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Abstract. We consider the problem{
ε2∆u− u+ f(u) = 0 in Ω
u > 0 in Ω, u = 0 on ∂Ω,

whereΩ is a smooth domain inRN , not necessarily bounded,ε > 0 is a
small parameter andf is a superlinear, subcritical nonlinearity. It is known
that this equation possesses a solution that concentrates, asε approaches
zero, at a maximum of the functiond(x) = d(·, ∂Ω), the distance to the
boundary. We obtain multi-peak solutions of the equation given above when
the domainΩ presents a distance function to its boundaryd with multiple
local maxima. We find solutions exhibiting concentration at any prescribed
finite set of local maxima, possibly degenerate, ofd. The proof relies on
variational arguments, where a penalization-type method is used together
with sharp estimates of the critical values of the appropriate functional. Our
main theorem extends earlier results, including the single peak case. We
allow a degenerate distance function and a more general nonlinearity.
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0 Introduction

Let us consider the problem

ε2∆u− u+ up = 0 in Ω

u > 0 in Ω, u = 0 on ∂Ω,
(0.1)

where∆ =
N∑
i=1

∂2

∂ x2
i

is the Laplace operator,Ω is a smooth domain inRN ,

not necessarily bounded, with boundary∂Ω, N ≥ 1 , ε > 0 is a constant
andp satisfies1 < p < N+2

N−2 for N ≥ 3, and1 < p < ∞ for N = 1, 2.
A solution of problem (0.1) can be interpreted as a steady state of the

corresponding reaction-diffusion equationut = ε2∆u−u+up, which arises
in a number of areas, such as biological population and pattern formation
theories and chemical reactor theory. In order to investigate the long time
behavior of the solutions of the later equation, good understanding of the
properties of the steady state solutions is very important.

Problem (0.1) has been recently studied by Ni and Wei in [12]. They
proved that forε sufficiently small problem (0.1) has a least-energy solution
which possesses a single spike-layer with its unique peak in the interior of
Ω. Moreover this unique peak must be situated near the “most-centered”
part ofΩ, i.e. where the distance functiond(P, ∂Ω), P ∈ Ω, assumes its
global maximum. This is in contrast with earlier results for the corresponding
Neumann problem, obtained by Ni and Takagi in [10] and [11], where it was
shown that forε sufficiently small, the problem has a least-energy solution
which possesses a single spike-layer with its unique peak on the boundary
∂Ω. This unique peak must be situated near the “most curved ” part of∂Ω,
i.e. where the mean curvature of the boundary assumes its global maximum.

The results in [12] follow from an asymptotic expansion of the critical
value associated to the least energy solution. This expansion requires sharp
estimates of exponentially small error terms that are obtained by using a
“vanishing viscosity method”.

A natural problem to study for further insight into the rich and complex
structure of the solution set of this equation for smallε, is that of determining
existence of other solutions which exhibit concentration behavior like the
one described above, at one or several distinct points of the domain.

In this direction, Wei showed in [13] a local version of the above result,
namely that for every strict local maximum point of the distance function,
sayP , there exists a family of solutions with a single global maximum point
that approaches the given pointP .

In a recent article [1], Cao, Dancer, Noussair and Yan addressed the
problem of constructing a family of solution with multiple concentration
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points. In fact they found a two-peak solution for (0.1), with peaks near
strict local maxima of the the distance function, sayP1 andP2, satisfying
additionally

i) |P1 − P2| > max{1/(p− 2), 2}d(P1, ∂Ω) and
ii) d(P1, ∂Ω) = d(P2, ∂Ω).

Several interesting cases are not covered by these results. For example,
degeneracy of the considered maxima may arise in very natural ways. This
is the case of a domain consisting of a chain of rectangles of unequal sides
with narrow junctions, where local maxima of the distance to the boundary
are achieved on entire segments. The methods in [13] and [1] do not seem to
give account of the construction in such cases. Moreover, they do not seem
to extend directly to the case where the nonlinearity is not homogeneous.
On the other hand, in the 2-peak case, condition ii) above imposes a strong
symmetry requirement, which we will lift. In fact, as a particular case of our
main result, we will see that it is enough to assume|P1−P2| > 2d(P1, ∂Ω),
which is a weaker requirement than i). We should remark that our method
does not needΩ to be bounded.

