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0 Introduction 

This paper has been motivated by some works appeared in recent years concern- 
ing the nonlinear SchrOdinger equation 

h2 
ih  - 2 m A f f j + V ( z ) ~ b - " / t ~ l P - l ~ b .  (0.1) 

We are interested in solutions of  the form ~b(z, t) = e x p ( - i E t / h ) v ( z )  which are 
called standing waves. We observe that this ~# satisfies (0.1) if and only if the 
function v(z )  solves the elliptic equation 

h 2 
~m A v  -- ( V ( z )  - E ) v  + 7 I v ]e-1 v = O. (0.2) 

In [3], Floer and Weinstein consider the case N = 1 and p = 3. For a given 
nondegenerate critical point of the potential V, assumed globally bounded, and 
for 0 < E < inf V, they construct a standing wave provided that h is sufficiently 
small. This solution concentrates around the critical point as h --+ 0. 

Their method, based on an interesting Lyapunov-Schmidt  reduction, was ex- 
tended by Oh in [6], [7] to conclude a similar result in higher dimensions, pro- 

N+2 vided that 1 < p < g'=l" He restricts himself to potentials with "mild oscillation" 
at infinity, namely belonging to a Kato class. In case that V is bounded this re- 
striction is not necessary as observed by Wang in [10]. 
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In [8], Oh uses this approach to construct solutions with multiple peaks which 
concentrate around any prescribed finite set of nondegenerate critical points of 
V. 

The method in the works mentioned above, local in nature, seems to use in a 
essential way the nondegeneracy of the critical points, although this assumption 
can be somewhat relaxed, [] []. In [9], Rabinowitz uses a global variational 
technique to find a solution with "minimal energy" for all small h, when 1 < 
p < (N + 2) / (N - 2) and 

l imin fV(z )  > inf V(z),  (0.3) 
Izl--.ec z C R N 

see also [2] for related results. A precise concentration statement (around a global 
minimum, possibly degenerate) for this solution is established in [10]. 

An interesting question, originally raised by Changfeng Gui, which motivates 
the present work, is whether one can find solutions which concentrate around 
local minima not necessarily nondegenerate. 

As we will see, the answer is affirmative, and moreover the same is true 
if one considers the elliptic problem in an arbitrary domain in I~ N with zero 
boundary conditions. 

More generally, we deal with a semilinear elliptic problem of the form 

e2Au - -  V(z)u + f ( u )  = 0 in g? 

u=0on0g2,  u > 0 i n f 2  
(0.4) 

where g2 is a domain in NN, possibly unbounded, with empty or smooth bound- 
ary. V will be assumed throughout this paper locally H61der continuous and 
bounded below away from zero, say 

V ( z ) > c t > O ,  for all z EIR N. (0.5) 

We will also assume tha t f  : lI~ + ~ Ii~ is of  class C 1 and satisfies the following 
conditions. 

(fl)  f (~ )  = o(~) near ~ _> 0. 
N+2 (f2) lira f ( ~ ) = 0 f o r s o m e  1 < s  < N-2 ~--*cr -U- 

(f3) For some 2 < 0 _< s + 1 we have 

O < O F ( ~ ) < f ( ~ ) ~  for all ~ > 0  (0.6) 

where F(~) = f f ( T ) a T .  
0 

(f4) The function ~ --~ f@_A) in nondecreasing. 

Our main result for equation (0.4) is the following. 
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Theorem 0.1 Assume there is a bounded domain A compactly contained in S'2 

such that 

infV < rain V. (0.7) 
A OA 

Then there is an Go > 0 such that f o r  every 0 < c < Go a positive solution 

u~ E H 1 ( f2) to problem (0.4) exists. Moreover, u~ possesses jus t  one local (hence 

global) maximum z~, which is in A. We also have that V (z~) ~ infA V, and 

u~(z) <_ c~ e x p ( - ~ l z  - z~[), (0.8) 

f o r  certain constants a,/3. 

We observe that no restriction on the global behavior of V is required other than 
(0.5). In particular, V is not required to be bounded or to belong to a Kato class. 

On the other hand, the hypotheses on the nonlinearity f are fairly mild, in 
the sense that no special nondegeneracy or uniqueness assumptions need to be 
made on the "limiting" equation associated to (0.4), namely an equation of the 
form 

A u  - u + f ( u )  = O. 

