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RADIALLY SYMMETRIC INTERNAL LAYERS
IN A SEMILINEAR ELLIPTIC SYSTEM

MANUEL A. DEL PINO

Abstract. Let B denote the unit ball in RN, N > I. We consider the

problem of finding nonconstant solutions to a class of elliptic systems including

the Gierer and Meinhardt model of biological pattern formation,

u2
(1.1) e2Au-u+--r—r + P = 0   inB,
K \+ku2

(1.2) DAv - v + u2 = 0   inB,

du dv

(1.3) a-n=°=o-n    0n9B'

where e , D , k and p denote positive constants and n the unit outer normal

to dB.
Assuming that the parameters p, k are small and D large, we construct a

family of radially symmetric solutions to ( 1.1)—(1.3) indexed by the parameter

s , which exhibits an internal layer in B , as e —► 0 .

1. Introduction

Let B denote the unit ball in RN, N > 1.  We consider the problem of

finding nonconstant solutions to an elliptic system of the form

(1.1) e2Au = fiu,v)   inB,

(1.2) DAv = giu,v)   inB,

<>-3> £-•-£-»■

where e and D denote positive constants and n the unit outer normal to dB.
We are especially interested in identifying a family of solutions to (1.1)—(1.3)
indexed by the parameter e, which exhibits an internal layer in B. as e —> 0.
We will refer henceforth to system (1.1)—(1.3) as problem (P).

A good model for the kind of nonlinearities we will consider is given by

u2

i;(l + ku )

(1.5) g(u, v) = v -u2,
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4808 M. A. DEL PINO

where k > 0 and p > 0 are constants. For this nonlinearity, positive solutions
of problem (P) correspond to steady states of a reaction-diffusion system pro-
posed by Gierer and Meinhardt [12] as a model of biological pattern formation.
Roughly speaking, in that context u and v represent the concentration of two
substances, respectively called activator and inhibitor, ruling a certain chemical
process taking place on a piece of tissue represented by the domain. These sub-
stances diffuse from cell to cell at respective rates d and D and react chemically
in such a way that a relation like (1.1)—(1.3) holds. The Neumann boundary
conditions just represent the fact that no diffusion to the exterior occurs.

It is easily checked that, for / and g given by (1.4), (1.5), problem (P)
possesses exactly one positive constant solution, the homogeneous steady state.
On the other hand, it is shown in [8] that (P) possesses only the constant solution
in case that the product pkx/2 , for p, k in (1.4), is sufficiently large.

Next we state the precise assumptions we will make on / and g throughout
this paper. It is not hard to check that they are indeed satisfied by (1.4), (1.5)
in case that the parameters k and p are sufficiently small.

(HI) / and g are functions defined on some open subset of R2 , f of class
C2, g of class C1.

(H2) There exists a bounded open interval / such that for all v e I the
function u *-* f(u, v) possesses exactly three zeros h-(u) < ho(v) < h+(v),
two of them nondegenerate and stable, namely

fuih±(v), v)>0,    for all «€ 7.

(H3) Set, for v e I,

rh+{v)

J(V) =  fJh
fis,v)ds.

h-(v)

Then there exists a (unique) value v* e I such that J(v*) = 0. Moreover,

/'(»•) #0.
(H4) For v e I set

(1.6) G±iv):=gih±iv),v).

Then
G-iv) > 0 > G+iv)   for alive 7.

Assume the validity of (H1)-(H4). We are interested in nonconstant solutions
to problem (P) when e is small. Fix a number del and set

,e, x    í h-(v) üv<e,
(!-7) he{v) ■<.;'-
v    ; I h+iv)   if v>6.

Setting formally e = 0 in (1.1), we see that, for a fixed function vix) whose

range lies on /, we can solve for u (1.1) into the form uix) = h6(vix)).
Substituting this u into (1.2) we obtain the boundary value problem, with dis-

continuous nonlinearity,

(1.8) Av = ogiheiv),v) = 0   inB,

dv
■7r- = 0   on dB.
on

Here and henceforth we denote o := l/D.
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RADIALLY SYMMETRIC INTERNAL LAYERS 4809

If we could find a solution Voix) to (1.8), then (u, v) := ihe(vo), vo) would
solve (1.1)—(1.3) for e = 0. In this situation, it is natural to ask whether we can

find a solution (m£ , ve) to (P) which is "close" to (Ae(vo), ^o) for e sufficiently
small. For N = 1 and Dirichlet boundary conditions, Fife [10] proved that
such a family indeed exists if we choose 6 = v* where v* is as in (H3), and

vo is strictly increasing. The method in [10] consists of solving system (P) in
two disjoint subintervals of (0, 1) and then matching the solutions in the C-
sense. Generalized implicit function theorems based on the construction of first
approximations to the matching solutions are of assistance in this approach.