Thus, our purpose is to construct multi-peak solutions of (0.1) under
much weaker assumptions on the domain and replacingup by a more general
non-homogeneous nonlinearity. More precisely, we consider the problem


ε2∆u− u+ f(u) = 0 in Ω,

u > 0 in Ω andu = 0 in ∂Ω.
(0.2)

We will assume thatf : R+ → R is of classC1+σ and satisfies the
following conditions

(f1) f(t) ≡ 0 for t ≤ 0 andf(t) → +∞ ast → ∞.
(f2) For t ≥ 0, f admits the decomposition inC1+σ(R)

f(t) = f1(t) − f2(t),

wheref1 andf2 satisfy
(i) f1(t) ≥ 0 andf2(t) ≥ 0 with f1(0) = f

′
1(0) = 0, and

(ii) there is aq ≥ 1 such thatf1(t)/tq is nondecreasing int > 0,
whereasf2(t)/tq is nonincreasing int > 0, and in caseq = 1 we
require further that the above monotonicity condition forf1(t)/t is
strict.

(f3) f(t) = O(tp) as t → +∞ where1 < p < N+2
N−2 if N ≥ 3 and

1 < p < ∞ if N = 2.
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(f4) There exists a constantθ > 2 such thatθF (t) ≤ tf(t) for t ≥ 0, in
which

F (t) =
∫ t

0
f(s)ds. (0.3)

To state the last condition onf we need some preparations. Consider the
problem in the whole space{

∆w − w + f(w) = 0 andw > 0 in RN ,
w(0) = maxz∈RN w(z) andw(z) → 0 as|z| → +∞.

(0.4)

It is known that that any solution to (0.4) needs to be spherically sym-
metric about the origin and strictly decreasing inr = |z|, see [6]. A solution
w to (1.5) is said to benondegenerateif the linearized operator

L = ∆− 1 + f
′
(w) (0.5)

on L2(RN ), with domainW 2,2(RN ), has a bounded inverse when it is
restricted to the subspaceL2

r(R
N ) :=

{
u ∈ L2(RN )|u(z) = u(|z|)} .

Now condition (f5) is stated as follows:

(f5) Problem (0.4) has a unique solutionw, and it is nondegenerate.

The unique solution in (f5) will be denoted byw in the rest of this paper.

We note that the function

f(t) = tp − atq for t ≥ 0,

with a constanta ≥ 0, satisfies all the assumptions (f1)-(f4) if1 < q < p <
N+2
N−2 . Furthermore, there is a unique solutionw to problem (0.4) (see [2] and
[8]). The nondegeneracy condition (f5) can be derived from the uniqueness
argument (see Appendix C in [11] ).

Next we describe our assumptions on the domain. We assumeΩ is a
smooth domain inRN , not necessarily bounded, and there areK smooth
bounded subdomains ofΩ, Λ1, . . . , ΛK , compactly contained inΩ, satis-
fying

(H1) max
x∈Λi

d(x, ∂Ω) > max
x∈∂Λi

d(x, ∂Ω), i = 1, 2, . . . ,K,

(H2) min
i6=k

d(Λi, Λk) > 2 max
i

max
x∈Λi

d(x, ∂Ω)

whered(Λi, Λk) is the distance betweenΛi andΛk, i.e.

d(Λi, Λk) = inf
x∈Λi,y∈Λk

d(x, y).

Note that on eachΛi the distance function has a local maximum, but no
assumption is made on the set where this maximum is achieved. In particular
these maxima do not need to be isolated.

Next we state our main result in this paper.
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Theorem 0.1 AssumeΩ is a domain, not necessarily bounded, which sat-
isfies assumptions (H1) and (H2). Letf satisfy assumptions (f1)-(f5). Then
for ε sufficiently small problem (0.2) has a solutionuε which possesses ex-
actly K local maximum pointsxε,1, . . . , xε,K with xε,i ∈ Λi. Moreover
d(xε,i, ∂Ω) → max

x∈Λi

d(x, ∂Ω), asε → 0, for all i = 1, . . . ,K .

