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O Introduction

Let 2 be a bounded, smooth domainitf. We consider the Ginzburg-Landau
system,

—Au

1 .
L0 u P in £,

on o (0.2)
g

u

whereu : 2 — B2, g : 2 — St is smooth and > 0 is a parameter. Associated
to problem (0.1) is the energy functional

E.(u) = ;/Q | Vu |? +4i2 /Q(l— | u[?)? (0.2)

whose critical points i|1-|g1 ={u € HY(2,R?) / u|an = g} correspond precisely
to solutions of problem (0.1). The asymptotic behavior of these solutions as

¢ — 0 has attracted considerable interest in recent years. Bethuel, Brezis and

Hélein in [1] have described in detail the limit as— 0 of the global minimizers
of (0.2) in the casd? starshaped. We describe next their result.

Let {en} be any sequence approaching zero, apnde a global minimizer
of (0.2) fore = ¢,. Then{u,} has a subsequence which has a ligfit which in
complex form becomes

ey = X&) (X—ad) iy
u()()_|X_a1|...‘x_ad|e¢()7 (03)

where v is real valued, Ay = 0 in 2 andu* = g on 9f2. Hereay,...,aq €
2 andd = degg, df2) is assumed non negative, without loss of generality.

* Partially supported by FONDECYT Grant 1950-303 and Grant CI1*CT93-0323 CCE.
** Partially supported by FONDECYT Grant 1940-505.
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The convergence is smooth in compact subset® &f{a,...,aq4}. Moreover,
the singularitiesny, .. ., a4 correspond to global minimizers of the renormalized
energy functionalW : 29 — R, defined as

d
W(ay,...,a0)= -7 > log|a —a |+;/m¢(g><gf)—7rZR(ai)- (0.4)

i# i=1

Here @ solves the equation

AD = 28y 68, in 0
21: (0.5)

b
’ g X gr on of2.

on

The function® is unique up to a constant. We normalize it takibgvith mean
value zeroR is the harmonic functiofR(x) = &(x) — Zidzl log|x—& |.

The assumption of star-shapednes$2a§ used in an application of Pohozaev
identity in order to show that

1
42 /9(1— |ul?)?<C <+ (0.6)

at any critical pointu of (0.2). This estimate is crucial in obtaining the conver-
gence results, and does not necessarily hold at arbitrary critical poiris ibf
starshapedness is violated, as shown via an example in [1]. However this estimate
is still true for the minimizers in the case of an arbitrary domain, as established
by Struwe in [11] and [12]. More generally, an estimate of the form

E.(u) < klog . 0.7)

for arbitrary critical points still suffices, as shown by Lin in [8].
In view of the results in [1], it is natural to ask whether one can find families
of solutions to (0.1) with asymptotic singularitidsy,...,aq} located at other
critical points of W. This question has been studied by Lin in [8], showing
that the answer is affirmative in the case of a nondegenerate local minimum of
W. His approach also covers some degenerate cases, see Section 4 in [8]. For
example, if the minimum set is ledimensional manifold KX k < d —1 andW
is nondegenerate on the normal space at each point on the manifold, then there
is a family of solutions with asymptotic singularities located at some point of it.
Lin’'s method is based on the study of the heat flow associated to (0.1),

ou _
ot
u(0,x) =U(x) in £2, ut,’)=g onas.

1 .
Au + 52(l— lul?u in (0,00) x 2

In fact, for a suitable choice of the initial datd. it is established in [8] that
u(t, x) approaches, as— oo, a steady state with the desired characteristics as
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¢ — 0. Here, a delicate issue is the interchange of the limits 0 andt — oo,
something not possible in general.