The proof of this result is variational, and relies on an elementary idea which 
permits to identify "local mountain passes". The energy functional associated to 
equation (0.4) generally satisfies the assumptions of the Mountain Pass Theorem, 
except for the P.S. condition. Indeed, a global assumption like (0.3) permits to 
recover P.S. at the mountain pass level when e is small. 

What we do in our situation is to build a convenient modification of the 
energy, in such a way that the functional satisfies P.S., and then prove that for 
a sufficiently small ~ the associated mountain pass is indeed a solution to the 
original equation with the stated properties. The modification of the functional 
corresponds to a "penalization outside A", and this is why no other global assump- 
tions are required. Though elementary, we believe this idea is flexible enough to 
be adapted to "catch mountain passes" in a number of interesting situations. 

To illustrate this point, we will see in the last section how local properties of 
an unbounded domain lead to existence and localization of solutions to elliptic 
problems. As an example of the situation covered by Theorem 3.1 in w let us 
consider the case of an axially symmetric domain f2 C R u, N _> 2 given by 

f'~ ---- { ( I , x )  e ]I~ N - 1  X ]I~ / Ixl < p(t)} (0.9) 

where p : I~ --~ II~ + is a smooth function. We consider the problem 

e2utt + A u  - u + f ( u ) =  0 in f2 
(0.10) 

u = 0 o n 0 f 2 ,  u > 0 i n f 2  

Here A denotes the Laplacian with respect to the N - 1-dimensional variable x, 
and f satisfies (fl)-(f4). We have 
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Theorem 0.2 Assume that for some bounded interval I we have that 

supp  > P[Ol. (0.11) 
I 

Then there exists an so > 0 such that for all 0 < e < So there is a positive 
solution uc E H~(O) to problem (0.I0) such that for some sequence of  t~ E I 
with p(t~) --+ s u p / p  one has 

u~(x,t) < oLexp(-  It - t~[), (0.12) 

for  certain positive constants c~ and/3. 

The organization of this paper is as follows: In w we define the modification 
of the functional needed for the proof of Theorem 0.1, and prove some prelim- 
inary results. w is devoted to the proof of  Theorem 0.1, while in w we use a 
similar approach to study the influence of the domain, and prove a general result 
from which Theorem 0.2 follows as a particular case. 

1 Preliminaries 

In this section we establish some preliminary results needed for the proof of 
Theorem 0.1 and the results of w 

In the framework of Theorem 0.1, let us consider a function f : ~ ~ 
satisfying (fl)-(f4) on ~+ and defined as zero for negative values. 

Associated to equation (0.4) is the "energy" functional 

l f e2lVul2 + V(z)u2 f F(u) , (1.1) I~(u) = ~ 

g2 52 

which is well defined for u E H where 

I-1 = {u / fa  V(z)u 2 < oo}. 

H becomes a Hilbert space, continuously embedded in H~(I2), when endowed 
with the inner product 

< u, v > v  = I n  XTu. XTv + V(z )uv  (1.2) 

whose associated norm we denote by ]1 " 11/4. 
Under the regularity assumptions on V and f ,  it is standard to check that 

the nontrivial critical points of  J~ correspond exactly to the positive classical 
solutions in Hd ($2) of equation (0.4). 

We will define a modification of this functional which satisfies the P.S. con- 
dition and to which we can apply the Mountain Pass Theorem. Let 0 be a number 
as given by (f3), and let us choose k > 0 such that k > 0--~-2" Let a > 0 be the 

value at which f~> - -  = ~-, where c~ is as in (0.5). Let us set 
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and define 

f ( s ) =  [ f ( s )  if s < a (1.3) 
( y s  if s > a ,  

9( ' ,  s)  = XAf(S) + (1 - XA)f(s), (1.4) 

where A is a bounded domain as in the assumptions of  Theorem 0.1. and XA 
denotes its characteristic function. It is easy to check that (fl)-(f4) implies that 
9 defined in this way is a Caratheodory function and it satisfies the following 
assumptions: 

(gl)  9(z,~)  = o(~) near ~ = 0 uniformly in z E S2. 
g(z,~) N+2 if N > 3 and no restriction on s (g2) limr ~, = 0 f o r s o m e  l < s < ~  _ 

i f N  = 1,2. 
(g3) There exist a bounded subset K of  O, int(K) 5/9, and 2 < 0 < s + 1 so that 

(i) 0 < OG(z, ~) <_ 9(z, ~)~ for all z C K, ~ > 0. 
and 
(ii) 0 _< 2G(z ,~)  _< 9(z,~)~ <_ �88 2 for all ~ C ]~+,z r K with the 
number k satisfying k > tg/(0 - 2). 

