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We consider existence and asymptotic behavior of solutions for an equation of
the form

=2 2u&V(x) u+ f (u)=0, u>0, u # H 1
0(0), (V)

where 0 is a smooth domain in RN, not necessarily bounded. We assume that the
potential V is positive and that it possesses a topologically nontrivial critical value
c, characterized through a min�max scheme. The function f is assumed to be locally
Ho� lder continuous having a subcritical, superlinear growth. Further we assume that
f is such that the corresponding limiting equation in RN has a unique solution, up
to translations.

We prove that there exists =0 so that for all 0<=<=0 , Eq. (V) possesses a
solution having exactly one maximum point x= # 0, such that V(x=) � c and
{V(x=) � 0 as = � 0. � 1997 Academic Press

0. INTRODUCTION

Let 0 be a domain in RN, not necessarily bounded, with smooth or
empty boundary. This work deals with the problem of finding nontrivial,
finite energy solutions to an equation of the form

=2 2u&V(x) u+u p=0, u # H 1
0(0), (0.1)

where 1< p<(N+2)�(N&2). Equations of this form arise in different
physical and biological models, where the presence of a small diffusion
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parameter = becomes natural, in particular, in the study of standing waves
of the nonlinear Schro� dinger equation

i�
��
�t

=&
�2

2m
2�+V(x) �&# |�| p&1 �. (0.2)

Namely solutions of the form �(x, t)=exp(&iEt��) v(x) reduce to an
equation like (0.1). See [11], [20].

Here we are concerned with the problem of finding a family of solutions
u= which exhibits concentration behavior around a special point, namely,
solutions with a spike shape, a single maximum point converging to
a point located around a prescribed region, while vanishing as = � 0
everywhere else in 0.

The study of single and multiple spike solutions to this and related
problems has attracted considerable attention in recent years.

The first result in this line for the Schro� dinger equation when 0=RN

seems due to Floer and Weinstein [11]. These authors construct such a
concentrating family in the one-dimensional case via a Lyapunov-Schmidt
reduction, around any nondegenerate critical point of the potential V(x).
Later Oh [20, 21, 22] extended this result to higher dimensions when
1< p<(N+2)�(N&2), with potentials which exhibit ``mild behavior
at infinity,'' also constructing multiple-peaked solutions. Very recently,
Ambrosetti, Badiale and Cingolani [1] partially lifted the nondegeneracy
assumption, obtaining existence of a single peak solution when the poten-
tial has a local minimum or maximum with nondegenerate m th-derivative.
The first result for equation (0.1) in RN in the possibly degenerate setting
seems due to Rabinowitz [23], see also Ding and Ni [10] for an independent
related result. In [23] it was shown that if infRN V<lim inf |x| � � V(x),
then the mountain-pass value for the associated energy functional provides
a solution for all small =. This solution indeed concentrates around a global
minimum of V as = � 0, as shown later by X. Wang in [26]. Moreover,
Wang observed that concentration of any family of solutions with
uniformly bounded energy may occur only at critical points of V. See also
a recent work by Wang and Zeng [27] where these ideas are extended to
the case of competing potentials.

The work by the authors [5] seems to be the first attempt to attack the
degenerate case in (0.1) in a local setting. Here the authors devised a
penalization approach which permitted to find local mountain passes
around a local minimum of V with arbitrary degeneracy. More precisely,
given a bounded open set 4 such that

inf
4

V<inf
�4

V, (0.3)
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a family u= exhibiting a single spike in 4, at a point x= such that
V(x=) � inf4 V, is constructed.

In [8], see also [12], this approach was extended to the construction of
a family of solutions with several spikes located around any prescribed
finite set of local minima of V in the sense of (0.3).

The phenomena described above is connected with other concentration
phenomena known in the literature for related elliptic equations. For
instance, Ni and Takagi [17], [18] have characterized the mountain pass,
or least energy solution to (0.1) in a bounded domain under Neumann
boundary conditions and V#1, as a single spike located at the boundary,
concentrating around a point where its mean curvature maximizes. Ni and
Wei in [19] have considered the Dirichlet problem in a bounded domain
when V#1 and found that the least energy solution concentrates around
a global maximum of the distance to the boundary. Reciprocally, a strict
local maximum of this function yields a concentrating family, see [28].

