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0 Introduction

Let Ω be a bounded, smooth domain inR2. We consider the Ginzburg-Landau
system,

−∆u =
1
ε2

(1− | u |2)u in Ω,

u = g on ∂Ω (0.1)

whereu : Ω̄ → R
2, g : ∂Ω → S1 is smooth andε > 0 is a parameter. Associated

to problem (0.1) is the energy functional

Eε(u) =
1
2

∫
Ω

| ∇u |2 +
1

4ε2

∫
Ω

(1− | u |2)2, (0.2)

whose critical points inH 1
g = {u ∈ H 1(Ω,R2) / u|∂Ω = g} correspond precisely

to solutions of problem (0.1). The asymptotic behavior of these solutions as
ε → 0 has attracted considerable interest in recent years. Bethuel, Brezis and
Hélein in [1] have described in detail the limit asε→ 0 of the global minimizers
of (0.2) in the caseΩ starshaped. We describe next their result.

Let {εn} be any sequence approaching zero, andun be a global minimizer
of (0.2) for ε = εn. Then{un} has a subsequence which has a limitu∗, which in
complex form becomes

u∗(x) =
(x − a1)
| x − a1 | · · ·

(x − ad)
| x − ad |e

iψ(x), (0.3)

whereψ is real valued,∆ψ = 0 in Ω and u∗ = g on ∂Ω. Here a1, . . . , ad ∈
Ω and d = deg(g, ∂Ω) is assumed non negative, without loss of generality.
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The convergence is smooth in compact subsets ofΩ \ {a1, . . . , ad}. Moreover,
the singularitiesa1, . . . , ad correspond to global minimizers of the renormalized
energy functional,W : Ωd → R, defined as

W(a1, . . . , ad) = −π
∑
i/=j

log | ai − aj | +
1
2

∫
∂Ω

Φ(g × gτ )− π
d∑

i =1

R(ai ). (0.4)

HereΦ solves the equation

∆Φ = 2π
d∑

i =1

δai in Ω,

∂Φ

∂n
= g × gτ on ∂Ω.

(0.5)

The functionΦ is unique up to a constant. We normalize it takingΦ with mean
value zero.R is the harmonic functionR(x) = Φ(x)−∑d

i =1 log | x − ai | .
The assumption of star-shapedness ofΩ is used in an application of Pohozaev

identity in order to show that

1
4ε2

∫
Ω

(1− | u |2)2 ≤ C < +∞ (0.6)

at any critical pointu of (0.2). This estimate is crucial in obtaining the conver-
gence results, and does not necessarily hold at arbitrary critical points ofEε if
starshapedness is violated, as shown via an example in [1]. However this estimate
is still true for the minimizers in the case of an arbitrary domain, as established
by Struwe in [11] and [12]. More generally, an estimate of the form

Eε(uε) ≤ k log
1
ε
, (0.7)

for arbitrary critical points still suffices, as shown by Lin in [8].
In view of the results in [1], it is natural to ask whether one can find families

of solutions to (0.1) with asymptotic singularities{a1, . . . , ad} located at other
critical points of W. This question has been studied by Lin in [8], showing
that the answer is affirmative in the case of a nondegenerate local minimum of
W. His approach also covers some degenerate cases, see Section 4 in [8]. For
example, if the minimum set is ak-dimensional manifold 1≤ k ≤ d− 1 andW
is nondegenerate on the normal space at each point on the manifold, then there
is a family of solutions with asymptotic singularities located at some point of it.

Lin’s method is based on the study of the heat flow associated to (0.1),

∂u
∂t

= ∆u +
1
ε2

(1− | u |2)u in (0,∞)×Ω

u(0, x) = Uε(x) in Ω, u(t , ·) = g on ∂Ω.

In fact, for a suitable choice of the initial dataUε it is established in [8] that
u(t , x) approaches, ast → ∞, a steady state with the desired characteristics as
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ε→ 0. Here, a delicate issue is the interchange of the limitsε→ 0 andt →∞,
something not possible in general.