Mimura, Tabata and Hosono [19] extended Fife's method to the case of
Neumann boundary conditions. They also introduced condition (H4) (plus the
assumption G'±(v) > 0 for v e I) to construct solutions of problem (1.8).

Subsequent refinements of Fife's method were performed by Ito [15] and
Nishiura and Fujii [24]. Sakamoto [25] provided a different construction based
upon a first approximation using the idea in [15] and the Lyapunov-Schmidt
method. The stability of these solutions is also studied in [15] and [25].

These works have provided us with a good understanding of the so-called
families of layered solutions to problem (P) in one dimension. However, rather
little seems to be known in the higher dimensional case N > 1. In related scalar
problems and potential systems, higher dimensional layered families have been
studied by several authors; see for example [1], [2], [20], [16], [11], [4], [5], [16].
A major technical difficulty arising in the case of system (1.1)—(1.3) is its lack of
an obvious variational structure, so that the powerful machinery of the calculus
of variations is not directly available here.

In this paper we search for solutions to problem (P) exhibiting radial sym-

metry. We will establish the existence of a family of radial layered solutions
to problem (P) under assumptions (H1)-(H4) provided that a = l/D is suffi-
ciently small.

The method of construction we will present consists of the following steps:
Step 1. We identify a radially symmetric solution Vo(|x|) to (1.8) for 6 = v*

which takes the value v* at just one sphere |jc| = Ao , and is nondegenerate in
some appropriate sense.

Step 2. For any fixed radially symmetric v in a small C1 "-neighborhood
Jf of vo, we solve (1.1) for u into the form u = keiv ), where the operator

k£ satisfies, among other properties,

limkciv) = hv'iv)
E—>0

uniformly on compacts of B\{v = v*}.
Step 3. We replace u = ke(v) for v e ¿V into (1.2) to obtain the boundary

value problem

(1.9) Av = agik°iv),v) = 0   inB,

%L = 0   ondB
on

which is a perturbation of (1.8) for 8 — v* near v = vq. Then we prove the

existence of a family of solutions ve to (1.9) such that ve -» vq in the C1,a-

sense, using a simple degree theoretical argument based on the nondegeneracy
of Vq and the properties of k£. Hence, (uE ,ve) = (fc£(w£), vE) is the family of
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4810 M. A. DEL PINO

solutions we are looking for. Observe that ut exhibits indeed a layered behavior

with interface near \\x\ = ko} .
The method outlined above is natural and seems to be better suited than the

matched-solutions approach, to attack higher dimensional situations.
Indeed, our approach in the construction of ke seems to apply in a general

smooth domain Í2, at the expense of additional technical work, whenever vo
is a C1 "-function such that the level set {vo = v*} is a closed (A7 - 1)-
dimensional hypersurface where Vvo does not vanish. We will elaborate on
this matter in a future work.

On the other hand, Step 3 does not require radial symmetry. Instead, the
corresponding analogue of Step 1 in a general Q is more difficult and might
require restrictions in its geometry. Basically, one needs to find a solution v0
to (1.8) as in the above paragraph such that the linearization of (1.8) around
vo in 7/'(ß) is nonsingular. Problem (1.8) constitutes, without radial symme-
try, a nonstandard free-boundary problem which is an interesting mathematical
problem in its own right.

The outline of this paper is as follows. In §2 we carry out Step 1, in Proposi-
tions 2.1 and 2.2. In §3 we construct the operator keiv) of Step 2 in Proposition

3.1. Finally, in §4 we state and prove our main result, Theorem 4.1, which car-
ries out Step 3, establishing the existence of the desired family of solutions to

(P).
In the remainder of this paper B will always denote the unit ball in RN and

we will assume the validity of assumptions (H1)-(H4). We will use the notations
H) , Cx, etc., to designate the subspaces of radially symmetric elements of
HxiB), CxiB), etc., endowed with their natural norms.

2. Analysis of problem (1.8)

In this section we shall study the problem of finding radial solutions to (1.8).
Denote

Giv) = iG-{v)   ifV<6>
1 '     I G+iv)   ifv>6,

where G± are given by (1.6) and 6 is a fixed number in /. We consider the
problem

(2.1) Av = oG(v)   inB,

dv
^- = 0   on dB.
dn

By a solution to (2.1) we understand ave CxiB) satisfying (2.1) in the weak
sense. We look for radially symmetric solutions to (2.1), that is, solutions v =
v(r) of the boundary value problem

(2.2) v»ir) + !ír±v*(r) = oG(v(r)),       re (0,1),

v'i0) = 0 = v'il).

We have the following existence result for a radial solution of (2.1).

Proposition 2.1. There exists a number oo > 0 such that for every a < oq (2.1)
possesses a radially symmetric solution (2.1) v0ir) whose range lies on I and
such that
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RADIALLY SYMMETRIC INTERNAL LAYERS 4811

(1) «¿(r) < 0 for all re(0, 1).
(2) Voik) = 6 at a unique point k e (0, 1).  Moreover, for some S > 0

independent of a,
ô<k<l-ô.