Another problem considered in the literature, that yields concentration
behavior is the following

2u+u(N+2)�(N&2)&==0, u # H 1
0(0)

with 0 bounded. From Rey [24], Han [13], and Wei [29], it is known
that the least energy positive solution to this problem blows up as = � 0 at
a single point which minimizes the Robin's function, that is, the diagonal
of the regular part of the Green's function in 0. Reciprocally, from the
reduction method developed by Rey in [24], it follows that any non-
degenerate critical point of that function determines a blowing-up family of
solutions as = � 0. This reduction method has been extended by Bahri, Li
and Rey in [2] to a functional which determines solutions with multiple
blow-up.

Another related example is the Ginzburg-Landau equation in a bounded
domain in R2,

=2 2u+(1&|u| 2) u=0 in 0

u= g on �0

where g : �0 � S1 has degree d>0. It was proven by Bethuel, Bre� zis and
He� lein in [3], that if 0 is star-shaped, then the global minimizer of the
associated energy converges smoothly to a harmonic map from 0 into S1,
away from d points, its singularities, all of them with degree 1. These d
points happen to minimize globally a certain finite-dimensional functional
called the renormalized energy. The star-shapeness assumption was lifted by
Struwe in [25].
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By a careful study of the associated heat flow, F. H. Lin in [14] proved
that a nondegenerate local minimizer of this functional determines a family
of solutions exhibiting asymptotic singularities at the corresponding points.
The variational penalization method in [5], [8], was extended in [7],
to show that actually at a possibly degenerate local minimizer of the
renormalized energy, in the same sense as in (0.3), the same answer is true,
with the additional information that the associated solutions are local
minimizers of the energy. Recently F. H. Lin and T. C. Lin [15] have used
the heat flow method to cover the case of a nondegenerate critical point of
the energy.

In all examples quoted above, for which complete account of existing
bibliography would be impossible here, a common pattern clearly shows:
An underlying finite dimensional energy (potential V, mean curvature,
distance to the boundary, Robin's function, renormalized energy) resembles
or determines near some of its critical points the structure of the full energy
functional near a concentrating family of solutions.

It seems that fully degenerate cases treated with global variational
methods have only covered solutions that are in some sense locally least-
energy, with the exception of [9]. On the other hand, local reduction
methods like those originally developed by Floer and Weinstein and by
Rey in different settings, rely in important ways on nondegeneracy of the
finite-dimensional critical points, while capturing very precisely the features
of the solutions in such cases. In all examples above, however, it is easy to
produce situations where full degeneracy appears at, say, local saddle
points of the underlying finite dimensional energy.

Of all above examples, it seems that the technically simplest case is the
nonlinear Schro� dinger equation, where the underlying energy appears
explicitly as the potential V. This may be regarded in some sense as a
model situation for the others, where more subtle finite dimensional objects
are the key.

Our purpose in this paper is to show that the penalization method
developed in [5], [6], [8], can be adapted to capture, via a global varia-
tional technique, families of solutions around any topologically nontrivial
critical point of the potential V, with arbitrary degeneracy, a situation
where the local reductions apparently do not apply directly.

To motivate what we mean by topological nontriviality, we observe that
arbitrary critical points of V are not all candidates for concentration. For
example it was shown by Wang in [26] that no solution of (0.1) exists
if 0=RN and V is nondecreasing and not identically constant in one
direction, a situation which allows for many, in a sense topologically
trivial, critical points. The type of critical points we will deal with are
those that can be captured in a general way with a local min�max
characterization.
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In what follows we state precisely our assumption on V. First we state
our only global assumption

(H0) V is of class C 1 and there exists :>0 such that

V(x)�: \x # 0. (0.4)

Locally we consider the following setting. We assume that there is an
open and bounded set 4 with smooth boundary such that 4� /0, and
closed subsets of 4, B, B0 such that B is connected and B0 /B. Let 1 be
the class of all continuous functions , : B � 4 with the property that
,( y)= y for all y # B0 . Define the min-max value c as

c= inf
, # 1

sup
y # B

V(,( y)), (0.5)

and assume additionally

(H1)

sup
y # B0

V( y)<c.

(H2) For all , # 1, ,(B) & [ y # 4 | V( y)�c]{<.
We observe that in the standard language of calculus of variations, the

sets B0 , B, [V�c] link in 4.

(H3) For all y # �4 such that V( y)=c, one has �{V( y){0, where �{

denotes tangential derivative.