In this paper we revisit this question via a direct variational approach, which
permits to cover the case of local minima with arbitrary degeneracy. More pre-
cisely we prove the following

Theorem 0.1 LetΛ be an open subset ofΩd such thatΛ ⊂ Ωd and

inf
Λ

W < inf
∂Λ

W, (0.8)

where W is given by (0.4). Then, any sequenceεn → 0 possesses a subsequence
which we still denoteεn, such that there is a family of solutions uεn to (0.1) and
a point (a1, . . . , ad) ∈ Λ with

W(a1, . . . , ad) = inf
Λ

W, (0.9)

such that uεn → u∗ uniformly and in the H1 sense on compact subsets ofΩ \
{a1, . . . , ad}. Moreover, uεn is a local minimizer of Eεn .

It should be noticed that in the above situation, as stated in Section 4 in
[8], Lin’s method still provides solutions with asymptotic singularities inΛ.
However it does not seem to be known if they satisfy (0.9), nor that they are
local minimizers ofEεn .

The approach we will present also applies to the weighted Ginzburg-Landau
equation

−∆u =
w(x)
ε2

(1− | u |2)u in Ω

u = g on ∂Ω

(0.10)

where 0< α ≤ w(x) ≤ β; c.f. open problem 2 in [1].
Thus we will also consider the problem of finding local minimizers of the

associated energy

Eε(u) =
1
2

∫
Ω

| ∇u |2 +
1

4ε2

∫
Ω

w(x)(1− | u |2)2, (0.11)

u ∈ H 1
g . In fact, an estimate like (0.6), which is, as mentioned, crucial in the

convergence results, is obtained in [1] whenw ≡ 1 by a direct application of
Pohozaev identity if the domain is starshaped, or by reducing this application to
a suitable family of balls in the general case in [12]. This is not possible if, for
example,w is not differentiable. Concentration of global minimizers in the case
of a smooth weight has been studied in [10] and [7].

Estimate (0.6) still holds true however, for global minimizers of (0.11) under
the only condition 0< α ≤ w(x) ≤ β, without any regularity requirement. This
follows from a standard upper estimate for the minimal energy and the following
fact, which is actually a consequence of the results in [12].
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Proposition 0.1 Let {uε} be a family of functions in H1g , bounded in L2(Ω) and
satisfying

1
2

∫
Ω

| ∇uε |2 +
α

4ε2

∫
Ω

(| uε |2 −1)2 ≤ πd log
1
ε

+ C0, (0.12)

whereα > 0. Then there exists a constant C= C(Ω, g, α,C0) such that

1
ε2

∫
Ω

(| uε |2 −1)2 ≤ C for all ε > 0. (0.13)

In fact, it follows from the results in [12] and [1] the validity of an estimate of
the form

πd log
1
ε
− C ≤ inf

v∈H 1
g

1
2

∫
Ω

| ∇v |2 +
α

8ε2

∫
Ω

(| v |2 −1)2, (0.14)

for a certain constantC independent ofε. The conclusion of the proposition
then follows from combining (0.14) and assumption (0.12). A different proof of
Proposition 0.1, directly based on estimate (0.14) for a disk, can be found in [6].

Observe thatuε is not assumed to be a critical point of the associated energy.
This is important in our method of proof of Theorem 0.1. Moreover, it helps
to extend Theorem 0.1 to the weighted case without the introduction of extra
technical difficulty as follows.

Theorem 0.2 Assume that the weightw is continuous inΩ and0 < α ≤ w(x) ≤
β for certain constantsα, β.

Then the statement of Theorem 0.1 holds true for equation (0.10), but with W
replaced by the function

W̃(a1, . . . , ad) = W(a1, . . . , ad) +
π

2

d∑
i =1

logw(ai ). (0.15)

The basic idea in the proof of this result is very simple. It consists of defining
a suitable modification of the energy functional which penalizes with high values
the appearance of singularities in places away fromΛ. Then one proves that, as
ε→ 0, its global minimizer is indeed a local minimizer for the original energy.
This idea is in a similar spirit to that used by the authors in [4], where it is shown
that in the nonlinear Schrödinger equation inRN

ε2∆u − V (x)u + up = 0, 1 < p <
N + 2
N − 2

, (0.16)

one can find a family of solutionsuε with the property thatuε concentrates around
a given, possibly degenerate local minimum ofV , provided thatV is bounded
below away from zero. In this situation what one finds is a “local Mountain Pass”
of the associated energy functional inH 1(RN ).

