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1. Introduction

This paper concerns mainly with the question of solvability of an elliptic
problem of the form

&2u+u&&=h in B
(1.1)

�u
�n

=0 on �B,

where B is the unit ball in RN, N�2, &>1 and h # C 0(B� ) is radially
symmetric. Before specifying the exact meaning we will give to a solution
of (1.1) we make the following observation: If u # C 0(B� ) is a nonnegative
radial function satisfying distributionally

&2u+u&&=h in B

then u>0 on B� "[0]. In fact, if u(r� )>0, we claim that u(r)>0 for all
0<r�r� . To see this, we note that u satisfies the equation

(sN&1u$)$=(u&&&h) sN&1, s # (r, r� ).
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From here, it is easily seen that with no loss of generality we may assume
that u is nondecreasing on [r, r� ] and u>0 on (r, r� ]. Multiplying by sN&1u$
the above equation we find

d
ds \

|sN&1u$| 2

2 +�&
d
ds \

u&&+1(s)
1&&

r2(N&1)+mu+
where m�&h&� . Then, integrating we find

r2(N&1) u1&&(s)
&&1

�r2(N&1) u1&&(r� )
&&1

+mu(r� )+
|r� N&1u$(r� )| 2

2
(1.2)

for s # (r, r� ). Since u is continuous, we conclude after letting s a r that
u(r)>0. A similar argument shows that u(r)>0 for r� <r�1. By virtue of
this observation, it seems natural to define a solution to (1.1) to be a
u # C 2(B� &[0]) & C(B� ) satisfying u>0 on B� "[0] and solving (1.1) in the
distributional sense.

The question arises of whether a solution to (1.1) in the above sense may
vanish at the origin. This is not the case in dimension N=1, however for
N�2 one may have solutions to (1.1) such that u(0)=0, as the following
example shows:

Let ' be a smooth function on [0, 1] such that 0�'�1 and satisfying
'(r)=1 for r # [0, 1

3], '(r)=0 for r # [ 2
3 , 1]. Then let

u(r)=c'(r) r2�(&+1)+(1&'(r)),

where c=(2�(&+1)+N&2)&1�(&+1)>0. It is easily checked that u defined
in this way solves weakly an equation of the form (1.1) for some smooth
function h. This example marks an important difference between the one
and higher dimensional cases. The behavior of vanishing weak solutions at
the origin can be estimated, however. For any such solution one must have
u(r)�cr2�(&+1) for some c>0. This implies that u&& # L p(B) for some
p>N�2, hence the solution u is actually in W 2, p(B) and is Ho� lder con-
tinuous. This fact will be established later. Actually one can go further and
prove that there are a priori estimates :, ;>0 such that all solutions u to
(1.1) satisfy

:r2�(&+1)�u(r)�;. (1.3)

109neumann problem solvability
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In order to attack the existence problem for equation (1.1), it seems
natural to consider a family of approximating equation obtained truncating
the nonlinearity u&& near u=0 and then extending nicely the truncation to
the left. For example, one may consider the family of approximate
problems

&2u+(u6s)&&=h in B
(1.4)

�u
�n

=0 on �B

for small s>0, where u6s=max[u, s]. This approach works nicely in
dimension N=1, see, e.g., [7] where a related periodic problem is treated.
The reason is basically the existence of a uniform positive lower estimate
for the approximating solutions. This is not the case if N>1, thus intro-
ducing a technical difficulty. It seems therefore natural to consider an
approximating scheme that somehow ``pushes the solutions up'' near the
origin. To this purpose, we introduce the singular problems

&2u+u&&=h+= $0 in B

�u
�n

=0 on �B (1.5)

u>0 in B

where =>0 is small, and $0 denotes the Dirac measure supported at the
origin. This problem, in appearance more delicate than the original one,
has the nice feature of possessing a uniform positive lower estimate for its
solutions. To construct a solution to (1.5) a second approximating scheme
like (1.4) will work, as we shall see, yielding the following result.

Theorem 1.1. Problem (1.5) possesses at least one radial solution if
0<=<�B h or if =>�B h.

We do not know whether one can still show existence if ==�B h, however
uniformicity of the a priori estimates in = is indeed lost at this level.
Convenient a priori estimates for the solutions of (1.5) will permit us to
take the limit as = a 0 to obtain the following result:

Theorem 1.2. Problem (1.1) possesses at least one radial solution
provided that �B h>0.

110 del pino and hernandez
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It is immediately checked that the condition �B h>0 is actually necessary
for existence. To provide a uniqueness result we consider, more generally
than (1.1), the problem

&d 2u+u&&=h in B
(1.6)

�u
�n

=0 on �B

where d>0. We have the following result.

