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ON THE ROLE OF DISTANCE FUNCTION
IN SOME SINGULAR PERTURBATION PROBLEMS

Manuel del Pino?, Patricio L. Felmer !, Juncheng Wei?

'Departamento de Ingenieria Matemdatica F.C.F.M.
Universidad de Chile
Casilla 170 Correo 3, Santiago, CHILE

?Department of Mathematics
Chinese University of Hong Kong
Shatin, HONG KONG

Abstract
We consider the problem

2Au—u-+ flu)y=0 in
vu>0inQ, u=0 on 09,

where Q is a smooth domain in BV, not necessarily bounded, £ > 0 is a small
parameter and f is a superlinear, subcritical nonlinearity. It is known that
this equation possesses a solution that concentrates, as € approaches zero, at
a maximum of the function d(z, d0N), the distance to the boundary.

We obtain single-peaked solutions associated to any topologically nontriv-
ial critical point of the distance function such as for instance a local, possibly
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degenerate, saddle point. The construction relies on a variational localiza-
tion argument to control a certain minmax value for an associated modified
energy functional as well as on a precise asymptotic estimate for this energy
level.

0 Introduction

Let us consider the problem

(0.1)

Au—u+uP=0 in Q
u>0in, u=0 on IQ,

N 2
where A = 3" 5.2 is the Laplace operator, 2 is a smooth domain in R",
=19 7%

not necessarily bounded, with boundary 80, N > 1,¢ > 0 is a constant and
psatisfies 1 <p < ££Z for N >3, and 1 <p < oo for N = 1,2.

Problem (0.1) and related ones have been widely considered in the lit-
erature of nonlinear elliptic problems in recent years, as they arise as the
steady state equation of time dependent problems appearing in a number of
biological and physical models.

A very interesting feature of (0.1) is the presence of families of solutions
exhibiting a spike-layer pattern as ¢ — 0. By this we mean solutions exhibit-
ing a finite set of local maxima concentrating around certain special points
of the domain, while vanishing at an exponential rate in 1/¢ elsewhere.

In [12] Ni and Wei studied the behavior as ¢ — 0 of a least energy
solution to problem (0.1), characterized variationally as a mountain pass of
the associated energy functional. They proved that for & sufficiently small
a least-energy solution possesses a single spike-layer with its unique peak
in the interior of . Moreover this unique peak must be situated near the
most-centered part of 2, that is where the distance function d(P,3Q), P € Q,
assumes its global maximum. This is in contrast with earlier results for the
corresponding Neumann problem, obtained by Ni and Takagi in [10] and
{11], where it was shown that for & sufficiently small, a least-energy solution
possesses a single spike-layer with its unique peak located on the boundary
99, which furthermore must be located near the most curved part of 9Q, i.e.
where the mean curvature of the boundary assumes its global maximum.

The results in [12] follow from an asymptotic expansion of the critical
value associated to the least energy solution. This expansion requires sharp
estimates of exponentially small error terms that are obtained by using a
vanishing viscosity method.
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A natural problem to study for further insight into the rich and complex
structure of the solution set of this equation for small €, is that of determining
the role of distance function in the existence of other solutions which exhibit
concentration behavior like the one described above. In this direction, Wei
showed in [13] a local version of the above result, namely that for every
strict local maximum point of the distance function, say P, there exists a
family of solutions with a single global maximum point that approaches the
given point P. In [5] this result is generalized to multiple-peaked case at
several distinct possibly degenerate local maximum points of d(P, 6€2). For
the single-peaked case, the result in [5] says that for any set A C {2 such that

max d(P, 8Q) > max d(P, Q) (0.2)
PEA PEdA

there exists a family of solutions with a single global maximum point which
approaches a maximum point of d(P, Q) in A.

At this point we should mention a very recent work of Li and Nirenberg
[9]. Assuming that for an open bounded subset A of 2 on whose boundary
d( P, 99) is continuously differentiable

deg(Vd(-,80),A) # 0 0.3)

theyv construct a family of solutions with single maximum point that belongs
to A, however no further statement is given on the nature of the limiting
points of these maxima. In [9] a more precise result is obtained when as-
sumption (0.2) is considered. They are able to show that the constructed
family has concentration around a point of maximum distance to the bound-
ary, as also shown in [5].

In view of the above mentioned results, a natural question is whether there
exist such single-peaked families concentrating around other kinds of critical
points of the distance function d{ P, 6{). One may ask, for instance, whether
there is a single-spike family concentrating around the center of the neck in
the “flower-pot” domain of Figure 1, where a saddle point of the distance
function appears. Qur purpose in this paper is to show that associated to
this point, and more generally, to any topologically nontrivial critical point
of d(P. Q) there is a family of single-peaked solutions.

