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ON THE ROLE OF DISTANCE FUNCTION 

IN SOME SINGULAR PERTURBATION PROBLEMS 

LIanuel del Pino1, Patricio L. Felmer ', Juncheng Wei2 

'Departamento de Ingenieria Matematica F.C.F.M. 
Universidad de Chile 

Casilla 170 Correo 3, Santiago, CHILE 

2Department of Mathematics 
Chinese University of Hong Kong 

Shatin, HONG KONG 

Abstract 

LVr consider the problem 

$ 3 ~  - u -t f (u)  = 0 in R 
u > 0 in R, u = 0 on aR, 

where R is a smooth domain in RN, not necessarily bounded, e :> 0 is a small 
parameter and f is a superlinear, subcritical nonlinearity. I t  is known that  
this q u a t i o n  possesses a solution that  concentrates, as E approaches zero, a t  
a maxirnum of the function d(x, dR), t h e  d i s tance  t o  t h e  b o u n d a r y .  

IVe obtain single-peaked solutions associated to any topologzcally n o n t r i v -  
zal critical point of the distance function such as for instance a local, possibly 
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156 DEL PINO, FELMER, AND WE1 

degenerate, saddle point. The construction relies on a variational localiza- 
tion argument to  control a certain minmax value for an associated modified 
energy functional as well as on a precise asymptotic estimate for this energy 
level. 

0 Introduction 

Let us consider the problem 

a2 
where 4 = - is the Laplace operator, R is a smooth domain in RN, 

i= 1 a X: 
not necessarily bounded, with boundary dil l  N 1 1 , E > 0 is a constant and 
p satisfies 1 < p < for N > 3, and 1 < p < co for N = 1,2.  

Problem (0.1) aid- related ones have been widely considered in the lit- 
erature of nonlinear elliptic problems in recent years, as they arise as the 
steady state equation of time dependent problems appearing in a number of 
biological and physical models. 

A very interesting feature of (0.1) is the presence of families of solutions 
exhibiting a spike-layer pattern as E + 0. By this we mean solutions exhibit- 
ing a finite set of local maxima concentrating around certain special points 
of the domain, while vanishing a t  an exponential rate in 115 elsewhere. 

In [12] Ni and Wei studied the behavior as E + 0 of a least energy 
solution to problem (0.1), characterized variationally as a mountain pass of 
the associated energy functional. They proved that for E sufficiently small 
a least-energy solution possesses a single spike-layer with its unique peak 
in the interior of R. Moreover this unique peak must be situated near the 
most-centered part of R, that is where the distance function d(P, dR), P E R, 
asslimes its global maximum. This is in contrast with earlier results for the 
corresponding Neumann problem, obtained by Ni and Takagi in [lo] and 
[ l l ] ,  where it was shown that for E sufficiently small, a least-energy solution 
possesses a single spike-layer with its unique peak located on the boundary 
aR, which furthermore must be located near the m o s t  curved part of dR, i.e. 
where the mean curvature of the boundary assumes its global maximum. 

The results in [12] follow from an asymptotic expansion of the critical 
value associated to the least energy solution. This expansion requires sharp 
estimates of exponentially small error terms that are obtained by using a 
vanishing viscosity method. 
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ROLE OF DISTANCE FUNCTION 

.A natural problem to study for further insight into the rich and complex 
structnre of the solution set of this equation for small E ,  is that  of determining 
the role of distance function in the existence of other solutions which exhibit 
concentration behavior like the one described above. In this direction, Wei 
showed in [I31 a local version of the above result, namely that  for every 
strict local maximum point of the distance function, say P, there exists a 
family of solutions with a single global maximum point that  approaches the 
given point P. In [ 5 ]  this result is generalized to multiple-peaked case a t  
sevrral distinct possibly degenerate local maximum points of d(P, 80). For 
the single-peaked case, the result in [5] says that  for any set 12 (1 R such that  

there exists a family of solutions with a single global maximum point which 
approilches a maximum point of d(P. 8 2 )  in A. 

At this point we should mention a very recent work of Li and Xirenberg 
[9] Assuming that  for an open bounded subset A of Cl on whose boundary 
d(P. ail) is continuously differentmiable 

they ronstruct a family of solutions with single maximum point that  belongs 
to .l, however no further statement is given on the nature of the limiting 
points of these maxima. In [9] a more precise result is obtained when as- 
sumption (0.2) is considered. They are able to show that  the constructed 
family has concentration around a point of maximum distance to the bound- 
ary. as also shown in [5]. 