Theorem 1.3. Assume �B h>0. Then (1.6) possesses at least one radial
solution for any d>0. Moreover, there is a d0>0 such that this solution is
unique for all d�d0 .

The rest of this paper will be mostly devoted to the proof of the above
results. As we mentioned before, the existence result for (1.1) is already
known in dimension N=1, as established in [6]. In that reference the
authors consider the equation

&u"+u&&=h(t),

under T-periodic boundary conditions, and prove existence of a positive
solution provided that �T

0 h>0. Their proof carries over with only minor
variations to the Neumann case. This result was extended in [9] to a
second order singular potential system. T-periodic problems, including
equations of the form

&u"+u&&&f (u)=h(t),

where f is continuous on [0, �) and unbounded above, have been treated
in [2] and [3], respectively for the cases of an asymptotically linear and
a superlinear f.

It should be remarked that in the higher dimensional case, the related
problem

2u+k(x) u&&=0

under zero Dirichlet boundary conditions on a bounded smooth domain,
where the coefficient k is positive, has been considered by several authors,
see for example [1], [6], [5], [4] and their references. This problem is
actually of a very different nature than (1.1). From the existence point of
view, this problem is in some sense simpler than (1.1), since the sign of the
nonlinearity makes the Maximum Principle applicable to obtain estimates
which allow the use of e.g. a super-subsolutions scheme. It should be
emphasized that the above works mostly focuse on the behavior of the
solution (which is unique) near the boundary, where it vanishes.

111neumann problem solvability
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It is worth mentioning that the problem

2u+u&&=h(x)

under Neumann boundary conditions on a bounded, smooth domain
possesses a (unique) positive solution in case that h is, for example, strictly
positive. In fact, in such case a small and a large positive constant represent
respectively a sub and a supersolution to the above problem, thus provid-
ing existence. Uniqueness follows easily from the Maximum Principle.

This paper is organized as follows. In Section 2 we prove some
preliminary lemmas needed in Section 3 to find a priori estimates for
the singular problem (1.5) and for a family of truncated approximations
to it. In Section 4 we prove Theorem 1.1. Finally, in Section 5 we prove
Theorems 1.2 and 1.3.

2. Preliminary Lemmas

In this section we prove some preliminary results useful for deriving
estimates for solutions of an equation of the form

u"+
N&1

r
u$=u&&&h(r), r # (0, 1)

(2.1)
u$(1)=0

where h # C 0[0, 1]. These results, of elementary nature, will play a key role
in the derivation of a priori estimates for the singular problem (1.5) in the
next section.

Lemma 2.1. Assume that u is of class C 2 on [$, 1] for some 0�$<1
and satisfies the differential inequality

&\u"+
N&1

r
u$+�m, r # [$, 1]

(2.2)
u$($), u$(1)=0

for some m>0. Then, for any $<\�1 one has

sup
$�r�1

u� inf
$�r�1

u+mc( f (\)+1)

where c=c(N ) and f (\)={\2&N,
&log \,

if N>2
if N=2.

(2.3)

112 del pino and hernandez
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Proof. Since u satisfies

&(rN&1u$)$�mrN&1 (2.4)

we have that

&rN&1u$(r)�
m
N

(rN&$N ), r # [$, 1].

Hence, integrating again, we find

u(r)�u(1)+
m
2N

(1&r2), r # [$, 1]

so that

sup
$�r�1

u�u(1)+mc. (2.5)

On the other hand, we also have from (2.4),

u(1)&u(r)�m |
1

r

1
NsN&1 (1&sN ) ds, r # ($, 1].

It follows that

u(1)� inf
\�r�1

u+mc( f (\)+1) (2.6)

From (2.5) and (2.6) we obtain the validity of (2.3). K

Lemma 2.2. Assume that u is of class C 2, positive on some interval
[a, b] with 0�a�b�1, satisfying the differential inequality

u"+
N&1

r
u$&u&&+m�0 (2.7)

where m>0. Moreover, assume u(a)�+>0, u$(a)=0 and u$(r)�0 on
[a, b].

Then there exists a number %=%(&, m, +)>0 such that u(b)>%.

