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Abstract. In this work we study the range of the operator

u H (lu'lp-2U ' )' + Allulp-2u, u(O) =u(T) =0,

p > 1. We prove that all functions hEel [0,T] satisfying JoT h(t)"sin p ¥dt =0 lie
in the range. but that if p ~ 2 and h == 0, the solution set is bounded. Here sin, ¥
is a first eigenfunction associated to AI' © Academic des ScienceslElsevier, Paris

L'alternatioe de Fredholm a la premiere valeur propre
pour le p-laplacien en dimension 1

Resume. On etudie l'image de l'operateur

u H (lu'IP-2U' ) ' + AJ!ulp-2u, u(O) = u(T) = 0,

p> 1. On montre que toutes lesfonctions hE C1 [0,T] verifiant JoT h(t) sin, ¥dt = 0,
son! dans I'image, mais que si p '# 2 et h == O. l'ensemble des solutions est borne.
lei sin, ¥ designe une fonction propre associee a la premiere valeur propre ).1'
© Academic des ScienceslElsevier, Paris

Version irenceise abregee

Dans cette Note nous etudions les proprietes de I'image de l'operateur :

u 1-+ (luJIP- 2UJ)' + Al!UjP-2u , u(O) = u(T) = 0,

Note presentee par Haim BRtzlS.
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ou T > 0, p > 1 et Al > 0 est la premiere valeur propre du p-Iaplacien avec les conditions aux limites

de Dirichlet homogenes en 0 et T. On note sin, (~) la premiere fonction propre positive associee

AAI. Nous prouvons que l'image de l'operateur (1) contient tous les elements hE C 1 [0,T] satisfaisant

iT h(t)sinp (1l";t)dt = 0, (2)

et egalement un cone auvert non vide C c LOO(O, T) tel que, pour tout h E C, on ait

iT h(t) sin, (1I";t) dt ¥ 0, (3)

D'autre part, il existe h E COO [0,T) qui n'appartient pas A l'image de l'operateur (1). En particulier,
notre resultat implique que toutes les solutions possibles du probleme aux limites :

{
(lu'lp-2U')' + Al!uIP-

2u = h sur (0 , T),
u(O) =°= u(T) ,

(4)

sont a priori bornees (si n e c' [0, T] et (2) est verifiee au si h E LOO(O, T) et (3) est verifiee) .
Considerons la fonctionnelle d'energie J : W~·P(O , T) - R associee a(4) :

J(u) =! [T lu'IP _ Al (lulP_ [T hu.
p io p io io

Nous montrons que, pour 1 < p < 2, la fonctionnelle J est non bornee inferieurernent, tandis que,
pour p > 2, elle a un minimiseur global sur W~·P(O, T). Dans le cas ou p > 2, nous don nons un
exemple de suite de Palais-Smale non bornee, i.e . Ilunll- 00, J(un ) - 0 et J'(un ) - O.

1. Main results

Let us consider the following boundary value problem:

(<pp(u'»)' + Al<Pp(U) = h in (O,T), u(O) = u(T) = 0, (1.1)

where <pp(s) := Islp-2s for p E (I,oo), so that the differential operator (<pp(u'»' is. the one­
dimensional version of the p-Laplacian. We assume that h E 1"°(0, T) and that >'1 > 0 IS the first
eigenvalue of the homogeneous problem:

(<pp(u'»)' + >.<pp(u) =0 in (0, T), u(O) =u(T) =O. (1.2)

It is well known (see for instance [4]) that this first eigenvalue is explicitly given by

(

11" t) P 1 [T 1
>'1 = ; , where 1I"p = 2(p - 1);; io (1 - sP)-;;ds.

By a solution of problem (l.l) we understand a real-valued tinction u E e1[0,T] such that
u(O) = u(T) = 0, <pp(u') is absolutely continuous, and (1.2) holds almost everywhere in (0,T).

In the case p = 2, the classical linear Fredholm alternative provides a transparent necessary and
sufficient condition for the solvability of (1.1), namely,
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(1.3)
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iT h(t) sin (~ )dt = 0.

Needless to say, the proof of this result uses in essentially way the linearity of the equation. On the
other hand, a number of works have dealt with finding nonlinear analogues to the linear Fredholm
Alternative. For instance, the general theory in [7] yields that, if >'1 in the above equation is replaced
by a number >. which is not an eigenvalue of the homogeneous problem, then the existence of a
solution is guaranteed (this result also holds in the higher dimensional case) . The situation for the
resonant case we treat here is much more subtle. We refer the reader to [1], [2], [4], [6] for some
results related to this issue. For instance, it follows from [6] that if the sign of h does not change,
then no solution exists.

Our results in this work demonstrate that for p 1= 2, rather surprisingly, the exact analogue of (1.3)
is sufficient for the solvability of problem (Ll). On the other hand, we show the presence of striking
differences in the structure of the set of right hand sides h for which (Ll) is solvable. Last but nit
least, we point out strong differences in the qualitative behaviour of the energy functional associated

with (1.1) if 1 < P < 2 and if p > 2. Let sin; (¥) be the positive normalized eigenfunction

associated with >'1. Our main results are stated in the following three theorems.

THEOREM I. - Let us assume that h E C1[0,T] and

iT h(t) sin, C;t) dt = 0. (1.4)

Then problem (Ll) has at least one solution. Moreover. for any h E C 1[0,T], h :IE 0, any possible
solution of (Ll) is a priori bounded.

THEOREM 2. - There exists an open cone C c LOO(O, T) such that for any h E C the b.v.p. (1.1)
has at least two distinct solutions. Moreover.