In view of the above mentioned results, a natural question is whether there 
exist such single-peaked families concentrating around other kinds of critical 
p o i ~ ~ t s  of the distance function d(P, 8R). One may ask, for instance, whether 
thtlre is a single-spike family concentrating around the center of the neck in 
the .'flower-pot" domain of Figure 1, where a saddle point ;,f the distance 
fiinction appears. Our purpose in this paper is to show that  associated to 
this lmint, and more generally, to any topologically nontrivial critical point 
of d(P. an) there is a family of single-peaked solutions. 

We remark that  the results in [9] do not apply in a saddle point situation 
lilw that in Figure 1, since condition (0.3) cannot be fulfilled for the distance 
furictlon fails to be differentiable on the entire transversal axis of the neck. 

Next we describe our results in precise terms. We consider the problem 
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DEL PINO, FELMER, AND WE1 

FIG. 1 

E ~ A U  - u + f (u) = 0 in R,  
(0.4) 

u > 0 in fl and u = 0 in dR, 

w1ic.r~ we ilssume that f : R+ -+ R is of class C1+" and satisfies the conditions 
(f'1)-(fj) bclow. 

[f'l) f ( t )  0 for t 5 0 and f ( t )  -t +cc as t -t co. 

(f'2) The function t -+ f ( t ) / t  is strictly increasing. 

(f3) f ' ( t )  = O ( P )  as t -+ +m where 1 < p < if N 2 3 and 1 < p < rn 
if .V = 2. 

(f) There exists a constant 6 > 2 such that  6 F ( t )  5 t f  ( t )  for t 2 0, in 
which 

t 
F ( t )  = f (s)ds.  

0 
(0.5) 

To state the last condition on f we need some preparations. Consider 
t1111 problem in the whole space 

It is ltnown that t,hat any solution to (0.6) needs to  be spherically 
symmetric about the origin and strictly decreasing in r = Izl, see 161. .\ 
solution iu to (1.5) is said to be nondegenerate if the linearized operator 
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ROLE OF DISTANCE FUNCTION 159 

1111 L2(R.'.). n.itli domain IT.72.'(R.\'). has a bounded inverse n,llen it is 
ii~srric~rivi to tlir silbspacc L,i(R1") := {u t L 2 ( R " ) u ( r )  = u ( ; ~ ) ) .  

Son. c,o~iclition (f5) is stated as follows: 

i f ' .> )  P1.ol)l(m ( 0 . G )  has ;I ~iniquc solution w, and it is nondegtjnerate. 

T l ~ v  i~nicllic, solution ill (f5) will be denoted by w in the rest of tliis p; lpc~.  

111 11.11ilt f'oliows. wc. s tate prec~isel?; our. assumption on d(P. an). \.I'e cnn- 
~ i t l i ~ r  !?  ;I srriooth rlorrlairi in R.'. not riecessarily bounded. \Ye assume that  
I llc,rc- is i l l ,  c~pwi i ~ r d  I)ountletl set .\ with smooth boundary such that  1 c I1 
, i l l t i  c~loic~l s1111sc~s of' .\. B. Bll s w h  that  B is connected and No C B .  Lc>t 
I' I N '  rlw c . 1 ; ~  of all c,orltinuous functiolis o : B -t .I with the property that  
I 11 1 == I /  for.  a11 !j E Bo. .Assunie the maxmin value 

111.') At imv point 11 E 8.1 such that  d ( y ,  352) = c, there is a direction T. 
t;lngt,nt to 3.1 ;it !I, such that  T . 7 # 0 for any r E conv(S(y)  - y) .  
I~ I iw  S(y) = 212 n ~ , ( , , , , , , ~ ( y ) ,  and r.onsu detones the convex hull. 

111 r l i t -  sti~ridi~r.(l languagc of c.a.lcullis of variations: we see that the sets 
B,,. B. { ( I ( ! / .  3 0 )  5 c}  %nk" in ..I. 