This paper is organized as follows. In§1 we define the modified energy
functionalJε given the assumptions of Theorem 0.2, and prove some preliminary
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estimates, the main of them being Proposition 0.1, which implies the uniform
estimate (0.6) for the minimizers ofJε.

Given these estimates, we follow the method in [1] and [12] to show in§2
the convergence, up to a subsequence, of a family of minimizersuε to a map
of the form (0.3). In this section we also prove two lemmas: Lemma 2.1 which
provides a lower estimate for the energy and Lemma 2.2, which essentially tells
us that the asymptotic singularitiesaj cannot occur outside the given setΛ. We
finally combine the results of the previous sections in§3 to complete the proof
of Theorem 0.2.

In the rest of this paper we will assume that the boundary ofΩ consists
of N smooth, closed Jordan curvesΓ0, Γ1, . . . , ΓN with Γ0 being the exterior
component of∂Ω. We will also assume, without loss of generality, thatd =
deg(g, ∂Ω) > 0. We also setd0 = deg(g0, Γ0) and di = −deg(gi , Γi ), with gi =
g|Γ i , i = 1, . . . ,N . Thusd =

∑N
i =0 di . We will denote byΩi the domain enclosed

by Γi , i = 1, . . . ,N .

The results presented in this article were announced in [5].

1 The penalized energy. Preliminary estimates

Assume the hypothesis of Theorem 0.2, so that there is an open setΛ ⊂ Ωd with

inf
Λ

W̃ < inf
∂Λ

W̃, (1.1)

whereW̃ is defined in (0.15). We look for local minimizers of

Eε(u) =
1
2

∫
Ω

| ∇u |2 +
1

4ε2

∫
Ω

w(x)(1− | u |2)2, (1.2)

with asymptotic singularities (a1, . . . , ad) ∈ Λ, which minimizeW̃ overΛ.
In order to find local minimizers ofEε, we will modify Eε. To do this, we first

observe that the continuity of̃W permits us to assume, without loss of generality,
thatΩd \ Λ consists of the union of a finite number of open rectangles, say

Ωd \ Λ =
J⋃

i =1

(Ri 1 × Ri 2 × . . .× Rid )

whereRij is an open subset ofΩ. We add toEε a term which penalizes with high
energies asymptotic singularities onΩd \Λ. Thus, we consider the functionalJε
defined onH 1

g (Ω) as

Jε(u) =
1
2

∫
Ω

| ∇u |2 +
1

4ε2

∫
Ω

w(x)(1− | u |2)2 +

+M
J∑

i =1


 d∏

j =1

∫
Rij

(1− | u |2)2

ε2

 1
2d

− 1
M


2

+

. (1.3)



676 M. del Pino, P.L. Felmer

Here M is a large constant, independent ofε > 0, wich will be chosen in the
course of the proof of Theorem 0.2. Here{a}+ = a if a ≥ 0, and 0 otherwise.
As we will show, the added term will be in fact zero at a global minimizer ofJε,
provided that the constantM was appropriately chosen andε is small enough.

We begin with an upper estimate for the minimum value ofJε. Thus we
chooseuε ∈ H 1

g so that
Jε(uε) = min

u∈H 1
g

Jε(u).

As in [1], we use the notation

I (ε, ρ) = inf{1
2

∫
Bρ

| ∇u |2 +
1

4ε2

∫
Bρ

(1− | u |2)2 | u ∈ Hρ}, (1.4)

whereu ∈ Hρ meansu ∈ H 1(Bρ) andu(x) = x/|x| on ∂Bρ. HereBρ = B(0, ρ).

Lemma 1.1 Let a∈ Λ. Then there is aρ0 > 0 such that for all0 < ρ < ρ0

Jε(uε) ≤ dI (ε, ρ) + πd log
1
ρ

+ W̃(a) + o(1) (1.5)

where o(1)→ 0 asρ→ 0, uniformly on the parameter M .