We remark that the results in [9] do not apply in a saddle point situation
like that in Figure 1, since condition (0.3) cannot be fulfilled for the distance
function fails to be differentiable on the entire transversal axis of the neck.

Next we describe our results in precise terms. We consider the problem
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FIG. 1.

e?Au—~u+ f(u) =0 in Q,
{ o)

u>0 inQand u=0 in JQ,

where we assume that f : R* — Ris of class C'*7 and satisfies the conditions
{f1)-(5) below.
(f1) f(t) =0for ¢t <0 and f(t) = +o0 as t — co.
(£2) The function ¢t — f(t)/t is strictly increasing.
(f3) f{t) =O(t*) as t — +00 where 1 <p < x—fg fN>3and 1 <p< oo
N =2

(f4)  There exists a constant § > 2 such that 8F () < tf(¢) for ¢t > 0, in
which

Fit)= [ *£s)ds. (0.5)

To state the last condition on f we need some preparations. Consider
thie problem in the whole space

{L\w——w—i—f(w):O and w > 0 in RV,

w(0) = max.cpy w(z) and w(z) — 0 as |z] - +oc. (0.6)

It is known that that any solution to (0.6) needs to be spherically
svmmetric about the origin and strictly decreasing in r = {z|, see [6]. A
solution w to (1.5) is said to be nondegenerate if the linearized operator
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L=A-1+f(w) (0.7)

on L*(R™), with domain 11722(RY), has a bounded inverse when it is
restricted to the subspace L2(RY) = {u € L*(RM)|u(z) = u(]z]) } .

Now condition (f3) is stated as follows:
{t3)  Problem (0.6) has a unique solution w, and it is nondegenerate.

The unique solution in (f5) will be denoted by w in the rest of this paper.

In what follows. we state precisely our assumption on d(P, 9Q2). We con-
sider 2 a smooth domain in RY, not necessarily bounded. We assume that
there is an open and bounded set .\ with smooth boundary such that A C 2
and closed subsets of A. B. By such that B is connected and By C B. Let
[ be the class of all continuous functions ¢ : B — A with the property that
oly) =y for all y € By. Assume the maxmin value

¢ = sup min d(é(y), 9Q) (0.8)
pel VEB

is well defined and additionally that
(HI) minyep, d(y, 0Q) > ¢

(H2) At anv point y € 9A such that d(y,0Q) = ¢, there is a direction T,
fangent to 9.\ at y, such that T -7 # 0 for any 7 € conv(S(y) — y).
Here S{y) = 0 N By (y), and conv detones the convex hull.

In rhe standard language of calculus of variations, we see that the sets
By B Ad(y,0Q) < ¢} “link™ in A
It is not hard to check that all these assumptions are satisfied in a general
local saddle point situation. Note that these maxima or saddle points do not
need to be isolated.
We now state our main result in this paper.

Theorem 0.1 Assume Q is a domain, not necessarily bounded, which satis-

fes assumptions (H1) and (H2). Let f satisfy assumptions (f1)-(f5). Then

for = sufficiently small problem (0.4) has a solution u. which possessm ez-
aetly one local mazimum points v, with . € A, Moreover d(z.,0Q) —
ns o = 0. Moreover, we have

wfr) < (yez])(—ﬁf—;ii—) (0.9)

for certain positive constants o, 3.
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Remark. We note that the function f(¢) = t? satisfies all the assump-
tious (f1)-(£5) if 1 < p < §#2. See [7] and Appendix C in [11].

Our proof of Theorem 0.1 can be extended, with minor changes, to cover
more general nonlinearities. Namely we can replace hypothesis (£2) by

(f2') For t >0, f admits the decomposition in C'*°(R)

f(t) = fi(t) = fol2),

where f; and f, satisfy
(i) f1(t) > 0 and fo(t) > 0 with f1(0) = f;(0) = 0. and

(i) There is a ¢ > 1 such that fi(¢)/t? is nondecreasing in ¢ > 0,
whereas f,(t)/t? is nonincreasing in ¢ > 0, and in case ¢ = 1 we require
further that the above monotonicity condition for f,(t)/t is strict.

The function
f(&)=tF —at? fort >0,

with a constant ¢ > 0, satisfies assumptions (f1), (f2’) and (f3)if l < g <p <
2. Furthermore (f5) is proved in (1], [7] and (8]. And the nondegeneracy
condition (f5) can be derived from the uniqueness arguments in [7], [8] or [1],
(see Appendix C in [11] ).

