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Abstract. We consider the problem

2Au—u+ f(u)=0in 2
u>01in2, u=0 on 012,

where(? is a smooth domain i, not necessarily bounded,> 0 is a

small parameter anflis a superlinear, subcritical nonlinearity. It is known
that this equation possesses a solution that concentratesg@soaches
zero, at a maximum of the functiaf(xz) = d(-, 92), the distance to the
boundary We obtain multi-peak solutions of the equation given above when
the domain(? presents a distance function to its boundanyith multiple

local maxima. We find solutions exhibiting concentration at any prescribed
finite set of local maxima, possibly degeneratedofrhe proof relies on
variational arguments, where a penalization-type method is used together
with sharp estimates of the critical values of the appropriate functional. Our
main theorem extends earlier results, including the single peak case. We
allow a degenerate distance function and a more general nonlinearity.
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0 Introduction

Let us consider the problem

EAu—u+uP=0in
(0.2)
u>01in2, u=0 on 912,

N
0? . .
whereA = E 522 is the Laplace operataf? is a smooth domain iR",
€
=1 g

not necessarily bounded, with bound&r2, N > 1, > 0 is a constant
andp satisfiesl < p < 22 for N > 3, andl < p < co for N = 1, 2.

A solution of problem (0.1) can be interpreted as a steady state of the
corresponding reaction-diffusion equatign= 2 Au—u+u?, which arises
in a number of areas, such as biological population and pattern formation
theories and chemical reactor theory. In order to investigate the long time
behavior of the solutions of the later equation, good understanding of the
properties of the steady state solutions is very important.

Problem (0.1) has been recently studied by Ni and Wei in [12]. They
proved that foe sufficiently small problem (0.1) has a least-energy solution
which possesses a single spike-layer with its unique peak in the interior of
£2. Moreover this unique peak must be situated near the “most-centered”
part of £2, i.e. where the distance functieti P, 02), P € (2, assumes its
global maximum. Thisisin contrast with earlier results for the corresponding
Neumann problem, obtained by Ni and Takagi in [10] and [11], where it was
shown that foe sufficiently small, the problem has a least-energy solution
which possesses a single spike-layer with its unique peak on the boundary
042. This unique peak must be situated near the “most curved " parof
i.e. where the mean curvature of the boundary assumes its global maximum.

The results in [12] follow from an asymptotic expansion of the critical
value associated to the least energy solution. This expansion requires sharp
estimates of exponentially small error terms that are obtained by using a
“vanishing viscosity method”.

A natural problem to study for further insight into the rich and complex
structure of the solution set of this equation for smail that of determining
existence of other solutions which exhibit concentration behavior like the
one described above, at one or several distinct points of the domain.

In this direction, Wei showed in [13] a local version of the above result,
namely that for every strict local maximum point of the distance function,
sayP, there exists a family of solutions with a single global maximum point
that approaches the given poift

In a recent article [1], Cao, Dancer, Noussair and Yan addressed the
problem of constructing a family of solution with multiple concentration
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points. In fact they found a two-peak solution for (0.1), with peaks near
strict local maxima of the the distance function, 9ayand P, satisfying
additionally

i) |P1— P2 >max{1l/(p—2),2}d(P,082) and
iy d(P1,08)=d(P,002).

Several interesting cases are not covered by these results. For example,
degeneracy of the considered maxima may arise in very natural ways. This
is the case of a domain consisting of a chain of rectangles of unequal sides
with narrow junctions, where local maxima of the distance to the boundary
are achieved on entire segments. The methods in [13] and [1] do not seem to
give account of the construction in such cases. Moreover, they do not seem
to extend directly to the case where the nonlinearity is not homogeneous.
On the other hand, in the 2-peak case, condition ii) above imposes a strong
symmetry requirement, which we will lift. In fact, as a particular case of our
main result, we will see thatitis enough to assuie- P»| > 2d( P, 012),

which is a weaker requirement than i). We should remark that our method
does not need to be bounded

Thus, our purpose is to construct multi-peak solutions of (0.1) under
much weaker assumptions on the domain and repladilig a more general
non-homogeneous nonlinearity. More precisely, we consider the problem

e2Au—u+ f(u) =0 in £,
(0.2)
>0 in 2 andu =0 in df2.