Proof. Fix k e (0, 1) and consider the problems

(2.3) v"ir) + ^lv'ir) = oG+ivir)),        r€(0,A),

t/(0) = 0,    vik) = 6,

and

(2.4) v"{r) + ^-7Zlv'ir) = oG-ivir)),        re[k,l),

t/(l) = 0,     u(A) = 0.

Without loss of generality assume that I is compact. Extend G+ and G- to
the whole real line in such a way that G± and G'± lie between the same bounds
they do on /.

It is easy to see, for example from a direct variational argument, that (2.3)
possesses a solution v+ir, k) such that v'+(r, k) < 0 on (0, k]. Moreover, this
solution is unique if we ask for a to be so small that

<xsup|G+| < Px
I

where px denotes the first eigenvalue of -A on B under Dirichlet boundary
conditions.

From (2.3) we immediately see that

v'+ir,k) = -^o ( G+(v)sN~xds   for 0 < r < k.
r        Jo

Hence

(2.5) \v'+ir,k)\<ab+k

and

(2.6) \v+ir,k)-6\<ab+k

where b+ := sup, \G+\. We also have

(2.7) -v'+ik,k)>aa+k

where a+ := inf/ \G+\.
Similarly, we can find a solution v_(r, k) to (2.4) satisfying

(2.8) \viir,X)\<ab.^~^

and

(2-9) ]v_{r,k)-6\<abJ-^p-.

Moreover,

(l-kN)
(2.10) -v'_ik,k)>oa-y XN_X >,

where a- := inf/ |t?_|.
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4812 M. A. DEL PINO

Denote <pik) := v'_ik, k)-v'+ik, k). From inequalities (2.5), (2.7), (2.9) and
(2.10) we find that for some ô > 0 sufficiently small <piS) > 0 and (pi 1 —5) < 0.
Thus, the result of the proposition will follow if we can find a zero of <p on

[5,1—0], But for k > 5, and a < oo(5, G'_) the solution V- is unique.
Indeed, this is a simple consequence of (2.4) and the inequality

/ h2ir)rN~xdr< -^ Í h'ir)2rN-[dr

satisfied for all h e Cx[k, 1] with /z(A) = 0. Thus, if we require a to be
sufficiently small, we have uniqueness for v± . From here, the continuity of tp

is immediate, so that we obtain the existence of the desired solution. Moreover,
inequalities (2.6) and (2.9) imply that the range of this solution is included in
/ for all sufficiently small a and the proposition follows.   D

Corollary 2.1. There exists a second radial solution V\ to (2.1) as in last propo-

sition, but such that v[ (r) > 0 for all r e (0, 1 ).

Proof. Just apply Proposition 2.1 replacing (7(i;) by -G(26-v).   U

Since every function C) -close to vq takes the value 6 just once, it follows

that the operator G: Cx -* LPr defined by G(v)(r) = G(u(r)) is continuous on

a neighborhood of vo, for all 1 < p < oo.

Fix a number p > m. Then W2,p is compactly embedded into C}'a for

some a > 0. Set

(2.11) X:={veCx'a\v'il) = 0}

endowed with its natural norm. Denote R = (A-/)-1 under Neumann bound-

ary conditions, and define the operator T: X —> X by

(2.12) T(v) := RioGiv) - v).

Then T is completely continuous on a neighborhood of vq . Observe that fixed
points of T are precisely the radial solutions of (2.1). Our main goal in the
remainder of this section is to prove the following result.

Proposition 2.2. There exists a number oo > 0 such that, for each fixed a < ao,
there is an X-neighborhood 77 of vo suchthat T does not possess fixed points

other than Vo on J^ for all a < oo and

(2.13) deg(/-r,^,t;o)^0

where T is given by (2.12) and I denotes the identity operator in X.

The fact that this degree is nonzero is a key ingredient in the construction of

the family of solutions we are looking for.

To prove (2.13) we will try to linearize the operator T around vo . This will

certainly require some kind of linearization of G. Consider G as an operator
from Hx into H~x where H~x denotes the dual space of H) . Here we

identify G(v) with the functional

(f>eHx ~ / Giv)(t>rN~x dr.
Jo
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RADIALLY SYMMETRIC INTERNAL LAYERS 4813

G defined between these spaces turns out to be Fréchet differentiable at vq as

we shall show next. Observe, however, that G is not even continuous on any
Hx-neighborhood of Vo.

Proposition 2.3. G: H} —> H~x defined above is Fréchet differentiable at vq.