Theorem 0.1 implies that topologically “ nontrivial critical points” of the
distance function (note that the distance function is not differentiable every-
where. so we can only speak about generalized derivatives) have associated
single-peaked solutions. This is much in line with the results of (3], in which
it is shown the existence of concentrated bound states for the following non-
linear Schrddinger equation

h*Au—V(z)u+uP =0in R". (0.10)

[t is shown in [3] that at any topologically nontrivial critical points of 1'(z) in
a similar sense as that above for the distance function there exist concentrated
bound states. In fact, we prove Theorem 0.1 by using variational techniques
developed in [2] and [4]. In this process, sharp estimates of critical values
of the associated energy involving the distance function obtained in [12] and
[13] are crucial,

Owr approach consists of modifying adequately the nonlinearity, so to
penalize concentration outside A. This gives rise to a new penalized energy

functional. Then we use the linking condition (H1)-(H2) to find critical

points of this functional by means of a minmax scheme on a class of maps
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defined on a finite dimensional set. As £ approaches zero, one then shows
that the critical points so obtained are solutions of the original problem. In
this process condition (H2) is crucial.

This paper is organized as follows. In §1, we modify the energy functional
and set up a min-max procedure. Then we use (H1) to show that a critical
point exists for the modified functional. In §2, we show that the critical point
is indeed a solution to (0.3) and has all the properties stated in Theorem 0.1.

Throughout this paper, we use C,Cy,c, etc. to denote various generic
constants. The symbols O(A4), o(A) mean that |O(4)| < C|A},6(A)/|4] =0

respectively.

1 The Min-Max setting

Following the idea introduced in [2], we modify the function f penalizing
concentration outside the set A. Then we set up the mountain pass scheme
in order to obtain critical points of the penalized functional and, using the
results in [12], we provide the necessary estimates to discard the penalization.
Associated to equation (0.4) we have the “energy” functional

L{u) = %/aﬂvumzﬁ—/nu), (1.1)
Q 0

defined in HJ(€). In a similar way, associated to (0.6) we have the limiting
functional I : HY(R™) — R defined as

I(u) = % J 1uf s - [ Fw). (1.2)

Under the hypotheses on f and €, it is standard to check that the nontrivial
critical points of I, and I correspond exactly to the positive classical solutions
of equation (0.4) in HL(Q) and of equation (0.6) in H'(R"), respectively.
From assumption (f5), the functional I has a unique positive critical point,
up to translations, denoted by w. The critical value of w (of a mountain pass
nature) will be denoted by ¢, = I(w).

Next we modify the function f as in [2]. Let § be a number as given by
{f4). and let us choose k& > 0 such that £ > %. Let a > 0 be the value at
which £ = 1 Let us set
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and define _
g('a 8) = XAf(S) + (1 - XA)f(S)a
where A is a bounded domain as in the assumptions of Theorem 0.1, and x4

denotes its characteristic function. Let us denote G(z, &) = [§ g(z,7)dr, and
consider the modified functional introduced in [2], defined on H}()) as

Jo(u) = %ngiwuuz —Q/G(x,u) ,

The functional J, is of class C! in HI(Q) and its nontrivial critical points
are precisely the positive solutions of the equation

EAu—~u+g(z,u)=0 in Q. (1.3)

The functional J, is of class C! and satisfies the Palais Smale condition no
matter whether Q is bounded or not, see Lemma 1.1 in [2].
Let us also set

M. = {ue H}Q)\ {0} | /052(Vu|2+u2 = /ng(x,u)dz}.

Then, one can show, similarly to Lemma B in [11], that v € M, if and only
if J.(u) = sup;sode(tu). Moreover,
Ce = uienﬁgs Je(u)
is a critical value of J; thanks to the P.S. condition.
Next we will define a min-max quantity for the functional J.. Given

v € HY(R") we define the projection of v into the domain D, and denote it
by Qpv, as the unique solution of the problem

e?Au—u+ f(v(z)) = 0 inD
{ (1.4)
u = 0 ondD.

We define w, p(z) = w(2E) for P € Q, where w is the unique solution of
(0.6).
For each P € Q, we define

wf(x) = tsyPQBd(P,an)(P)w&P

where ¢, p is such that w? € M.. Note that w? is radial.
Let A, B, By be the sets in assumptions (H1)-(H2) and T'. be the set of
all continuous maps ¢ : B — M, with the property that
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¢(y) = wivy € BO'
Then we define a min-max value S, for the functional J, as follows

Se = jnf sup J.(6(y)). (1.5)

S « yeB

We will show that S, is a critical value of J.. From standard deformation
arguments, this is a consequence of the following result.