In this paper we revisit this question via a direct variational approach, which
permits to cover the case of local minima with arbitrary degeneracy. More pre-
cisely we prove the following

Theorem 0.1 Let A be an open subset 67 such thatd ¢ 29 and

infW < infW, (0.8)
A oA

where W is given by (0.4). Then, any sequence- 0 possesses a subsequence
which we still denotey, such that there is a family of solutions,uo (0.1) and
a point(ay, ...,aq) € A with

W(ay,...,aq) = iﬂfW, (0.9)

such that u, — u* uniformly and in the H sense on compact subsets(®fy
{&,...,aq4}. Moreover, y, is a local minimizer of E,.

It should be noticed that in the above situation, as stated in Section 4 in
[8], Lin's method still provides solutions with asymptotic singularities An
However it does not seem to be known if they satisfy (0.9), nor that they are
local minimizers ofE,, .

The approach we will present also applies to the weighted Ginzburg-Landau
equation

_Au w(;() 1-|uPu inQ
)
(0.10)

g onof?

u

where 0< a < w(x) < G; c.f. open problem 2 in [1].
Thus we will also consider the problem of finding local minimizers of the
associated energy

ew=, [ 1vufe,, [uma-lufr, o1

uec Hgl. In fact, an estimate like (0.6), which is, as mentioned, crucial in the
convergence results, is obtained in [1] when= 1 by a direct application of
Pohozaev identity if the domain is starshaped, or by reducing this application to
a suitable family of balls in the general case in [12]. This is not possible if, for
example,w is not differentiable. Concentration of global minimizers in the case
of a smooth weight has been studied in [10] and [7].

Estimate (0.6) still holds true however, for global minimizers of (0.11) under
the only condition 0< o < w(x) < 3, without any regularity requirement. This
follows from a standard upper estimate for the minimal energy and the following
fact, which is actually a consequence of the results in [12].
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Proposition 0.1 Let {u.} be a family of functions in Ei bounded in B(£2) and
satisfying

1 P 2 5 1
+ -1y < + i
o [ 1Vl [ qu -1 <ndiogl+co.  (012)
wherea > 0. Then there exists a constant€C ({2, g, «, Cp) such that
512 / (u?-1¥<C  foralle>0. (0.13)
2

In fact, it follows from the results in [12] and [1] the validity of an estimate of
the form

md Iogi —Cc< Uiean(} ; /Q | Vo |2 +80€‘2 /Q(| v |2 —1)?, (0.14)
for a certain constan€ independent ok. The conclusion of the proposition
then follows from combining (0.14) and assumption (0.12). A different proof of
Proposition 0.1, directly based on estimate (0.14) for a disk, can be found in [6].

Observe thati. is not assumed to be a critical point of the associated energy.
This is important in our method of proof of Theorem 0.1. Moreover, it helps
to extend Theorem 0.1 to the weighted case without the introduction of extra
technical difficulty as follows.

Theorem 0.2 Assume that the weight is continuous in2 and0 < o < w(Xx) <
0 for certain constants, .

Then the statement of Theorem 0.1 holds true for equation (0.10), but with W
replaced by the function

d
W(ay,...,aq) =W, ...,aq) + 72T 3 logu(a). (0.15)
i=1

The basic idea in the proof of this result is very simple. It consists of defining
a suitable modification of the energy functional which penalizes with high values
the appearance of singularities in places away frbnThen one proves that, as
¢ — 0, its global minimizer is indeed a local minimizer for the original energy.
This idea is in a similar spirit to that used by the authors in [4], where it is shown
that in the nonlinear Schdinger equation i®N

N +2
N -2
one can find a family of solutions. with the property that. concentrates around

a given, possibly degenerate local minimum\bf provided thatv is bounded
below away from zero. In this situation what one finds is a “local Mountain Pass”
of the associated energy functionalkht(RN).

2Au —V(x)u+uP =0, 1<p< (0.16)

This paper is organized as follows. F1 we define the modified energy
functionalJ. given the assumptions of Theorem 0.2, and prove some preliminary
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estimates, the main of them being Proposition 0.1, which implies the uniform
estimate (0.6) for the minimizers df.