Its derivative at v0, G'iv0), is the operator L defined by

(2.14)

iLh,<t>)= ( G'+(üo)(phrN-x dr + f G'_iv0)4>hrN-x dr + nhik)<t>ik),
Jo Jx

h,<j>eH},

where k is the unique point where vo takes the value 6 and n is the negative
constant

(2 15) _ iG+-G-)j6) N_x
(/-n) 9* -v'0ik)     Á     ■

Proof. Let </> e Hx. We can write

iGiv)-Givo)-Lh,4>)

= / iG+(v) - G+ivo) - G'+iv0)iv - v0))<f>rN-x dr
J{0,i.)n{v>6}

+

(2.16)

/ iG-iv) - G-ivo) - G'_iv0)iv - v0))4>rN-x dr
J(X,\)n{v<0}

+ ¡ iG+iv) - G-ivo) - GlivoKv - vo))<t>rN~x dr
J(k,\)C\{v>6}

+ [ iG-iv) - G+iv0) - G'+iv0)iv - vQ))<t>rN-x dr
J{0,X)n{v<B}

- n(v - v0)ik)<pik) + [      fir)<t>ir)rN-x dr
J{v=e}

where / satisfies

(2.17) |/(a-)| <c,        re (0,1),

where c is a certain constant independent of v . Let us first estimate the last
integral in (2.16). To do this, we will first estimate the measure of the set

{v = 6}, \{v = d}\ = !{v=e}r»-xdr.

Since v e Hx, we have that v' = 0 almost everywhere in {v = 6}. Fix

5 > 0. Then -v0 > dô) > 0 on (S, 1 - 5) and

/ i-v'0)dr= f iv-Vo)'dr
J{v=8}n(S,l-S) J{v=d}n(S,i-S)

_i\{v = 6}ni5,l-5)\

so that

do)
il-5)

*5»-■¡^f [\v-Vo)'2rN-xdr)2\{v = e}ni5,l-5)\l;
\Jo )
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4814 M. A. DEL PINO

hence

(2.18) \{v = 8} n iô, 1 - 5)\ < k(S)\\v - vo\\2H¡.

On the other hand, set

p := inf ivdr) - 8) > 0.
0<r<<5

Then Tchebyshev's inequality yields

\{v = 0} n (0, <5)| < Kit; - «e| > ji}| < ¿||t; - v0\\2Ll.

A similar estimate holds for \{v = 8} n (1 - 5, l)\. From this and (2.18) we
conclude that

\{v = d}\<c\\v-v0\\2w.

Next, fix some q > 2 such that H} is continuously embedded in Lf} . Then,
using (2.17),

/       fiir)<pir)rN-x dr
J{v=8}

O-li

<c\\<p\\L?\{v = 8}\x/*'

< c\\v - «oll^H^IL; = \\<p\\Hroi\\v - v0\\H}).

It remains to obtain similar estimates for the rest of the integrals in (2.16). We
begin with the first two, which we call respectively I and II. Fix e > 0 and

choose 5 > 0 such that for all r e [0, 1] and all t such that \t - voir)\ < 5
one has

|«?+(U - G+ivoir)) - G'+iv0ir))it - v0(r))| < s\t - «o(r)|.

We estimate I as follows.

|I| < / + / \(G+(v) - G+iv0) - C7;(t;0)(t; - v0))| l^l^-1 dr
J{\v-v0\<S}      J{\v-v0\>S}

= I,+I2.

Then

l!<Ce||t;-t;olbl^ll^
and, for a fixed, small a > 0,

h < C\\v - v0\\L2+4<t>\\L^\{\v - i*| > 5}\x-2^

where we have used the fact that G is Lipschitz. Since

\{\v-vo\>5}\<±2\\v-vo\\l>,

we conclude after combining the above estimates and choosing conveniently a,

I< II^II//.ö(||v-voII//i)-

A similar estimate of course holds true for II. Let us call III and IV respectively
the third and fourth integrals in the decomposition (2.16). We will show that

|III + IV- n(v - v0)ik)<pik)\ < \\<p\\„}oi\\v - v0\\H}).
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Denote A\ := (0, k) n {v < 6} and A2 := (A, 1) n {v > 8}. We will first
estimate the measure of these sets.

Assume v(X) - 8 > 0 and let k' > k be the first point where v(A') - 8 = 0
(observe that there must be such a point provided that \\v — t*||#i is sufficiently

small). We will estimate the size of the interval (A, k').
We have that

X' X1

(2.19) vik)-voik) = vik)r8 = J  ivo-v)' + J   v'0.

Without any loss of generality we may assume that A' is away from 1. Then v'0
is away from zero on (A, A'). Then (2.19) implies

(2.20)
i

ik-k')<c{
1 rX' Ï 2

V2„V-1

)X
vM-voiW + j^U   iv-vo)ar»-xdr)\   \ < c\\v - v*\\H}.

On the other hand, combining (2.19) and (2.20) yields the estimate

(2.21) x'-k=^j^-+oi\\v-vo\\w).