Proof. Let us denote u0=u(a). Multiplying both sides of (2.7) by u$ we
see that

d
dr {

u$2

2
+

1
&&1

1
u&&1+mu=�&

N&1
r

u$2�0

113neumann problem solvability



F
ile

:5
05

J
29

88
07

.B
y:

B
V

.D
at

e:
15

:0
1:

96
.T

im
e:

16
:2

9
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

21
28

Si
gn

s:
11

31
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

on [a, b]. Hence, since b�1 and u$(a)=0 we obtain for r # [a, b],

u$2(r)
2

+
1

&&1
1

u&&1(r)
+mu(r)�

1
&&1

1
u&&1

0

+mu0 . (2.8)

Assume that u(b) is less than a positive number %<+. Then (2.8) and the
fact that u0�+ yield that

u0�
c

%&&1 (2.9)

where c=c(&, m, +)>0. On the other hand, (2.8) implies that

|
u0

u(b)

dt

- 2 �u0
t (m&s&&) ds

�b&a�1,

hence

c |
u0

+

dt

- u0&t
�1 (2.10)

for some c=c(&, m, +). But the left hand side of (2.10) becomes arbitrarily
large if u0 does. Therefore u0 is bounded by some number depending only
on &, m, +. Thus, we conclude from (2.9) the existence of a lower estimate
for % of the desired form. This concludes the proof. K

Corollary 2.1. Assume &h&��m. Then there exists a number
%=%(m, &)>0 such that if u is a solution of (2.1) for which there are num-
bers a�\<1 with u(\)<%, u$(a)=0 and u$(\)�0, then u is nondecreasing
on [a, \].

Proof. If u were not nondecreasing on [a, \], it is easy to see that there
would be a point a<b1<\ such that u$(b1)<0, u(b1)<%. We let a1�a be
the first point to the left of b1 such that u$(a1)=0.

Note that

(rN&1u$)$=\ 1
u&&h+ rN&1>\ 1

u(a1)&&m+ rN&1

on [a1 , b1], hence

0>bN&1
1 u$(b1)>

1
N

(bN
1 &aN

1 ) \ 1
u(a1)&&m+ ,

114 del pino and hernandez
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therefore

u(a1)>
1

m1�& .

Then we apply the last lemma with this m and +=m&1�&. To conclude
the existence of a number %(m, &)>0 such that if %<%(m, &), the above
situation is impossible. This concludes the proof. K

3. A Priori Estimates for the Singular Problem

We consider in this section the problem of finding a priori estimates for
the radial solutions of

&2u+(u6s)&&=h+= $0 in B
(3.1)

�u
�n

=0 on �B,

where $0 denotes the Dirac measure supported at 0, =>0, s>0, &>1. We
will designate by gN (r) the fundamental solution for the Laplacian, namely

gN (r)={
1

|N (N&2)
r2&N,

&
1

2?
log r,

if N>2

if N=2,
(3.2)

where |N denotes the surface measure of the unit sphere in RN. We will
prove two propositions, respectively yielding an upper and a lower estimate
for the solutions of (3.1).

Proposition 3.1. Assume h # C(B� ) is radially symmetric, and such that
�B h>0. Then, given 0<=0<�B h there exist numbers s0>0, ;>0 such that
for any 0<=<=0 , 0<s�s0 and any radial solution u(r) to (3.1) for such s, =
one has

u(r)&=gN (r)�; \r # (0, 1].

Proof. Let us assume that N>2. Since u satisfies (3.1), it follows that

v(r)=u(r)&
=

|N (N&2)
r2&N

is of class C 2 on B and satisfies

&2v�h in B.

115neumann problem solvability
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Then, the same integration that leaded us to inequality (2.5) yields

sup
B

v�v(1)+c &h&� ,

so that to prove the proposition it suffices to show that v(1) is uniformly
bounded or equivalently that u(1) is. To prove this, we argue by contradic-
tion, namely we assume the existence of sequences 0<=n<=0 , sn a 0 and
solutions un to (3.1) for ===n , s=sn so that

un(1) � �. (3.3)

It follows from Lemma 2.1 that we actually have

inf
\�r�1

un � � (3.4)

for all \>0. Now, the fact that

|
B

1
(un6sn)&=|

B
h+=n

and (3.4) imply that for any small number %>0,

inf
B

un<%

for all sufficently large n. Since un(0+)=�, this infimum must be attained
at some number $n # (0, 1]. Note then that, from Lemma 2.2, we must have
that un is nonincreasing on (0, $n] for any large n.

Next, for a small number %>0 we denote

$$n=inf[0<\<1 | un(r)�% for all r�\]. (3.5)

From (3.4) we must necessarily have

$$n � 0 as n � �.

Moreover, Corollary 2.1 guarantees that if % is chosen small enough then
un is non-decreasing on [$n , $$n] for large n since u$n($$n)�0.