As we mentioned before, this result largely extends those in [13] and [1].

We prove Theorem 0.1 using variational techniques developed in [4] and
[5] for the construction of single and multi-peak solutions for a nonlinear
Schr̈odinger equation. In this process, sharp estimates of critical values of
the associated energy involving the distance function obtained in [12] and
[13] are crucial.

Our approach consists of modifying adequately the nonlinearity and ad-
ding a penalization term, so that a newpenalized energy functionalis ob-
tained. Then we find critical points to this functional by means of a min-
max scheme on a class of maps defined on a finite dimensional set. Asε
approaches zero, one then shows that the critical points so obtained are so-
lutions of the original problem. In doing so a central role is played by the
estimates for least-energy solutions found in [12].

It would be interesting to determine which phenomena arises if assump-
tion (H2) is violated. Our proof makes strong use of the validity of strict
inequality. In fact, (H2) is what makes negligible the interaction between
“peaks” located in differentΛ′

is, when compared with the contribution to
the energy due to the effect of the distance to the boundary.

This paper is organized as follows. In§1 we consider the single peak
case, namelyK = 1. In Sect. 2 we treat the general multi-peak case and
conclude the proof of Theorem 0.1.

1 The case of a single peak

This section is devoted to the study of the case of a single peak. The results
in this section will serve as a basis for the multi-peak case, however they are
interesting by themselves and correspond to Theorem 0.1 forK = 1.

In this section we will assume the setΩ is a smooth domain inRN , not
necessarily bounded. We also assume that there is a smooth bounded domain
Λ, compactly contained inΩ satisfying hypothesis (H1) withK = 1. With
respect tof we consider the hypotheses (f1)-(f5).

Following the idea introduced in [4], we modify the functionf penal-
izing concentration outside the setΛ. Then we set up the mountain pass
scheme in order to obtain critical points of the penalized functional and,
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using the results in [12], we provide the necessary estimates to discard the
penalization.

Associated to equation (0.2) we have the “energy” functional

Iε(u) =
1
2

∫
Ω

ε2|∇u|2 + u2 −
∫
Ω

F (u), (1.1)

defined inH1
0 (Ω). In a similar way, associated to (0.4) we have the ‘limiting

functional’ I : H1(RN ) → R defined as

I(u) =
1
2

∫
RN

|∇u|2 + u2 −
∫
RN

F (u). (1.2)

Under the hypotheses onf andΩ, it is standard to check that the nontriv-
ial critical points ofIε andI correspond exactly to the positive classical
solutions of equation (0.2) inH1

0 (Ω) and of equation (0.4) inH1(RN ), re-
spectively. From the assumption (f5) the functionalI has a unique positive
critical point, up to translations, we callw. The critical value ofw (of a
mountain pass nature) will be denoted byc.

Next we modify the functionf as in [4]. Letθ be a number as given by
(f4), and let us choosek > 0 such thatk > θ

θ−2 . Let a > 0 be a value at
whichf ′(a) = 1

k andf(t) ≥ f(a) + f ′(a)(t− a) for all t ≥ a. Let us set

f̃(t) =
{
f(t) if t ≤ a
f(a) + f ′(a)(t− a) if t > a,

(1.3)

and define

g(·, t) = χΛf(t) + (1 − χΛ)f̃(t), (1.4)

whereχΛ denotes the characteristic function ofΛ. First we note thatg is a
Caratheodory function, moreover it is of classC1+σ in the variablet. This
fact is crucial in using the methods of [12]. In addition one can check that
(f1)-(f4) implies thatg satisfies the following assumptions:

(g1)g(x, t) = 0 for t ≤ 0 andg(x, t) → ∞ ast → ∞.
(g2)g(x, t) = o(t) neart = 0 uniformly in x ∈ Ω.
(g3) g(x, t) = O(tp) as t → ∞ for 1 < p < N+2

N−2 if N ≥ 3 and no
restriction onp if N = 1, 2.