We will assume thaf : Rt — R is of classC'*“ and satisfies the
following conditions

(f1) f(t) =0fort < 0andf(t) = +oo ast — oo.
(f2) Fort > 0, f admits the decomposition @'+ (R)

f@) = fi(t) = f2(2),

where f1 and f, satisfy
(i) f1(t) > 0andfy(t) > 0 with f1(0) = f,(0) = 0, and
(i) there is ag > 1 such thatf;(¢)/t? is nondecreasing ih > 0,
whereasfs(t)/t? is nonincreasing it > 0, and in casey = 1 we
require further that the above monotonicity condition feft)/t is
strict.

(f3) f(t) = O(t?) ast — +oo wherel < p < fE2if N > 3 and
l<p<oxif N=2.
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(f4) There exists a constaét> 2 such that F'(t) < tf(t) fort > 0, in
which

F(t):/o f(s)ds. (0.3)

To state the last condition ofiwe need some preparations. Consider the
problem in the whole space

{Aw—w—i—f(w)zo andw > 0in RY,

w(0) = max,cpv w(z) andw(z) — 0 as|z| — +oo. (0.4)

It is known that that any solution to (0.4) needs to be spherically sym-
metric about the origin and strictly decreasing i |z|, see [6]. A solution
w to (1.5) is said to beaondegeneraté the linearized operator

L=A-1+ f(w) (0.5)

on L3(RY), with domain W22 (R"), has a bounded inverse when it is
restricted to the subspadé(R™) := {u € L*(R")|u(z) = u(|z])} .
Now condition (f5) is stated as follows:

(f5) Problem (0.4) has a unique solutian and it is nondegenerate.
The unique solution in (f5) will be denoted hyin the rest of this paper.
We note that the function

f(t) =P —at? fort >0,

with a constané > 0, satisfies all the assumptions (f1)-(f4llik ¢ < p <

%. Furthermore, there is a unique solutioo problem (0.4) (see [2] and
[8]). The nondegeneracy condition (f5) can be derived from the uniqueness
argument (see Appendix C in [11]).

Next we describe our assumptions on the domain. We assuitisea
smooth domain inRY, not necessarily bounded, and there Aresmooth
bounded subdomains @f, A4, ..., Ax, compactly contained iti?, satis-
fying
(H1) maxd(z,08) > max d(z,02),i=1,2,..., K,

zEA; TEDA;
(H2) 1&1’1;1 d(A;, Ag) > 2m?xgg%x d(x,082)
whered(A;, Ax) is the distance betweety and Ay, i.e.

d(A;, Ag) = inf  d(z,y).

x€N; Y€

Note that on each; the distance function has a local maximum, but no
assumption is made on the set where this maximum is achieved. In particular
these maxima do not need to be isolated.

Next we state our main result in this paper.
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Theorem 0.1 Assume? is a domain, not necessarily bounded, which sat-
isfies assumptions (H1) and (H2). Lgsatisfy assumptions (f1)-(f5). Then
for € sufficiently small problem (0.2) has a solutianwhich possesses ex-
actly K local maximum pointg. i, ..., z. x With z.; € A;. Moreover
d(zc;,002) — gglxd(a:, 012),ase — 0, foralli=1,..., K.

As we mentioned before, this result largely extends those in [13] and [1].

We prove Theorem 0.1 using variational techniques developed in [4] and
[5] for the construction of single and multi-peak solutions for a nonlinear
Schidinger equation. In this process, sharp estimates of critical values of
the associated energy involving the distance function obtained in [12] and
[13] are crucial.