At this point we introduce the change of variable r=t&1�(N&2). With the
notation f� (t)=f (t&1�(N&2)), it is easily checked that u~ n satisfies

u~ n"=
1

(N&2)2 t* ( fn(u~ n)&h� (t)), t # [1, �) (3.6)

116 del pino and hernandez
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where fn({)=({6sn)&&, *=2(N&1)�(N&2). We use the notations
Rn=$2&N

n , R$n=$$2&N
n . We also denote by : the positive number

:=
1

(N&2)2 |
�

1

h� (t)
t* dt=

1
(N&2) |N

|
B

h.

We will prove the following facts.

(a) limn � � u~ n(R$n+{)=&: uniformly on compacts subsets of
[0, %�:).

(b) limn � � (Rn&R$n)=%�:.

Before proving (a) and (b), let us see how a contradiction is derived from
them. Consider a small, fixed number '>0 to be chosen later. Without loss
of generality we assume that % was chosen so small that

(1&') fn({)< fn({)&h� (t)<(1+') fn({) (3.7)

whenever {<%, for all sufficiently large n. Let |n denote the function

|n(s)=u~ n(Rn+s).

Then

|n"(s)�
c

R*
n

(1&') fn(|n(s)) if s<0 (3.8)

|n"(s)�
c

R*
n

(1+') fn(|n(s)) if s>0 (3.9)

provided that |n(s)<%. Here, c=(N&2)&2. Thus (3.8) holds on the
interval [&(Rn&R$n), 0].

Multiplying (3.8) by |$n and integrating we obtain that

1
2

|$n(s)2�
c

R*n
(1&') _|

|n(s)

|n(0)
fn({) d{& (3.10)

for s # [&(Rn&R$n), 0]. Hence (3.10) implies

(1&')1�2 (&s)�|
|n(s)

|n(0) \
2c
R*

n
|

z

|n(0)
fn({) d{+

&1�2

dz. (3.11)

Similarly, we see from (3.9) that if we fix s # (&(Rn&R$n), 0) and s� >0 is
such that |n(s� )=|n(s), then

(1+')1�2 s� �|
|n(s)

|n(0) \
2c
R*

n
|

z

|n(0)
fn({) d{+

&1�2

dz. (3.12)

117neumann problem solvability
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We conclude from (3.11) and (3.12) that

|n(s)�|n(&+s) (3.13)

whenever s # (&(Rn&R$n), 0), where

+=\1&'
1+'+

1�2

.

Next we let a=+%�2:. Then using (a) and (b) we obtain &a�+ #
(&(Rn&R$n), 0) for large n, and

:=& lim
n � �

|$n \&
a
++= lim

n � �
c |

0

&a�+

fn(|n({)) d{
(Rn+{)* . (3.15)

But, from (3.13), and the fact that fn is nonincreasing we obtain

|
a

0

fn(|n({))
(Rn+{)* d{�|

0

&a

fn(|n({�+))
(Rn&{)* d{

�\1+
(1&+) a

+Rn +
&1

|
0

&a�+

fn(|n({))
(Rn+{)* d{. (3.16)

But

|$n(a)=c |
a

0

fn(|n({))
(Rn+{)* d{+o(1).

Therefore, from (3.14) we obtain

|$n(a)�+:+o(1).

Now let bn denote the (unique) positive value where |n(bn)=%. Then
a<bn , from (3.13). Since |n may be assumed to be convex on (0, bn), we
have that

|$n(+�)�|$n(a)+c |
�

bn

d{
(Rn+{)* ( fn(|n)&h� ). (3.18)

But |n�% on [bn , �), hence the second term on the right hand side of
(3.18) is o(1). Using this, (3.17) and the fact that

|$n(+�)=
1

(N&2) |N
=n�

1
(N&2) |N

=0 ,

118 del pino and hernandez



F
ile

:5
05

J
29

88
12

.B
y:

B
V

.D
at

e:
15

:0
1:

96
.T

im
e:

16
:2

9
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

23
09

Si
gn

s:
11

66
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

we arrive to the inequality

+
(N&2) |N

|
B

h=+:�
1

(N&2) |N
=0 . (3.19)

Since, recall, + given by (3.14) can be chosen arbitrarily close to 1 and
=0<�B h, we have arrived to a contradiction which proves the proposition,
modulo the proof of assertions (a) and (b), which we carry out next. To
see (a), we first observe that

lim
n � �

u~ $n(R$n)= lim
n � �

c |
Rn

1 \ 1
u~ &

n

&h� + dt
t*=&c |

�

1

h� dt
t* =&: (3.20)

where we have used the fact that u~ &&
n is uniformly bounded on (1, Rn), (3.4)

and dominated convergence. Now, u~ n is decreasing and convex on (R$n, Rn),
hence for any given =>0 we have that

vn(t)#un(R$n+t)�%&(:+=) t

for all t # (0, Rn&R$n). It follows that fn(vn) is uniformly bounded on
(0, %(:+2=)&1), thus

vn"(t)=( fn(vn)&h)
1

(R$n+t)* � 0

as n � �, uniformly on t in this interval. From here and (3.20), assertion
(a) follows.