(g4) The function ~ ~ ~ in nondecreasing for all z c S2 a.e. and ~ > 0. 

Here we have denoted G(z, ~) = fo ~ 9(z, 7-)d-r. 
Since a similar approach will be used for the results of w we consider the 

more general framework of an equation of the form 

A u - V ( z ) u + 9 ( z , u ) = O  in ~ ,  (1.5) 

with V as before, satisfying (0.5), and 9 satisfying (gl)-(g4). Here we have set 
= 1 for notational simplicity. 

Then we consider the functional J : H --~ ~ associated to this equation, 

' /  / J(u) = ~ IVul 2+  g(z)u 2 -  G(z ,u ) ,  u e H .  (1.6) 

I2 S-2 

Then J is of class C 1 in H .  Let us notice that the function f considered in the 
introduction satisfies the properties given for 9, except for (g3) (ii). This last 
assumption implies that J satisfies the Palais Smale condition as we show next. 

L e m m a  1.1 Let {un} be a sequence in H such that J(un) is bounded and 
Jl(un) --~ O. Then Un has a convergent subsequence. 

Proof We have that {un } is bounded in H .  In fact, using (g3) we easily see that 

I I~Unl2+V (z)u2 ~ I 9(Z, Un)Un +o(llunIlH). (1.7) 
. 1  , J  f2 K 

It also follows from the assumptions that 
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~iIVUni2+V(z)u2 = SG(z,Un)+O(1) 
S2 a'2 

S 1 i V(z)u2+O(1). (1.8) <_ G(z,u.)+ 
X a\K 

Thus, from (1.7), (1.8) and (g3) we find 

o f o f  v(z)u2+o(llu.llM)+o(1). (1.9) (7 -  1) IVu.12 + V(z)u2. <_ 
~\K 

Then, it follows from the choice of k in (g3) that {Un } is bounded as desired. 
Let us choose a subsequence, still denoted by {un }, weakly convergent to u 

in H.  This convergence is actually strong. Indeed, it suffices to show that, given 
6 > 0, there is an R > 0 such that 

[ {IVu.I 2 + V(z)u2} < 6, lim sup (1.10) 
#l ---'+ O O  J 

S?\SR 

where Be denotes the ball with center 0 and radius R. We may assume that R is 
chosen so that K C BR/> 

Let ~7e be a cut-off function so that r/R = 0 on BR/2, r/R = 1 on a'2 \ BR,0 _< 
r/R _< 1 and IVrJRI _< c/R. Since {u~} is a bounded P.S. sequence, we have that 

so that 

S {Iv. . I  
a'2 

< J t ( u n )  , rlRU n > =  o(1), 

+ V(Z)U2}~R +funVu..  V~R 
S2 

f l/V(Z)U2~7R+~ = 9(z ,  u . )u.~R + o(1) < ~- 
Y2 S2 

We conclude that 

i IVunl + V(z)u 2 ~ c Ilu. IIL=<~>llVu. IIL=<~ > +o(1),  

S2\BR 

(1.11) 

(1.12) 

(1.13) 

for IlullH small enough. Next, choosing 0 c H \ {0} non negative, with its 
support contained in the set K given in (g3), we see that 

J(u) ~ cllull~r (1.14) 

from where (1.10) follows. [] 
The previous lemma makes the Mountain Pass Theorem applicable to the 

functional J .  In fact, on the one hand, it is easily checked using (gl) that 
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J ( t r  --+ - ~  as t ~ + ~ .  (1.15) 

The Mountain Pass Theorem thus implies that the following is a critical value 
of J 

c = inf sup J( 'y(t)) ,  (1.16) 
"yC~ t El0,1] 

where , ~  = {7 E C([0, 1] ,H)  / "7(0) = 0 and J(7(1))  < 0}. 
Condition (g4) implies that the critical value c can be characterized in a 

simpler way, as has been essentially established in [9] and [2]. We provide a 
proof  for completeness. 