I = iT h(t) sin, (7r;t) dt 1= 0 (1.5)

holds for any h E C. On the other hand, there exists h E C<X>[O,T] satisfying (1.5), for which the
b.v.p. (1.1) has no solution.

Let us consider the energy functional associated to problem (1.1), J : W~'P(O, T) - R, defined as:

J(u) = ~ rTlu'IP _ >'1 rTlulP-iT hu.
p Jo p Jo 0

It is well known that >'1 corresponds precisely to the best constant in the p-Poincare's inequality,
which tells us that the functional is nonnegative if h == 0, but vanishing along the ray generated
by the first eigenfunction.

It is easily seen that a necessary condition for the functional to be bounded from below is that
the orthogonality condition (1.4) holds , and one may ask whether this condition is also sufficient.
For p = 2 this is the case, as it is readily checked via Fourier series expansions. The full answer,
provided by the next result in case that h is C1, shows an interesting change of topological type in
the level sets of the functional once we shift p from p < 2 to p > 2.

THEOREM 3. - Let us assume that h E C1[0,T], h :IE 0 and (1.4) holds. Then the set ofcritical points
of J is nonempty and bounded if p i- 2. Moreover:

(i) for 1 < p < 2 the functional J is unbounded from below;
(ii) for p > 2 the functional J is bounded from below and it has a global minimizer on W~,p (0, T).
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2. Discussion of the results and proofs

Let us consider the following initial value problem associated with (1.1):

(rpp(u' ))' + A1<'op(U) = h in (0,00), u(o) = (3, u'(O) = a , (2.1)

where h E L~c(O , 00), A > 0 and o , {3 E R. By a solution of the i.v.p. we understand a (reaI­
valued) function U E C1 [0,00) satisfying initial conditions, such that <,Op{u') is absolutely continuous
and (2.1) holds a.e. in [0,00) . We prove that for {3 = 0 and [o] » 1, the i.v.p, has a global oscillatory
solution u = u(t) . Let t'l denote the first positive zero point of u. Then the following two assertions
play the crucial role in the proofs of our three theorems.

PROPOSITION 2.1. - Let h E L~c (0, (0) and assume (1.5) holds. Then

tf = 7I"p + I sgn ajnjl-P + o(!njl-p) as lal --+ 00, (2.2)

where o(!ajl-p) is uniform with respect to all h satisfying llhllLoo (o.21rp) < H for some fixed H > O.
In particular:

(i) I > 0 ~ t'l > 7I"p for a » 1 and t'l < 7I"p for -a » I,
(ii) I < °~ t'l < 7I"pfor n» 1 and t'l < 7I"pfor -a» 1.

PROPOSITION 2.2. - Let h E e l[0 ,271"p], h =j. 0 and assume (1.4). Then there exists Ip,h :I 0, such
that Ip,h > 0 for p > 2 and Ip,h < 0 for 1 < p < 2, and

tf = 7I"p + Ip,hln!2{1-p ) + o([n[2{l-p» as a --+ 00, (2 .3)

where o(laI2(1-P» is uniform with respect to all h satisfying (1.4) and IIhllc'[o,21rp] < H for some
fixed H > 0. In particular.'

(i) 1 < p < 2 => t1 < 71"P for In l » 1,
(ii) p > 2 ~ t'l > 7I"p for any [o] » 1.

The constant lp,h is actually explicit, and given by:

_ 1 l¥ (J/" h(y) cos p ydy) 2 + (J/" h(7I"p - y) COS p ydy) 2

h ,p - (p - 2)-23 p dt .
Po cospt

Here COSp t = (sin, t)' .
Note that Propositions 2.1 and 2.2 provide an a priori estimate for any possible solution of

problem (1.1) with nonzero right hand side h. Actually, we can get (on the basis of these estimates)
the following useful information about the leray-Schauder degree of the operator associated with (1.1).

Let us define an operator Th: eMo,7I"p]--+ eMo,7rp ] by Th( v) = u if and only if

(lpp(u'))' = h - Allpp(V) ,u(o) = u(7rp) = O.

Then, under the assumptions of Proposition 2.1 , we have

while the assumptions of Proposition 2.2 imply

deg[l- Th;BR(O) ,O] = ±1 ,

where +1 holds if p > 2 and -1 holds if 1 < p < 2.
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The assertion of Theorem I follows then from (2.5) . The assertion of Theorem 2 follows from (2.4)
and from the stability of the value of the Leray-Schauder degree of 1-Th with respect to perturbations
of h in LOO(O, 1l"p) norm. The multiplicity of the solution follows from (2.4) combined with the method
of lower and upper solutions. The proof of Theorem 3 for p > 2 relies also on the method of lower
and upper solutions. In the case 1 < P < 2 we prove that the sequence {udk=l C W~'P(O , 1l"p),
where Uk = Uk(t) is a solution of the i.v.p.

(epp(U'))' + Alep(U) = h,u(O) = 0, u'(O) = k, (2.6)

for t E [0, t~] (note that t~ > 1l"p in the case 1 < P < 2) and Uk == 0 on [t~, 1l"p], satisfies J(Uk) --+ -00

as k --+ 00. Finally, we show that for p > 2 the sequence {Vd~l C W~'P(O,1l"p) defined as

Vk(t) := Uk (~t), where Uk solves (2.6), with suitably extended h, satisfies "vkllw~ 'p --+ 00,

J'(Vk) --+ 0 and J(Vk) --+ O.
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