(g4) (i) θG(z, t) ≤ g(x, t)t for all x ∈ Λ, t > 0.
and
(ii) 2G(x, t) ≤ g(x, t)t ≤ 1

k t
2 for all t ∈ R+, x 6∈ Λ with the

numberk satisfyingk > θ/(θ − 2).



Multi-peak solutions for some singular perturbation problems 125

Here we have denotedG(z, ξ) =
∫ ξ
0 g(z, τ)dτ .

Next we introduce the penalized functionalJε : H1
0 (Ω) → R as

Jε(u) =
1
2

∫
Ω

ε2|∇u|2 + u2 −
∫
Ω

G(x, u) , u ∈ H1
0 (Ω). (1.5)

The functionalJε is of classC1 in H1
0 (Ω) and its nontrivial critical points

are the positive solutions of the equation

ε2∆u− u+ g(x, u) = 0 in Ω. (1.6)

The functionalJε is of classC1 and it satisfies the Palais Smale condition,
see Lemma 1.1 in [4]. Moreover, it can be easily seen from hypotheses
(g1)-(g4) thatJε has the mountain pass structure. Thus the Mountain Pass
Theorem can be applied toJε.

We define the mountain pass value

cε = inf
γ∈G

max
0≤t≤1

Jε(γ(t)),

whereG = {γ ∈ C([0, 1], H1
0 (Ω) | γ(0) = 0, γ(1) = e} ande 6= 0 is

such thatJε(e) < 0. On the other hand we can define

c̃ε = inf
u∈M

Jε(u),

where

M = {u ∈ H1
0 (Ω) |

∫
Ω
ε2|∇u|2 + u2 =

∫
Ω
ug(x, u)dx}.

By the assumptions (f1)-(f4) and the definition ofg, we can prove, slightly
modifying the proof of Lemma B.1 in [11] and Lemma 1.2 in [4], that
cε = c̃ε.

Let uε ∈ H1
0 (Ω) be a critical point ofJε satisfyingJε(uε) = cε, that

is uε is a least energy critical point ofJε. In the rest of this section we will
obtain estimates forcε and use them for studying the limiting behavior of
uε. Certainlyuε satisfies (1.6), but we will prove that forε small enoughuε
satisfies (0.2) also.

Givenv ∈ H1(RN ) we define theprojection ofv into the domainD,
and denote it byPDv, as the unique solution of the problem


ε2∆u− u+ f(v(x)) = 0 in D

u = 0 on∂D.
(1.7)

Let w be the unique solution of (0.4) and definewε,P (x) = w(x−P
ε ) for

P ∈ Ω.
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Following [12] we define the function

ψε(x, P ) = −ε log {wε,P (x) − PΩwε,P (x)}. (1.8)

The behavior ofψε whenε converges to zero is studied in [12], where the
next result is proved (see Lemmas 4.2 and 4.3)

Lemma 1.1 (i) ‖∇ψε(x, P )‖L∞(Ω′) ≤ C for any compact setΩ′ ⊂ Ω.
(ii) ψε(·, P ) converges, asε → 0, uniformly to a functionψ(·, P ) ∈

W 1,∞(Ω) which can be explicitly written as

ψ(x, P ) = inf
z∈∂Ω

{|z − P | + L(z, x)}, (1.9)

whereL(x, y) is the infimum ofT such that there existsξ ∈ C0,1([0, T ], Ω),
with ξ(0) = x, ξ(T ) = P, and |dξds | ≤ 1 a.e. in [0, T ]. In particular,
ψ(P, P ) = 2d(P, ∂Ω).

In what follows we will make two notational simplifications. We will
write β = 1/ε andψε(x) = ψε(x, x).

Now we state the main result of the section, that can be seen as a single-
peak version of Theorem 0.1. It also contains the asymptotic expansion of
cε.