Standard deformation arguments show that these assumptions ensure
that the min-max value c is a critical value for V in 4, which is topologi-
cally nontrivial. In fact, assumption (H3) ``seals'' 4 so that the local linking
structure described indeed provides critical points at the level c in 4,
possibly admitting full degeneracy.

It is not hard to check that all these assumptions are satisfied in a
general local maximum, local minimum or saddle point situation. Our
main result asserts that there is a family of solutions to problem (0.1)
concentrating around a critical point at the level c in 4.

In fact, with the aid of the penalization method developed in [5], we will
find that the above min-max quantity for V inherits a min-max value for
the energy associated to (0.1) which provides the desired solutions.

We should remark that existence of solutions for small = in the case
0=RN, in a global saddle-point situation for V, has been recently con-
sidered by O. Miyagaki and the authors in [9].
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Since we do not want to restrict ourselves to a situation where the
nonlinearity in (0.1) is homogeneous, we will consider the more general
problem

=2 2u&V(x) u+ f (u)=0,
(0.6)

u>0 in 0, u # H 1
0(0).

We will assume that f : R+ � R is locally Ho� lder continuous and satisfies
the following conditions.

(f1) f (!)=o(!) near !�0.

(f2) lim! � � f (!)�! p=0 for some 1< p<(N+2)�(N&2).

(f3) For some 2<+� p+1 we have

0<+F (!)� f (!) ! for all !>0, (0.7)

where F(!)=�!
0 f ({) d{.

(f4) The function ! � f (!)�! is increasing.

(f5) The limiting functional Ia , a>0, defined as

Ia(v)=
1
2 |

RN
|{v| 2+av2&|

RN
F(v), v # H 1(RN), (0.8)

possesses a unique critical point, with critical value denoted by ba.

Our main result for equation (0.6) is the following.

Theorem 0.1. Assume that hypotheses (H0)�(H3) and (f1)�(f5) hold.
Then there is an =0>0 such that for every 0<=<=0 a positive solution
u= # H 1

0(0) to problem (0.6) exists. Moreover, u= possesses just one local
(hence global ) maximum point x= , which is in 4. We also have that
V(x=) � c, {V(x=) � 0, where c is the min-max quantity given by (0.5) and

u=(x)�: exp \&
;
=

|x&x= |+ , (0.9)

for certain constants :, ;.

The rest of this paper will be devoted to the proof of this result. In
Section 1 we define a modified functional which satisfies P.S. and, roughly
speaking, permits us to restrict ourselves to what happens in 4. We also
define a min-max value and prove some preliminary lemmas. In Section 2
we conclude the proof of Theorem 0.1.
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1. PRELIMINARY RESULTS

We begin with an important observation concerning the sets 4, B and
B0 . Let $>0 be an arbitrary, but fixed small number and 0<=<$. Then,
with no loss of generality we may assume

4/[x | V(x)>c&$], (1.1)

B0 /[x # 4 | V(x)=c(=)], B/[x # 4 | V(x)�c(=)], (1.2)

where c&$<c(=)<c, lim= � 0 c(=)=c&$ and dist(B0 , �4)==1�2. Addi-
tionally we may assume that

�{V(x){0, \x # �4 & [x | c&$<V(x)�c]. (1.3)

In fact, we may redefine

4$=4 & [x # 4 | V(x)>c&$],

B$, ==B & [x # 4 | V(x)�c(=)],

B$, =
0 =B & [x # 4 | V(x)=c(=)],

where the number c(=) is chosen as

c(=)=inf[` | dist([x # 4 | V(x)=`], 4$)�=1�2].

Let us observe that B$, =
0 is non-empty, thanks to the connectedness of B.

Let . : B$, = � 4$ continuous, such that .(x)=x on B$, =
0 . Let .~ be its

extension as the identity to B"B$, =. Then .~ : B � 4, and supx # B V(.~ (x))=
supx # B$, = V(.~ (x))�c.

In the framework of Theorem 0.1, let us consider a function f : R � R
satisfying (f1)�(f4) on R+ and defined as zero for negative values.