Given these estimates, we follow the method in [1] and [12] to show2in
the convergence, up to a subsequence, of a family of minimizete a map
of the form (0.3). In this section we also prove two lemmas: Lemma 2.1 which
provides a lower estimate for the energy and Lemma 2.2, which essentially tells
us that the asymptotic singularities cannot occur outside the given sét We
finally combine the results of the previous sectiong3nto complete the proof
of Theorem 0.2.

In the rest of this paper we will assume that the boundary?o€onsists
of N smooth, closed Jordan curvés, I,..., I\ with Iy being the exterior
component ofdf2. We will also assume, without loss of generality, titat
deg(y, 042) > 0. We also setly = deggo, [p) andd; = —deg@;, [7), with g; =
glri,i =1,...,N. Thusd = Y\ d:. We will denote by/2; the domain enclosed
by I7,i=1,...,N.

The results presented in this article were announced in [5].

1 The penalized energy. Preliminary estimates
Assume the hypothesis of Theorem 0.2, so that there is an opence®? with
infW < infW, (1.1)
A oA
whereW is defined in (0.15). We look for local minimizers of
1 1
E.(u) = 24 1- | u|?)? 1.2
W=, [ 1vuPe [ weoa- u Py, (12)

with asymptotic singularitiesaf, . . ., aq) € A, which minimizeW over A.

In order to find local minimizers dE., we will modify E.. To do this, we first
observe that the continuity & permits us to assume, without loss of generality,
that 29 \ A consists of the union of a finite number of open rectangles, say

J
2\ A= JR1 xRz x ... x Ra)

i=1

whereR; is an open subset ¢?. We add toE. a term which penalizes with high
energies asymptotic singularities 6 \ A. Thus, we consider the functiondl
defined onH (£2) as

2w =, [ vuPe [ weoa- u?s

d

; - - 3
+M; I1 (2 ‘E;") —& @3

j=1 Rj
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HereM is a large constant, independent«f> 0, wich will be chosen in the
course of the proof of Theorem 0.2. Hefa}. = a if a > 0, and O otherwise.
As we will show, the added term will be in fact zero at a global minimizei.of
provided that the constaM was appropriately chosen aads small enough.

We begin with an upper estimate for the minimum valueJaof Thus we
chooseu. € H} so that

J:-(u:) = min J.(u).
ueH?

As in [1], we use the notation
— 1 2 1 2\2
Eo=intly [ Ve [a-upeiucn)  as

whereu € H, meansu € H(B,) andu(x) = x/|x| on dB,. HereB, = B(0, p).

Lemma 1.1 Let a€ A. Then there is @y > 0 such that for all0 < p < po
2.(u) < i, p) + mdlog - +WW(@) +o() (L5)
P

where 1) — 0 asp — 0, uniformly on the parameter M.

Proof. We follow the proof of Lemma VII.1 in [1] to construct a suitable test
function for J. which makes the penalization term zero and whose energy can
be estimated as in (1.5).

Write a = (ag, . . . ,ag) and chooseg so small that forp < pg

B(a17pl) XX B(ad7pd) - Aa

where p; = p/w(a). Let us set2, = 2\ Uid:lB(a,-,pi). Then, following the
proof of Theorem 1.9 in [1], one can find a map "2, — S* with the property
thatu, = g on 92 and

d -
198,253 10g "8 s wi@) + o) (1.6)

P i=1

andu, = o fi::? on dB(a;, pi), with oy € C such that o; |= 1.

Let us choose a minimizar, associated td (e, p) and define
vL(X) = aio-(w(@)(x —a))  for x € Ba,nm).

