . (4.9)

Then define9̃hj by the formula

9̃hj (z) = 9hj eihjA(zj )·z

mj
,

where the sequence of points{zj }, each lying in the set�(kj + 1, hj , Rj ), are chosen
so that ∣∣∣9hj (zj )∣∣∣ ≥ 1

2

∥∥∥9hj ∥∥∥
L∞(�(kj ,hj ,Rj ))

.

Hence, ∣∣∣9̃hj (zj )∣∣∣ ≥ 1

2
while

∥∥∥9̃hj ∥∥∥
L∞(�(kj ,hj ,Rj ))

= 1. (4.10)

Now we introducefj : B(0, Rj ) → C by the relation

fj (z) = 9̃hj (zj + z√
hj
).

In view of Lemma 2.5 and (4.7), we easily find thatfj satisfies the P.D.E.

(i∇ + A)2fj = µ(hj )

hj
fj onB(0, Rj ).
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Note that by Proposition 4.1, we know

µ(hj )

hj
≤ λ1 < 1 (4.11)

for hj sufficiently large. Invoking the same elliptic theory as in the proof of Theorem
3.1, we can then extract a subsequence of{fj } which converges inC2

loc(R
2) to a limit

f0 satisfying
(i∇ + A)2f0 = µ∗f0 onR2,

whereµ∗ < 1 arises as a subsequential limit of{µ(hj )
hj

}. Sincef0(0) ≥ 1
2 in light of

(4.10), we reach a contradiction of Proposition 2.9; hence Claim (4.8) is established.
The exponential decay of

∣∣9h∣∣ follows immediately.
To obtain decay of derivatives of9h, fix any pointz0 ∈ �. DefineFh by the formula

Fh(z) = 9h(z)eihA(z0)·z

and then change variables tow = h1/2(z− z0) and introduce

F̃ h(w) = Fh(z0 + w

h1/2 ). (4.12)

As in the earlier part of this proof, one finds thatF̃ h satisfies the P.D.E.

(i∇ + A)2F̃ h = µ(h)

h
F̃ h for w ∈ B(0,1)

for h large, whereA = A(w) = 1
2(−w2, w1). Through the use of a cut-off function and

the same manipulation as in the derivation of (3.8), one obtains uniform estimates on
any derivative ofF̃ h of the form∫

B(0,1/2)

∣∣∣DαF̃ h(w)∣∣∣2 dw ≤ Cα

∫
B(0,1)

∣∣∣F̃ h(w)∣∣∣2 dw
for a constantCα independent ofh. Consequently, one concludes from the embedding
of Hl(B(0,1)) in Ck(B(0,1)) for l large that

sup
B(0,1/2)

∣∣∣DαF̃ h(w)∣∣∣ ≤ C′
α

( ∫
B(0,1)

∣∣∣F̃ h(w)∣∣∣2 dw)1/2

for a constantC′
α. Reverting back to the variablez and invoking the exponential decay

just established for
∣∣9h∣∣, one arrives at the estimates (4.6).ut

We conclude with a result yielding a proof of property (1.7) of Theorem 1.1 as well
as properties (1.5) and (1.9).

Theorem 4.5.Let� ⊂ R2 be a bounded, open, simply connected domain with∂� ∈
C3,α0 for someα0 ∈ (0,1). Then the minimal eigenvalueµ(h) given by(1.4) satisfies
the condition

λ1h− o(h) ≤ µ(h) ≤ λ1h− κmax

3I0
h1/2 + o(h1/2) ash → ∞. (4.13)
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If � is a disc, then one has

µ(h) = λ1h− κ

3I0
h1/2 + o(h1/2) ash → ∞. (4.14)

Furthermore, if{9h} denotes a sequence of eigenfunctions corresponding to the eigen-
valueµ(h), normalized so that

∥∥9h∥∥
L∞(�) = 1, then for any� that is not a disc we

have

lim
h→∞

(
min
z∈∂�

∣∣∣9h(z)∣∣∣ ) = 0. (4.15)