Lemma 1.1 For = sufficiently small, we have S; > supyep, J:(6(y)), Vo €
r..

To prove Lemma 1.1, the following is the key estimate we need.

Lemma 1.2 Let Ay be an open bounded set such that Ao © Q. Define
22
Tl =5 [1Vul + [ w2~ [ Gugla,u),

Mo, ={uc Hg(m\{oﬂngnwu[u/nu? = /ngm(:v,u)},
where
a0 (2 0) = X (1) + (1 = X)), Gl 0) = [ gno .21
Let u. be a nontrivial critical point of Je a, such that

limsupe ™V J, a,(ue) < .
£~0

Then, for all sufficiently small ¢, u. has a single local mazimum point z.,
which is located 1n \g. We also have the estimate

Teno(ts) = eV {cy + e (dae 0oL} (1.6)
In particular,
inf  Joa,(u) > eV {c. + e72droToD/EY (1.7)
uEMe a4

where

da, = sup d{z, 082).

€A
For a given function u € H(S2) \ {0} we define its center of mass as
anBR(o) ruidy
== 1.8
Bu) = AL (19)

where R > 0 is such that Ay C Bg/2(0). When Q is bounded we can avoid
the intersection with Br(0) in the integral of the numerator.
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Corollary 1.1 Let € = g4 — 0 and u. € M, , be a family of functions such
that

limsupe™J, 4, (u) < e..
e—=0

Then the following estimate holds
Js Ao(us) Z EN{C* + e—%(d(-‘ﬂs,@ﬂ)-{ro(l))}’
where z. = B(u,).

Proof of Corollary 1.1. Passing to a subsequence, assume that z. — Z.
Then given 6 > 0, for all small € one has that

B(ue) € Bs(z),

where )
Blu) = 20T
N [on w?

In fact, a standard concentration-compactness type argument together with
the minimizing character of the sequence u. and the Ekeland variational
principle give that u.(z. +¢y) converges in H!-sense the a least energy critical
point w of the limiting functional I in (1.2).

Then we have

Jeno(ue) = inf{J a0 (w) | w € ME,AO,[?(U) € B;5(z)}.

Since the functional satisfies P.S, it follows that the latter number is at-
tained at some function 4.. Working out a first variation with test functions
supported outside Bj(Z), we see that @, satisfies the equation

e2Ad, — i, + g(z, i) = 0 in Q\Bs(T).

Again, if we set v, (y) = ©.(Z + ey), with Z. = 8(@,.) then v, converges in
the H'(R")-sense to w, the least energy critical point of the functional 7 in
(1.2). In particular, elliptic estimates applied to the above equation imply
that i, goes to zero uniformly, away from the ball B;{Z). In particular, we
have that

Jeno(fe) = JeaonBas(a) (e

and also G, € M, aonp,s(z)- Let us set A=AgN By (z). Then we obtain

Js.Ao(ﬂs)z inf Js,f\(u)'

veM, 3
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But the latter number is estimated from below by the estimate given by
Lemma 1.2. Hence

JE,Ao (ﬁe) 2 SN{C* + 6—2(d3+0<1))/£},
where

di = supd(z, Q) < d(Z,00) + 26 = d(z,00) + 20 + o(1).

T€A

Since ¢ can be chosen arbitrarily small, the result of the corollary follows. O

The proof of Lemma 1.2 is postponed until the end of this section. Let
us now use this corollary to prove Lemma 1.1. Suppose that Lemma 1.1 is
not true, namely that there exists € — 0 such that

Ser S sup Ji (6(y)) Ve €T,
y€Bo
Hence, given L > 0 there exists ¢, € I, such that

sup Je, (#x(y)) < sup Je, (o (y)) + e~ Llek,
veB y€Bo

Using concentration-compactness arguments as those provided in Lemma 1.1
in [3] we find that for large k

Q| O

B(¢(y) € A={ald(z,A) < 5} VyeB,
where § > 0 is a small positive number such that d(y, Q) > c¢+46 for y € By,
which can be chosen thanks to assumption (H1).