We consider the function.™ 2 — C asu. = v. on B(a, i), andu; = 0, on
£2,. Then

1/ L 1 / w(X) 5 12)2
Vi, 1- 1019
2 Q\QP‘ | 462 _Q\_Qp 462 | |

d
(w(x) — w(@)) 22
di(e,d E — | ve
I(Ev )+ — /IB(a,pi) 462 (1 |U | )

di (¢, d) + o(1). (1.7)

+
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Here we have used the continuity af, together with the known fact that
e pr(l— | v |?)? is uniformly bounded. See [1].

Using (1.6), (1.7), and the fact thafi. |[= 1 on{2,, we conclude thad.(u.)
is bounded above by a quantity of the form (1.5), and the lemma followE]

Fixing a smallp > 0, and using the fact that(e, p) < wlogg + C (see [1],
Ch. 1l), one obtains the following

Corollary 1.1 There is a constant &> 0, independent of M and such that
. 1
inf J.(u) <wdlog  +Co. (2.8)
H1(£2) €

The above corollary makes Proposition 0.1 applicable to the minimizay of
J., so that the following key estimate is obtained.

Lemma 1.2 There is a constant C> 0 such that
1
g / (u[2-17 <cC, (1.9)
& Jn

where C is independent ef> 0 and M > 0.

2 Minimizers for the penalized energy

In this section we start the proof of Theorem 0.2 by considering the minimizers
of the penalized energy. In the rest of the paper we will denote. tayminimizer
of J., the penalized energy, as defined in (1.3). What we will prove first is that,
up to subsequences, converges in a suitable sense to a harmonic aoigpvith
singularities at pointay, a, ..., aq in £2. Then we will obtain a precise estimate
from below for the value of the minimizers and finally we study carefully the
sequence of minimizers to discard the development of singularities outdiole
a conveniently choseldl . For that purpose we prove Lemma 2.2 which gives an
upper estimate foM provided that the singularities are away from the boundary
and from each other. The proof of Theorem 0.2 is completed in the next section
where we will see that an appropriate choice of the paranMter the definition
of J. makes it impossible thaty, ay, ..., aq4) € 2\ A. Finally, combining a
precise lower estimate for the energy with the upper estimate found in Lemma
1.1 we will see that actually this point is in and it minimizesW in that set.
This will also imply that the penalization term is zero for smalk O therefore
the full statement of the theorem.

To carry out this program, we begin by observing that sincés a critical
point of J., it satisfies the equation

Au = wf;(zx)q WP —1u in Q

g on 9f,

2.1)

u
where
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J d
we(X) = w(x) + 22/I Z LieAie Z Aij e Xij (X), (2.2)
i-1 =

with
ne=TT [ - (2:3)
|¢J Feil

d a—1
Aie = e72(1— |u€|2)2> , (2.4)
11/

1
2d

d
pic = (H /R 6-2(1—u52)2> —J (2.5)
1=1 I .

and wherey;; denotes the characteristic function of the open Bgts
From Lemma 1.2 we have that

: /9(1— w??<c, (2.6)

with a constaniC independent of and M. It follows then, in particular, that
w, is uniformly bounded by a constant possibly dependingMbn Then, an
application of the Maximum Principle and elliptic regularity as in [3], or in [12],
Lemma 2.2, yields the estimates

C
uel <1, Ve < (2.7)

with the constan€ possibly dependent oM . Let us sefS. = {x € 2 | u.(x) <
1/2}. Then, ifx € S., the estimate for the gradient tells us that

1
2/ (1—|u)?=~>0
€% JanB. s(x)

with ~ independent ot and x. This and estimate (2.6) tell us th&t can be
covered by a finite number of balls of radiuse. Here we choose a sequence
en — 0 so thatl’ remains constant.