Remark 4.6.In light of the formal results of [BS], we expect (4.14) to hold for any
domain� (with κ replaced byκmax) and we expect

lim
h→∞

∣∣∣9h(z)∣∣∣ = 0

for all z ∈ ∂�, whereκ 6= κmax. However, we do not yet have a proof of these stronger
claims. This predicted (exponential) decay along∂� seems very much related to an
assumption of nondegeneracy at the point of maximum curvature, an assumption we
do not make in this paper. The issue is complicated by the subtlety of the boundary
concentration problem. For example, the analysis in [BS] predicts a decay rate for the
first eigenfunction which is different for the tangential and normal directions. Hence the
seemingly natural scaling byh1/2 in the normal direction turns out to be an inappropriate
scaling to capture tangential decay of the amplitude of the eigenfunction, a decay that
we believe manifests itself on a lengthscale no shorter thanh−1/8. We are optimistic,
however, that a modification of the techniques presented here will ultimately yield a
rigorous confirmation of the full set of results predicted in [BS] and we are presently
pursuing these questions.

Proof. Let {9h} denote any sequence of minimizers to (4.1). Recall that in the case
where� is a disc, Proposition 2.11 asserts the existence for eachh of an eigenfunction
with a radially dependent amplitude. Hence, throughout the proof when considering a
disc, we will take

9h(z) =
∣∣∣9h∣∣∣ (r)eikhθ , (4.16)

where(r, θ) are polar coordinates andkh is an integer. Since Theorem 4.5 only involves
statements aboutµ(h)and not about9h for the case of a disc, this assumption is justified.
Consider any sequence of points{zh} in � satisfying

lim
h→∞

∣∣∣9h(zh)∣∣∣ = 1. (4.17)

In light of Theorem 4.3, any such sequence must satisfy

dist(zh, ∂�) ≤ C0

h1/2 for someC0 > 0. (4.18)

Supressing subsequential notation, we denote byz0 ∈ ∂�, the limit of {zh}.
At this point we recall the discussion in Sect. 2.3 in which we introduced a lo-

cal coordinate system(s, η) describing a neighborhood of∂�. We write 9̃h(s, η) ≡
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9h(x(s, η), y(s, η)) and note that for eachh, 9̃h is a smooth function defined on the
rectangle

S ≡ {(s, η) : −L/2< s < L/2, 0< η < δ},
whereL denotes the arclength of the boundary, andδ is a positive constant depending on
�such that the local coordinate system is well-defined forz ∈ �satisfying dist(z, ∂�) <
δ. Working in a smaller neighborhood of∂� if necessary, we now assume

δ <
1

2κmax
. (4.19)

Without loss of generality, we take the arclength values = 0 to correspond to the point
z0. Define now the sequence{z̃h} ⊂ ∂� as the sequence satisfying the relation

|zh − z̃h| = dist(zh, ∂�), (4.20)

and then let{sh} denote the sequence of arclength values corresponding to the boundary
pointsz̃h so thatsh → 0 ash → ∞. As in the proof of Proposition 4.1, we introduce the
function8 through formula (4.3) and then introduce a sequence of functionsf h : S → C
defined by

9̃h(s, η) = f h(s, η)ei(h8(s,η)−h1/2β∗s). (4.21)

Note that we are not asserting thatf h is real.
Through the use of Lemma 2.5 we find thatf h satisfies the equation

(i∇ + hq + h1/2β∗∇s)2f h = µ(h)f h in S, (4.22)

whereq is given by (2.23). The functionsf h also satisfy the boundary condition

∂f h

∂η
(s,0) = 0 for |s| < L/2. (4.23)

In light of the smoothness of the function9h = 9h(z), note that9̃h = 9̃h(s, η) is
necessarily periodic ins. Thus, from (4.21) we conclude that