Theorem 1.1 AssumeΩ satisfies (H1) andf satisfies (f1) - (f5). Then for
ε sufficiently small problem (0.2) has a solutionuε which possesses exactly
one local maximum pointsxε ∈ Λ and d(xε, ∂Ω) → max

x∈Λ
d(x, ∂Ω), as

ε → 0.
Moreover, the following estimate holds

cε = εN{c+Ae−βψε(xε) + o(e−βψε(xε))}, (1.10)

where

ψε(xε) → 2 max
x∈Λ

d(x, ∂Ω)

and

A =
∫
RN

f(w)u∗ > 0. (1.11)

Hereu∗ is the unique radial solution of

∆u− u = 0 in RN

u(0) = 1, u > 0 in RN .

}
(1.12)

In order to prove this theorem, we obtain first the rough behavior of the
family {uε} of least energy critical points ofJε.
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Lemma 1.2 Letuε as defined above. Then, forε small enoughuε possesses
a unique maximum pointxε ∈ Λ and the familyvε defined asvε(y) =
uε(xε + εy) converges in theC1

loc(R
N ) andH1(RN ) sense to the solution

w of (0.4).

Proof. We just give a very brief sketch. After obtaining estimates ofcε and
theH1(Ω) norm ofuε, one can take weak limits ofvε. Calling v a limit
point ofvε we find that it satisfies an equation of the form

∆v − v + ḡ(x, s) = 0 in RN , (1.13)

where

ḡ(x, s) = χ(x)f(s) + (1 − χ(x))f̃(s), (1.14)

andχ is the characteristic function of an hyperplane inRN . It is shown in [5]
Lemma 2.3, thatv is actually a solution of (0.4), proving the last sentence
in the lemma. This fact is crucial for later arguments.

In order to obtain stronger convergence, we use concentration compact-
ness argument to obtain a unique maximum ofvε. Then the maximum prin-
ciple together with elliptic estimates will complete the lemma. See [4], [5]
and also [12] for further details.ut
Proof of Theorem 1.1First we find an upper bound ofcε. Following Sect. 5 in
[12], we consider the test functionPΩwε,P (x) where d(P, ∂Ω) =
maxz∈Λ d(z, ∂Ω), and find

cε ≤ εN
{
c+Ae−βψε(P ) + o(e−βψε(P ))

}
. (1.15)

We observe thatJε(PΩwε,P ) = Iε(PΩwε,P ) for smallε.
Next we show thatuε is actually a solution of the original equation, when

ε is small enough. For this purpose we assume the contrary, that is, there
is a sequenceεj converging to0 such thatxεj converges to a point̄x ∈ Λ,
wherexεj is the maximum point of the functionuεj .

Let us choose a numberd > 0 such that

d(x̄, ∂Ω) < d < max
x∈Ω

d(x, ∂Ω) ≡ d0,

and consider the domainΩd defined as the connected component ofΩ ∩
B(x̄, d) containingx̄. Then we have

d′ ≡ max
x∈Ωd

d(x, ∂Ωd) < d,

sinceB(x̄, d) 6⊂ Ω. Now we choosed′′ such thatd′ < d′′ < d.
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We define onH1
0 (Ωd) the functional

Idε (u) =
1
2

∫
Ωd

ε2|∇u|2 + u2 −
∫
Ωd

F (u). (1.16)

Let η ∈ C∞
0 (RN ) be a cut-off function withη(x) = 1 if |x− x̄| ≤ d′′ and

η(x) = 0 if |x− x̄| ≥ d. Then consider̃uε = η(x)uε(x) ∈ H1
0 (Ωd) and let

tε > 0 be such that
Idε (tεuε) = max

t≥0
Idε (tuε).

We claim thattε → 1. In fact, if we set̃vε(y) = ũε(xε + εy), then from
Lemma 1.2̃vε → w in H1(RN ). Then, by definition oftε,∫

RN

ε2|∇ṽε|2 + ṽ2
ε =

∫
RN

f(tεṽε)
tε

ṽε, (1.17)

from where the claim follows.
Next we find a lower estimate forcεj under our contradiction hypothesis.

For notational convenience we will replace, when no confusion arises,εj
by j in the rest of the proof.