Let x" =x™, i =1,...,1" be the centers of these balls. Then we can also
assume that these points converge to distinct paints ., x, € 2, with | <1’.
Exactly as in Proposition 3.3. in [12] we then get the estimate

1
/ |Vun|? < 2rdlog ~ +C
g

o

where 2, = 2\ Ui':lB[,(x;) and u, = u.,. Following [12], we obtain thau,
converges to a function, weakly locally inH 1(£2), away from the singularities,
and weak inWP(£2) for all p < 2. Now, the arguments in [1], Chapter VI,
reproduce without changes to prove that the asymptotic singularitielg afe
away from the boundary, they all have local degree +1 and there are edauftly
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them. These points will be denoted by, ..., a4. The limiting functionu satisfies
|u] = 1 a.e. and satisfies distributionally the equation @ix(Vu) = 0, sinceu,
does. Then, applying the arguments in [12] we see thit smooth away from
the singularitiesay, ..., a4. Since they have degree 1 and= W(¢?2), it follows
from section 1.3 in [1] thau has the form (0.3).

On the other hand, the convergenceugfis in the uniform andH?! senses,
away from the singularities. This can be obtained following the arguments in [1]
and [2], observing that the presence of the possibly discontinuous weight does
not introduce any extra technical difficulty. We also obtain tygt [, (1— | u, |2
)> — 0 on any compadK away from the singularities.

We do not know whether it is still possible to obtain stronger convergence
results foru,, but they will not be necessary for our purposes.

We gather the information obtained so far an and u in the following
proposition.

Proposition 2.1 There is a sequencg, — 0 and a subsequence, & u., of u.
and d points @ ..., aq in 2 such that y converges to the harmonic map

u*(x):(|Xal )( X~ & )eiW), (2.8)

X—a | | X —ag |

whereAy = 0in 2 and U* = g ond42. The convergence is in theltand uniform
senses over any compact set Kdf {ay,...,aq4}.
Moreover, the sequence also satisfies

1
lim /(1— | un )2 =0. (2.9)
nN—oo & JK
A precise estimate from below for the penalized enekgu,) will be needed
in the proof of Theorem 0.2. In view of the convergence properties of the se-
guenceu, given in Proposition 2.1 we have

Lemma 2.1 For any sequence, — 0and y, = u,, of minimizers of J, satifying
the conclusions of Proposition 2.1, therepis> 0 such that, for ever® < p < po
there is Ne N such that the following holds

d
Jer(Un) > i (en, )+ > l0gu(@a) + Wias, .. a¢) +7dlog  +0(1) (2.10)
i=1 P

for all n > N(p). Here 1) means thatim,_,o0(1) = 0.
Proof. Let 2, = 2\ UL,B,(a), where 2 > p > 0 is small enough so that

B,(a) C £2,foralli =1,...,d. From Proposition 2.1 we know tha} converges
to u* in theH?! sense over?, so that we can findN; € N such that

1 1 1
o, 1Tw el [ e 1Rz [ feog), @

2,

for n > N;. Then using Theorem 1.8 in [1] we find
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1 1
/ |V 2+ 2/ W) Un [2 —1)
2 Qp 4€n -Op

> W(ay,...,aq) +wdlog 1 +0O(p). (2.12)
P

In what follows we study the energy over each BJ(& ); for notational con-
venience we writeg; = a and we putA, = B,(a) \ B,/2(a).
First we define a functiom,, as

()= 2 X 2

u
=1 " —Uy) +un (2.13)
| Un |
for x € A,, andun(X) = Un(x), for x € B, >(a). From Proposition 2.1 and an
easy computation we see that

vp — U* in L®(A,) and Vv, — Vu* in HYA). (2.14)
Next we define an auxilliary multiplier as
Q(X) = g (@x—al/p=1)H (a)—H (x)) (2.15)

for x € A, andQ(x) = 1 if x € B, »(a). HereH is such thau*(x) = €' **H )
nearx = a. Again, after a simple computation using thtis smooth, we see
that| Q(x) |< c for all x € A, and for an appropriate constamt

Finally we define the functiom,”e H(B,(a)) asvn(X) = Q(X)vn(x) for all
X € B,(a). We observe that,(x) = un(x) for x € B,/»(a) and thatvy(x) =
el @*H@) for all x € 0B, (a).