∂k

∂sk
ei(h8(s,η)−h1/2β∗s)f h(s, η)|s=L/2 = ∂k

∂sk
ei(h8(s,η)−h1/2β∗s)f h(s, η)|s=−L/2 (4.24)

for k = 0,1 and for 0≤ η ≤ δ. Utilizing the fact thatp is periodic and conservative,
and thatp(s,0) = A(x(s,0), y(s,0)), we conclude through (4.3) that

8(L/2, η)−8(−L/2, η) = 8(L/2,0)−8(−L/2,0)
=

∫ L/2

−L/2
p(s,0) · (1,0) ds =

∫
∂�

A · dt

=
∫
�

∇ × A · ẑdx dy = |�| .

Hence, the boundary conditions (4.24) can be phrased as

∂k

∂sk
f h(s, η)|s=L/2 = ∂k

∂sk
f h(s, η)|s=−L/2e

iγh (4.25)
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for k = 0,1 and for 0≤ η ≤ δ, where

γh ≡ −h |�| + h1/2β∗L. (4.26)

Using the definition ofq given in (2.23) as well as the transformation formula (2.18),
we find that (4.22) takes the form

(i∇ − h1/2Ṽ h(s, η)t)2f h = µ(h)f h in S, (4.27)

whereṼ h is given by

Ṽ h(s, η) = h1/2η(1 − κ(s)η/2)− β∗

1 − κ(s)η
.

We now invoke a blow-up procedure about the point(sh,0) ∈ S by introducing the
stretched coordinatesτ = h1/2(s − sh) andξ = h1/2η. Let

Sh = [ah, bh] × [0, δh1/2],
where

ah ≡ −h1/2(
L

2
+ sh) and bh ≡ h1/2(

L

2
− sh). (4.28)

Then define the sequence of functionsψh : Sh → C through the formula

ψh(τ, ξ) = f h
(
sh + 1

h1/2 τ,
1

h1/2 ξ
)
.

It will also be convenient to introduce the functionκh : [ah, bh] → R through the
relation

κh(τ ) = κ
(
sh + 1

h1/2 τ
)

(4.29)

and the functionAh : Sh → C given by

Ah(τ, ξ) = 1

1 − h−1/2ξκh(τ )
. (4.30)

We note here that the functionsAh are smooth and, in light of (4.19) and the fact that
∂� ∈ C3,α0, they satisfy

∣∣∣Ah
∣∣∣ ≥ 1

1 + ‖κ‖L∞
2κmax

in Sh,
∥∥∥Ah

∥∥∥
C1,α(Sh)

< C (4.31)

for someC independent ofh. We also define the functionV h onSh by the formula

V h(τ, ξ) ≡ Ṽ h(sh + 1

h1/2 τ,
ξ

h1/2 ) = Ah(τ, ξ)

[
ξ
(
1 − κh(τ )ξ

2h1/2

) − β∗
]
. (4.32)



438 M. del Pino, P. L. Felmer, P. Sternberg

With an appeal to (2.18) and (2.19) we can now convert the problem (4.22)–(4.24)
satisfied byf h onS into the equation

−ψhξξ − Ah
(Ahψhτ

)
τ

+ 1

h1/2κ
hAhψhξ − 2iAhV hψhτ

− iAhV hτ ψ
h + (V h)2ψh = µ(h)

h
ψh for (τ, ξ) ∈ Sh,

(4.33)

and the conditions ∣∣∣ψh(τ, ξ)∣∣∣ ≤ c1e
−c2ξ for (τ, ξ) ∈ Sh, (4.34)

ψhξ (τ,0) = 0 for τ ∈ [ah, bh], (4.35)

∂k

∂τ k
ψh(τ, ξ)|τ=bh = eiγh

∂k

∂τ k
ψh(τ, ξ)|τ=ah for k = 0,1. (4.36)

The condition (4.34) is simply the content of Theorem 4.3 expressed in terms ofψh.
Note that the positive constantsc1 andc2 appearing in (4.34) are independent of bothτ
andh.