Now, the linking assumptions (H1)-(H2) applied to a slight modification
of ¥ (y) = Foely)) yields the existence of a y, € B so that

)

d(5(¢x(yr)), 02) < ¢+ 3. (1.9)

We will show that this is impossible. Indeed, let us denote ux = @ (yi).
Then Corollary 1.1. applies to the sequence uy to yield the estimate

-2
Jou(ug) > e {c, + e 2% )Moy (1.10)

On the other hand, from our assumption

‘]Ek (uk) < sup Jsk(¢k(y)) < max ']Ek (’Lng) + e Lok,
yeB y€Bo
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Now, estimating the right hand side of the above inequality using the esti-
mates in (12], Section 3, and the fact that for y € By we have d(y, 8Q) > ¢+,
we see that

Jop (ug) < el {c, + e Hetsto)/eny (1.11)

Thus, combining estimates (1.10) and (1.11) one gets
d(B(u), 6Q) = ¢+ 6.

This immediately contradicts estimate (1.9), and the proof is thus concluded.
O

Thus Lemma 1.1 holds true. Since the P.S. condition is satisfied for J,,
see [3], we have from a standard deformation argument that S, is a critical
value of J,.

It remains to prove Lemma 1.2.

Proof of Lemma 1.2: Let us set Q. =™} — z.) and A, =71 (Ag — z.)
and v (y) = u. (2. +ey). Let w be the radially symmetric least energy critical
point of 7, and let z = Py, w be the unique solution of

~Az+z= flw) inQ,,

z=0 on 99Q,.

Let us also set ¢, = v, — Py, w. Similarly to the first part of the proof of
Corollary 1.1, we have that v, has just a local maximum point, and that
ve — w uniformly and in the H'-sense. See also the proof of Proposition 2.1
in 3]. To continue the analysis let us consider the function

he = (1= xa ) (f(ve) = f(ve))-

We observe that the desired energy estimate corresponds exactly to that
shown in [12] in case that h, = 0, so we shall assume otherwise. In such case
we must have that 2, — 0 uniformly with its support shrinking to a point
b so that w(b) = a with a as in the definition of f (otherwise after scaling
we would end up in the limit with an energy higher than the upper a priori
estimate ¢*).

The function ¢, satisfies the equation

Ad, = (1+0.)9; + f(Pow)be = he + f(w) — f(P,w) inQ,, (112)

where
o = () = f(Pow)

™ + f'(Pa,w) — 0,
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uniformly, as £ — 0. We write

1
E.(v) = 5/95 IVuf? + 02 —/QE F(v).
Hence we have

eV o (ue) = Ee(ve) + QE\Ar(F(UE) - F(u,)).

Then we write, using the mean value theorem,

Ee(vs) = EE(PQEU} + d)s) =

1 1
= E.(Po,w)+ < E'(Pa,w), 6 > +§/ < E'(Pa,w + t6e)ber ¢ > dt.
0
In other words, using that ¢. satisfies equation (1.12) we obtain after ex-

panding the above terms,

, ] ,
eV oo (ue) = Bu(Po,w) — 5/9 hede +

s [ 70 = Paoe+ 3 [ Gt [ (Flo) - Flwn) =

=E(Pow)y+ I+ II+I1II+1V, (1.13)
where

és = _95 + /01 fl(Pﬂsw) - fI(PQ;w + t¢5)dt

is a uniformly bounded function. From the results of [12], Section 5, we have
the validity of the estimate

E.(Paw) = ¢, + 7%+,

where d. = d(x.,dQ). Hence to prove the desired estimate it suffices to
establish that all other terms in the expansion are of an exponential size
smaller than e~2@/¢, To this end, the following claims constitute central

steps.

CLAIM 1. There ezists n > 0 such that for all small €
</ {(ﬁe'?)lh < g(1+mde/e
2 -

d
he < CdV-le 2%,
2

CLAIM 2.
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CLAIM 3. There is a p > Q such that for each p > 1 one has

If(w) = f{Po,w)P < e~ PL+p)de+o(1))/¢
Qe ¢ -

First we will establish Claim 2. To this end we assert that
< 2do. 1.14
/mhg_c/m1vp5(da (1.14)

In fact, let us assurne that the direction z; is normal to A, at the closest point
in 0A, from the origin. Then using %f as a test function in the equation
satisfied by v, we obtain

/ heév—gdm=/ | Ve l*rdo.
Q\Ae 0Ty 89

Since the support of h, is shrinking to b and g—;’f(f)) — a%‘“;(b) # 0, the
assertion readily follows.
Thus we just need to estimate |Vv,| on 9Q,. We claim that

Ve(y) < Ce™Wljy|~(N=1)/2 (1.15)

for all y in a neighborhood of 92.. We observe that such an estimate also
holds for w as shown in {6]. We prove the claim. A standard comparison
argument gives that for any given p > 0 there is a C such that

ve(y) < Ce—(l—p)lyl’

and hence
Flue(w)) < Ce—(l-p)elyl,

for all y in a neighborhood of 9¢),. Here 8 > 1 is the number in assumption
(f4). Thus we may choose p so that 8(1 — p) = 1+ 6 with § > 0. Let k(|y|)
be the fundamental solution of

—-Ak +k = do.