Associated to equation (0.6) is the ``energy'' functional

E=(x)=
1
2 |

0
=2 |{u| 2+V(x) u2&|

0
F(u), (1.4)

which is well defined for u # H where

H={u # H 1
0(0)<|0

V(x) u2<�= .
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H is a Hilbert space, continuously embedded in H 1
0(0), when endowed

with the inner product

(u, v) =|
0

=2 {u } {v+V(x) uv (1.5)

whose associated norm we denote by & }&H .
Under the regularity assumptions on V and f, it is standard to check

that the nontrivial critical points of E= correspond exactly to the positive
classical solutions in H 1

0(0) of equation (0.6).
As in [5], we will define a modification of this functional which satisfies

the P.S. condition and for which we will find a critical point via an
appropriate min-max scheme. This critical point will eventually be shown
to be a solution of the original equation when = is sufficiently small.

Let + be a number as given by (f3), and let us choose k>0 such that
k>+�(+&2). Let a>0 be the value at which f (a)�a=:�k, where : is as in
(0.4). Let us set

f� (s)={
f (s) if s�a

(1.6):
k

s if s>a,

and define

g( } , s)=/4 f (s)+(1&/4) f� (s), (1.7)

where 4 is a bounded domain as in the assumptions of Theorem 0.1, and
/4 denotes its characteristic function. Let us denote G(x, !)=�!

0 g(x, {) d{,
and consider the modified functional introduced in [5], defined on H as

J=(u)=
1
2 |

0
=2 |{u| 2+V(x) u2&|

0
G(x, u), u # H, (1.8)

whose critical points correspond to solutions of the equation

=2 2u&V(x) u+ g(x, u)=0 in 0. (1.9)

It was shown in [5] that J= satisfies the Palais-Smale condition, no matter
whether 0 is bounded or not. Note that this may not be the case for E= .
We observe that a solution to (1.9) which satisfies that u�a on 0"4 will
also be a solution of (0.1). We will define a min-max quantity for J= which
will yield a solution to (1.9) that will eventually satisfy this property and
thus will be the solution predicted by Theorem 0.1.
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To this end we consider the solution manifold of equation (1.9) defined
as

M=={u # H"[0] } |0
=2 |{u| 2+V(x) u2=|

0
g(x, u) u= . (1.10)

All nonzero critical points of J= of course lie on M= ; reciprocally, it is
standard to check that critical points of J= constrained to this manifold are
critical points of J= on H. We shall define a min-max quantity for the
constrained functional. A useful fact which we will make use of, well known
to be satisfied from the hypothesis (f4), is that u # M= if and only if

J=(u)=sup
t>0

J=(tu). (1.11)

It is useful to consider the limiting functionals Ia , defined (0.8), whose
unique critical value can be characterized by

ba= inf
v{0

sup
t>0

Ia(tv). (1.12)

It can be shown that ba is a strictly increasing, continuous function of
a>0.

Associated to ba there exists a radially symmetric critical point that is
solution of the equation

2w&aw+ f (w)=0, in RN. (1.13)

Let us fix a small number $0>0. For each y # 0 with dist( y, �0)>$0 we
denote by w y

= the function in H given by

w y
= (x)='( |x& y|�$0) wV(y) \y&x

= + , (1.14)

where '(s) is a smooth cut-off function which equals one for 0<s<1 and
zero for s>2, and wV(y) is a solution of (1.13) with a=V( y). Let B=, B=

0 be
the sets given in our assumptions, that satisfy additionally (1.1), (1.2) and
(1.3), where we dropped the explicit mention $ for notational convenience.
We consider the class 1= of all continuous maps , : B= � M= with the
property that

,( y)=t(=, y) w y
= , \y # B=

0 ,
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where t(=, y)>0 is such that t(=, y) w y
= # M= . Then we define the min-max

value S= as follows:

S== inf
, # 1=

sup
y # B =

J=(,( y)). (1.15)

Using an appropriate test function builded up upon w y
= , and taking in

account that the values of V on B=
0 equal c(=), we have from the definition

of S= that

bc�lim sup
= � 0

=&NS=�lim inf
= � 0

=&NS=�bc&$. (1.16)

The following is the key result of this section, which will lead to the fact
that S= is a critical value for J= .

Lemma 1.1.

lim inf
= � 0

=&NS=>bc&$. (1.17)

Proof. Let us assume that (1.17) does not hold, i.e. that there is a
sequence =n � 0 such that

=&N
n S=n

�bc&$+o(1).