I t  is riot h;lrti to <,heck that all tlicse ilssumptions arp sa t i s f id  in a gcneral 
l t ) ( , i \ l  si~tltll(, point situation. Note that  tlitse maxima or saddlc points (lo riot 
n ( ~ v i  to i w  isolnttd. 

\\'i, ilox sti~tc' ollr milin result in this paper. 
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160 DEL PINO, FELMER, AND WE1 

Remark. \fTe note that  the function f (t)  = tp satisfies all the assump- 
tiolls (f'l )-(f'3) if 1 < p < s. See [7] and Appendix C in [ l l ] .  

011r proof' of Theorem 0.1 can be extended, with minor changes, to cover 
1 1 1 0 ~  g ~ n t m l  nonlirienrities. Namely me can replace hypothesis (f2) by 

( 2 )  For. t 2 0. ,f admits the decomposition in C1+"(R) 

where f l  and f 2  satisfy 

( i)  . f l ( t )  2 0 and f2( t )  2 0 with f l (0)  = f i (0)  = 0, and 

(ii) There is a q > 1 such that fi(t)/tq is nondecreasing in t > 0. 
w11~rtw f 2 ( t ) / t V s  nonincreasing in t > 0, and in case q = 1 we require 
fi~rtlier that  t,he above monotonicity condition for f l ( t ) / t  is strict. 

Thc~ fiinction 
f (t)  = tP - a t v o r  t 2 0. 

wit11 ;L vonstant n > 0,  satisfies assumptions ( f l ) ,  (f2') and (f3) if 1 < q < p < 
.v+2 - , - , 2 .  Fiirt,hermore (f5) is proved in [I]; [7] and [B]. And the nondegeneracy 

cmtlition (f'rj) can be derived from the uniqueness arguments in [7], [8] or [I], 
( s r ~  .A~~prndix C in [ll] ). 

Tlioorc~m 0.1 implies that  topologically " nontrivial critical points " of the 
tlisti~nc.cl f~inction (note that  the distance function is not differentiable every- 
n11clr.e. so we can only speak about generalized derivatives) have associated 
si i~gl(~-pralwl solutions. This is much in line with the results of [3], in which 
i t  is sl ion~i the existence of concentrated bound states for the folloming non- 
l i l l ( ' i \ ~  Sc.hrKdiligcr equation 

It is sllowrl in [3] that a t  any topologically nontrivial critical points of I,-(x) in 
;I siliiiliir swse  ;is t,hat above for the distance function there exist concentrated 
1)01111(1 stat,es. In fact, we prove Theorem 0.1 by using variational techniques 
c l ( ~ ~ ~ ~ l o p ( ~ l  in [2] and [4]. In this process, sharp estimates of critical values 
of t l r ~  associated energy involving the distance function obtained in [12] and 
[13) ;UP c.rnc.ia1. 

( ) i l l .  i~1)l)roacli consists of modifying adequately the nonlinearity, so to 
l)('llidi~(l c~oncc~nt,ration outside :I. This gives rise to a new penalized energy 
j'~trtc~teort,trl. Tlicn we use the linking condition (H1)-(H2) to find critical 
poirm of t,his functional by means of a rninmax scheme on a class of maps 
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ROLE OF DISTANCE FUNCTION 161 

clefinrd on a finite dimensional set. As E approaches zero, one then shows 
that the. critical points so obtained are solutions of the original problem. In 
this process condition (H2) is crucial. 

TI& paper is organized as follows. In $1, we modify the energy functional 
ant1 set up a min-max procedure. Then we use (HI) to show that  a critical 
poilit exists for the modified functional. In $2, we show that the critical point 
is ilidoed a solution to (0 .3)  and has all the properties stated in 'Theorem 0.1. 

Throughout this paper, we use C, Co, c, etc. to denote various generic 
(,onstants. Tlie symbols 0(.4),  o ( A )  mean that  10(A) / 5 C I A / ,  o ( A ) / ( A I  + 0  
respectively 

1 The Min-Max setting 

Following the idea introduced in [ 2 ] ,  we modify the function f penalizing 
conc.cntration outside the set .I. Then we set up the mountain pass scheme 
in ordcr to obtain critical points of the penalized functional and, using the 
rcwlts in [12], we provide the necessary estimates to discard the penalization. 