Our approach consists of modifying adequately the nonlinearity and ad-
ding a penalization term, so that a npenalized energy function& ob-
tained. Then we find critical points to this functional by means of a min-
max scheme on a class of maps defined on a finite dimensional set. As
approaches zero, one then shows that the critical points so obtained are so-
lutions of the original problem. In doing so a central role is played by the
estimates for least-energy solutions found in [12].

It would be interesting to determine which phenomena arises if assump-
tion (H2) is violated. Our proof makes strong use of the validity of strict
inequality. In fact, (H2) is what makes negligible the interaction between
“peaks” located in differentl}s, when compared with the contribution to
the energy due to the effect of the distance to the boundary.

This paper is organized as follows. §& we consider the single peak
case, namelyX = 1. In Sect. 2 we treat the general multi-peak case and
conclude the proof of Theorem 0.1.

1 The case of a single peak

This section is devoted to the study of the case of a single peak. The results
in this section will serve as a basis for the multi-peak case, however they are
interesting by themselves and correspond to Theorem O A fer1.

In this section we will assume the s@tis a smooth domain ", not
necessarily bounded. We also assume that there is a smooth bounded domain
A, compactly contained if satisfying hypothesis (H1) witk’ = 1. With
respect tof we consider the hypotheses (f1)-(f5).

Following the idea introduced in [4], we modify the functigrpenal-
izing concentration outside the sdt Then we set up the mountain pass
scheme in order to obtain critical points of the penalized functional and,
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using the results in [12], we provide the necessary estimates to discard the
penalization.
Associated to equation (0.2) we have the “energy” functional

I.(u) = ;/EQVUF + u? — /F(u), (1.1)

N n

defined inf} (£2). In a similar way, associated to (0.4) we have the ‘limiting
functional’ I : H'(RY) — R defined as

I(U):;/yvm%u?— /F(u). 1.2)
RN

RN

Under the hypotheses ghand {2, it is standard to check that the nontriv-
ial critical points of/. and I correspond exactly to the positive classical
solutions of equation (0.2) iff} (£2) and of equation (0.4) il * (RY), re-
spectively. From the assumption (f5) the functiofdlas a unique positive
critical point, up to translations, we call. The critical value ofw (of a
mountain pass nature) will be denoteddy

Next we modify the functiory as in [4]. Letd be a number as given by
(f4), and let us choosk > 0 such thatt > & Leta > 0 be a value at

which f'(a) = } andf(t) > f(a) + f'(a)(t — a) forall t > a. Let us set

o ) f(1) if +t<a
Ft) = { ) + '(a)(t — ) it t>a, (1.3)

and define

g(-t) = xaf () + (1 —xa)f(1), (1.4)

wherex 4 denotes the characteristic function4fFirst we note thay is a
Caratheodory function, moreover it is of cla8$™ in the variablet. This

fact is crucial in using the methods of [12]. In addition one can check that
(f1)-(f4) implies thaty satisfies the following assumptions:

(91) g(z,t) =0fort < 0andg(z,t) — oo ast — oo.

(92) g(x,t) = o(t) neart = 0 uniformly inz € 2.

(93) g(z,t) = O(tP) ast — oo for 1 < p < {22 if N > 3 and no
restriction orp if N =1, 2.

(94) ()G (2,t) < g(z, t)t forall =z e At >0.
and
(i) 2G(z,t) < g(z,t)t < £t* forall t € R*,z ¢ A with the
numberk satisfyingk > 6/(60 — 2).
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Here we have denote@(~ fo z,7)dT.
Next we introduce the penallzed functlonal H}(2) - Ras

&my:;/ﬁwmﬁmﬁ—/aum), u€ Hi(2). (1.5)
9

The functionall. is of classC! in H}(£2) and its nontrivial critical points
are the positive solutions of the equation

E2Au—u+g(x,u)=0 in £ (1.6)

The functionalJ; is of classC! and it satisfies the Palais Smale condition,
see Lemma 1.1 in [4]. Moreover, it can be easily seen from hypotheses
(g1)-(g4) thatJ. has the mountain pass structure. Thus the Mountain Pass
Theorem can be applied t&.