Proof. We follow the proof of Lemma VII.1 in [1] to construct a suitable test
function for Jε which makes the penalization term zero and whose energy can
be estimated as in (1.5).
Write a = (a1, . . . , ad) and chooseρ0 so small that forρ < ρ0

B(a1, ρ1)× · · · × B(ad, ρd) ⊂ Λ,

whereρi = ρ/w(ai ). Let us setΩρ = Ω \ ⋃d
i =1 B(ai , ρi ). Then, following the

proof of Theorem I.9 in [1], one can find a map ˆuρ : Ωρ → S1 with the property
that ûρ = g on ∂Ω and∫

Ωρ

| ∇ûρ |2=
π

2

d∑
i =1

log
w(ai )
ρ2

+ W(a) + O(ρ). (1.6)

and ûρ = αi
(x−ai )
|x−ai | on ∂B(ai , ρi ), with αi ∈ C such that| αi |= 1.

Let us choose a minimizervε associated toI (ε, ρ) and define

vi
ε(x) = αi vε(w(ai )(x − ai )) for x ∈ B(ai , ρi ).

We consider the function ˜uε : Ω → C as ũε = vi
ε on B(ai , ρi ), and ũε = ûρ on

Ωρ. Then

1
2

∫
Ω\Ωρ

| ∇ũε |2 +
1

4ε2

∫
Ω\Ωρ

w(x)
4ε2

(1− | ũε |2)2

= dI (ε, d) +
d∑

i =1

∫
B(ai ,ρi )

(w(x)− w(ai ))
4ε2

(1− | vε |2)2

= dI (ε, d) + o(1). (1.7)
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Here we have used the continuity ofw, together with the known fact that
1

4ε2

∫
Bρ

(1− | vε |2)2 is uniformly bounded. See [1].

Using (1.6), (1.7), and the fact that| ũε |= 1 onΩρ, we conclude thatJε(uε)
is bounded above by a quantity of the form (1.5), and the lemma follows.�

Fixing a smallρ > 0, and using the fact thatI (ε, ρ) ≤ π log 1
ε + C (see [1],

Ch. III), one obtains the following

Corollary 1.1 There is a constant C0 > 0, independent of M andε such that

inf
H 1
g(Ω)

Jε(u) ≤ πd log
1
ε

+ C0. (1.8)

The above corollary makes Proposition 0.1 applicable to the minimizer ofuε of
Jε, so that the following key estimate is obtained.

Lemma 1.2 There is a constant C> 0 such that

1
ε2

∫
Ω

(| uε |2 −1)2 ≤ C , (1.9)

where C is independent ofε > 0 and M > 0.

2 Minimizers for the penalized energy

In this section we start the proof of Theorem 0.2 by considering the minimizers
of the penalized energy. In the rest of the paper we will denote byuε a minimizer
of Jε, the penalized energy, as defined in (1.3). What we will prove first is that,
up to subsequences,uε converges in a suitable sense to a harmonic mapu∗, with
singularities at pointsa1, a2, . . . , ad in Ω. Then we will obtain a precise estimate
from below for the value of the minimizers and finally we study carefully the
sequence of minimizers to discard the development of singularities outsideΛ for
a conveniently chosenM . For that purpose we prove Lemma 2.2 which gives an
upper estimate forM provided that the singularities are away from the boundary
and from each other. The proof of Theorem 0.2 is completed in the next section
where we will see that an appropriate choice of the parameterM in the definition
of Jε makes it impossible that (a1, a2, . . . , ad) ∈ Ωd \ Λ̄. Finally, combining a
precise lower estimate for the energy with the upper estimate found in Lemma
1.1 we will see that actually this point is inΛ and it minimizesW̃ in that set.
This will also imply that the penalization term is zero for smallε > 0 therefore
the full statement of the theorem.