We will present the remainder of the proof in a sequence of steps.

Step 1. We wish to decompose the operator on the left-hand side of (4.33) into the
sum of three operators acting onψh. This is a routine but tedious calculation requiring
the expansion ofV h, V hτ , Ah andAh

τ . Details can be found in the appendix, but the
conclusion is that the Eq. (4.33) can be written as

L0[ψh] + κh

h1/2Ph[ψh] + 1

h
Qh[ψh] = µ(h)

h
ψh (4.37)

where

L0[ψh] = −ψhξξ − ψhττ − 2i(ξ − β∗)ψhτ + (ξ − β∗)2ψh, (4.38)

Ph[ψh] = Ahψhξ −2Ahξψhττ + 2iAhξ(2β∗− 3

2
ξ)ψhτ + 2Ahξ(ξ − β∗)( ξ

2
− β∗)ψh,

(4.39)

and

Qh[ψh] = − (Ah)2ξ2(κh)2ψhττ − (Ah)3ξ(κh)′ψhτ

+ 2i(Ah)2ξ2(κh)2(β∗ − ξ

2
)ψhτ + iξ(Ah)3(β∗ − ξ

2
)(κh)′ψh

+ (Ah)2ξ2(κh)2(β∗ − ξ

2
)2ψh.

(4.40)

Here(κh)′ denotes the quantityd
ds
κ(s) evaluated ats = sh + τ

h1/2 .

Step 2. Our next immediate goal is to establish compactness of the sequence{ψh}
by establishingh-independentC2,α bounds. Since the procedure is very similar to one
carried out earlier in the proofs of Theorems 3.1 and 4.3, we only outline the argument.

For anyR > 2C0, whereC0 is given by (4.18), letB(R) denote the ball of radiusR
and center(τ, ξ) = (sh,0). Then letB+(R) denote the half-ballB(R) ∩ Sh. Note that
within B+(R), all coefficients in the uniformly elliptic system (4.33) can be bounded
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in C0,α by a constantC = C(R) which is in particular independent ofh. This follows
from theC3,α0 assumption on∂� leading toC1,α control of curvature and so ofAh

andV h as well. In particular, this will give anh-independent bound on theL2(B+(R))-
norm of all terms in (4.33) involvingψh undifferentiated. Then, we can multiply (4.33)
by ψhχ2 and integrate overB+(R), whereχ ∈ C∞

0 (B(R)) andχ ≡ 1 onB(R/2).
Utilizing the Neumann boundary condition (4.35), we find after an integration by parts
that this leads to uniform bounds on

∥∥ψh∥∥
H1(B+(R/2)). Writing (4.33) as a system in

terms of Reψh and Imψh, we apply standard elliptic theory to each equation separately
to obtainh-independent bounds on

∥∥ψh∥∥
H2(B+(R/2)), which by Morrey’s Theorem lead

to h-independent bounds on
∥∥ψh∥∥

C0,α(B+(R/2)). It then follows from Schauder theory
for elliptic systems (cf. [ADN], Theorem 9.3) that there exists a positive constantC1(R)

independent ofh such that the sequence{ψh} satisfies the uniform bound

∥∥∥ψh∥∥∥
C2,α(B+(R/2))

< C1(R). (4.41)

Now in light of the uniformC2,α bounds provided by (4.41), we conclude that there
exists a subsequence{ψhj } converging inC2,α on compact sets in the half-plane{(τ, ξ) :
ξ ≥ 0} to a limitψ∗. The upper bound onµ(h) provided by Theorem 4.1 implies, after
perhaps passing to another subsequence, that

lim
j→∞

µ(hj )

hj
= λ whereλ ≤ λ1.