Now we can do our estimates.

1/ 2, 1 / 2 2
Vu, ¢+ w(X)(| up |7 —1)
2 B,(a) | " | 45% B,(a) | " |

1 . w(a -
_ 2/ |V |7 + 422) (| 5 2 =17
B,(a) n B,(a)

1 -
+2/ | Vun 2 — | Vi, 2
B,(a)

1
oz [, (00 @) wn -7

Lu(@)

(lun |2 =12 — (| Bn > —1)?
43 Jo,@ "

> (e, p)+  logu(a) + 11+ 12+ 13-+ 0(2). (2.16)
The inequality in (2.16) follows from the definition ofe, p) and Lemma IX.1

in [1] . Next we prove that; + 1, +13 = 0(1), so that from (2.12) and (2.16) the
result follows.
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From Proposition 2.1 we see that, ovgy, we have

lim Vi = lim v, VQ +QVuy =u"VQ +QVu” (2.17)

n—oo

in L2(A,). Then

n—oo

lim / | Vun |? = | Vo |?= —/ |u*vQ |? +/ u*QVvQ - Vu*. (2.18)
o Ap Ap

But, sinceVQ is bounded, and Vu* |< ¢/p overA,, from (2.18) we find that
| 11 1< cp if n > Na(p), whereNz > Nj.

Next we use thatw is a continuous function, together with the fact that
1/4¢3 [,(] un |> —1)% is bounded, to obtain tha = o(1).

Finally we estimate the integrdk. By definition of v, we observe that
Un |<| vn |=] Tn |- Then we have

Py L

< 2'“’(3" / (|t 2 -1 (2.19)

|13 ]

but this last integral converges to zero ms— oo, proving in this way that
I3 =0(1). This completes the proof of the proposition. O

Remark 2.1If w is smooth we can obtai®(p) instead ofo(1) in (2.10). More-
over, if VH (a) = 0, then it was shown in [1] that it is possible to obt&p?)

in (2.10). We notice, however that in the presence of a non trivial weight we do
not haveVH (a) = 0 in general.

The next lemma is the first step towards discarding the possibility that
(a,...,aq) € 2\ A.

Lemma 2.2 Assume thata,, ...,aq) € 2\ A and that for a certainy > 0 we
have
dist(a;,002) > 26, |a —aq| > 26

fori,j =1,...,d. Then there exists a constan{& > 0, depending o but not
on M, such that necessarily M C.

Proof. Since u. satisfies equation (2.1), then it is also a critical point of the

functional L L
- — 2 2\2
=, [ IVuf+,, [ wooa-|ufy.

wherew, is given by (2.2). Note also that

) =Ew) M SN0,
i=1
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wherepi., A are given by (2.4) and (2.5), respectively. It then follows from the
definition of uj. andJ. that

J

Eo(u) < Ec(U) + ) Mpf + piic < J(u:) +C, (2.20)
i=1

with C independent oM . Here we used that;. is uniformly bounded indepen-
dently of M, thanks to (2.6).

Now we consider a sequengg — 0 so that., = u, satisfies the convergence
properties given in Proposition 2.1. Let = lim,_ ., U, having singularities
(a1,...,aq). By hypothesis, we have that for somethe singularities satisfy
(a1,...,84) € R1 x R2 x ... x Rq. Note that the ball8(g,6),j = 1,....d
are disjoint and they are insid®. We make the following observation: since
en"? J@—- |un|?)?> — 0 on any compact sé&€ not containing the singularities,
we have that for thé above

in > +

j=1,.a“>,(d Aiin = Akin 0(en)

for all k,I, wheref(en) — 0 asen — 0 andAjn = Ajjc, .
Next we estimaté=. (u,) from below. We have that

d |

. 1 ah

E.(u) > / |V 2+ / (1 | un 2
;2 B(a;.6) 4t Jo(a.0)

j
(6%
a2 (1 | un PP (2:21)

n /B(a.,8)\B(,p)
with

. 2
ol =a+ d Lin Ain Ajjn

wherea is a positive lower bound fow, the numbers\j, = Aj.,, Ain = Aie, and
lin = Ui, are given by (2.3)-(2.5), angd is chosen so small th&(a;, p) C R;.
We note that the third summand in the right hand side of (2.21) tends to zero
with e,.