We define the mountain pass value

= e 00,
whereG = {y € C([0,1], H}(£2) | v(0) = 0, (1) = e} ande # 0is
such that/.(e) < 0. On the other hand we can deflne

Ce zuléljf/[ Je(u),
where
M = {uc H}(Q) | / 2| Vul? 4 u? :/ ug(z,u)dz}.
2 7

By the assumptions (f1)-(f4) and the definitiongfwe can prove, slightly
modifying the proof of Lemma B.1 in [11] and Lemma 1.2 in [4], that
Ce = Ce.

Letu. € H}(£2) be a critical point ofJ. satisfyingJ.(u.) = c., that
is u. is a least energy critical point ot. In the rest of this section we will
obtain estimates fot. and use them for studying the limiting behavior of
u. Certainlyu, satisfies (1.6), but we will prove that fersmall enoughu,
satisfies (0.2) also.

Givenv € H'(R"™) we define theprojection ofv into the domainD,
and denote it byPpv, as the unique solution of the problem

e2Au—u+ f(v(z))=0 inD
(1.7)
u=0 ondD.

Let w be the unique solution of (0.4) and defing p(z) = w(%) for
P e 1.
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Following [12] we define the function

Ye(x, P) = —elog {we p(z) — Pow. p(z)}. (1.8)

The behavior of). whene converges to zero is studied in [12], where the
next result is proved (see Lemmas 4.2 and 4.3)

Lemma 1.1 (i) [|Vee(x, P)||eo ey < C for any compact seR’ C 2.
(i) ¥<(-, P) converges, as — 0, uniformly to a functiony(-, P) €
Whee(£2) which can be explicitly written as

Y(x, P) = Zle%fg{\z — P|+ L(z,x)}, (2.9)

whereL(z, y) is the infimum of” such that there existse C%1([0, 77, 2),
with £(0) = =,&(T) = P, and|%| < 1 a.e. in [0,7T]. In particular,
(P, P) = 2d(P,09).

In what follows we will make two notational simplifications. We will
write 5 = 1/e andy.(z) = Y. (x, ).

Now we state the main result of the section, that can be seen as a single-
peak version of Theorem 0.1. It also contains the asymptotic expansion of
Ce.

Theorem 1.1 Assume? satisfies (H1) and satisfies (f1) - (f5). Then for

e sufficiently small problem (0.2) has a solutionwhich possesses exactly

one local maximum points. € A andd(z.,02) — maj(d(x,aﬁ), as
xe

e — 0.
Moreover, the following estimate holds

Ce = €N{C + Ae_ﬁwe(xs) + O(e_ﬁws(xs))}7 (110)
where
Ye(xe) — 2ma/>1( d(x,082)
xe
and

A= f(w)u, > 0. (1.12)
RN
Herew, is the unique radial solution of

o ain PN
Au—u=0InR } (1.12)

u(0) = 1,u > 0in RV,

In order to prove this theorem, we obtain first the rough behavior of the
family {u.} of least energy critical points of..
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Lemma 1.2 Letu,. as defined above. Then, fosmall enough. possesses
a unigue maximum point. € A and the familyv. defined as.(y) =
ue(ze + ey) converges in the€’}l (RY)and H'(R") sense to the solution
w of (0.4).

Proof. We just give a very brief sketch. After obtaining estimates.aind
the H'(£2) norm ofu., one can take weak limits af.. Calling v a limit
point of v, we find that it satisfies an equation of the form

Av—v+g(z,s)=0 in RV, (1.13)

where
(@, s) = x(@)f(s) + (1 — x(x)) f(s), (1.14)

andy is the characteristic function of an hyperplangiti. Itis shown in [5]
Lemma 2.3, that is actually a solution of (0.4), proving the last sentence
in the lemma. This fact is crucial for later arguments.