By definition ofcj and the functionals we have

cj = Jj(uj) ≥ Jj(tjuj) ≥ Ij(tjuj). (1.18)

Now we claim that

Ij(tjuj) ≥ Idj (tj ũj) − ce−2βj(d′′−δ), (1.19)

wherec is a positive constant andδ > 0 is chosen so thatd′′ − δ > d′. In
fact, from the Maximum Principle and elliptic estimates we have

max
x∈Ω

{|uj |, |∇uj |} ≤ Ce−βj(d′′−δ), (1.20)

so that, from the definition of̃uj , the estimate (1.19) clearly follows.
Finally we have

Idj (tj ũj) ≥ inf
u 6=0,u∈H1

0 (Ωd)
sup
t≥0

Idj (tu) ≡ cdj . (1.21)

Now we are in a position to apply the main estimate in [12], Proposition 6.3,
to obtain

cdj ≥ εNj

{
c+Ae−βjψ

d
j + o(e−βjψ

d
j )
}

(1.22)

where theψdj ’s are certain numbers with

ψdj → 2 max
x∈Ωd

d(x, ∂Ωd), (1.23)
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andA is given by (1.11). Therefore, for largej we have

cdj ≥ εNj

{
c+

A

2
e−βj2d′

}
(1.24)

Then, using (1.18), (1.19), (1.21), (1.22), and the fact thatd′ < d′′ − δ, we
find that

cj ≥ εNj

{
c+

A

3
e−2βjd

′
}
. (1.25)

Sinced(P,Ω) > d′ and estimate (1.15) holds, it follows that (1.25) is not
possible. Thus we have a contradiction which shows thatuε is a solution of
the original equation for all sufficiently smallε. We observe also that using
the same argument yieldsd(xε, ∂Ω) → max

x∈Λ
d(x, ∂Ω), asε → 0.

Finally, estimate (1.10) can be obtained from the results of [12]. In fact
Proposition 6.3 applies to our situation, sinceuε is a solution of (0.2) and
xε is its maximum point. This finishes the proof of the theorem.ut

2 The case of multiple peaks

In this section we prove Theorem 0.1. For this purpose we introduce an
appropriate penalization so that the concentration outside the setsΛi is
avoided. We set up the minimax scheme in order to obtain critical points
of the penalized functional and then we provide some estimates in order to
show that these critical points are solutions of the original equation.

We consider, as in Sect. 1, the functionalIε defined in (1.1). We set
Λ = ∪Ki=1Λi, with the bounded domainsΛi as in the assumptions of Theorem
0.1, and define

g(·, t) = χΛf(t) + (1 − χΛ)f̃(t), (2.1)

whereχΛ denoting is the characteristic function ofΛ. Then we consider the
functionalJε as in (1.5); its critical points are the solutions of (1.6).

Next we define inH1
0 (Ω) a ‘local’ version ofJε as

J iε(u) =
1
2

∫
Ωi

ε2|∇u|2 + u2 −
∫
Ωi

G(x, u), u ∈ H1
0 (Ω). (2.2)

We also introduce a further penalization term, similar to that considered in
[5], defined as

Pε(u) = M
K∑
i=1

{(
J iε(u)+

) 1
2 − (

3
2
cεN )

1
2

}2

+
, (2.3)
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whereM is a constant to be chosen later, and the setsΩi are defined as

Ωi = {x ∈ Ω | d(x,Λi) < 1
2

min
k 6=i

d(Λi, Λk)}, i = 1, . . . ,K.

We note that the setsΩi containΛi compactly and they are mutually disjoint.
Finally we define the penalized functionalEε : H1

0 (Ω) → R as

Eε(u) = Jε(u) + Pε(u). (2.4)

The functionalsJε andPε are of classC1 hence so isEε. Moreover, the
functionalEε satisfies the Palais-Smale condition, see Lemma 1.1 in [5].