.kisociated to equation (0.4) we have the "energy" functional 

drfmrd in H:(Q) .  In a similar way, associated to (0.6) we have the lzmztzng 
f u ~ ~ r t ~ o r ~ a l  I : H'(Rdv) -+ R defined as 

Uriclor the liypotheses on f and 52, it is standard to check that, the nontrivial 
rritic~ill points of I, and I correspond exactly to the positive classical solutions 
of qua t ion  (0.4) in Hd(Q) and of equation (0.6) in H ' ( R N ) ,  respectively. 
From assumption (f5), the functional I has a unique positive critical point, 
u p  t o  translations. denoted by w.  The critical value of w (of a mountain pass 
natwc:) will be denoted by c, r I ( w ) .  

S w t  we modify the function f as in [2].  Let 8 be a number as given by 
(flli. ii11d let us choose k > 0 such t,hat k > A. Let a > 0 be the value a t  

wlli(~ll = i .  Let us set 
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162 DEL PINO, FELMER, AND WE1 

where .I is a bounded domain as in the assumptions of Theorem 0.1, and x,, 
d ~ n o t e s  its characteristic function. Let us denote G ( x ,  J) = g ( x ,  T ) ~ T ,  and 
cmnsider the modified functional introduced in [2], defined on H,'(R) as 

TIP functional J,  is of class C1 in H i ( Q )  and its nontrivial critical points 
are precisely the positive solutions of the equation 

Tllc functional JE is of class C1 and satisfies the Palais Smale condition no 
matter whether S2 is bounded or not, see Lemma 1.1 in [2]. 

Let us also set 

dl, = { U  E H ~ ( Q )  \ { 0 }  I / E ~ [ v u [ ~  + u2 = u ~ ( x , u ) ~ x } .  
n 

Then. one can show, similarly to  Lemma B in [llj, that  u  E M, if and only 
if J C ( 1 ~ )  = S U ~ ~ > ~  JE(tu). Moreover, 

c, = inf JE(u) 
u€Mc 

is a critical value of J, thanks to the P.S. condition. 
Next we will define a min-max quantity for the functional J,. Given 

v E H1(RN) we define the projection of v into the domain D,  and denote i t  
by Q D ~ :  as the unique solution of the problem 

M'c. define W , , ~ ( Z )  = Z U ( ~ )  for P E Q,  where w is the unique solution of 
(0.6). 

For each P E Q. we define 

wlirre t,,p is such that  w p  E ME. Note that  wr is radial. 
Let .I, B, BU be the sets in assumptions (H1)- (H2)  and r, be the set of 

all conti~luous maps : B + ME with the property that  
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ROLE O F  DISTANCE FUNCTION 163 

Tht.11 we define a min-max value S, for the functional J, as fc~llows 

S, = inf sup J , ( $ ( y ) ) .  
y E B  

112. nil1 show that S, is a critical value of J,. From standard deformation 
, i rg~~ments ,  this is a consequence of the following result. 

Lemma 1.1 For E suf iczent ly  small,  we have S, > supyEBo < J i ( d ( y ) ) ;  'dd E 
I-. . 

To pr0T.e Lemma 1.1, the following is the key estimate we need 

Lemma 1.2 Let .lo be a n  open bounded set such  that  Lo C R .  Define 

Let uE be a nuntrivial critical point of ,J,,no such that  

lim  sup^-^ J , , ~ ,  (u,) < c,. 
€-+O 

Tl~rn ,  for all su,@ciently smal l  E ,  u, has  a single local m a x i m u m  point x,, 
~ u i w i r  is located i n  . lo We also have the  es t imate  

J~,.,, ( u E )  = EN{C* + e-?(d(xc lan)+o( l ) )  > 1 (1 .6 )  

Irr particular! 

inf J,,,iO ( u )  2 E ~ { c *  + e-2(d"~+0(1)) 'E 
uEhfc,no 

1 1  

For. a given function u E H,'(R) \ ( 0 )  we define its center of mass as 

w h e ~ e  R > 0 is such that  An c B R j 2 ( 0 ) .  When R is bounded we can avoid 
thc ~ntersection with BR(0) in the integral of the numerator. 
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164 DEL PINO, FELMER, AND WE1 

Corollary 1.1 Let E = ~k -+ 0 and u,  6 M,,A, be a family of functions such 
thot 

lim sup E-~J,,A,(u,)  5 c,. 
E+O 

Tlien the following estimate holds 

Jc,.40(UE) 2 EN{C* + e - ? ( d ( z ~ r a ' ) + o ( l ) )  
1 1  

'where :c, = P(u,). 