In order to obtain stronger convergence, we use concentration compact-
ness argument to obtain a unique maximum.0fThen the maximum prin-
ciple together with elliptic estimates will complete the lemma. See [4], [5]
and also [12] for further details.O

Proof of Theorem 1.Eirst we find an upper bound ef. Following Sect. 5in
[12], we consider the test functio®pw, p(x) where d(P,002) =
max ¢4 d(z,052), and find

c. <ev {c + AeP¥=(P) 1 o(e_ﬁwE(P))} . (1.15)

We observe thaf. (Pow,, p) = I.(Pow, p) for smalle.

Next we show that. is actually a solution of the original equation, when
¢ is small enough. For this purpose we assume the contrary, that is, there
is a sequence; converging td) such that., converges to a point € A,
wherez.; is the maximum point of the function. ;.

Let us choose a numbér> 0 such that

d(z,082) <d < max d(xz,08) = dy,
Te

and consider the domaif?? defined as the connected componenfoh
B(z,d) containingz. Then we have

d' = max d(x,00%) < d,
z€Nd

sinceB(z,d) ¢ 2. Now we choose@” such that’ < d” < d.
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We define oni} (£2%) the functional

I (u) = ;/gQ\VuP +u? — /F(u) (1.16)

Qd d
Letn € C°(RY) be a cut-off function withy(z) = 1if |z — | < d” and
n(x) = 0if |z — Z| > d. Then consideii. = n(x)u.(z) € H}(029) and let
t. > 0 be such that
I (tous) = max I(tu,).

We claim thatt. — 1. In fact, if we setv.(y) = t.(xz. + €y), then from
Lemma 1.25. — w in H'(RY). Then, by definition of.,

/52|V®5|2+f;§: / f(’;f”f)@a, (1.17)
RN :

RN

from where the claim follows.

Nextwe find a lower estimate for, under our contradiction hypothesis.
For notational convenience we will replace, when no confusion arges,
by j in the rest of the proof.

By definition ofc; and the functionals we have

cj = Jj(us) > J(tjus) > Li(tjug). (1.18)
Now we claim that
Ij(tjUj) > [Jd(t]ﬂj) — Cefzﬁj(d,lié), (1.19)

wherec is a positive constant and> 0 is chosen so that” — § > d'. In
fact, from the Maximum Principle and elliptic estimates we have

max{|u;|,[Vuy[} < CemH(0), (1.20)

S

so that, from the definition ai;, the estimate (1.19) clearly follows.
Finally we have

I¢(t;0:) > inf sup I%(tu) = 2. 1.21
](] ])_u;éo,uEHé(Qd)tZ](;)) j( ) g} ( )

Now we are in a position to apply the main estimate in [12], Proposition 6.3,
to obtain ) )
c? > €§V {c + Ae Pi%i 4 o(e7PiYi )} (1.22)

where thez/)?’s are certain numbers with

¢ — 2 max d(z, 0027), (1.23)
xeNd
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andA is given by (1.11). Therefore, for largewe have
B (1.24)
J =" 2

Then, using (1.18), (1.19), (1.21), (1.22), and the factthat 4" — 4, we
find that

A /
cj > 6;-\7 {c + ge_wﬁ'd } . (1.25)

Sinced(P, 2) > d’ and estimate (1.15) holds, it follows that (1.25) is not
possible. Thus we have a contradiction which showsihét a solution of
the original equation for all sufficiently small We observe also that using
the same argument yield$z., 0(2) — max d(xz,052), ase — 0.

Finally, estimate (1.10) can be obtained from the results of [12]. In fact
Proposition 6.3 applies to our situation, singeis a solution of (0.2) and
x. IS its maximum point. This finishes the proof of the theorer.

2 The case of multiple peaks

In this section we prove Theorem 0.1. For this purpose we introduce an
appropriate penalization so that the concentration outside thedséss
avoided. We set up the minimax scheme in order to obtain critical points
of the penalized functional and then we provide some estimates in order to
show that these critical points are solutions of the original equation.