We next estimate the size of the rest of Ax. Set A\ = A\[k, k']. Since v(l) <

0 for ||u - vo\\n\  sufficiently small, we obtain, after writing (A;, A7+)), / =

1,2,..., for the components of Ax, that vikj) = 8 for all j. Then

/-^e/;-'»'=o.
Hence

c|ii| < - L V0 = - f iv0 - v') < c\Äx\?\\v - vo\\HÍ
Ja¡ Ja¡

since we may assume v'0 away from zero on Ax. Then

\Äi\<c\\v-v0\\2w.

A similar estimate works for A2 , except that A2 may not be bounded below
away from zero. But for a fixed 0 < 5 < A we may decompose

^2 = (^2n[0,r5])u(^2n[<J,A)).

Applying Tchebyshev's inequality as in the estimate for |{t; = 0}| yields

\A2n[0,5]\<c\\v-v0\\2L}.

Using this and the same argument we employed to estimate Ay we obtain

\A2\<C\\V-Vo\\2Hy

Thus, we have shown

(2.22) \Ax\[k,k']\ + \A2\ = o(\\v - v0\\H}).
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From here, we immediately find an estimate for integral IV in (2.16). In fact,

IV =  f iG+iv) - G-iv))<f>rN~l dr

+ f (G-(v) - G-{v) - G'_ivo)(v - v0))4>rN-x dr.
Ja,

■

IA2

Estimating the second integral in the above expression as we did with I, and the
first integral using (2.22) we obtain

|IV|<IMI*.o(||t;-voM.

A similar estimate holds for the part of integral III outside ik, k'). Therefore,
it only remains to estimate the quantity

J:= f iG+iv)-G+ivo))4>rN-xdr
Jx

+ j («?+ - G_)(i70) - f<?+ - G-ivo))i8))<prN-x dr

rx'
- J    G'_{vo)iv - v0)4>rN-x dr

(2.23) + {G+i8) - G-id)} { f ^-'rfr-^-'^^fVwj.

Since {k, k') is away from zero, we have

-v'0ik)

sup \(l>\<c\\<t>\\Hl.
(X,X')

Using this, the fact that G± may be assumed to be Lipschitz and |A - A'| <

c\\v - voWfft we easily derive an estimate of the form ||0||¿2o(||t; - voll//') for
the first three integrals in (2.23). It remains to estimate the last part. From
(2.21) we obtain

t <j>rN-xdr-kN-x{v{X)~%ik) = t <pirN-x-kN-x)dr
Jx ~voW Jx

+ kN~x J i<t>ir) - 4>ik))rN-x dr + 4>ik)oi\\v - v0\\h; ).

But

Sx   ̂ ^
}N-l )dr <c(A'-A)   sup   \<(>ir) - <j>ik)\

r€(X,X')

<c{k'-k)(£ 4>\r)2rN-xdr\2 <U\\Hioi\\v-Vo\\H}).

Combining all these estimates we finally obtain the validity of an inequality of
the form

iG(v) - Givo) -Lh,cp)< ||¿||„,o(\\v - v0\\H})
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which gives the desired result. Recall that we assumed u(A) - 8 > 0. The case

v(A) - 8 < 0 is similar. If u(A) - 8 = 0 it is even easier since in that case we
find

|¿i| + Í4al-0(||t>--Vb|4.).
This concludes the proof.   □

Remark 2.1. G'ivo): H) —> H~x is a compact operator. Indeed, let hn be a

bounded sequence in Hx. Then, passing to a subsequence which we still denote

h„ , we may assume h„ —» h in H) weakly, hence strongly in L2 and uniformly
on compacts of (0, lj. In particular, h„{k) —► A (A). Then, from (2.14),

\iG'ivo)[hn - h], <p)\ < c\\hn - h\\L} + \n\ \hnik) - h{k)\ m)\ < M\h,o(D-

Thus, G'(üo)hn -* G'(üo)h strongly, which proves the remark. We know that
R = (A - I)~x under Neumann boundary conditions is a linear and continu-
ous operator from H~x into H) . It follows from the above remark that the
operator S: Hx -* H; defined as

(2.24) Sih) := RioG'iv0)h - h)

is compact. Observe that (/ - S) can be interpreted as the "linearization"
of (J - T) around Vo with T defined by (2.12). Since we are interested in
computing the local degree of (/ - T) around vo in X, it seems to be natural
to study the degree of (/ - S) around zero in Hx.

Lemma 2.1. The operator (/ - S), where S is defined by (2.24), ¿s a linear

isomorphism of Hx, provided that a is sufficiently small.