To carry out this program, we begin by observing that sinceuε is a critical
point of Jε, it satisfies the equation

∆u =
wε(x)
ε2

(| u |2 −1)u in Ω

u = g on ∂Ω,
(2.1)

where
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wε(x) = w(x) +
2M
d

J∑
i =1

µi ελi ε

d∑
j =1

λij εχij (x), (2.2)

with

λij ε =
∏
l/=j

∫
Ril

ε−2(1− |uε|2)2, (2.3)

λi ε =

(
d∏

l =1

∫
Ril

ε−2(1− |uε|2)2

) 1
2d−1

, (2.4)

µi ε =


(

d∏
l =1

∫
Ril

ε−2(1− |uε|2)2

) 1
2d

− 1
M


+

(2.5)

and whereχij denotes the characteristic function of the open setsRij .
From Lemma 1.2 we have that

1
ε2

∫
Ω

(1− |uε|2)2 ≤ C , (2.6)

with a constantC independent ofε and M . It follows then, in particular, that
wε is uniformly bounded by a constant possibly depending onM . Then, an
application of the Maximum Principle and elliptic regularity as in [3], or in [12],
Lemma 2.2, yields the estimates

|uε| ≤ 1, |∇uε| ≤ C
ε

(2.7)

with the constantC possibly dependent onM . Let us setSε = {x ∈ Ω | uε(x) <
1/2}. Then, if x ∈ Sε, the estimate for the gradient tells us that

1
ε2

∫
Ω∩Bε/5(x)

(1− |uε|2)2 ≥ γ > 0

with γ independent ofε and x. This and estimate (2.6) tell us thatSε can be
covered by a finite number of ballsI ′ of radiusε. Here we choose a sequence
εn → 0 so thatI ′ remains constant.

Let xn
i = xεn

i , i = 1, . . . , I ′ be the centers of these balls. Then we can also
assume that these points converge to distinct pointsx1, . . . , xI ∈ Ω̄, with I ≤ I ′.
Exactly as in Proposition 3.3. in [12] we then get the estimate∫

Ωσ

|∇un|2 ≤ 2πd log
1
σ

+ C

whereΩσ = Ω \ ∪I
i =1Bσ(xi ) and un = uεn . Following [12], we obtain thatun

converges to a functionu, weakly locally inH 1(Ω), away from the singularities,
and weak inW1,p(Ω) for all p < 2. Now, the arguments in [1], Chapter VI,
reproduce without changes to prove that the asymptotic singularities ofun are
away from the boundary, they all have local degree +1 and there are exactlyd of
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them. These points will be denoted bya1, ..., ad. The limiting functionu satisfies
|u| = 1 a.e. and satisfies distributionally the equation div(u ×∇u) = 0, sinceun

does. Then, applying the arguments in [12] we see thatu is smooth away from
the singularitiesa1, ..., ad. Since they have degree 1 andu ∈ W1,1(Ω), it follows
from section I.3 in [1] thatu has the form (0.3).

On the other hand, the convergence ofun is in the uniform andH 1 senses,
away from the singularities. This can be obtained following the arguments in [1]
and [2], observing that the presence of the possibly discontinuous weight does
not introduce any extra technical difficulty. We also obtain thatε−2

n

∫
K (1− | un |2

)2 → 0 on any compactK away from the singularities.
We do not know whether it is still possible to obtain stronger convergence

results forun, but they will not be necessary for our purposes.
We gather the information obtained so far onuε and u in the following

proposition.

Proposition 2.1 There is a sequenceεn → 0 and a subsequence un = uεn of uε
and d points a1, . . . , ad in Ω such that un converges to the harmonic map

u∗(x) =

(
x − a1

| x − a1 |
)
. . .

(
x − ad

| x − ad |
)

eiψ(x), (2.8)

where∆ψ = 0 in Ω and u∗ = g on∂Ω. The convergence is in the H1 and uniform
senses over any compact set K ofΩ \ {a1, . . . , ad}.