We consider, as in Sect. 1, the functiodaldefined in (1.1). We set
A= Ufil/li, with the bounded domaink asinthe assumptions of Theorem
0.1, and define

(1) = xaf () + (1 = xa) (1), (2.1)
wherey 4 denoting is the characteristic function4f Then we consider the
functional J; as in (1.5); its critical points are the solutions of (1.6).

Next we define i/} (£2) a ‘local’ version of.J. as

2

. 1
Jg(u):/52|VU|2+u2—/G(x,u), we HA D).  (2.2)

We also introduce a further penalization term, similar to that considered in
[5], defined as

2

K L )
P(u) =M} {(Jé(u)+)2 - <gceN>2} : (2.3)
=1

+
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whereM is a constant to be chosen later, and the &e@re defined as
1
2, ={zx e | d(x,/li)<§1]£17iénd(/1i,/1k)}, i=1,...,K.

We note that the set8; contain/; compactly and they are mutually disjoint.
Finally we define the penalized function@l : H}(f2) — R as

Ee(u) = Je(u) + Pe(u). (2.4)

The functionals/, and P. are of classC!' hence so isZ.. Moreover, the
functional E. satisfies the Palais-Smale condition, see Lemma 1.1 in [5].

The previous considerations make possible to use Critical Point Theory
to find critical points of the functional.. We formulate now an appropriate
minimax problem forE,.. Set

U; = Po,we p,,

whereP; € A, is such thatl(P;, 02) = max{d(P,02) | P € A;},i =
., K. Define the clasg” as

r={yec(o.1" 1) /(1) Ztuz,
Vit = (t,....tx) € 90, }

The numbefl is chosen so large th&{7w) < 0. Sincew is exponentially
decaying, it is easy to show that for amye I" we have

E(y(t) < e¥(Ke+o(1)) (2.5)

for all t € 0[0, T]X, if ¢ is small enough. Here and in what follows we
denote byo(1) a quantity approaching zero as— 0. We can define the
minimax value associated to the cldsss follows

C. = inf sup E.
S O (v(2))-

The following lemma provides a first estimate on the minimax vélue
Lemma 2.1
C. = eN(Kc+o(1)). (2.6)
The proof of this lemma is similar to that of Lemma 1.2 in [5], hence we
omit it.
It follows from estimates (2.5) and (2.6) that there exits a critical point
u. € H(2) of E. such thatf. (u.) = C..
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We define the local weight

i i 3 (3 _NyL i 3
wh= M (Jiu:)4)? = Gee™)2 o (i) 2,
+
and then the function .
W, = Zwéxgi. 2.7)
=1
Thus the critical point.. is a weak solution of the equation
e2div((1 + wo)Vu) — (1 + we)u+ (1 + we)g(z,u) =0 in 2, (2.8)
andu, satisfies
2Au—u+g(z,u) =0 in O, (2.9)

for every set0 C (2 not intersecting(UX ; £2;).

We definetheset®. = {y € RY /ey € Q}and2 = {y € RY /ey €
2;}. We rescale the function. asv.(y) = u.(ey) fory € 2. This function
v. belongs taH ¢ (£2.) and then ta 1 (RY), and it satisfies, in a weak sense,
the equation

div((1+we(ey)) V) = (1+we (ey) Jut-(1+we (ey))g(ey,u) = 0 in £,
(2.10)
and over set€), subsets of2. not intersecting)(UX, 25), it satisfies

Au—u+ g(ey,u) =0 in O. (2.12)

In order to complete the proof of Theorem 0.1 we need to showithista
critical point of the original functional, whenever is sufficiently small.
Toward this end, the following lemma constitutes a crucial step.