It is well known that
K(y) < Cly) (17267,

Then we set
2(y) = Mk(jy|) — ae”(+o/20,
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[t is then easy to check that for a sufficiently large Ry and a suitable choice
of o one gets

_AZ+Z2f(UE)7 ‘yi>R07
so that choosing M large enough the maximum principle yields v.(y) < z(y)
for all |y| > Ry and the claim (1.15) thus follows. Now using this fact and
local elliptic estimates at the boundary one obtains

ds)—(N—l)/2 4
—_ € €
3

3

Vuel2)] < c(

uniformly on z € 9Q,. Finally this and (1.14) yields
he < Cdz (Ve
as desired, and the proof of Claim 2 is concluded. O

Now we prove Claim 3. Set z = w — Py, w. Then z satisfies
~Az4+z=0 1in ),

z=w on 08,.

Then z is positive and it maximizes on 9. Now, the largest value of w on
o8 is
w(d. /) = g~ (deto(l))/e

Let B, be the ball centered at the origin with radius d./e. Let § > 0 be an
arbitrarilv small number and set (y) = A(cosh({1 — 8)|y]) + K). It is easy
to see that if K is chosen large enough (dependent on 4), then Z satisfies
—AZ+ 3> 0. Then, if one chooses the constant A = ¢~(272014:/ one gets
that for small €, Z > z on 0B,, therefore the inequality holds in the entire
ball B.. It follows that

2(y) < Ce~ @2/l for |y| < d./e.

Note also that z(y) < w(y) < el for large |y|. Now, using assumption (f2)
and the C'*° character of f, we find

1
0< flw) = f(Pow) = /0 F(Paw+ tz)zdt < Cu’z < Ce=lilz,
Then

/ﬂs [fw)— f(Po,w)P < Ce—p(2—26}d(/5/

£

ep(l—o-)lyidy+/ e P+l gy <
e\ B
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< e—-p(l—36+a)d=/s +e~—p(1+o-/2)d,/e'

From here Claim 2 readily follows after choosing § so small that 36 < ¢. @

Now we prove Claim 1. Let 1 < p < 2. Observe that Claim 2 implies
that

(hellLr(an) < e 1HmMde/e,

Let n < min{rm, p} where p is such that Claim 3 holds. We assert that Claim
1 holds for this n if p was chosen appropriately. To prove this we assume the
opposite, namely that along a sequence € = £, — 0 one has

e~(1+n)d;/s

(fou 102"

- 0.

Let us set

b = ———L
(Jo. 912)"

Then ¢, satisfies

A‘Z—se - (1 + 05)4_55 + f,(Pﬂ;w)d)e = Es in €2,

with . = 0 in LP. Then from a standard elliptic estimate we find that
. is bounded in W'? on each compact subset of RV, Assume also that p
was chosen sufficiently close to 2 so that 2 < Np/(N — p). Hence passing
to a subsequence we may assume from compact Sobolev’s embedding that
. converges locally in L? to a ¢. Now, this local convergence is actually in
C?-sense away from any neighborhood of b, the point to which the support of
he is shrinking. Then, similarly to the proof of inequality (1.15) we may use a
comparison function independent of ¢, defined on the exterior of a large fixed
ball centered at the origin and exponentially decaying, so that we obtain that
¢: has a uniform exponential decay. It follows that the local convergence in
L? is also global, so that in particular ¢ is in L?(R") and is not zero. &
satisfies weakly, hence strongly, the equation

Ag -G+ f(w)d=0 in RV,

since ¢ also decays at infinity, it follows from the nondegeneracy assumption
(f5) that
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for some constants o, not all zero. This implies that V4(0) # 0. On the
other hand we recall that v, attained its maximum value at 0, while the
maximum point of Po,w approaches 0. Hence Vé.(0) = 0. This and the
local C'-convergence of @, to &, near the origin, provides a contradiction
which proves the validity of Claim 1. 00

Now we are ready to estimate the terms I-IV in the expansion (1.13).