Proof. Since S is compact, it suffices to show that (/ - S) has trivial kernel.
Let (p e Hx satisfy (/ - S)4> = 0. Then <f> satisfies in the distributional sense

(2.25) 4>"'r) + ^F-V(r) = ffo(r)0(r) + a#(A^(r),        r e (0, 1),

¿'(0) = 0 = ^(1)
where Sxir) denotes the Dirac delta supported at A, n is given by (2.15) and

(2.26) *(r) = iG':^\\   *'<)'I GLivoir))   ifr>k

so that <p satisfies in the classical sense

N-l ,,, ,        „,.      n   _     . .
(2.27) <p»{r) + -—<t>'ir) = oG'+ivoir))<pir),    0<r<k,

Y

(2.28) 4/'ir) + ^V(r) = ffGL(i*(r))^(r),       A < r < 1,

0'(O) = O = <p'(l)

and

(2.29) <j>'ik+) - 4f(k-) = #(A).

Assume <f> ^ 0. We claim that <p never vanishes on [0, 1]. Indeed, assume

for instance that there is a Ao < A such that 0(An) = 0. Then,

px [ ° M2^-1 dr < (   \<f>'\2rN-x dr = a f   G'+iv0)\<t>\2rN-x dr
Jo Jo Jo
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where px denotes the first eigenvalue of -A in B. Hence, if a is sufficiently

small we obtain that <f> = 0 on [0, Ao], hence on [0, A]. Now, recall from
Proposition 2.1 that A > 5 for some 5 > 0 independent of a . Since 0(A) = 0,
there exists a positive constant p' = p(5) such that

p' Ç \4>\2rN~x dr < j \<f>'\2rN-x dr

from which it follows that <p = 0 on [A, 1]; hence <p = 0 on [0,1], which
proves the claim.

Thus, we can define

4>(r)
From (2.27), (2.28), it is easily verified that wir) satisfies the equation

(2.30) w> + J£L = aa{r)r»-x

for r t¿ A. Also, u;(0) = t/;(l) = 0. Assume there is a point r0 where w
maximizes on (0, A]. Then we must have w'ir0) > 0, and hence (2.30) implies

w2ir0) < cak2iN~l)

for some c > 0. In particular,

w(A-) < cs/akN-x.

If it; maximizes at 0 on [0, A], the above inequality trivially holds. A similar
argument shows that, also,

-wik+)<cy/akN-x.

Hence

(2.31) -m-<cv^.

But from (2.29), (2.31) and the definition of n in (2.15) we find

(2.32) -Jm(G- - G+)i8)kN~l < cyß.

But A > 5 > 0 and, from (2.25), (2.27), -v0ik) < ca ; hence the left-hand side
of (2.32) is bounded below away from zero. We have reached a contradiction
in case that a is sufficiently small. This concludes the proof.   D

We will need for the proof of Proposition 2.2 the following approximation
lemma.

Lemma 2.2. Let D be a bounded and smooth domain in RN and set R :=
(A — /)-1 under Neumann boundary conditions on D. Denote H~xiD) for the
dual space of Hl (D). Fix a number p > 1.  Then there exists a sequence of
linear operators R„: H~x —* W2-p with finite dimensional ranges contained in

RiLP) and satisfying the following properties:
(1)  limn-.,» Rny = Ry in the Cl-sensefor each y e LP. Also,

s\io\\Rn\\^{lj,<wi.p) < +00.
n€N
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(2) lim„_00 R„y = Ry in the Hx-sense for each y e H~x. Also,

S\Xp\\Rn\\sf(H-^W) <+O0.
n€N

Moreover, if D is an annulus or a ball, and y is radially symmetric, then
Rny can be chosen radially symmetric

Proof. In [18, Chapter 2], an orthonormal basis of L2iRN) is constructed of
the form {fax-k)}keZ* where </> is in the Schwarz space of rapidly decreasing
functions. Moreover, the associated orthonormal projections can be extended
to other functional spaces such as 1/(7?^) or H~xiRN). More precisely, for
yeISiRN) (resp. yeH~xiRN)) one has

y* '■= 53 &* *kW* ~* y   as n ~* °°
\k\<n

in the sense of D>iRN) (resp. H~xiRN)), where faix) = fax -k), (y, fa) =
jyfa (resp. (y, fa)H->) ■ It is also shown in [18] that for y e LpiRN) one
has

l|yn|b(/<<v) < c\\y\\rj>(Rf).

Next, we define y„ for y e H~xiD) as

y* '■= £(y. 4>k\o)fa\D-
\k\<n

Observe that y defined by (y, Q '■= iy, C\d) is in H~xiRN) ; hence we still
have that y„ —> y in the H~ ' (D)-sense. Similar statements hold for y e LpiD).
We observe next that, for y e H~xiD),

(2-33) \\yn\\H-¡(D) < C\\y\\rI-HD)-

Indeed, let C,eHxiD). Then

l(y„,C>l< £ iö'.ÄWl/l^jkCIrf*

<l|yk-i(0)ll<AII/Y.(^)E /W*-*)l Ux)\dx.
k JD

Since 0 is rapidly decreasing, we have

1^)1 * (ÎTW-

It follows that

(2<35)       e/j^-^)ikwi^<CE(Ttw/Jcwi^

<^IKII//.(D).
Combining (2.34) and (2.35), (2.33) follows.