We choose ,n # 1=n
such that

=&N
n sup

y # B =n

J=n
(,n( y))�bc&$+o(1). (1.18)

We start by showing that ,n( y) vanishes rapidly away from 4 in the
L2-sense, uniformly in y. More precisely, setting 4n=[x | dist(x, 4)<=1�2

n ],
we are going to show that

lim
n � �

=&N
n sup

y # B=n
|

0"4n

,n( y)2=0. (1.19)

Let yn # B=n and denote un=,n( yn). Then since un # M=n
we have that

J=n
(un)�J=n

(tun) (1.20)

for any t>0. Let us set

En(v)= 1
2 |

4n

=2 |{v| 2+V(x) v2&|
4n

G(x, v) dx.
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Let us choose the number tn>0 so that

En(tn un)=max
t>0

En(tun). (1.21)

Then from (1.18), (1.20) with t=tn , and the fact that for a certain #>0

V(x)
2

s2&G(s, x)�#s2 \x # 0"4, s>0,

we obtain

En(tn un)+#t2
n |

0"4n

u2
n�=N

n (bc&$+o(1)), (1.22)

where the term o(1) goes to zero, uniformly on [ yn]. Next we claim that
there is _0>0, independent of [ yn], such that

tn�_0 , for all n # N. (1.23)

For this purpose we first see that there is a C>0, independent of [ yn],
such that

|
0

=2
n |{un | 2+u2

n�C=N
n . (1.24)

In fact, from assumption (f3) and the definition of g we have that
+G(x, s)� g(x, s)s with +>2. Then, since J=n

(un)�C=N
n and un # M=n

, (1.24)
follows.

Next, we set vn(z)=tnun(=nz) and 4� n==&1
n 4n . Then, the definition of tn

and hypotheses (f1) and (f2) yield that

|
4� n

|{vn | 2+V(=n z) v2
n=|

4� n

g(=nz, vn) vn dz�|
4� n

Cv p+1
n +\v2

n , (1.25)

where \>0 can be taken arbitrarily small. Now, Sobolev's embedding
Theorem yields that

|
4� n

v p+1
n �C� \|4� n

|{vn | 2+v2
n+

( p+1)�2

.

Here C� may be chosen to be the same for all 4� n 's. In fact, the domain 4
can be assumed, with no loss of generality, to be Lipschitz, and the con-
stant in Sobolev's embedding depends on a uniform cone condition for the
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domain but not on its volume. This inequality combined with (1.25) yields
that

|
4� n

v p+1
n �_>0, (1.26)

hence �4� n
|{vn | 2+v2

n�_>0, with _ independent of [ yn], and so that

\t2
n |

4n

=2
n |{un | 2+u2

n+�_=N
n .

This and (1.24) imply the validity of (1.23), and the claim is proved.
Now, by definition of tn , we have that

En(tnun)� inf
u # H 1(4n)"[0]

sup
t>0

En(tu)#bn , (1.27)

where bn corresponds to the mountain pass value for En in H 1(4n). Since
the least value of V(x) in 4n approaches c&$, we have

lim
n � �

bn=bc&$. (1.28)

The proof of this fact follows from that of Lemma 1.3 in [8], with minor
changes. Now, combining (1.28) with (1.27), (1.23) and (1.22) we obtain
the validity of (1.19).

Next we consider the center of mass of a nonzero function u in L2(0) to
be the quantity

;(u)=
�4+ xu2(x) dx

�0 u2(x) dx
,

where 4+ is an arbitrary, but fixed small neighborhood of 4� . We assume
that $0<dist(�4+, 4� ), where $0 is given in (1.14). We claim next that for
all large n we have,

;(,n( y)) # 4+ & {x | V(x)�c&
$
2= \y # B=n. (1.29)

This immediately yields the desired contradiction. Indeed, let .n( y)=
?(;(,n( y))) where ? : 4+ � 4 is a continuous map which equals the iden-
tity on 4. Note that since ,n( y)=w y

=n
for y # B=n

0 and this function is radially
symmetric around y, it follows that .n( y)= y for y # B=n

0 . Thus .n is in the
class 1 appearing in the definition of the number c in (0.5), hence (H2)
implies c�supy # B=n V(.n( y)). This contradicts (1.29) for sufficiently large
n, finishing the proof.
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Thus, it only remains to establish the validity of (1.29). Assume that this
relation is not true, namely that, passing to a subsequence, one has the
existence of yn # B=n such that