As (4.41) also implies a uniform bound on
∥∥Ph∥∥

L∞(B+(0,R)) and
∥∥Qh

∥∥
L∞(B+(0,R)) for

eachR > 0, we infer from (4.35) and (4.37), thatψ∗ must satisfy the equation

L0[ψ∗] = λψ∗ for − ∞ < τ < ∞, 0< ξ < ∞

and the boundary condition

ψ∗
ξ (τ,0) = 0 for all τ.

Additionally, we find through assumption (4.17) and the normalization
∥∥9h∥∥

L∞(�) = 1
that

0<
∥∥ψ∗∥∥

L∞({ξ>0}) ≤ 1.

Through an appeal to Theorem 3.2, we then conclude that in factλ = λ1 andψ∗ = Bψ1
for some nonzeroB ∈ C; that is,

ψhj converges toBψ1 in C2,α on compact subsets of{(τ, ξ) : ξ ≥ 0} (4.42)

for some nonzeroB ∈ C. In particular, we have established (4.13).
We shall henceforth denote quantities indexed byhj simply with a sub- or superscript

j . In particular, we will writeψj for ψhj andSj for Shj .
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Step 3. We now multiplyL0[ψj ] byψj , the conjugate ofψj (cf. (4.38)), and integrate
overSj to obtain∫ ∫

Sj

L0[ψj ]ψj dτ dξ

=
∫ ∫

Sj

|ψjξ |2 +
∣∣∣ψjτ ∣∣∣2 − 2i(ξ − β∗)ψjψjτ + (ξ − β∗)2

∣∣∣ψj ∣∣∣2 dτ dξ
−

∫ bj

aj

ψjψ
j
ξ

]ξ=δh1/2
j

ξ=0
dτ −

∫ δh
1/2
j

0
ψjψjτ

]τ=bj
τ=aj

dξ.

Invoking (4.34) and (4.35), we then find that

Re
∫ ∫

Sj

L0[ψj ]ψj dτ dξ =
∫ ∫

Sj

∣∣∣(i∇ + (β∗ − ξ,0)
)
ψj

∣∣∣2 d τ dξ
− Re

∫ δh
1/2
j

0
ψjψjτ

]τ=bj
τ=aj

dξ + O(e−c2δh
1/2
j ).

(4.43)

Note that the second term on the right vanishes in light of (4.36).
We now define an extensioñψj : [aj , bj ] × [0,∞) of ψj as follows. Let

ψ̃j (τ, ξ) =



ψj for ξ ∈ [0, δh1/2

j ]
linear inξ for ξ ∈ (δh1/2

j ,2δh1/2
j )

0 for ξ ≥ 2δh1/2
j

.

In light of the exponential decay ofψj and its derivatives provided by (4.6) we find that
ψ̃j will be a Lipschitz continuous function satisfying∫ ∫

Sj

∣∣(i∇ + (β∗ − ξ,0)
)
ψj

∣∣2 d τ dξ∫ ∫
Sj

∣∣ψj ∣∣2 d τ dξ
≥

∫ ∞
0

∫ bj
aj

∣∣∣(i∇ + (0, β∗ − ξ)
)
ψ̃j

∣∣∣2 d τ dξ∫ ∞
0

∫ bj
aj

∣∣∣ψ̃j ∣∣∣2 d τ dξ − O(e−ch
1/2
j )

(4.44)

for some positive constantc.
Now we introduce a periodic extensioñψjp of ψ̃j defined on the entire half-plane

{(τ, ξ) : ξ ≥ 0} as follows. For each integerk we denote byI k the interval

[aj + k(bj − aj ), bj + k(bj − aj )],
and then on each half-stripI k × [0,∞) we defineψ̃jp by the formula

ψ̃
j
p(τ, ξ) = eikγj ψ̃j (τ − k(bj − aj ), ξ),

whereγj (= γhj ) is given by (4.26). Note that̃ψjp will be Lipschitz continuous in view
of (4.36).
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For each positive integerl, we then letρl = ρl(τ ) be a smooth cut-off function
satisfying