Now, sinceu, — u* uniformly on9dB(a, 6), u* given by (2.8), we conclude
that

i

o[ Vi [ e iR wlogt+ Jrioga) —c
2 Jo(a.0) 4eh Ja(a 6) e 2

whereC depends ord andu*. This inequality is obtained using Lemma VIII.2

in [1], after an “interpolation” argument as that given in the proof of Lemma 2.1.

Moreover, since we are assuming that the singularities are away from each other

and from the boundary at a distance at leasttBe constanC can actually be

chosen to depend only dgnand not on the particular location of the singularities

which determines the*.
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Hence, we obtain
1 13 .
E..(Un) > drlog = + > "logak — C(5) (2.22)
en 2 =

for e, sufficiently small, possibly depending &fm. Combining this estimate with
(2.20) and Corollary 1.1 we may then conclude that
2M

limsup

up 4 Hin Ain Ajjn < C forallj=1,..d. (2.23)

HereC depends o but not onM. It follows from (2.23), and the definition of
wp thatwy, < C(6), independently oM. We conclude, as in [12], that there is
a constantc(6) > 0, independent oM, such thaiVup| < C /e, for sufficiently
smallen. This in turn implies, as in [12], that
1

2 (1_ | Un |2)2 >
&n R
for some positive constant depending ord but not onM, for all sufficiently
small e,,. Therefore

1
M =M@Y= %
On the other hand, from [1] we know that i&f, > dloge; ! — C. Hence
1 v 1o 1
md log C+M(y )y < Je(un) <7dlog ~ +C,
€n M €n

for someC independent oM. Here we have used Corollary 1.1. From this, an
upper estimate foM depending only ord readily follows, concluding the proof
of the lemma. O

3 Proof of theorem 0.2

Now we are in a position to finish the proof of Theorem 0.2. Combining the
upper estimate in Lemma 1.1 and the lower estimate in Lemma 2.1, we obtain

d d
W(a) + ;Z loguw(a) < W(a) + ;Z logw(),
j=1 i=1

namelyW (a) < W(&), wherea minimizesW on A. This estimate immediatelly
tells us that thes;’s must remain at a uniform distance frot{f2, independent

of M as the mutual distances between #his do, for otherwiseW (a) would
become too large. Therefore Lemma 2.2 is applicable for some fixed, and

we choose arM > C(¢) there. The Lemma then tells us thatcannot be in

29\ A. Moreover, thanks to our assumption (0.8), we must necessarily have that
a € A and it minimizesW there.
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Finally, sincefK £72(1 — |un|?)? — 0 over compacts away from the singu-
larities, we have that the penalization tthZiJ:l p2, = 0 for all sufficiently
small 5. Moreover, the same is true if one evaluates this term atwamny a
sufficiently smalle,-dependenH ! neighbourhood ofi,. Sinceuy, is minimizing
Je,, it follows thatu, is a local minimizer ofg., . This concludes the proof of
the theorem.

Remark 3.1In [9], Lin has used the heat flow method to detect the presence of
other type of solutions to the Ginzburg-Landau system. In fact, he finds boundary
conditionsg of degreed so that solutions wittd asymptotic singularities of
degree 1 plus an arbitrary number of pairs of asymptotic singularities with degrees
+1 exist. The idea is to adjust the boundary condition so that local minimizers
for the corresponding extension of the renormalized energy associated to these
singularities appear. It would be interesting to study whether the direct method we
have developed in this paper can provide further insight into these phenomena.
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