We next define the operators R„. For y e H~xiD), define w„ = R„y to be
the unique solution of (A - I)w = y„ under Neumann boundary conditions.

In other words, Rny := Ryn . Standard elliptic estimates imply that
(a) If y e H~xiD), then wn -» Ry in #>(£>), and

(2.34) '*,S
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ib) If ye If, p> I, then wn — Ry in W2''iD).
Moreover, from the above estimates we also have that  WRnW&iH-'.H')  an<*

ll-R/i 11^(1/ WT--P) are uniformly bounded, as desired. Finally, in the radially sym-
metric case, observe that R„y is not necessarily radial if y is. But in this case
we can replace R„ by QRn where for w e HX(D) or w e W2<piD)

iQw)ir):= [     wirOdaiO

and the integrand is understood in the sense of traces.   D

Our last preliminary to the proof of Proposition 2.2 is the following simple
result.

Lemma 2.3. Let R„ be as in Lemma 2.2 for D = B. Define Sn : Hx -* Hx as

(2.36) Snw := R„ioG'iv0)w - w)

with a <o0, a0 given by Lemma 2.1. Then there exists a c> 0 such that for
every sufficiently large n one has

\\iI-Sn)w\\Hrl>c\\w\\Hi

for all w eHrx.

Proof. Assume the contrary. Then there exists a sequence w„ suchthat ||tu«||//ri

= 1 and

(2.37) || (/ - Sn )w„ \\Hi -> 0   as n -» oo.

Since the operator Hx -> H~l, w ■-» oG'(vq)w -w is compact, we may assume

oG'ivo)w„ - w„ —* z in H~x . Now,

Snw„ -Rz = RniaG'(vo)w„ -w„- z) + iR„z- Rz).

The second term of the right-hand side of the above expression tends to zero

by the last lemma. The first one also does since \\Rn\\&(H-> ,H¡) is uniformly
bounded. Hence Snw„ —> Rz = wo. Then (2.37) implies w„ —>wo.

Finally, if S denotes the operator defined by (2.24), we obtain

S„w„ - Sw0 = R„iaG'(vo)iwn - w0) - (w„ - w0))

+ iR„ - R)ioG'ivo)w0 -1£*)

and this expression is easily seen to approach zero as n —► oo. It follows from

(2.37) that (/ - S)w0 = 0. But since ||tt*!#i = 1, this contradicts the fact that
(/ - S) is an isomorphism, concluding the proof.   □

Proof of Proposition 2.2. We want to show that

degxil- T,J^,v0)¿0

where JV is a sufficiently small neighborhood of vo in the space X defined by
(2.11). Equivalently, we need to show that for 5 sufficiently small the degree

(2.38) d := degxiw - oR(G(vo + w)- G(t*)), 5(0, 5), 0)
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is well defined and nonzero. Let us accept that this degree is well defined for
some small 5 . We will prove this fact later. We claim that, for all n sufficiently
large,

(2.39) d = degEtt(w - <xÄB(Gr(i* + w) - G(i*)), 5(0,5)nEn,0)

where Rn is the operator given by Lemma 2.2 for p = q, E„ its range. Observe

that EncX. Set

e = n inf   ||tt; - oRiG(vo + ti;) - Giv0))\\x.
\\w\\x=S

This number is positive since we are assuming d is well defined. From the
definition of the degree (see e.g. Deimling [6, p. 57]), we know that for (2.39)
to hold it suffices to show that

(2.40) a   sup   \\iR-Rn)iGiVo + w)-GiVo))\\x<£.
\M\x<ß

We will see that (2.40) holds true for all n sufficiently large. Assume the con-
trary. Then there is a sequence w„ with ||tu„||;r i= ̂  SVLCa mat

(2.41) ff\\(R - Rn)iGiv0 + wn) - G(vo))\\x > e.

Ascoli's Theorem implies that we may assume w„ converges uniformly. Hence
oG(uo + wn) converges in LP to some z e Lf for any given p > 1. Thus

e < ||*(ffÖ(l* + ton) - z)\\x + \\iR - Rn)z\\x

+ \\RH(oG(v0 + wH) - z)\\x + a\\(R - Rn)Giv0)\\x,

but each of these terms tends to zero thanks to the continuity of R and the
first part of Lemma 2.3. Hence (2.41) is impossible and (2.40) holds for all n
sufficiently large.

On the other hand, again the definition of the degree implies that

d' := (teg*. (/ - S, V, 0) = deg„, {w - RioG'(uo)w -w),V,0)

= dtgEn(w -R„ioG'ivo)w -w),VnEn,0)

provided that n is so large that

sup   \\iR-R„)ioG'iv0)w -w)\\H, <    inf   \\iI-s)w\\H).
)\w\\H)=\ IMIiji-i

Here V is any neighborhood of 0 in Hx. Since En is finite dimensional, we
can find V so that

VnE„ = BiQ,5)nE„ :=A„.