;(,n( yn)) � 4+ &{x | V(x)�c&
$
2= . (1.30)

Then, setting un #,n( yn) and vn(z)=un(=n z), we have that the following
inequality holds

sup
t>0

Ic&$(tvn)�bc&$+o(1). (1.31)

To see this, we review first some facts about the sequence vn . We already
know that vn is bounded in H1-norm. Since we also have

|
0� n

|{vn | 2+V(=nz) v2
n=|

0� n

g(=nz, vn) vn�|
0� n

f (vn) vn ,

the same argument leading to (1.26) yields that

|
0� n

v p+1
n �_>0. (1.32)

Here 0� n==&1
n 0. Hence there is a sequence Bn of balls of radius one such

that

|
Bn

v2
n�_>0. (1.33)

In fact, otherwise we would get, from the H 1-boundedness, and the concen-
tration compactness principle (see Lemma I.1 in [16] or Lemma 2.18 in
[4]), that vn � 0 in any Lq with 2<q<2N�(N&2), contradicting (1.32).

Now, let us select tn>0 such that Ic&$(tnvn)=supt>0 Ic&$(tvn). Since vn

is bounded in H1-norm we obtain

Ct2
n&|

0� n

F(tnvn)�Ic&$(tnvn)�bc&$.

But from assumption (f3) we have F(s)�$s+, with 2<+<2N�(N&2),
then

t+&2
n |

0� n

v+
n�C. (1.34)

257NONLINEAR SCHRO� DINGER EQUATIONS



File: 580J 308514 . By:DS . Date:22:08:97 . Time:07:23 LOP8M. V8.0. Page 01:01
Codes: 2837 Signs: 1687 . Length: 45 pic 0 pts, 190 mm

This and (1.33) imply that tn is bounded. Then, from (1.19) we have

|
RN"4� n

+
(tn vn)2 � 0, (1.35)

where 4� +
n ==&1

n 4+. Now, from (1.18) we have

bc&$+o(1)�=&N
n J=n

(tnun)�Ic&$(tnvn)&
t2

n

2 |
RN"4� n

+
(c&$+o(1)) v2

n ,

and then, from (1.35) we obtain (1.31).
Following with the proof of (1.29), we set wn #tnvn , with tn as above.

From the definition of tn , wn belongs to the solution manifold of Ic&$ , then
it follows from (1.31) that wn is a minimizing sequence of Ic&$ there. A
standard application of Ekeland's variational principle, thus yields the
existence of a Palais-Smale sequence w~ n of Ic&$ such that wn&w~ n � 0 in
the H1(RN)-sense.

Thus there exists a sequence of points zn such that wn( }&zn) converges
in the H1-sense to a solution w of equation (1.13) with a=c&$, radially
symmetric with respect to the origin.

Let y� n==n zn . Since wn tends to zero away from 4� n , we may assume,
passing to a subsequence, that y� n � y� in 4� . Since

bc&$� lim
n � �

=&N
n J=n

(tnun)=IV( y� )(w),

we have bc&$�bV( y� ), so that V( y� )�c&$. But ;(un) � y� # 4� , thus (1.30)
implies V( y� )>c&$�2. We have obtained a contradiction which proves
(1.29), thus finishing the proof of the lemma. K

The above lemma shows that

=&NS=�bc&$+\,

for some \>0 and all = sufficiently small. On the other hand, for all , # 1=

we have ,( y)=w y
= for y # B=

0 . We immediately check that for all small =,

sup
y # B =

0

=&NJ=(,( y))�bc&$+
\
2

, \, # 1= .

These two facts, the validity of the Palais-Smale condition and a standard
deformation argument yields the main result of this section, namely

Proposition 1.1. The number S= defined by (1.15) is a critical value
of J= , namely there is a solution u= # H to the equation (1.9) such that
J=(u=)=S= for all = sufficiently small.
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In the next section we will show that actually u= turns out to be a critical
point of the original functional E= provided that = is chosen small enough.

2. PROOF OF THEOREM 0.1

We will show that the solution u= to equation (1.9) constructed in
Proposition 1.1 is a solution of (0.6). The key step for that is the following.

Proposition 2.1. If m= is given by

m==max
x # �4

u=(x), (2.1)

then

lim
= � 0

m==0. (2.2)

Moreover, for all = sufficiently small, u= possesses at most one local
maximum x= # 4 and we must have

c&$<lim inf
= � o

V(x=)�lim sup
= � o

V(x=)�c. (2.3)

Before proving the proposition, let us see how Theorem 0.1 follows
from it.