Lemma 1.2 If (gl)-(g4) hold then 

c = inf supJ(~-u). (1.17) 
uEH u~ ~-__>0 

Proof Let u E H ,  u ~ 0, then the function 7- ~ J('ru) has at most one nontrivial 
critical point for 7- > 0 and it satisfies 

/ iVul2 _l_ V(z)u2 = / 9(Z,  T..~_U)UT- , (1.18) 

S2 S2 

this is because (g2), (g4) and (g5). We define ~(u)  as the unique solution of 
(1.18) if a solution exists, and we put ~(u)  = eo when no solution exists. If  we 
put C* the right hand side in (1.17) we see that C < C*. In order to prove the 
other inequality we note that 

C* = inf J(v) (1.19) 
vEM 

where M = {v = ~(u)u / u E H,u 7~ 0 ,~ (u )  < oo}. Thus we only have to 
show that given 3' c ~ there exist ~ E [0, 1] such that ~,('~) C M.  Assuming the 
contrary we have ",/(7-) ~ M  for all ~- C [0, 1]. In view of (gl)  and (1.18) 

iv3'(7-)12 +.y(7-)2 > 2 g(z,.y(7-))~(7-). (1.2o) 
S2 S2 

Then, using (g3) (i) and (ii) we find for all ~- E [0, 1] 

0 / 
J(~(7-)) > (~ - 1) G(z, 3'(7-)) >_ O, (1.21) 

g 

and this contradicts the definition of ,~ .  []  

We end this section with a comparison result between critical values of  an 
"autonomous" functional which will be used in w Let f satisfy assumptions 
(fl)-(f4) and let us consider two open subsets of I~ N, g?l and ~72- Then we write 

1 / , • u [ 2 + u 2  IF(u).  (1.22) I(u) = ~ 

R N R N 
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Let us consider the mountain pass values ci, i = 1,2 of I when restricted to 
Ho 1 (Oi), namely 

c i =  inf supI(7-u). (1.23) 
uEHI(J'~i ) T ~ O  

u~o 

Then we have, 

Lemma 1.3 I f  f2a C g22, J'21 ~ ~2 and Cl is a critical value o f  the restriction o f  

I to H01(J'21), then 

c2 < cl. (1.24) 

Proof  A proof of this fact was given in [1], so that we only provide a sketch. Let 
Ul E H 1(f21) be a critical point associated to cl. Then Ul is a positive solution 
of an elliptic equation in J'21, but it does not satisfies the same equation in J'22, 
by unique continuation. Thus ul is not a critical point of I in Hd (f22). Then 
we can deform the compact set ~ = { t l l l / T  E [0 ,7-1]) ,  where 7" 1 is such that 
I(7"ul) < 0, using the negative gradient flow. This will provide a path with values 
strictly less that cl. [] 

2 Local mountain pass: the potential 

We devote this section to the proof of Theorem 0.1. As we already mentioned, in 
order to localize the mountain pass, we consider the modification of the function 
f given by 9 in (1.4), and the associated functional J~ defined as 

e 2 f  I f  f 4 ( u )  = -~- IXTu[2+ ~ V (z)u 2 -- G ( z , u )  , u E H.  

S'2 $2 ~2 

Since the modified function g satisfies assumptions (gl)-(g4), then the results of 
w 1 yield the following lemma. 

Lemma 2.1 The functional J~ possesses a positive critical point  u~ E H so that 

Jc (u~) = inf sup J~ (7-u). (2.1) 
uEH 
u~o ~->0 

Next we use a test function to derive a useful estimate of the number in (2.1). 
Set Vo = minA V and let w E H l(]~ N) be a least energy solution to 

A w  - VOW + f ( w )  = O, 

that is, w satisfies 
c = Io(w) = inf sup lo(TV), (2.2) 
--  vEHI(RN) T ~ O  

v~O 

where Io is defined as 

lflvv[2+Vov2 fF(v) (2.3) Io(v) = ~ 

R u R ~' 
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We may assume that w maximizes at zero. Also set Then, let z0 E A be such 

that V(zo) = Vo and set u(z) = rl(Z)W((Z - zo)/e) where r 1 is a smooth function 
compactly supported in f2 and with r 1 - 1 in a neighborhood of  z0. A direct 
computation then shows that 

Je(us) < supJs(tu)  = eN {c  + O(1)}, (2.4) 
t>o 

with o(1) ~ 0 as ~ ~ 0. 
On the other hand, combining this, the fact that J~(ue)ue = 0 and using the 

definitions of  9 and the number 0 we easily obtain that 

where C > 0 and 

~ fy2 e2 I VUe [2 .FV(z)u 2 ~ c6.N, (2 .5 )  

~( 0 - 2  1 

~ :  ~ k ) > ~  
thanks to our choice of  k. 