ρl(τ ) =




0 for τ ≤ aj − l(bj − aj )− 1
1 for aj − l(bj − aj ) ≤ τ ≤ bj + l(bj − aj )

0 for τ ≥ bj + l(bj − aj )+ 1.
;

We may insert the functioñψjpρl into the Rayleigh quotient for the half-plane and apply
Proposition 2.10 to assert that

λ1 ≤
∫ ∫

R2+

∣∣∣(i∇ + (β∗ − ξ,0)
)
(ψ̃

j
pρl)

∣∣∣2 d τ dξ∫ ∫
R2+

∣∣∣ψ̃jpρl∣∣∣2 d τ dξ
≤
l
∫ bj
aj

∫ ∞
0

∣∣∣(i∇ + (β∗ − ξ,0)
)
ψ̃j

∣∣∣2 d τ dξ + C1

l
∫ bj
aj

∫ ∞
0

∣∣∣ψ̃j ∣∣∣2 d τ dξ + C2

,

where the constantsC1 andC2 arise from estimating the corresponding integrals over
the two half-strips whereρ′

l 6= 0. Estimates (4.34) and (4.41) imply that both constants
are independent ofl andj .

Sendingl → ∞, the resulting inequality and (4.44) lead to the conclusion that∫ ∫
Sj

∣∣∣(i∇ + (β∗ − ξ,0)
)
ψj

∣∣∣2 d τ dξ ≥ λ1

∫ ∫
Sj

∣∣∣ψj ∣∣∣2 d τ dξ − O(e−ch
1/2
j ).

If we combine this inequality with (4.37) and (4.43) we obtain

(
µ(hj )− λ1hj

)
h

1/2
j

≥
Re

∫ ∫
Sj
κjPj [ψj ]ψj dτ dξ∫ ∫
Sj

∣∣ψj ∣∣2 dτ dξ
+ 1

h
1/2
j

Re
∫ ∫

Sj
Qj [ψj ]ψj dτ dξ∫ ∫

Sj

∣∣ψj ∣∣2 dτ dξ
− O(e−ch

1/2
j ).

(4.45)

Step 4. We now pursue a more precise lower bound on the right-hand side of (4.45) as
hj → ∞. To this end, let us first define the functionαj : [aj , bj ] → C by

αj (τ ) =
∫ δh1/2

j

0 Pj [ψj ]ψj dξ∫ δh1/2
j

0

∣∣ψj ∣∣2 dξ .

In light of (4.34), (4.39), (4.42) and Lemma 2.3, we note that

lim
j→∞αj (τ ) =

∫ ∞
0 ψ1(ψ1)ξ + 2ξ(ξ − β∗)( ξ2 − β∗) |ψ1|2 dξ∫ ∞

0 |ψ1|2 dξ
= − 1

3I0
, (4.46)

where the convergence is uniform on compactτ -intervals.
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Suppose now that� is a disc. One can easily check that in this case, the phase in
(4.21) is linear in the tangential variable and so by (4.16), all integrals on the right-hand
side of (4.45) are independent ofτ and in particular,αj is a constant. The same line of
reasoning that leads to (4.46) then applies to yield

lim
j→∞

1

h
1/2
j

Re
∫ ∫

Sj
Qj [ψj ]ψj dτ dξ∫ ∫

Sj

∣∣ψj ∣∣2 dτ dξ = 0. (4.47)

As a consequence of (4.45), (4.46) and (4.47), one obtains for a disc that

lim inf
j→∞

(
µ(hj )− λ1hj

)
h

1/2
j

≥ − κ

3I0
.

As this lower bound matches the upper bound provided by Proposition 4.7, we have
established (4.14).