Proof of Theorem 0.1. The fact that u= solves (0.6) for small = follows
from Proposition 2.1 in the same way as in [5], where the case of a mini-
mum of V was treated. We recall here the argument for completeness.
There exists =0 such that for all 0<=<=0 ,

u=(x)<a for all x # �4. (2.4)

The function u= # H solves the equation

=2 2u&V(x) u+ g(x, u)=0 in 0. (2.5)

Since u= # H 1
0(0) we can choose (u=&a)+ as a test function in (2.5) so that,

after integration by parts one gets

|
0"4

=2 |{(u=&a)+ | 2+c(x)(u=&a)2
++c(x) a(u=&a)+=0, (2.6)
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where

c(x)=V(x)&
g(x, u=(x))

u=(x)
. (2.7)

The definition of g yields that c(x)>0 in 0"4, hence all terms in (2.6) are
zero. We conclude in particular

u=(x)�a for all x # 0"4.

Consequently u= is a solution to equation (0.6) for all small =. The
construction of the family of solutions u= depends on the particular $>0
chosen at the beginning of Section 1. To emphasize this fact we denote this
family as u$

= . Let $j be any sequence of positive numbers such that $j � 0.
Then there is a decreasing sequence of positive numbers =j � 0 such that
for all 0<=<=j one has that u$j

= solves (0.6), it has just one local maximum
x=

j located in 4 and

c&$j<V(x=
j )<c+

1
j
.

We define u==u$j
= and x==x=

j , if =j�=>=j+1. Then we clearly have
V(x=) � c. Moreover {V(x=) � 0, as can be seen by using a result of [26].
This result applies since u= is a critical point of E= , E=(u=)�C=N and
x=n

� x� # 0. Finally, the exponential decay assertion, (0.9) follows from
exactly the same argument provided in [5], thus concluding the proof of
the theorem. K

It remains to prove Proposition 2.1. We do this next.

Proof of Proposition 2.1. We begin by establishing the following
auxiliary fact: If =n a 0 and xn # 4� are such that u=n

(xn)�#>0, then

lim sup
n � �

V(xn)�c. (2.8)

We assume, for contradiction, that passing to a subsequence, xn � x� # 4�
and

V(x� )>c. (2.9)

We consider the sequence

vn(z)=u=n
(xn+=n z) (2.10)

260 DEL PINO AND FELMER



File: 580J 308517 . By:DS . Date:22:08:97 . Time:07:23 LOP8M. V8.0. Page 01:01
Codes: 2461 Signs: 1352 . Length: 45 pic 0 pts, 190 mm

and study its behavior as n goes to infinity. The function vn satisfies the
equation

{2vn&V(xn+=n z) vn+ g(xn+=n z, vn)=0
vn=0

in 0n

on �0n ,
(2.11)

where 0n==&1
n [0&xn]. We see that vn is bounded in H1(RN), and from

elliptic estimates it can be assumed to converge uniformly on compacts
subsets of RN to a nontrivial function v # H 1(RN). The sequence of func-
tions /n(z)#/4(xn+=nz) can also be assumed to converge weakly in any
Lp over compacts subsets of RN to a function / with 0�/�1. Therefore,
v satisfies the limiting equation

2v&V(x� ) v+ g� (z, v)=0 in RN, (2.12)

where

g� (z, s)=/(z) f (s)+(1&/(z)) f� (s). (2.13)

Thus v is a nontrivial critical point of the functional I� : H1(RN) � R defined
as

I� (u)= 1
2 |

RN
|{u| 2+V(z� ) w2&|

RN
G� (z, u), u # H 1(RN), (2.14)

where G� (z, s)=�s
0 g� (z, {) d{. Then we are exactly in the same setting as in

Lemma 2.2 of [5], so that we have the estimate

lim inf
n � �

=&N
n J=n

(u=n
)�I� (v).

This and (1.16) imply then that I� (v)�bc. But, I� (u)�IV(x� )(u) for all
u # H 1(RN). Then, using that v is a critical point of I� , we have that

bc�I� (v)=max
{�0

I� ({v)�max
{�0

IV(x� )({v)�bV(x� ). (2.15)

It follows that V(z� )�c, which certainly contradicts (2.9) and the proof of
(2.8), is thus complete.