Let us now prove (b). We assume that, on the contrary, there is a
number '>0 such that Rn�R$n+%�:+2'. Note that the above proof also
shows that vn(t) � %&:t uniformly on compacts subsets of [0, %�:). Since
vn is decreasing and convex on [0, %�:+'], it follows that

v$n \%
:

+'+� 0.

Hence, we have

v$n \%
:

+'+&v$n \%
:

&'+� : (3.21)

and also,

v$n \%
:

+3'+&v$n \%
:

+'+� 0. (3.22)
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But, on the other hand,

v$n \%
:

+'+&v$n \%
:

&'+
=c |

%�:+'

%�:&'

fn(vn(t))
(R$n+t)* dt+o(1)

�c \1&
2'
Rn+

&*

|
%�:+3'

%�:+'

fn(vn(t&2'))
(R$n+t)* dt+o(1). (3.23)

Since fn is nonincreasing and vn(t)�vn(t&2'), we get, using (3.22), (3.23)
that

v$n \%
:

+'+&v$n \%
:

&'+=o(1),

which contradicts (3.21). Thus (b) is stablished, and the proof of the
proposition when N>2 is complete. For N=2 the same proof applies,
except that the change of variable r=t&1�(N&2) in the above argument
should be replaced by r=e&t, t # [0, �). K

Proposition 3.2. Given 0<=<�B h, there exist numbers s0>0, :=>0
such that for any solution u to (3.1) for 0<s<s0 , one has

:=�u(r) \r # [0, 1].

Proof. We assume N>2 and argue again by contradiction, assuming
the existence of a sequence sn a 0 and solutions un to (3.1) for s=sn such
that

inf
B

un�o(1).

We consider again the change of variable t=r2&N and employ the notation
of the proof of Proposition 3.1, so that u~ n satisfies equation (3.6). We
denote by Rn the point where u~ minimizes and for a small %>0 we define

R$n(%)=sup[R>1 | u~ (t)�% \1�t�R].

As we will see next, the above numbers are well defined for any sufficiently
small %. Observe first that

|u~ n(t)|=c |
t

1
( fn(u~ n)&h)

dt
t*�2c |

�

1
|h|

dt
t*+

=
(N&2) |N

,

so that u~ $n is uniformly bounded. Note that this implies the following:
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If tn�1 is a sequence such that

u~ n(tn)�o(1) (3.26)

then tn � +�. Indeed, let us fix a number $>0. Then,

=
(N&2) |N

+c |
�

1
h�

dt
t*�c |

tn+$

tn

fn(u~ n)
dt
t*

�
1

($+tn)* c |
tn+$

tn

fn(u~ n) dt

�
1

($+tn)* c |
tn+$

tn

fn(u~ n(tn)+k(t&tn)) dt

�
c

($+tn)*

$
max[sn , u~ n(tn)+k$]&

for some k>0. Hence, from (3.26),

lim inf
n � �

(tn+$)*�
K

$&&1

for some K>0. Since $ is arbitrary, tn � +� follows. Thus, in particular,
we have that un(1) remains bounded below away from zero, so that the
numbers (3.25) are well defined for any small %>0. Moreover, this also
shows that Rn � +�. A similar argument also provides us with an
estimate for the number R$n(%). In fact, for a large n,

c�|
R$n(%)

1
fn(u~ n)

dt
t*=|

R$n(%)

1

1
u~ &

n

dt
t*�

1
R$n(%)* |

R$n(%)

1

dt
(%+k(R$n(%)&t))& ,

from where it follows

R$n(%)�
c

%(&&1)�* (3.27)

for any sufficiently smal %>0.
Next we claim the following: Given \>0 one has

lim sup
n � �

|u~ $n(R$n(%))|<\

for all sufficiently small %>0. Let us fix a small number %0 . Then u~ n will
be decreasing and convex on [R$n(%0), Rn] for all large n. We distinguish
two subcases
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(a) limn � � R$n(%0)=+� and

(b) R$n(%0)�R0<�.