We devote what remains of  this section to prove that when e is sufficiently 
small us actually solves (0.4) and satisfies (0.8). Let a > 0 be the number chosen 
in the definition of  9. Then the desired result will follow if we show that for all 
small e one has us < a on ~2 \ A. Crucial step in the proof of  this fact is the 
following 

Proposition 2.1 I f  ms is given by 

then 

me = max us(z), (2.6) zEOA 

lim me = 0. (2.7) 
S---~O 

Moreover, for  all ~ sufficiently small us possesses at most one local maximum 
ze E A and we must have 

lim V (zs) = Vo =ra in  V (z ), (2.8) 
e - -+O zEA 

Remark. This proposition can be regarded as a local version of the global con- 
centration result of  Wang. See Theorem 2.1 in [10]. 

Before proving this proposition, let us see how Theorem 0.1 follows from it. 

Proof  o f  Theorem 0.1. By Proposition 2.1 there exists ~o such that for all 0 < 

~ ~0, 

us(z) < a for all z E OA. (2.9) 

The function us E H solves the equation 

e2Au - V(x)u  + 9(x,  u) = 0 in l?. (2.10) 
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Since u~ E Hd(f2) we can choose (us - a)+ as a test function in (2.t0) so that, 
after integration by parts one gets 

where 

/ ~  e2 I V(us -a)+ 12 +c(z ) (u~  - a)2++ c(z )a(us a)+ O, I 

\A 
(2.11) 

From (2.5) we see that 

IIv~IIH'<R~) ~ c (2.13) 

for some C > 0. Note also that ve satisfies 

Ave - V(zc + ez)v~ + f ( v e )  = O. 

Now, each sequence cj ~ 0 possesses a subsequence which we label in the same 
way such that zcj --+ 2, with V(2) = Vo. From (2.13), and elliptic estimates, we 
have that this subsequence can be chosen in such a way that vej ~ v uniformly 
over compacts, where v E H I ( ~  N) maximizes at zero and solves 

A v  - Vov + f ( v )  = 0 in ~ g .  (2.14) 

It is well known that positive solutions to (2.14) decay exponentially and they 
are radially symmetric. See the work by Gidas, Ni and Nirenberg [4]. It follows 
from (2.13), (2.14) and the growth assumptions on f that 

I0@) _< c (2.15) 

where the constant C does not depend on v, but on the family {ve}. Then we 
obtain the existence of R > 0 so that v ( z )  < a for all Izl = R. 

From these facts, one can easily conclude the existence of a number R > 0 
such that v~(z) < a if Izl = R, for all c > 0 sufficiently small. Since no other 
local maxima of ve exists, as Proposition 2.1 states, we conclude that actually 
ve(z)  < a for all Izl > R. Then we can use the maximum principle to conclude 
that v~ < wo for I z I> R, where w is an appropriate multiple of the fundamental 
solution of A w - b w  = 0 with b = c ~ - f ( a ) / a  > 0. Since w0 decays exponentially, 
relation (0.8) follows, and the proof of the theorem is complete. [ ]  

g(z , u,  (z ) ) 
c(z)  = Y ( z )  (2.12) 

u~(z) 

The definition of g yields that c(z)  > 0 in ~2 \ A, hence all terms in (2.11) are 
zero. We conclude in particular 

u~(z) <_ a fora l l  z c [2 \ A. 

Consequently u~ is a solution to equation (0.4). To obtain (0.8), we note that the 
maximum value of u~ is achieved at a point z~ c A and it is away from zero. 
Then we set 

v~(z ) = u~(z~ + ~z ). 
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To prove the proposition we will establish the following fact: I f  ~ .[ 0 and 

zn E A are such that u~,(zn) _> b > 0, then 

lim V(zn)= Vo. (2.16) 
,1'/---->OO 

We argue by contradiction. Thus we assume, passing to a subsequence, that 
zn ~ ~ c A and 

V(2) > Vo. (2.17) 

Similarly to the proof  of the theorem given above, we consider the sequence 

vn(z) = u~,(zn + e,z)  (2.18) 

and study its behavior as n goes to infinity. The function v~ satisfies the equation 