Proof of Corollary 1.1. Passing to a subsequence, assume that x, -t 3.  
Then given 6 > 0, for all small E one has that  

where 

In fact, a standard concentration-compactness type argument together with 
tlic minimizing character of the sequence u, and the Ekeland variational 
principle give that  u E ( x E + ~ y )  converges in H1-sense the a least energy critical 
point, w of the limiting functional I in (1.2). 

Then we have 

Sincr the functional satisfies P.S, it follows that  the latter number is at- 
tained a t  some function ii,. Working out a first variation with test functions 
supported outside & ( I ) ,  we see that  ii, satisfies the equation 

Again, if we set v,(y) = G E ( &  + EY), with & = P ( G E )  then v, converges in 
the  H1(RN)-sense to w, the least energy critical point of the functional I in 
(1.2).  In particular, elliptic estimates applied to the above equation imply 
that ILE goes to zero uniformly, away from the ball Ba(Z). In particular, we 
havr that  

JE,~O ('E ) = JE,~On~26 ( 2 )  ( G E )  > 

arid also i iE E M c , , ~ O n ~ 2 6 ( 2 ) .  Let us set = A. n BZd(Z) .  Then we obtain 
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ROLE OF DISTANCE FUNCTION 165 

But the latter number is estimated from below by the estimate given by 
Lemma 1.2. Hence 

Since t i  can be chosen arbitrarily small, the result of the corollary fo1lon.s. 0 

The proof of Lemma 1.2 is postponed until the end of this section. Let 
us now use this corollary to prove Lemma 1.1. Suppose that  Lemma 1.1 is 
not true. namely that  there exists ~k -+ 0 such that 

Hwcr ,  given L > 0 there exists dk E r,, such that  

Using concentration-compactness arguments as those provided In Lemma 1.1 
in [3] we find that  for large k 

where 6 > 0 is a small positive number such that d(y,  dR) 1 c+6 for y E Bo, 
which can be chosen thanks to assumption (HI). 

Now. the linking assumptions (HI)-(H2) applied to  a slight modification 
of ~:k(y) = 3(41c(y))  yields the existence of a yk E B so that  

I4.p will show that  this is impossible. Indeed, let us denote uk = dk(yk). 
Then Corollary 1.1. applies to the sequence uk to yield the estimate 

On the other hand. from our assumption 
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166 DEL PINO, FELMER, AND WE1 

Now. estimating the right hand side of the above inequality using the esti- 
rmtes In [12], Section 5 ,  and the fact that  for y E Bo we have d(y, 8 0 )  2 c+6, 
we see that  

JEk (uk) 5 E ~ { c ,  + e-2(c+6+0('))lck > .  (1.11) 

Thus. combining estimates (1.10) and (1.11) one gets 

This immediately contradicts estimate (1.9), and the proof is thus concluded. 
0 

Thus Lemma 1.1 holds true. Since the P.S. condition is satisfied for J,, 
see [3], we have from a standard deformation argument that  S, is a critical 
value of J,. 

It remains to  prove Lemma 1.2. 

Proof of Lemma 1.2: Let us set RE = E-'(O - x,) and A, = &-'(Ao - x,) 
and u,(L/) = uE(x ,$ .~y) .  Let w be the radially symmetric least energy critical 
point of I, and let ,r = P Q , ~  be the unique solution of 

-Az + z = f (w) in Q,, 

Let us also set 4, = u, - P Q , ~ .  Similarly to the first part of the proof of 
Corollary 1.1, we have that v, has just a local maximum point, and that  
tiE + iu uniformly and in the H1-sense. See also the proof of Proposition 2.1 
in [3]. To continue t,he analysis let us consider the function 

L l r  observe that the desired energy estimate corresponds exactly to  that  
shown in [12] in case that  h, r 0, so we shall assume otherwise. In such case 
WP rriust have that h, + 0 uniformly with its support shrinking to a point 

so that  lo(&) = a with a as in the definition of j (otherwise after scaling 
we would end up in the limit with an energy higher than the upper a priori 
estimate c*). 