1< [ helodd € Hhdlzsan I9eliam < e @P%r,
from Claims 1 and 2. Now,

1< [ 1£(w)= F(Prwllée] < Ifw) = F(Paw)lelldellzs < e@omeers,

from Claims 1 and 3. As for II[
I < C/ $2 < e~ (2¥2mde/e.
e

It only remains to estimate I'V. We have that

1vi= /Qs\As(F(UE) = Fl)) = ~/{u5(z)2a} dx/a

= /{v, m»(}}(ﬂ_ﬁs)"___f_gf_fl)(vz —-a¥)dz <

w@ f(s) = £(5)
; <

Ve
1 2 _ 2 /
< = - <C | he(ve —a)idz.
<z /{u,(z ol he(v? — o)z < o, (ve ~— a)4dz

Now
(ve — @)+ € (w — a); + [Pa,w — w| + |l

hence

V| < 0{/92 he(w — a)4dz + /ﬂ |Pa,w — wlhe +fn, \6clhe ).

The last two terms in the right hand side of the above inequality admit
estimates of high exponential order similar to those for I-ITI. Thus it only
remains to find such an estimate for [, h.(w — a)+dz. To do so, we just

need to establish that (w — a); < e?%/¢ for some p > 0, uniformly on the

support of k..
Since the support of k. is shrinking to the point b, we see that

(w(y) — a)s < C6e,
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where 6. = b — d(z.,A,) and b = |b]. We will show that J. has the desired
exponential order. Note that from Claim 2

_/Ac(f(ve) - f(’us)) < Ce—2de/e

Now

/Ai(f(vs) ~ flve) = /A (f(vs) - f(a))(ve — )y Ve =

¢ Vg a (ve —a)

N /Ag /01 ¥'(a + t(ve — a))dt(ve — a)ive,

where ¥(s) = f{s)/s. We may assume with no loss of generality that ¢¥'(a) >

0. Thus .
[ Gw)=Fe) 20 [ (ve-a)e 2
Ag Ag
2C [ (=)~ 8] - |Po,w —u].
But
/A (w=—a)y > CEN+D25
and

/(; '¢E] + ]szw - ’LU' S e—(1+77)ds/€’

for some 1 > 0. Combining the above inequalities we immediately obtain that
8. < eP%/* for some p > 0, and the proof of the lemma is thus complete. Ol

2 Proof of Theorem 0.1

In this section we prove Theorem 0.1. We recall that from Section 1, we
have a critical point u, of the functional J,. However, this critical point does
not provide a solution to equation (0.4), unless u. < a over A, so avoiding
the penalization. In obtaining this last fact hypothesis (H2) is crucial. The
following proposition is a key step.

Proposition 2.1 As e — 0 we have

i%%f\ws(z) — 0. (2.1)

Since u, is a critical point of J;, it satisfies

{ e2Aue — ug + xaf(ue) + (1 = xa) fue) =0in Q

v =0 on 90 (2.2)
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Now, Lemma 1.2 ensures the presence of just one local maximum z, of u.
which is in A. Furthermore the critical value of u,, can be estimated as

S, = J.(u.) = sN{C* + e—%(d(r;,@ﬂ)+o(1))}‘
In order to prove Proposition 2.1 we need the following preliminary result

Lemma 2.1
d(z.,00) = ¢, ase—0,

where ¢ 15 the maz-min value in (H1)-(H2).
Proof. Pirst we see that given § > 0 we have that
d(z.,30) > ¢ -6,

for all small . In fact, take any ¢ € I where T is defined as in (H1)-(H2),
and consider its associated ¢, € I'; defined as

¢s(y) = w?(y)'
See definition of S, in Section 1. Then

Je(u) = S, < sup Jo(¢:(y)) < e¥{c, + e~ ¢ linfuez do).00)-¢/4)}y
yeB

for all sufficiently small e. Choosing ¢ adequately, from here it follows that
Ja(ue) < EN{C* + 6_5(6_6/2)}.

This inequality combined with the lower estimate in Lemma 1.2 gives d. =
d(z¢,0Q) > ¢ — § as desired. Therefore we have shown that

Iir&i&lfd(me, ) > e

Next we establish that
limsupd(z.,0Q) < c.

e—0
Assume by contradiction that for a certain § > 0 we have that along a
sequence € = g — 0,

d(z,00) > c+ 9.

We will show that this is not possible. In fact, this and (1.6) in Lemma 1.2
imply that ,
S, < eMe, + et/ (2.3)
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Then we counsider a path ¢, € T, for which
sup Js(¢s(y)) <8+ e—L/e’
veB

for a large and fixed L. Choose now y. € B such that

d(5(¢e(ve)), 6%2) = mind(B(4(y)), 69), (2.4)

where § was defined in (1.8). Set now . = ¢.(y.) and observe that Corollary
1.1 applies to this sequence to yield

Je(e) = €V {c, + e~ $(dB(E)00)+o(1))y (2.5)
Then combining (2.3), (2.4), (2.5) we obtain

min d(8(¢(v)), 00) 2 ¢+ 6/4.