Assume that case (a) holds. We claim that

u~ $n(R$n(%0)) � 0 as n � �,

from where (3.28) follows immediately. In fact assume that, otherwise, we
have

&u~ $n(R$n(%0))�:0>0 for all large n.

Observe then that the sequence

vn(t)=u~ n(R$n(%0)&t)

satisfies

vn"(t)=
1

(R$n(%0)&t)* \ 1
v&

n(t)
&h� (R$n(%0)&t)+ , 0<t<R$n(%0)&1.

Hence vn"(t) � 0 uniformly on compact subsets of [0, �). It follows that for
any s>0 one has

vn(s)�%0+:0s+o(1) s2

and v$n(s) � :0 . It follows that vn and hence u~ n may take arbitrarily large
values at points where u~ $n is negative. But this is impossible, from the result
of Proposition 3.1. Hence (3.29) holds and the proof of (3.28) in case (a)
is complete. Next we assume that (b) holds. Since u~ n is decreasing and
convex on (R$n(%0), R$n(%)), where %<%0 , we have that, using (3.27),

&u~ $n(R$n(%))�
%0&%

R$n(%)&R$n(%0)
�

%0

c%(1&&)�*+R0

<\,

in case that % is chosen small enough, thus (3.28) holds and the proof of
the claim is now complete.

Next we fix small numbers \, '>0 and choose a %>0 such that (3.28)
holds for this \ and so that

(1&') fn({)� fn({)+h� (t)�(1+') fn({) \t,
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for all large n, whenever {<%. Then an integration similar to that leading
to (3.11) and (3.12) yields that for some c>0

|u~ $n(R$n(%))|�\(1&') 2c |
%

u~ n(Rn)
fn({) d{+

1�2

�\1&'
1+'+

1�2

|u~ $n(Rn"(%))| (3.30)

where Rn"(%) is the first value R>Rn at which u~ n(R)=%. Note also that un

is increasing on [Rn"(%), �) and that Rn"(%) � �.
Now, we have

u~ $n(+�)=u~ $n(Rn"(%))+c |
�

R"n (%) \
1
u~ &

n

&h� + dt
t* . (3.31)

The second summand in the right hand side of (3.31) is o(1) since
Rn"(%) � �. Then we conclude, using (3.30) and (3.31) that

=
(N&2) |N

�\1+'
1&'+

1�2

\, (3.32)

which leads to a contradiction, since \ can be chosen arbitrarily small. This
concludes the proof in case that N>2. This proof carries over similarly
when N=2, using the change of variable r=e&t. K

Remark 3.1. A priori estimates for (3.1) in the sense of the above two
propositions can also be obtained in the case =>�B h. Indeed, a lower
positive estimate as in Proposition 3.2 follows by observing that

lim sup
n � �

|u~ $n(R$n(%))|�lim sup
n � �

|
Rn(%)

1

h�
t* dt�

1
(N&2) |N \|B

h+\+ ,

where \ is any fixed small positive number, provided that % is chosen small
enough. Then, following the argument in the above proof, one sees that
inequality (3.32) can be replaced by

=�\1+'
1&'+

1�2

\|B
h+\+

which also leads to a contradiction if ', \ are chosen sufficiently small.
Thus a lower estimate :=>0 as in Proposition 3.2, does exist.
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Now, an upper estimate for un&=gN also exists. Indeed, it is enough to
see that un(1) remains bounded above. Otherwise we may assume, as
before, un � � a.e. on B. But un�:=>0 and

|
B

1
u&

n

=|
B

h+=

for large n, hence �B h+==0 which is a contradiction. This proves the
analogue of Proposition 3.1 for this case.

4. Existence for the Singular Problem

Our main purpose in this section is to prove Theorem 1.1. For the proof
of this result we begin by observing that the a priori estimates of Proposi-
tion 3.2 for =<�B h (or those of Remark 3.1 for =>�B h) reduce the
problem to showing that for any s>0 sufficiently small the problem

&2u+(u6s)&&=h+=$0 in B
(4.1)

�u
�n

=0 on �B

has a radial solution. We will do this by means of a variational argument.
Let us observe first that (4.1) is equivalent to the problem

&2v+fs(=.(r)+v)=h= in B
(4.2)

�v
�n

=0 on �B

where fs({)=({6s)&& and .(r) is a C 2(B� "[0]) radial function such that
.$(1)=0 and �(r)#.(r)&gN (r) is of class C 2(B� ), where gN is defined in
(3.2), and such that 2��0 in B� . It is easily seen that such a function .
indeed exists. h= is given by h==h+= 2�, so that h= # C(B� ) and �B h>0.