Moreover, the sequence un also satisfies

lim
n→∞

1
ε2

n

∫
K

(1− | un |2)2 = 0. (2.9)

A precise estimate from below for the penalized energyJεn (un) will be needed
in the proof of Theorem 0.2. In view of the convergence properties of the se-
quenceun given in Proposition 2.1 we have

Lemma 2.1 For any sequenceεn → 0 and un = uεn of minimizers of Jεn satifying
the conclusions of Proposition 2.1, there isρ0 > 0 such that, for every0 < ρ < ρ0

there is N∈ N such that the following holds

Jεn (un) ≥ dI (εn, ρ) +
π

2

d∑
i =1

logw(ai ) + W(a1, ..., ad) + πd log
1
ρ

+ o(1) (2.10)

for all n ≥ N (ρ). Here o(1) means thatlimρ→0 o(1) = 0.

Proof. Let Ωρ = Ω \ ∪d
i =1Bρ(ai ), where 1/2 ≥ ρ > 0 is small enough so that

Bρ(ai ) ⊂ Ω, for all i = 1, ..., d. From Proposition 2.1 we know thatun converges
to u∗ in the H 1 sense overΩρ so that we can findN1 ∈ N such that

1
2

∫
Ωρ

| ∇un |2 +
1

4ε2
n

∫
Ωρ

w(x)(| un |2 −1)2 ≥ 1
2

∫
Ωρ

| ∇u∗ |2 +O(ρ), (2.11)

for n ≥ N1. Then using Theorem I.8 in [1] we find
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1
2

∫
Ωρ

| ∇un |2 +
1

4ε2
n

∫
Ωρ

w(x)(| un |2 −1)2

≥ W(a1, . . . , ad) + πd log
1
ρ

+ O(ρ). (2.12)

In what follows we study the energy over each ballBρ(ai ); for notational con-
venience we writeai = a and we putAρ = Bρ(a) \ Bρ/2(a).

First we define a functionvn as

vn(x) = (2
| x − a |

ρ
− 1)(

un

| un | − un) + un (2.13)

for x ∈ Aρ, and vn(x) = un(x), for x ∈ Bρ/2(a). From Proposition 2.1 and an
easy computation we see that

vn → u∗ in L∞(Aρ) and ∇vn → ∇u∗ in H 1(Aρ). (2.14)

Next we define an auxilliary multiplier as

Q(x) = ei (2|x−a|/ρ−1)(H (a)−H (x)) (2.15)

for x ∈ Aρ and Q(x) = 1 if x ∈ Bρ/2(a). HereH is such thatu∗(x) = ei (θ+H (x))

nearx = a. Again, after a simple computation using thatH is smooth, we see
that | Q(x) |≤ c for all x ∈ Aρ and for an appropriate constantc.

Finally we define the function ˜vn ∈ H 1(Bρ(a)) as ṽn(x) = Q(x)vn(x) for all
x ∈ Bρ(a). We observe that ˜vn(x) = un(x) for x ∈ Bρ/2(a) and that ˜vn(x) =
ei (θ+H (a)) for all x ∈ ∂Bρ(a).

Now we can do our estimates.

1
2

∫
Bρ(a)

| ∇un |2 +
1

4ε2
n

∫
Bρ(a)

w(x)(| un |2 −1)2

=
1
2

∫
Bρ(a)

| ∇ṽn |2 +
w(a)
4ε2

n

∫
Bρ(a)

(| ṽn |2 −1)2

+
1
2

∫
Bρ(a)

| ∇un |2 − | ∇ṽn |2

+
1

4ε2
n

∫
Bρ(a)

(w(x)− w(a))(| un |2 −1)2

+
w(a)
4ε2

n

∫
Bρ(a)

(| un |2 −1)2 − (| ṽn |2 −1)2

≥ I (εn, ρ) +
π

2
logw(a) + I1 + I2 + I3 + o(1). (2.16)

The inequality in (2.16) follows from the definition ofI (ε, ρ) and Lemma IX.1
in [1] . Next we prove thatI1 + I2 + I3 = o(1), so that from (2.12) and (2.16) the
result follows.
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From Proposition 2.1 we see that, overAρ, we have

lim
n→∞∇ṽn = lim

n→∞ vn∇Q + Q∇vn = u∗∇Q + Q∇u∗ (2.17)

in L2(Aρ). Then

lim
n→∞

∫
Aρ

| ∇un |2 − | ∇ṽn |2= −
∫

Aρ

| u∗∇Q |2 +
∫

Aρ

u∗Q∇Q · ∇u∗. (2.18)

But, since∇Q is bounded, and| ∇u∗ |≤ c/ρ over Aρ, from (2.18) we find that
| I1 |≤ cρ if n ≥ N2(ρ), whereN2 ≥ N1.