Now, the usual concentration-compactness argument gives that 3(d.(y)) € A
for all small ¢, uniformly on y € B, where A is a small fixed neighborhood
of A. Then a slight modification of §(¢.(y)) provides a test path ¢.(y) in T’
for which

min d(ve (), 09) 2 ¢ +6/8.

This contradicts the definition of the number ¢ in (0.7), thus concluding the
proof. O

Next we prove Proposition 2.1.
Proof of Proposition 2.1: Suppose not, namely that there exists Z, €
OA, u () 2 b > 0. We may assume, after passing to a suitable subsequence,
that &, — Z € OA. Let T be a unit vector tangent to A at Z.

Let 7. be a sequence of unit vectors TE — T which we will choose later.
We use Vu, - T. as a test function in equation (2.2) to get

1 o _ L
5/8n VP T, vdo = —/EA[F(uE) - F(u))fs - Todo.

Note that the support of F(u,) — F(u.) shrinks to the point Z and that
this function is nonnegative. Then we may choose T in such a way that
faA[F(UE) - F(Ug)]ﬁ : TEdO’ = 0, so that

% [ IVu T vdo =0, (2.6)
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Next we estimate |Vu,|2 on 8Q. To find an upper estimate we consider z,

the solution of
e?Az, — (1~ 6)%*2. =0 in B(z., Re),

such that 2z, = 1 on 8B(z., Re). If R is chosen large enough, the maximum
principle implies that u.(z) < z.(z) in Q\ B(z., Re). But it is not hard to
check that

Ze(l‘) < Ce—lz—-z,}(l—?&)/s_

Then, local elliptic estimates near the boundary imply that thereis an g, > 0
such that for all ¢ < g9 and all z € 02 one has

[VUE(IL‘)( < e—-lz—z,](l—sé)/s'
Next we derive a lower estimate for the gradient. Let us consider
S =00NB(Z,d), d=dist(z,N),

and, S: = {z € 8Q / dist(z,S) < €}. It is easy to see that there is a C' > 0,
so that for x € S, € small, there is a point . € Q such that

|, — Z| < Ce, |de —d| < Ce and B(Z.,d.) C €,
where d, = dist(Z.,09). Now we choose z, to be the solution of
e?Az, — 2. =0 in B(g.,d.) \ B(&., Re),

such that z, = n on 0B(Z., Re) and z. = 0 on 6B(%.,d;). Here p > 0 is
chosen so small that

u(z) > n Vz € dB(Z., Re),

for an appropriately chosen R > 0. Then, from the maximum principle we
find that u, > z., from where it follows that

6u5 625
> €5..
520 2 152 (@)] z€S.
Now, a direct computation gives
Oz

5@ 2 emtl@d+o))  pe g
n

Hence the latter inequalities imply

/ [V, |*do 2/ |Vu,|*do > e~ 2d+o(1))
a9 Se
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Next we consider the probability measure du. on 6Q given by
IVuE(m)Pda(x)
d = ——
pe(o) Joa [Vue|?do
Then passing to a subsequence we have
dpe = du,

where dy is a Borel probability measure on 9Q2. We claim that the support
of dy is contained in S. Indeed if O is an open subset of 8Q which does not
intersect .S then for some § > 0

f{zEBﬂ | dist(z,5)23) [Vue|*do im g~ #(d+9)
Jaa [Vuel?do T 50 gmEdte(1)’

for some small number §' > 0. It follows that x(Q) = 0 and the claim is thus
proven.
Next we observe that relation (2.6) can be written as

T. - vdp, = 0.
| T v
Since T, - v — T - v uniformly, it follows that
/ T-udu=/f’-udu=0.
80 s
Now, observe that when z € S one has v(z) = (z — 7)/d, so that
/ST Az —F)du(z)=T- /S(x — Z)dp(z) = 0.

We see that 7 = [g(z — Z)du(z) belongs to conv(S — z). Thus, choosing T
appropriately, also using that dist(Z, 8Q) = ¢ by Lemma 2.1, and assumption
(H2) one gets a contradiction which finishes the proof. O

u(0) =lim [ du, < lim

Proof of Theorem 0.1: By Proposition 2.1, there exists ; such that for
0 <€ <egu < aforall z € 30 The function u, € H} solves then
equation (0.3). Then Lemma 2.1 and Lemma 1.2 provide all conclusions of
the theorem. This concludes the proof. M
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