We look for a classical solution to (4.2), which is equivalent to searching
for a critical point of the functional defined in H 1

r by

Js(v)= 1
2 |

B
|{v| 2+|

B
Fs(=.+v)&|

B
h=v (4.3)

where Fs(z)=�z
0 fs({) d{ and H 1

r denotes the subspace of radial elements of
H1(B). We need a lemma.
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Lemma 4.1. The functional Js given by (4.3) satisfies the Palais�Smale
condition for any sufficiently small s>0.

Proof. Let [vn] be a Palais�Smale sequence for Js , namely [Js(vn)] is
bounded and J$s(vn) � 0.

We need to show that [vn] is precompact in H 1
r . A standard argument

yields that it actually suffices to show that [vn] is bounded in the H 1-norm.
To do this, we decompose

vn=wn+*n

where *n # R and �B wn=0. We will first show that wn is bounded in H 1.
Note that since J$s(vn) � 0 we have that

|
B

|{wn| 2=|
B

(h=&fs(un)) wn+o(1) &wn&H 1 . (4.4)

But &wn&H 1�c &{wn&L2 . Since �B wn=0. But fs is uniformly bounded,
hence (4.4) yields

&wn&
2
H 1�(cs1 &h=&�+o(1)) &wn&H 1 ,

from where the boundedness of wn follows. Now, again from J$(vn) � 0 we
have that

|
B

fs(wn+*n)=|
B

h=+o(1) (4.5)

If *n � +�, the fact that wn is H1-bounded would imply fs(wn+*n) � 0
a.e. Then dominated convergence would yield �B h==0, a contradiction.
Instead, if *n � � then fs(wn+*n) � s&+, hence (4.5) would imply

s&+ |B|=|
B

h=

which is again impossible if s is sufficiently small. Then *n is uniformly
bounded in such case. We conclude that the Palais�Smale condition holds
true for Js provided that

s<\ 1
|B| |B

h=+
&1�&

.

Next we show that Js has a critical point for any small s>0. For this, we
consider again the decomposition

H 1
r =4�W
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where 4 is the space of constant functions and W=[w # H 1
r | �B w=0].

We note that Js is bounded below on W. Indeed,

Js(w)� 1
2 |

B
|{w| 2&c(s, &h=&�) \|B

w2+
1�2

and �B |{w| 2�c �B w2 from where the assertion follows.
On the other hand, for * # 4 we have

1
*

Js(*)=|
B

Fs(=.+*)
*

&|
B

h

hence

lim
* � �

1
*

Js(*)=
|B|
s& &|

B
h>0,

for all sufficiently small s. We conclude that

lim
|*| � �

Js(*)=&�.

Since Js also satisfies Palais�Smale for small s, we see that the assumptions
of Rabinowitz's Saddle Point Theorem, see, e.g., [8], are satisfied on the
decomposition 4�W. We conclude the existence of at least one critical
point of Js for all small s, and the proof of the theorem is complete. K

5. Proof of Theorems 1.2 and 1.3

In this section we prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. From Theorem 1.1, we know that there is a
solution u= to the problem

&2u+u&&=h+= $0 in B

�u
�n

=0 on �B

u>0 in B

for any 0<=<�B h. Let us set

v==u=&=gN (5.1)
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where gN is defined in (3.2), so that v= satisfies

2v==u&&
= &h in B (5.2)

and is uniformly bounded above for small =, thanks to Proposition 3.1. Let
us assume first that

inf
B

u=�c>0

for all small =. Then u&&
= is uniformly bounded, hence elliptic estimates

imply that we may assume, passing to a subsequence if necessary, that
v= � v in the C 1(B� ) sense as = a 0. This v will clearly be positive and satisfy
weakly

&2v+v&&=h in B

�v
�n

=0 on �B.

Hence v solves (1.1) and the theorem follows in case that (5.3) holds. Thus,
we now assume that, passing to a subsequence we have

inf
B

u= � 0.