The previous considerations make possible to use Critical Point Theory
to find critical points of the functionalEε. We formulate now an appropriate
minimax problem forEε. Set

ûi = PΩiwε,Pi ,

wherePi ∈ Λi is such thatd(Pi, ∂Ω) = max{d(P, ∂Ω) | P ∈ Λi}, i =
1, . . . ,K. Define the classΓ as

Γ =
{
γ ∈ C([0, T ]K , H1

0 ) / γ(t) =
K∑
i=1

tiûi,

∀ t = (t1, . . . , tK) ∈ ∂[0, T ]K
}
.

The numberT is chosen so large thatI(Tw) < 0. Sincew is exponentially
decaying, it is easy to show that for anyγ ∈ Γ we have

Eε(γ(t)) < εN (Kc+ o(1)) (2.5)

for all t ∈ ∂[0, T ]K , if ε is small enough. Here and in what follows we
denote byo(1) a quantity approaching zero asε → 0. We can define the
minimax value associated to the classΓ as follows

Cε = inf
γ∈Γ

sup
t∈[0,T ]K

Eε(γ(t)).

The following lemma provides a first estimate on the minimax valueCε.

Lemma 2.1
Cε = εN (Kc+ o(1)). (2.6)

The proof of this lemma is similar to that of Lemma 1.2 in [5], hence we
omit it.

It follows from estimates (2.5) and (2.6) that there exits a critical point
uε ∈ H1

0 (Ω) of Eε such thatEε(uε) = Cε.
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We define the local weight

wi
ε = M

{(
J iε(uε)+

) 1
2 − (

3
2
cεN )

1
2

}
+

(
J iε(uε)

)− 1
2 ,

and then the function

wε =
K∑
i=1

wi
εχΩi . (2.7)

Thus the critical pointuε is a weak solution of the equation

ε2div((1 + wε)∇u) − (1 + wε)u+ (1 + wε)g(x, u) = 0 in Ω, (2.8)

anduε satisfies

ε2∆u− u+ g(x, u) = 0 in O, (2.9)

for every setO ⊂ Ω not intersecting∂(∪Ki=1Ωi).
We define the setsΩε = {y ∈ RN / εy ∈ Ω}andΩε

i = {y ∈ RN / εy ∈
Ωi}. We rescale the functionuε asvε(y) = uε(εy) for y ∈ Ωε. This function
vε belongs toH1

0 (Ωε) and then toH1(RN ), and it satisfies, in a weak sense,
the equation

div((1+wε(εy))∇u)−(1+wε(εy))u+(1+wε(εy))g(εy, u) = 0 in Ωε,
(2.10)

and over setsO, subsets ofΩε not intersecting∂(∪Ki=1Ω
ε
i ), it satisfies

∆u− u+ g(εy, u) = 0 in O. (2.11)

In order to complete the proof of Theorem 0.1 we need to show thatuε is a
critical point of the original functionalIε wheneverε is sufficiently small.
Toward this end, the following lemma constitutes a crucial step.

Lemma 2.2 If in the definition ofEε in (2.3) and (2.4),M > 0 was chosen
sufficiently large, then

lim
ε→0

J iε(uε)ε
−N = c, for all i = 1, . . . ,K. (2.12)

The proof of this lemma can be obtained by slightly modifying the proof
of Lemmas 2.1 and 2.2 in [5] and it is thus omitted.

From Lemma 2.2, we have in particular thatuε satisfies the equation

ε2∆uε − uε + χΛf(uε) + (1 − χΛ)f̃(uε) = 0 in Ω, (2.13)

where, we recall,Λ = ∪i=1,KΛi. We also have thatuε hasK maximum
points, sayxε,i, one in eachΛi. The next step is to show thatuε satisfies the
original equation. For that purpose it will be enough to prove the following
lemma.
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Lemma 2.3

sup
∂Λi

uε → 0 asε → 0 for all i = 1, . . . ,K. (2.14)

Proof. We will use energy estimates in the spirit of Sect. 1. First we consider
local problems, defining the mountain pass values

cε,i = inf
u∈Mi

J iε(u),

where

Mi =
{
u ∈ H1

0 (Ωi) | 1
2

∫
Ωi

|ε2∇u|2 +
∫
Ωi

u2 =
∫
Ωi

ug(x, u)dx
}
.