Next we use thatw is a continuous function, together with the fact that
1/4ε2

n

∫
Ω

(| un |2 −1)2 is bounded, to obtain thatI2 = o(1).
Finally we estimate the integralI3. By definition of ṽn we observe that|

un |≤| vn |=| ṽn |. Then we have

| I3 | =
| w(a) |

4ε2
n

∫
Aρ

(| un |2 −1)2 + (| ṽn |2 −1)2

≤ 2 | w(a) |
4ε2

n

∫
Aρ

(| un |2 −1)2 (2.19)

but this last integral converges to zero asn → ∞, proving in this way that
I3 = o(1). This completes the proof of the proposition. �

Remark 2.1If w is smooth we can obtainO(ρ) instead ofo(1) in (2.10). More-
over, if ∇H (a) = 0, then it was shown in [1] that it is possible to obtainO(ρ2)
in (2.10). We notice, however that in the presence of a non trivial weight we do
not have∇H (a) = 0 in general.

The next lemma is the first step towards discarding the possibility that
(a1, . . . , ad) ∈ Ω \ Λ̄.

Lemma 2.2 Assume that(a1, . . . , ad) ∈ Ω \ Λ̄ and that for a certainδ > 0 we
have

dist(ai , ∂Ω) ≥ 2δ, |ai − aj | ≥ 2δ

for i , j = 1, . . . , d. Then there exists a constant C(δ) > 0, depending onδ but not
on M , such that necessarily M≤ C .

Proof. Since uε satisfies equation (2.1), then it is also a critical point of the
functional

Ẽε(u) =
1
2

∫
Ω

| ∇u |2 +
1

4ε2

∫
Ω

wε(x)(1− | u |2)2,

wherewε is given by (2.2). Note also that

Ẽε(uε) = Eε(uε) + M
J∑

i =1

λ
1/(1−2d)
i ε µi ε
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whereµi ε, λi ε are given by (2.4) and (2.5), respectively. It then follows from the
definition ofµi ε andJε that

Ẽε(uε) ≤ Eε(uε) +
J∑

i =1

Mµ2
i ε + µi ε ≤ Jε(uε) + C , (2.20)

with C independent ofM . Here we used thatµi ε is uniformly bounded indepen-
dently of M , thanks to (2.6).

Now we consider a sequenceεn → 0 so thatuεn = un satisfies the convergence
properties given in Proposition 2.1. Letu∗ = limn→∞ un having singularities
(a1, . . . , ad). By hypothesis, we have that for somei the singularities satisfy
(a1, . . . , ad) ∈ Ri 1 × Ri 2 × . . . × Rid . Note that the ballsB(aj , δ), j = 1, . . . , d
are disjoint and they are insideΩ. We make the following observation: since
εn
−2
∫

K (1− |un|2)2 → 0 on any compact setK not containing the singularities,
we have that for thei above

max
j =1,...,d

λijn ≥ λkln + θ(εn)

for all k, l , whereθ(εn) → 0 asεn → 0 andλijn = λij εn .
Next we estimatẽEεn (un) from below. We have that

Ẽεn (un) ≥
d∑

j =1

1
2

∫
B(aj ,δ)

| ∇un |2 +
αj

n

4ε2
n

∫
B(aj ,δ)

(1− | un |2)2

− αj
n

4ε2
n

∫
B(aj ,δ)\B(aj ,ρ)

(1− | un |2)2, (2.21)

with

αj
n = α +

2M
d

µinλinλijn ,

whereα is a positive lower bound forw, the numbersλijn = λij εn , λin = λi εn and
µin = µi εn are given by (2.3)-(2.5), andρ is chosen so small thatB(aj , ρ) ⊂ Rij .
We note that the third summand in the right hand side of (2.21) tends to zero
with εn.