Let $=>0 be a point where this minimum is attained. Then $= � 0 as = � 0,
as e.g. the argument right after (3.26) shows. Moreover, this argument also
shows that for any %>0 sufficiently small the number

$$==inf[0<\<1 | u=(r)�%, \\�r�1]

is well defined. Let us fix such a small %. Then, as usual, u= is increasing on
[$= , $$=]. We claim that the following estimate hold,

u=(r)�c(r&$=)
2�(&+1), \r # [$= , 1] (5.4)

where c is independent of = for = small. In fact fact, note that

rN&1u$=(r)=|
r

$= \
1

u&
=(s)

&h(s)+ sN&1 ds. (5.5)

We assume that % was chosen so small that

1
{&&h(s)�

1
2{& , \0<{<%, \s.
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Then, from (5.5) we see that for r # ($= , $$=) we have

rN&1u$=(r)�
1

2N
1

u&(r)
(rN&$N

= ).

Hence

u&+1
= (r)&u&+1

= ($=)�
&+1
2N |

r

$=

(r&$=) dr

\r # ($= , $$=), from where we obtain

u=(r)�c1(r&$=)
2�(&+1), r # ($= , $$=),

some c1>0. But u=�% on ($$= , 1), hence letting c=min[%, c1] we obtain
the validity of (5.4). Note that, in particular u&&

= remains uniformly
bounded on each annulus A\=[x | \<|x|<1]. Since

2u==u&&
= &h in A\ ,

and u= is uniformly bounded in A\ , we conclude the existence of a
subsequence of [u=] converging uniformly on compact subsets of B� "[0] to
a function u # C 2(B� &[0]) satisfying

2u=u&&&h in B� &[0]

�u
�n

=0 on �B (5.6)

u>0 in B� "[0].

Note that u # L�(B), thanks to Proposition 3.1. But we also have, from
(5.4) that

u(r)�cr2�(&+1), r # (0, 1]. (5.7)

It follows that u&&&h # L p(B) for some p>N�2. Let v be the unique
solution of

2v=u&&&h in B

v=u on �B.

Then v # W 2, p(B)/C 0(B� ). Then .=v&u is bounded and satisfies

2.=0 on B� "[0], .=0 on �B.
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It follows from a standard argument that .#0, so that u extends to a full
solution of (1.1). This concludes the proof of the theorem. K

Proof of Theorem 1.3. The proof of existence of a solution to (1.6)
follows in exactly the same way as that of (1.1), d=1 having been chosen
only for notational simplicity. In order to prove uniqueness for a large d,
we begin by claiming that for any sequence dn � � and solutions un to
(1.6) for d=dn one has

un � \ 1
|B| |B

h+
&1�&

uniformly on B� . (5.8)

Let us observe that, since a solution u to (1.6) satisfies this equation dis-
tributionally on B, exactly the same argument that leaded us to estimate
(5.7) also shows that this u must satisfy

u(r)�cr2�(&+1)d &1�(&+1) (5.9)

for a certain universal constant c. Now, we have

2un=fn in B (5.10)

where fn=d &1
n (u&&&h). Then, from (5.9) we see that

| fn(r)|�c \r&2&�(&+1)

d 1�(&+1)
n

+
1
dn

&h&�+ .

It follows that for some p>N�2 we have

|
B

| fn| p � 0 as n � �. (5.11)

Now, from (5.10) we have

rN&1 |u$n(r)|�c \|B
| fn| p+ rN�q (5.12)

where q=p�( p&1)<N�(N&2). Then, it follows from (5.12) and (5.11)
that

|
1

0
|u$n(r)| dr � 0 as n � � (5.13)
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But, on the other hand, �B (u&&
n &h)=0, hence there is a rn # [0, 1] such

that

un(rn)=\ 1
|B| |B

h+
&1�&

.

This and (5.13), clearly imply the validity of (5.8).
Next we assume that the uniqueness assertion of the theorem does not

hold, so that there exists a sequence [dn] � � and solutions un{vn to
(1.6) for d=dn . We will show that this is not possible for large n. Let us
set wn=un&vn . Then wn satisfies

2wn+an(r) wn=0 in B
(5.14)

�w
�n

=0 on �B

where

an(r)=
1
dn

|
1

0

& dt
(un(r)+t(un(r)&vn(r))&+1.

Then from (5.8) we have that

dnan(r) � & \ 1
|B| |B

h+
(&+1)�&

>0, (5.15)

uniformly, as n � �. Let *1 denote the first nonzero radial eigenvalue of
the problem

2,+*,=0 in B

�,
�n

=0 on �B.

Then (5.15) implies that for n large enough one has

0<an(r)<*1 ,

so that (5.14) implies wn#0, a contradiction which finishes the proof of the
theorem. K

Remark 5.1. With a method similar to the above used, one can prove
that if, say, d=1 the following holds: There exist positive constants :, ;
such that for any radial solution of (1.1) one has

:r2�(&+1)�u(r)�;.
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