A v  n - V ( xn  "-I- e n Z ) V  n .-I- g ( x  n .,~ e n Z  , V n )  : 0 i n  On, 

vn = 0 on OOn 
(2.19) 

where S2n = ~ - 1 { O _  xn}. Again from (2.5), we see that vn is bounded in 
H I(~N), and from elliptic estimates it can be assumed to converge uniformly 
on compacts subsets of  II~ u to a function v C H I(II~ u).  Now, the sequence of 
functions Xn(Z) =- XA(Z, + enZ) can also be assumed to converge weakly in any 
Le over compacts to a function X with 0 < X < 1. Therefore, v satisfies the 
limiting equation 

Av - V(~)v+O(z,s)=O in ~N. (2.20) 

where 
9(z, s) = X(z)f(s) + (1 - X(z))f(s). (2.21) 

Associated to the equation (2.20) we have the functional J : H I ( R  u)  ~ 
defined as 

' /  / J(u)= -~ [VulZ + v(g)w 2 -  G(z,u) , u E HI (~  N) (2.22) 

R N RN 

where G(z,s)  = fo O(z,~-)d~-. Then v is a critical point o f . l .  We also set 

l flvul2+V(z.+e.z)w2 /&(Zn+CnZ,U), u EHd(g2,). J.(u) = ~ 

s~. S~n 

Then Jn(v.) = r so that the key step in the proof  of  the proposition 
is the following 

Lemma 2.2 
l iminfJn(vn) >_ J(v). 
n --> O0 

In particular, J ( v )  < c where c_ is given by (2.2). 
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Proof. Write 

hn = ~(IVVnl 2 + V(zn +enZ)V 2) -- G(Zn +enZ,Vn). 

Then, choose R > 0. Since Vn converges in the C 1-sense over compacts to v we 
get 

nli.ln /hn " 1fl~312+V(')~12-/a(z,v) . 
BR 8R BR 

Since v E H I(N N), we have that for each given 6 > 0, 

[ h. >_ 2(v) - 6, nli~m~ 
BR 

provided that R was chosen sufficiently large. Thus it only suffices to check that 

l iminf  [ hn _>-6 ,  (2.23) n---+oo J 
sT,\B, 

for large enough R. Let us consider a smooth cut-off function r/R such that r/R -- 0 
on BIr r/R -- 1 on Ii~ N \ BR, 0 < ~Te <-- 1 and ] Vr/N IN C, C independent of  R. 

We use w,  = rlRv, E Hi ( f2 , )  as a test function for J~(v~) = 0 to obtain 

0 = J~n(Vn)Wn = En + : 2ha + 9n (2.24) 

S~.\SR 

where 9n = 2G(Zn + ez) - 9(z. + e.z, v.)v. and E~ is given by 

En = f V~Jn " V(~]R~Un)+ V (Zn +CnZ)T]R~U2 n --  f 9(Zn +eZ, Vn)rlRVn. (2.25) 

Bn\Ba-l Bn\Ba-i 

Again, the convergence of Vn in the C l_sense over compacts to v and the fact that 
v C H 1 (N:N) implies that for R > 0 sufficiently large we will have limn--.~ ]En I <- 
6. On the other hand, the definition of 0 together with the properties of  f give 
that 9n < O. Using this in (2.24), (2.23) follows, and the proof of  the lemma is 
complete. []  

Now we are ready to obtain a contradiction with (2.16). Since v is a critical 
point of J ,  and ~0 satisfies hypothesis (g4) in w 1, we have that 

] ( v )  = maxY0-v)  (2.26) 
I->0 

Then, since f(s) >_ f(s) for all s we have that 

J (v )  _> inf suph( - ru)  - g (2.27) 
uEHI(RN) T>O 

u~ 

where I~ is given by 
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' f I~ul2+ v(~)u 2 fF (u) ,  u c HI(]~N). Ie(u) = ~ 

R N R N 

(2.28) 

But, since V(~) > V0, we clearly have that 6 > c where c is the number defined 
in (2.3). Hence J(v)  > c. But this contradicts the previous lemma, and the proof 
of the claim, i.e. (2.16), is thus complete. [] 