Theorem 1.1 applies to these local problems, so that estimates like (1.10)
hold for everyi = 1, . . . ,K. Moreover, a critical pointuε,i of J iε with
value cε,i possesses a unique maximum pointPε,i and d(Pε,i, ∂Ωi) →
max
x∈Λi

d(x, ∂Ωi).

Next, we want to find a good estimate forJ iε(uε). For this purpose we
first see that, sinceΩi ∩Ωk = φ, for i 6= k,

Cε ≤
K∑
i=1

cε,i. (2.15)

On the other hand consider the functionũε,i(x) = ηi(x)uε(x)tε,i ∈ H1
0 (Ωi)

wheretε,i is such that̃uε,i(x) ∈ Mi andηi ∈ C∞
0 (Ωi) is a function taking

the value1, except for neighborhood of∂Ωi of small radiusρ0. ut
The next lemma provides an estimate ontε,i.

Lemma 2.4

tε,i = 1 +O

(
e
−β(1−δ1) min

k 6=i
d(Λi, Λk)

)
, for 0 < δ1 < 1. (2.16)

Proof. We have∫
Ωi

ε2|∇uεηi|2 + (uεηi)2 −
∫
Ωi

g(x, uεηi)uεηi

=
∫
Ωi

ε2|∇uε|2 + u2
ε −

∫
Ωi

g(x, uε)uε +O

(
e
−β(1−δ1) min

j 6=i
d(Λi, Λj)

)

= O

(
e
−β(1−δ1) min

j 6=i
d(Λi, Λj)

)
. (2.17)
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Therefore

tε,i = 1 +O

(
e
−β(1−δ1) min

j 6=i
d(Λi, Λj)

)
.

ut
Continuing with the proof of Lemma 2.3, from (2.16) and an estimate

like (1.20) we obtainJ iε we obtain

J iε(uε) =
1
2

∫
Ωi

ε2|∇uε|2 + u2
ε −

∫
Ωi

G(x, uε)

=
1
2

∫
Ωi

ε2|∇ũε|2 + ũ2
ε −

∫
Ωi

G(x, ũε)

+ O

(
e
−β(1−δ1) min

k 6=i
d(Λi, Λk)

)

≥ cε,i +O

(
e
−β(1−δ1) min

k 6=i
d(Λi, Λk)

)
. (2.18)

Noticing that

Cε ≥
K∑
i=1

(
1
2

∫
Ωi

ε2|∇uε|2 + u2
ε −

∫
Ωi

G(x, uε)
)
,

and combining (2.15) with (2.18) we obtain, for everyi = 1, . . . ,K, that

1
2

∫
Ωi

ε2|∇uε|2 + u2
ε −

∫
Ωi

G(x, uε)

= cε,i +O

(
e
−β(1−δ1) min

k 6=i
d(Λi, Λk)

)
. (2.19)

Now we prove (2.14). Assume by contradiction that there existsi ∈ {1, . . . ,
K} and a sequence{εj} such thatxεj ,i → x̄i ∈ ∂Λi, wherexεj ,i is the
maximum point ofuεj . We recall that we have a precise upper estimate of
cε,i in (2.19). On the other hand, using our contradiction assumption, and
proceeding similarly as in the proof of Theorem 1.1, we obtain a lower
estimate for the left hand side of (2.19) which is not compatible with the
corresponding one for the right hand side. Here we may need to reduce the
numbersδ1 andρ0 appropriately, making use of hypothesis (H2) to reach
the contradiction. This finishes the proof of Lemma 2.3.ut
Proof of Theorem 0.1Once (2.14) is proved we have a true solution to
problem (0.1), i.e.uε satisfies

ε2∆uε − uε + f(uε) = 0 in Ω.
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By the same method in [12] or [5], one can show thatuε has exactlyK
local maximum pointsxε,i ∈ Λi, i = 1, . . . ,K. Moreover the argument
provided in the proof of Lemma 2.3 yields

d(xε,i, ∂Ω) → max
x∈Λi

d(x, ∂Ω), i = 1, . . . ,K.

The proof is concluded. ut
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