The function 4, satisfies the equation 

where 
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ROLE OF DISTANCE FUNCTION 167 

rlnif'orrnly. as E -+ 0. We write 

Hw1c.e me have 

Thew we write, using the mean value theorem, 

EE(uc) = EE(Pnrw + 4E) = 

= E, (P~ ,~u l )+  < E:(Pn,u;), & > +- < Ef(Pn,w + t$,)$,. 4, > dt.  : i1 
Iri other words, using that 4, satisfies equation (1.12) we obtain after ex- 
pmtling the above terms, 

= E,(Pazw) + I  + 11+ I I I  + IV, (1.13) 

is a uniformly hounded function. From the results of [12], Section 5, we have 
the validity of the estimate 

w1lcrc3 rl, = d(.x,, 80). Hence to prove the desired estimate it suffices to 
c~stal~lish that all other terms in the expansion are of an exponential size 
snl;lller than e-"cIE. TO this end. the following claims constitute central 
S t ( p S .  

C'LXIlI  1. There ezzsts 7 > 0 such that fo r  all sma l l  E D
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168 DEL PINO, FELMER, AND WE1 

CLllIhI 3. There is a p > 0 such that for each p > 1 one has 

First we will establish Claim 2. To this end we assert that  

In fact. let us assume that  the direction xl is normal to A, a t  the closest point 
in 3.1, from the origin. Then using 2 as a test function in the equation 
satisfied by v, we obtain 

Sinw the support of h, is shrinking to 6 and $(&) -t $(6) # 0, the 
assertion readily follows. 

Thus we just need to estimate (Vv,l on dR,. We claim that  

for all y in a neighborhood of 80, .  We observe that such an estimate also 
holds for w as shown in [6 ] .  We prove the claim. A standard comparison 
argument gives that for any given p > 0 there is a C such that  

for all g in a neighborhood of do,. Here 6 > 1 is the number in assumption 
(W). Thus we may choose p so that  O(1 - p)  = 1 + 6 with b > 0. Let k(ly() 
br the  fundamental solution of 

Then we set 
z(y) = Mk(l y 1) - ~e-('+*/~)luI. 
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ROLE OF DISTANCE FUNCTION 169 

It is then easy to check that  for a sufficiently large Ro and a suitable choice 

so that r h o o ~ ~ ~ i g  -11 large enough the maxlmum principle yields v,(y) 5 z(y) 
for ,111 l y (  > Ro and the c l a ~ m  (1 15) thus follows. Now using t h ~ s  fact and 
lo( a1 p l l ~ p t ~ c  estimates at  the boundary one obtains 

uriif'ornily on z E an,. Finally this and (1.14) yields 

a5 desired. and the proof of Claim 2 is concluded. 0 

S o w  LW prove Claim 3. Set z = w - Pn,w. Then z satisfies 

-Az + z = 0 in R,, 

z = w on dR,. 

Then z is positive and it maximizes on do. Now, the largest value of w on 
BII 1s 

w ( d , / E )  = e - ( d c + ' J ( l ) ) / ~  

Lt.t BE he the ball centered a t  the origin with radius d,/&. Let b > 0 be an 
drbitrarilv .;mall number and set Z(y) = il(cosh((l - 6)lyl) + K ) .  I t  is easy 
to see that  if K is chosen large enough (dependent on 4, then 2 satisfies 
- 1 2  + 2 2 0. Then, if one chooses the constant A = e-(2-""'cl ', one gets 
t h a t  for small E ,  Z 2 z on aB,, therefore the inequality holds in the entire 
b d l  B,. It fbllows that  

Note also that  z ( ~ )  < ~ ( y )  < e-YI for large Iyl. Now, using assumption (f2) 
ant1 the C1+" character of f ,  we find 
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DEL PINO, FELMER, AND WE1 

From here Claim 2 readily follows after choosing 6 so small that 36 < a. 

Now we prove Claim 1. Let 1 < p < 2. Observe that Claim 2 implies 
that 

1 1  hE IILP(S2,, 5 e - ( ' +v l )dc /E .  