To conclude the proof of Proposition 2.1, we need to show that uc possesses 
at most one local maximum in A. Assume the contrary, namely the existence 

l 2 of a sequence ~n --+ 0 such that u~, possesses two local maxima zn, Zn E A. 
U i Then ~,(zn) > b > 0, i = 1,2. From (2.16) we have that these sequences stay 

away from the boundary of A. Set Vn(Z) = uc,(z2 + enZ). Then, it turns out, 
that after passing to a subsequence vn converges in the C z sense over compacts 
to a solution v in HI(~  N) of equation (2.14), where V0 is replaced by V(~I). 
Here ~1 = limz2. The function v has a local maximum at zero, it is radially 
symmetric and radially decreasing, as the arguments in [4] show. Then zero is 
a nondegenerate global maximum. This and the local C 2 convergence of Vn to 
v clearly implies that the second local maximum of Vn must go away, namely 
zn = e~l(z~ - z 2 )  satisfies Iz . I  ~ + ~ .  Using this fact, a slight variation of the 
argument in the proof of Lemma 2.2 yields 

linm inf e-s J~, (u~,) > 2Io(w) = 2s 

This is in obvious contradiction with (2.4), and the proof of the proposition is 
complete. [] 

3 Local mountain pass: the domain 

In this section we will prove Theorem 0.2. The hypotheses on the behavior of the 
domain, given through the function p, has certain analogy with the hypotheses on 
V in Theorem 0.1. We exploit this analogy, and we obtain results on existence 
of positive solution to elliptic equations in unbounded domains. 

Theorem 0.2 is a particular case of a more general result, Theorem 3.2 below. 
Before stating it, let us see another special case: a domain defined as the region 
'below' the graph of a positive function. Let 9 be a smooth function 9 : NN-I 

with 0 < 9(x) Vx C ~lv- l .  We consider 

~'~ = { ( t , X )  E ]~N--I X ]~ I 0 < X < 9(t)} (3.1) 

and the problem 

{ e2 A, u + Uxx - u + f (u ) = 0 in f2 
(3.2) 

u = 0 o n 0 Y 2 ,  u > 0 i n Y 2 .  

Here z > 0 is a parameter and At denotes the Laplacian with resPect to the 
N - 1-dimensional variable t. We have 
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Theorem 3.1 Assume there is a bounded neighborhood A C ~N-1 containing 0 
such that 

max 9 > max 9. (3.3) 
A OA 

Then there is an Go > 0 so that for  all 0 < ~ < Go there is a positive solution 
u~ E H l(f2) to problem (3.2). Moreover a property like (0.12) holds. 

Theorems 0.2 and 0.3 are consequences of  a much more general existence 
result which we state next. Assume N > 2 and let 1 < g < N - 1. We identify 
~N = Re • ~N-e  and write z E ]~N as z = ( t , x )  with t E ~e ,x  E ]R N-e. 

We consider a smooth domain f2 in I1~ g satisfying the following set of prop- 
erties: 

(f21) There is a bounded domain A in R e containing 0R~ with D - (A • I~N-e)N 
g2 bounded. Additionally, for each z E OD A Of 2 the normal vector to 0f2 
at z has a non-zero x-component. 

In what follows we denote by f2 t the t-section of D, that is 

s~' = {x ~ R N-~ / ( t , x )  c J2}, 

where t E A. 
(Y22) For all t E OA we have ~2 ~ /  C Y2 ~ and Y2 t C Y2 ~ for all t E A. 

For a domain Y2 satisfying the properties given above we consider the semi- 
linear elliptic problem 

{ ~2Atu + Axu - u + f ( u )  = 0 in Y2 
(3.4) 

u = 0 o n 0 f 2 ,  u > 0 i n g ? ,  

where z~ t and Ax represent the Laplacian operators with respect to the t and x 
variables respectively. Note that the situation in theorems 0.2 and 3.1 falls within 
this framework with g = 1 and g -= N - 1 respectively. 

On problem (3.4) we have the following result, which includes Theorems 0.2 
and 3.1 as special cases. 

Theorem 3.2 Assume (f21), (f22) and ( f l )  - (f4) hold. Then there is an Go > 0 
such that f o r  all 0 < e < Go, problem (3.4) has a positive solution u~ E Hi(f2). 
Moreover the function ue concentrates on A in the sense that there is a sequence 
t~ E A with the property that 

ue( t ,x )  <_ a e x p { - ~ I t  - t~l} (3.5) 

for  all ( t , x )  E ~ and some positive constants ce, ~. 