Now, sinceun → u∗ uniformly on∂B(aj , δ), u∗ given by (2.8), we conclude
that

1
2

∫
B(aj ,δ)

| ∇un |2 +
αj

n

4ε2
n

∫
B(aj ,δ)

(1− | un |2)2 ≥ π log
1
ε

+
1
2
π logαj

n − C

whereC depends onδ andu∗. This inequality is obtained using Lemma VIII.2
in [1], after an “interpolation” argument as that given in the proof of Lemma 2.1.
Moreover, since we are assuming that the singularities are away from each other
and from the boundary at a distance at least 2δ, the constantC can actually be
chosen to depend only onδ and not on the particular location of the singularities
which determines theu∗.
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Hence, we obtain

Ẽεn (un) ≥ dπ log
1
εn

+
1
2

d∑
j =1

logαj
n − C(δ) (2.22)

for εn sufficiently small, possibly depending onM . Combining this estimate with
(2.20) and Corollary 1.1 we may then conclude that

lim sup
εn→0

2M
d

µinλinλijn ≤ C for all j = 1, ..., d. (2.23)

HereC depends onδ but not onM . It follows from (2.23), and the definition of
wn thatwn ≤ C(δ), independently ofM . We conclude, as in [12], that there is
a constantC(δ) > 0, independent ofM , such that|∇un| ≤ C/εn for sufficiently
small εn. This in turn implies, as in [12], that

1
ε2

n

∫
Rij

(1− | un |2)2 ≥ γ

for some positive constantγ depending onδ but not onM , for all sufficiently
small εn. Therefore

Mµ2
in ≥ M (γ1/2 − 1

M
)2
+.

On the other hand, from [1] we know that infEεn ≥ d logε−1
n − C . Hence

πd log
1
εn
− C + M (γ1/2 − 1

M
)2
+ ≤ Jεn (un) ≤ πd log

1
εn

+ C ,

for someC independent ofM . Here we have used Corollary 1.1. From this, an
upper estimate forM depending only onδ readily follows, concluding the proof
of the lemma. �

3 Proof of theorem 0.2

Now we are in a position to finish the proof of Theorem 0.2. Combining the
upper estimate in Lemma 1.1 and the lower estimate in Lemma 2.1, we obtain

W(a) +
1
2

d∑
j =1

logw(aj ) ≤ W(ã) +
1
2

d∑
j =1

logw(ãj ),

namelyW̃(a) ≤ W̃(ã), whereã minimizesW̃ onΛ. This estimate immediatelly
tells us that theai ’s must remain at a uniform distance from∂Ω, independent
of M as the mutual distances between theaj ’s do, for otherwiseW(a) would
become too large. Therefore Lemma 2.2 is applicable for some fixedδ > 0, and
we choose anM > C(δ) there. The Lemma then tells us thata cannot be in
Ωd \ Λ̄. Moreover, thanks to our assumption (0.8), we must necessarily have that
a ∈ Λ and it minimizesW̃ there.
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Finally, since
∫

K ε−2
n (1− |un|2)2 → 0 over compacts away from the singu-

larities, we have that the penalization termM
∑J

i =1µ
2
in = 0 for all sufficiently

small εn. Moreover, the same is true if one evaluates this term at anyu in a
sufficiently smallεn-dependentH 1 neighbourhood ofun. Sinceun is minimizing
Jεn , it follows that un is a local minimizer ofEεn . This concludes the proof of
the theorem.

Remark 3.1In [9], Lin has used the heat flow method to detect the presence of
other type of solutions to the Ginzburg-Landau system. In fact, he finds boundary
conditionsg of degreed so that solutions withd asymptotic singularities of
degree 1 plus an arbitrary number of pairs of asymptotic singularities with degrees
±1 exist. The idea is to adjust the boundary condition so that local minimizers
for the corresponding extension of the renormalized energy associated to these
singularities appear. It would be interesting to study whether the direct method we
have developed in this paper can provide further insight into these phenomena.
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