Lemma 2.2 If in the definition ofE; in (2.3) and (2.4)M > 0 was chosen
sufficiently large, then

lim Ji(u)e ™M =¢, forall i=1,... K. (2.12)
e—0
The proof of this lemma can be obtained by slightly modifying the proof
of Lemmas 2.1 and 2.2 in [5] and it is thus omitted.
From Lemma 2.2, we have in particular thatsatisfies the equation

e? Aue — ue + xaf(ue) + (1 — xa) f(ue) = 0in £2, (2.13)

where, we recalld = U;—; g 4;. We also have that. has K maximum
points, sayz. ;, one in eachl;. The next step is to show that satisfies the
original equation. For that purpose it will be enough to prove the following
lemma.
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Lemma 2.3

supus —0ase —»0foralli=1,... K. (2.14)
dA;

Proof. We will use energy estimates in the spirit of Sect. 1. First we consider
local problemsdefining the mountain pass values

Cesi = ulenl\{;lz T (u),

where

1
M; = {ueH&(QI) | / ‘EQVu’2+/ u2:/ ug(x,u)dx}.
2 Jo, 2 2;

Theorem 1.1 applies to these local problems, so that estimates like (1.10)
hold for everyi = 1,..., K. Moreover, a critical point:.; of J! with

value c.; possesses a unique maximum pait; and d(FP:;, 062;) —
;neehxd(x,aﬂi).

Next, we want to find a good estimate fdf(u.). For this purpose we
first see that, sinc&; N 2, = ¢, fori # k,

K
Ce <) cean (2.15)
=1

On the other hand consider the function () = n;(z)ue(z)t-; € H} (12;)
wheret, ; is such thati. ;(z) € M; andn; € C3°((2;) is a function taking
the valuel, except for neighborhood @ff2; of small radiuspg. O

The next lemma provides an estimateton

Lemma 2.4
~A(1-51) min d(A;, Ag)
tei=1+0 (e ki , for 0 < <1. (2.16)

Proof. We have

/ | Vuerf? + (wems)? — / o, wemsuen;

) ‘ —p(1—s1) min d(A;, Aj)
2;

i

< —B(1—6;) min d(/ll, AJ)>
e 7 :

J

(2.17)
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Therefore
—B(1-51) min d(A;, A;)
te; = 1+0 e J# .

O

Continuing with the proof of Lemma 2.3, from (2.16) and an estimate
like (1.20) we obtain/! we obtain

- 1
T =5 [ Evuf i - [ G
Qz‘ Qi
1
= 2/ 52’vg«6’2+a§_/ G(x, )
-Qz' Qi
—ﬁ(l—&l)mind(/li,/lk>
+0|e k#i

(2.18)

~B(1-81) min d(A;, Ag)
>c;+0|e k#i

Noticing that

K
1
C: > / 52Vug2+u2—/Gaz,u >,
g ;1:<2 R REC

and combining (2.15) with (2.18) we obtain, for evér 1, ..., K, that

1
/ €2|Vu5|2+u§—/ G(z,ue)
2 .Qi Qi

~B(1-5) min d(A;, Ay)
=c;+0|e ki (2.19)

Now we prove (2.14). Assume by contradiction that there exist§1, . . .,

K} and a sequencge;} such thatr., ; — z; € 04;, wherex,, ; is the
maximum point ofu. ;. We recall that we have a precise upper estimate of
ce; in (2.19). On the other hand, using our contradiction assumption, and
proceeding similarly as in the proof of Theorem 1.1, we obtain a lower
estimate for the left hand side of (2.19) which is not compatible with the
corresponding one for the right hand side. Here we may need to reduce the
numbersd; and py appropriately, making use of hypothesis (H2) to reach
the contradiction. This finishes the proof of Lemma 2.81

Proof of Theorem 0.Dnce (2.14) is proved we have a true solution to
problem (0.1), i.eu,. satisfies

2 Aue — ue + flue) =0 in 2.
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By the same method in [12] or [5], one can show thathas exactlyK
local maximum pointse. ; € A;, ©« = 1,..., K. Moreover the argument
provided in the proof of Lemma 2.3 yields

d(xe;,002) - maxd(xz,002), i=1,..., K.

TEA;

The proof is concluded. O
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