Let 71 < min{771r p }  where p is such that Claim 3 holds. We assert that Claim 
1 holds for this 7 if p was chosen appropriately. To prove this we assume the 
opposite, namely that along a sequence E = ~k -+ 0 one has 

Lt.t us set 

Then 6, satisfies 

wit,h LE -+ 0 in P. Then from a standard elliptic estimate we find that 
(j, is bounded in TV1,p on each compact subset of RN. Assume also that p 
was chosen sufficiently close to 2 so that 2 < N p / ( N  - p). Hence passing 
to a. subsequence we may assume from compact Sobolev's embedding that 
(/1, converges locally in L2 to a 4. Now, this local convergence is actually in 
C2-sense away from any neighborhood of b,  the point to which the support of 
hI is shrinking. Then, similarly to the proof of inequality (1.15) we may use a 
comparison function independent of E ,  defined on the exterior of a large fixed 
ball centered a t  the origin and exponentially decaying, so that we obtain that 
6, has a uniform exponential decay. It follows that the local convergence in 
L2 is also global, so that in particular 4 is in L ~ ( R ~ )  and is not zero. 4 
sat,isfies weakly, hence strongly, the equation 

sirice (b also decays a t  infinity, it follows from the nondegeneracy assumption 
(f5) that 
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ROLE OF DISTANCE FUNCTION 171 

for some constants cri, not all zero. This implies that V&O) # 0. On the 
other hand we recall that v, attained its maximum value a t  0, while the 
maximum point of Po,w approaches 0. Hence v&(o) + 0. This and the 
local C1-convergence of 6, to 4, near the origin, provides a contradiction 
which proves the validity of Claim 1. 

Now we are ready to estimate the terms I - I V  in the expansion (1.13). 

from Claims 1 and 2. Now, 

from Claims 1 and 3. As for 111 

It only remains to  estimate I V .  We have that 

v&) f ( s )  - J ( s )  
IIVl = / (F(v , )  - F ( u E ) )  = sds I 

flc\Ac S 

hence 

The last two terms in the right hand side of the above inequality admit 
estimates of high exponential order similar to those for I - I I I .  Thus it only 
remains to  find such an estimate for Jn hE(w - a)+dx. To do so, we just 
need to establish that (w - a)+ _< e-pdcb for some p > 0, uniformly on the 
support of h,. 

Since the support of h, is shrinking to the point &, we see that 
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172 DEL PINO, FELMER, AND WE1 

where 6, = b - d(x,, ail,) and b = / & I .  We will show that 6, has the desired 
exponential order. Note that from Claim 2 

1 

$'(a + t(v, - a))dt(v, - a)+v,, 

where $(s) = f (s)/s.  We may assume with no loss of generality that $'(a) > 
0. Thus 

But 
(w - a)+ > ~ b 2 ~ + ' ) / ~ 6 , ,  

for some q > 0. Combining the above inequalities we immediately obtain that 
6, 5 e-pdclE for some p > 0, and the proof of the lemma is thus complete. 

2 Proof of Theorem 0.1 

In this section we prove Theorem 0.1. We recall that from Section 1, we 
have a critical point u, of the functional J,. However, this critical point does 
not provide a solution to equation (0.4), unless u, 5 a over aA, so avoiding 
the penalization. In obtaining this last fact hypothesis (H2) is crucial. The 
following proposition is a key step. 

Propos i t ion  2.1 As E + 0 we have 

max u, (2) + 0. 
z E B A  

Since u, is a critical point of J,, it satisfies 
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ROLE OF DISTANCE FUNCTION 173 

Now, Lemma 1.2 ensures the presence of just one local maximum x, of u, 
which is in A. Furthermore the critical value of u,, can be estimated as 

sE = J, (uE) = E N { C t  + e - $ ( d ( x c , a n ) + o ( l ) )  1. 

In order to prove Proposition 2.1 we need the following preliminary result 

Lemma 2.1 
d(x,, dR) + C,  as E + 0, 

where c is the max-min value in (H1)-(H2). 

Proof .  First we see that given 6 > 0 we have that 

for all small E. In fact, take any q4 E r where r is defined as in (H1)-(H2), 
and consider its associated 4, E I'E defined as 

See definition of S, in Section 1. Then 

for all sufficiently small E .  Choosing 4 adequately, from here it follows that 

J,(u,) 5 E~ {c, + e-f(c-612)). 

This inequality combined with the lower estimate in Lemma 1.2 gives d, = 
d(:r,, dR) 2 c - 6 as desired. Therefore we have shown that 

Nest we establish that 
lim sup d(x, , dR) 5 c. 