Step 5. For the rest of the proof, we assume that� is not a disc. It remains to establish
(4.15), so we suppose by way of contradiction that (4.15) fails; that is, suppose

lim sup
h→∞

(
min
z∈∂�

∣∣∣9h(z)∣∣∣ ) > 0. (4.48)

We then claim that (4.46) holds uniformly over the entire intervalaj ≤ τ ≤ bj . To
establish this claim, suppose by contradiction that along some sequencehk (= hjk )

there exists a sequenceτk such that for allk we have∣∣∣∣αk(τk)+ 1

3I0

∣∣∣∣ > σ (4.49)

for someσ > 0. Letτ ′ = τ − τk and defineζk = ζk(τ
′, ξ) by the formula

ζk(τ
′, ξ) = ψhk (τk + τ ′, ξ) = f hk

(
shk + 1

h
1/2
k

τk + 1

h
1/2
k

τ ′, 1

h
1/2
k

ξ
)
.

We can view the sequence{ζk} as being defined on(−L
2h

1/2
k , L2h

1/2
k ) × [0, δh1/2

k ] by
simply shifting the origin of the originals-coordinate so thats is defined on a new
interval of lengthL centered ats = shk + τk

h
1/2
k

. The analysis leading to the compactness

result (4.42) for the sequence{ψh} then applies equally well to obtain a subsequenceζkl
and a non-zero complex numberB ′ satisfying:

ζkl converges toB ′ψ1 in C2,α on compact subsets of{(τ ′, ξ) : ξ ≥ 0}. (4.50)

Note that the conclusion|B| > 0 in (4.42) followed from the assumption (4.17) while the
analogous conclusion that

∣∣B ′∣∣ > 0 follows from the condition (4.48). In view of (4.50)
and Lemma 2.3, we reach a contradiction of (4.49) and conclude that the convergence
(4.46) is indeed uniform over the entire intervalaj ≤ τ ≤ bj based on the validity of
the earlier contradiction hypothesis (4.48).

Step 6. We continue to assume that� is not a disc and pursue a contradiction under
the assumption (4.48). We can now use the uniform convergence of{αj } to evaluate the
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limit of the right-hand side of (4.45). We begin with the first term on the right-hand side
of this inequality and write

Re
∫ ∫

Sj
κjPj [ψj ]ψj dτ dξ∫ ∫
Sj

∣∣ψj ∣∣2 dτ dξ =
Re

∫ bj
aj

(
κ(shj + τ

h
1/2
j

)
αj (τ )

∫ δh1/2
j

0

∣∣ψj ∣∣2 dξ) dτ
∫ ∫

Sj

∣∣ψj ∣∣2 dτ dξ
= Re

∫ L/2

−L/2
κ(s)αj

(
h

1/2
j (s − sj )

)
dνj (s),

(4.51)

where

dνj (s) ≡ h
1/2
j

∫ δh1/2
j

0

∣∣∣ψj (h1/2
j (s − sj ), ξ

)∣∣∣2 dξ∫ ∫
Sj

∣∣ψj ∣∣2 dτ dξ ds. (4.52)

Upon noting that ∫ L/2

−L/2
dνj (s) = 1 for eachj

we may extract a subsequence of{νj } which converges weak-∗ to a probability measure

ν. The uniform convergence ofs → αj
(
h

1/2
j (s− sj )

)
to − 1

3I0
established in Step 5 then

yields

lim
j→∞

Re
∫ ∫

Sj
κjPj [ψj ]ψj dτ dξ∫ ∫
Sj

∣∣ψj ∣∣2 dτ dξ = − 1

3I0

∫ L/2

−L/2
κ(s) dν(s). (4.53)

The reasoning used above can be applied equally well to the second term on the
right-hand side of inequality (4.45). In this case, however, the factor of1

h
1/2
j

leads to the

result

lim
j→∞

1

h
1/2
j

Re
∫ ∫

Sj
Qj [ψj ]ψj dτ dξ∫ ∫

Sj

∣∣ψj ∣∣2 dτ dξ = 0. (4.54)

Combining (4.53) and (4.54), we see from (4.45) that

lim inf
j→∞

(
µ(hj )− λ1hj

)
h

1/2
j

≥ − 1

3I0

∫ L/2

−L/2
κ(s) dν(s). (4.55)