Now we will establish the validity of assertion (2.2). We assume, by
contradiction, that there is a sequence of points xn # �4, with xn � x� # �4
such that

u=n
(xn)�#>0.
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We claim that V(x� )>c&$. To prove this we first recall that from (1.16)
Lemma 1.1,

bc�lim inf
n � �

=&N
n J=n

(un)>bc&$. (2.16)

Defining vn and v as above, we see that vn cannot converge strongly in the
H1-sense to v. In fact, otherwise lim infn � � =&N

n J=n
(un)=I� (v), where I� was

defined in (2.14). After a rotation, we see that since xn # �4, v will be a
nontrivial solution of the equation

2v&(c&$) v+/[z1<0] f (v)+/[z1>0] f� (v)=0, (2.17)

where b=V(x� )=c&$>0. It was proven in [8], Lemma 2.3 that v
actually solves

2v&(c&$) v+ f (v)=0. (2.18)

Then I� (v)=bc&$ and (2.16) would be impossible. Thus a concentration-
compactness argument yields that vn must concentrate on balls B1(zn),
where |zn | � �. Similarly as in the proof of Proposition 2.1 in [5], we
would end up with at least two concentration regions, so that lim infn � �

=&N
n J=n

(un)�2bc&$. Thus 2bc&$�bc which is impossible if $ was taken
sufficiently small. Thus the claim is proved. Observe that we have also
established that vn � v strongly in H 1(RN).

We may assume that $ given at the beginning of Section 1 is so small
that our x� lies in a region where �4 is smooth and {TV(x� ){0. However,
we will show next that this is impossible since our indirect assumption of
concentration on the boundary actually implies {TV(x� )=0.

Let us prove this. With no loss of generality, we may assume that x� =0
and that in a small neighborhood B(0, 2\) the domain 4 can be described
as

4 & B(0, 2\)=[(x$, xN) # B(0, 2\) | x$ # RN&1, xN<�(x$)],

where � is a smooth function such that, �(0)=0, {�(0)=0. In this setting
the function vn(z) satisfies

2vn&V(xn+=nz) vn+/[zN>=&1�(=z$)] f (vn)+/[zN<=&1�(=z$)] f� (vn)=0 (2.19)

in B(0, \�=n). Now, the fact that vn � v in H1, implies that vn will be
uniformly small outside of a ball B(0, R), hence it satisfies an equation of
the form

2vn&an(z) vn=0 in 0n "B(0, R),
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where 0<#1�an(z)�#2 , and vn=0 on �0n . Thus a comparison argument
yields that vn and its derivatives decay exponentially, say

vn(z)+|{vn(z)|�Ce&; |z|, (2.20)

for some positive numbers C, ;. Let 1�i�N&1. Multiplying (2.19) by
�vn��zi and integrating by parts we obtain

|
|z|=\�=n

�vn

�r
�vn

�zi
d_&|

|z| =\�=n

|{vn | 2 &i d_&|
|z|<\�=n

V(xn+=nz)
�

�zi

v2
n

2

+|
|z|<\�=n

/[zN>=&1�(=z$)]
�

�zi
F(vn)+/[zN<=&1�(=z$)]

�
�zi

F� (vn)=0. (2.21)

Here and in what follows

&i=
1

- 1+|{�| 2 (=z$)

��

�xi

(=z$).

Integrating by parts once again and using (2.20) we see that

|
Dn

(F(vn)&F� (vn)) &i d_==n |
|z|<\�=

Vxi
(xn+=nz)

v2
n

2
+O(e&;�=n), (2.22)

where Dn=[zN==&1
n �(=nz$), |z|<\�=n]. Then, dividing (2.22) through =n

and letting n � � we obtain

|
RN&1

(F(v)&F� (v)) z$ } b dz$=Vxi
(x� ) |

RN

v2

2
, (2.23)

where b=� {���xi (0). But from Lemma 2.2 in [7] we actually have
F(v)=F� (v) so we get Vxi

(x� )=0. This can be done for i=1, ..., N&1, so
that {TV(x� )=0, as desired. This finishes the proof of m= � 0.

Finally, to prove that u= possesses at most one local maximum in 4, we
can follow the arguments given in Proposition 2.1 of [5]. The proof is thus
complete. K
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