Existence of  "least energy" positive solutions of semilinear equations in un- 
bounded domains has been considered by several authors. See for example [1], 
[5] and references therein. In these works global assumptions on the domain are 
made. 
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The proof of  Theorem 3.2 is similar to that of  Theorem 0.1, except that now 

we rely on a different limiting problem. 
Let us consider D = (A • ~N-e )  A (2, as given in ($21). Then we modify f 

in the following way outside D:  we set 

9(z, s) = Xo(z)f(s) + (1 - Xo(z))f(s). (3.6) 

Thus we search for critical points of  the functional 

J~(u) = 2 f I'~xUl2"I'E2I~tul2+u2-- f G(Z,U), u E H I ( o ) .  (3.7) 

S2 

Then it follows from the results of  Section 1, the existence of  a critical point u~ 
of  J~ with a variational characterization like (2.1). To estimate J~(us) we set 

l f lvul2 + u2 f F(u) (3.8) I (u) = -~ 

Then I possesses a critical point w in H ~ = Hd(~ t • g2 ~ so that 

I(w) = ~ = inf supl(~-u). (3.9) 
uEnO 7->0 

u # 0  - -  

Similarly to w we can use this w to construct a test function in the variational 
characterization of  ue to obtain 

Jc(u,) <_ et(e + o(1)). (3.10) 

The result of the theorem will follow if we prove that 

m a x u e ~ 0  a s ~ 0 ,  (3.11) 
OD 

since the same argument given to prove Theorem 0.1 from Proposition 2.1 ap- 
plies. To prove (3.11) we argue again by contradiction, assuming the,existence 
of  sequences en --~ 0 and zn = (tn,x,) E (OA x ~lV-t) N ~ with tn ---+ -[ E OA 
and u,,(zn) > b > 0. Then we write z = ( t ,x)  E ~t  • It~N-Z and set 

v . ( z )  = u~.(t~ + ~ . t , x ) .  

where, we assume that v, is extended as zero outside its domain of definition 
g-2, -- {(t ,x)  / (t, + ent,x) E S'2}, so that vn is understood as an element of  
Hl(~N).  

Then v, satisfies the equation 

AVn--vn+g( tn+ent ,X ,Vn)=O foral l  ( t ,x)  EJ2 , ,  (3.12) 

and (3.10) implies that the sequence v, is bounded in HI(~N) .  This, interior 
and boundary elliptic estimates, using the regularity of  J2 and ((21), imply that 
vn converges uniformly and in H I(I~ N) over compact sets to a nonzero function 
v E H d ( ~  x Y2 ~) satisfying 
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{ A v - v + ~ ( z , v ) = O  in ~ e •  
(3.13) 

u = 0 on N e • 0S2 r 

where 0(z, s) = X(z)f(s)+(1 -X(z))f(s) and X is some measurable function such 
t h a t 0 < X <  1. 

Now, let .In be the energy functional associated to (3.12) and .] that of (3.13). 
Then, exactly the same argument used in the proof of Proposition 2.1 yields 

lim in f J , (v , )  > ](v). 

Therefore, from (3.10) one gets ] ( v )  < 6. But this is impossible, since clearly 
J (v )  is greater than or equal to the mountain pass value of  the functional I given 
by (3.8) over Hd(]~ l x Or), which is strictly less than ~. 

This proves that me ~ 0. From here it follows, as in the previous section, 
that u~ actually solves equation (3.4) for all small e and that all local maxima 
of  u~ must lie in A •  Let z~ = (t~,x~) E J2 with t~ E A such that 
u~(z~) > a is a local maximum of u~. We define v~(t,x) = us(te + et,x) for 
z = ( t ,x)  E ~e • ~ N - t .  Next with essentially the same arguments given above, 
and recalling that O t C g-2 ~ for all t E A \ {0}, we find that t~ --+ 7, where ? 
is such that J2 ~ = ~o,  and that there is a sequence en ~ 0 and v, = v~, ---+ v 
uniformly and in H I (~  u)  over compacts. The function v satisfies the equation 

A v - v + f ( v ) = O  in ~ t x y 2  ~ 
(3.14) 

v = 0 on ]I~ t x 0f2 ~ 

and v(z) > 0 for z E N e x f2 ~ Using the moving planes argument as in [4], only 
in the t variables, one can get that the positive solutions of  (3.14) are radially 
symmetric in the variable t and increasing along the t-rays. These facts allow 
us to show that for a number R > 0 v(z) < a if lzl = R. Here we use that 
for the solutions v of  (3.14) we are interested in, the functional I given in (3.8) 
is uniformly bounded. Then, using the uniform convergence of  the sequence vn 
over compact sets, and the fact that the local maxima of  Vn must be at a finite 
distance, we find that vn(z) < a for all Izl > R. From here the constants a and 
/3 can be found, depending only on the family {v~}, so that (3.5) holds. 
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