We will reach a contradiction of the upper bound from Proposition 4.1 if we can show
that

suppν ∩ {s ∈ [−L/2, L/2] : κ(s) < κmax} 6= ∅ (4.56)
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To this end, let[r1, r2] be any interval contained in the set ofs-values whereκ < κmax.
Then fix any continuous, nonnegative functionf supported on[r1, r2]. From (4.52) we
find

∫ r2

r1

f (s) dνj (s) =
∫ r2

r1

f (s)

{ ∫ δh1/2
j

0

∣∣∣ψj (h1/2
j (s − sj ), ξ

)∣∣∣2 dξ
∫ L/2
−L/2

∫ δh1/2
j

0

∣∣∣ψj (h1/2
j (s′ − sj ), ξ

)∣∣∣2 dξ ds′
}
ds.

Now from the uniform upper bound on∂
∂ξ
(
∣∣ψj ∣∣2) provided by Theorem 4.3, along with

(4.48), the bound
∥∥ψj∥∥

L∞ = 1 and the uniform exponential decay ofψj in ξ , it follows
that there exist positive constantsC1 andC2 satisfying

C1 ≤
∫ δh

1/2
j

0

∣∣∣ψj (τ, ξ)∣∣∣2 dξ ≤ C2 for all τ ∈ [aj , bj ].

Hence, there exists a positive constantC3 depending onf but notj such that∫ r2

r1

f (s) dνj (s) ≥ C3 for all j.

Consequently, ∫ r2

r1

f (s) dν(s) ≥ C3,

yielding (4.56) and the desired contradiction.ut

5. Appendix: Decomposition of Equation(4.33)

In this appendix, we give the details behind the decomposition of (4.33) given by (4.37).
To this end, first note thatV h defined through (4.32) can be written as

V h = (ξ − β∗)− 1

h1/2 ξAhκh(β∗ − ξ

2
). (5.1)

Consequently,

(V h)2 = (ξ − β∗)2 − 1

h1/2 (2Ahξ)(ξ − β∗)(β∗ − ξ

2
)κh

+ 1

h
ξ2(Ah)2(κh)2(β∗ − ξ

2
)2.

(5.2)

Then noting thatκhτ = 1
h1/2 (κ

h)′ (where′ = d
ds

) and that

Ah = 1 + 1

h1/2Ahξκh, (5.3)

Ah
τ = 1

h
ξ(Ah)2(κh)′, (5.4)
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we calculate from (5.1), (5.3) and (5.4) that

V hτ = − 1

h1/2 ξ(β
∗ − ξ

2
)
[Ah

τ κ
h + κhτ Ah

]
= −1

h
ξAh(β∗ − ξ

2
)(κh)′

[ 1

h1/2 ξκ
hAh + 1

]
= −1

h
ξ(Ah)2(β∗ − ξ

2
)(κh)′.

(5.5)

Now
Ah

(Ahψhτ
)
τ

= (Ah)2ψhττ + AhAh
τψ

h
τ ,

so that through the use of (5.3) and (5.4) we find

Ah
(Ahψhτ

)
τ

=ψhττ + 2

h1/2Ahξκhψhττ

+ 1

h
ξ2(κh)2(Ah)2ψhττ + 1

h
ξ(Ah)3(κh)′ψhτ .

Now from (5.1) and (5.3) we calculate

2iAhV h = 2iV h + 2i

h1/2 ξκ
hAhV h

= 2i(ξ − β∗)+ 2i

h1/2 ξAhκh(
3

2
ξ − 2β∗)+ 2i

h
ξ2(Ah)2(κh)2(

ξ

2
− β∗).

(5.6)

Then we use (5.5) to obtain

iAhV hτ = − i

h
ξ(Ah)3(β∗ − ξ

2
)(κh)′. (5.7)

Substitution of these identities into (4.33) then leads to the decompostion (4.37).
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