E+O 

.4ssume by contradiction that for a certain 6 > 0 we have that along a 
sequence E = ~k -+ 0, 

d(x,, dR) 2 c + 6. 
Lye will show that this is not possible. In fact, this and (1.6) in Lemma 1.2 
itxiply that 
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DEL PINO, FELMER, AND WE1 

Then we consider a path 4, E I?, for which 

for a large and fixed L. Choose now y, E B such that 

where p was defined in (1.8). Set now 6, $,(y,) and observe that Corollary 
1.1 applies to this sequence to  yield 

Then combining (2.3), (2.4), (2.5) we obtain 

Now, the usual concentration-compactness argument gives that ,f3(4,(y)) E A 
for all small E ,  uniformly on y E B, where A is a small fixed neighborhood 
of '4. Then a slight modification of ,f3(4,(y)) provides a test path $, (y) in I? 
for which 

% p ( a ( ~ ) ) ,  an) t c + 61s. 

This contradicts the definition of the number c in (0.7), thus concluding the 
proof. 0 

Next we prove Proposition 2.1. 
Proof of Proposition 2.1: Suppose not, namely that there exists TE E 
BA, u , ( ~ , )  1 b > 0. We may assume, after passing to a suitable subsequence, 
that 5, + f E aA.  Let T be a unit vector tangent to dA a t  f .  

Let TE be a sequence of unit vectors T~ i: T which we will choose later. 
We use Vu, . T~ as a test function in equation (2.2) to get 

Not,e that the support of F(u,) - fi(uE) shrinks to the point 5 and that 
this function is nonnegative. Then we may choose T, in such a way that 
JaA[F(u,) - P(U,)]A. T ~ ~ O  = 0, so that 
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ROLE OF DISTANCE FUNCTION 175 

Next we estimate (VuEj2 on aCl. TO find an upper estimate we consider z,, 
the solution of 

E ~ A Z ,  - (1 - 6)'z, = 0 in B(x,,RE), 

such that z, = 1 on dB(xE, RE). If R is chosen large enough, the maximum 
principle implies that u,(x) z,(x) in Cl \ B(x,, RE). But it is not hard to 
check that 

ZE(x) < ~~-1x-xrl(l-26)/~ - 
Then, local elliptic estimates near the boundary imply that there is an EO > 0 
such that for all E < EO and all x E aCl one has 

Next we derive a lower estimate for the gradient. Let us consider 

S = aCl n B(3,  d), d = dist(3, dR), 

and. SE = {x E dR / dist(x, S )  < E ) .  It  is easy to see that there is a C > 0, 
so that for x E S,, E small, there is a point 2, E Cl such that 

where d, = dist(Z,, d o ) .  Now we choose z, to be the solution of 

such that z, = 7 on aB(Z,, RE) and z, = 0 on dB(&,d,). Here 77 > 0 is 
chosen so small that 

for an appropriately chosen R > 0. Then, from the maximum principle we 
find that u, 2 z,, from where it follows that 

Now, a direct computation gives 

Hence the latter inequalities imply 
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176 DEL PINO, FELMER, AND WE1 

Next we consider the probability measure dp, on dR given by 

Then passing to a subsequence we have 

where dp is a Bore1 probability measure on aR. We claim that the support 
of dp is contained in S. Indeed if 0 is an open subset of dR which does not 
intersect S then for some 6 > 0 

for some small number 6' > 0. It follows that ~ ( 0 )  = 0 and the claim is thus 
proven. 

Next we observe that relation (2.6) can be written as 

Since . v -t T . v uniformly, it follows that 

Now, observe that when x E S one has v(x) = (z - Z)/d, so that 

We see that r = Js(x - z)dp(x) belongs to conv(S - Z). Thus, choosing T 
appropriately, also using that dist(2,dQ) = c by Lemma 2.1, and assumption 
(H2) one gets a contradiction which finishes the proof. 0 

Proof of Theorem 0.1: By Proposition 2.1, there exists E,, such that for 
0 < E < E O , ~ ,  < a for all x E a n .  The function u, E H,' solves then 
equation (0.3). Then Lemma 2.1 and Lemma 1.2 provide all conclusions of 
the theorem. This concludes the proof. 
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