Observe that since (/ - S) is an isomorphism, the number d' is nonzero. We
will show that d' = d, which will prove the result. To do this, consider the
homotopy in En

T?w := (1 - t)R„ioGiv0 + w)- aG(vo) -w) + tR„ioG'iv0)w - w)

for t e [0, 1]. To show d = d' it clearly suffices to verify that (J - T")w ^ 0
for all we dA„ . Observe that

(2.42)
||(/ -I?)*«*.

> ||(7 - Sn)w\\H; - c\\Rn\\j?{HritH})\\G(Vo + w) - C7(v0) - G'(Vo)w\\H^

>cx\\w\\Hf-c2\\8iw)\\Hrl
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where S„ is defined by (2.36), and the positive constants C\, c2 come respec-
tively from Lemmas 2.3 and 2.2. We have also denoted 8(w) := C7(t;o + w) -

G(vq) - G'(vo)w . Since G is Fréchet differentiable at vo, we see from (2.42)
that

(2.43) \\(I-1?)w\\H} >c\\w\\H}

provided that \\w\\H¡ < 5, for some 5 sufficiently small, independent of t

and n . From here, the desired result follows after choosing, a priori, 5 small
enough and observing that \\w\\H\ < c\\w\\x for some c > 0. Incidentally,

these estimates also imply that the degree d is well defined: just use (2.43) for
t = 0 and let n-»oo. This completes the proof.   D

Remark 2.2. The result of Proposition 2.2 also holds true for the increasing
solution Vx of Corollary 2.1.

Remark 2.3. The solution vq is, in an appropriate weak sense, unstable. In-
deed, the "linearized eigenvalue problem" associated to (2.1) at vo has its first
eigenvalue p variationally characterized as

p=       inf       { /" |V<p|2 -r-o- [ a<b2 + anfak)2) .
qi€W ,J <¡>2=i Ub Jb J

B

Here, a was defined in (2.26) and n in (2.15). Using the test function <p = 1,

we easily see that p < 0 if a is sufficiently small. We remark that the same is
true for the solution vx of Corollary 2.1.

3. Construction of the operator ke

In this section we will construct the operator kc solving equation (1.1) for
u announced in the introduction. Thus, we assume in the rest of this section
/ satisfies assumptions (H1)-(H3) and denote by X the space of all elements

v e C) 'a(B) such that v'(l) = 0 endowed with its natural norm.
Let v0 be a fixed element of X such that v0(A0) = v* at a unique A0 e

(0, 1). Here v* is as in (H3). Further, we assume v0ik0) ¿ 0.
We consider, for v on an X-neighborhood of v0, the problem

(3.1) e2Au = fiu,v)   inB,

(3.2) f^ = 0   on dB.
an

We also denote by h is) the function defind as

h-is)   \fs<v

h+is)   ifs>v

Our main purpose in this section is to establish the following results

h{s) = X hl(s

Proposition 3.1. There exist a neighborhood J^ in X_of v0, a number e0 > 0

and a family of continuous operators kc: JV —► C2,Q(5) defined for 0 < e < £o,
such that

(1) for veJr,0<e<eo, the function u = keiv) solves (3.1)-(3.2).

(2) lim£_okc(v) = h(v) uniformly on compacts of B\{\x\ = A}.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



RADIALLY SYMMETRIC INTERNAL LAYERS 4823

More precisely, given p > 0 there exist numbers M > 0 and ex e (0, £n)

such that for all 0 < e < ex, v e JV one has

\k°iv)ir) - h(v(r))\ < p   if\r - X(v)\ > Me,

Therefore,

sup      \\kciv)\\L«,{B) < -(-oo.
U€-/^,0<£<£o

sup \\k£iv) - h(v)\\L, -» 0   ose —0,
v€yr~

for any 1 < q < oo.

The proof of Proposition 3.1 is based on the construction of a first approxi-
mation to a solution of (3.1)—(3.2) as given by Lemma 3.1 below. Before stating
it, we observe that every v in a sufficiently small X-neighborhood of vo has
the property that it takes the value v* at a unique A = A(v) e (0, 1) such that
v'ik) ,¿ 0 and, moreover, A depends continuously on t; in the AStopology.

Lemma 3.1. There exist a neighborhood JV in X of vo, a number e0 > 0 and

a family of continuous operators kc: JV —> C2'aiB) defined for 0 < £ < £o and
such that

(1) For any v e JV, 0 < £ < £o, the function uc = kc(u) satisfies an

equation of the form

(3.3) e2AuE=fiu£,v) + if/Eiv)   in B,

du,
(3.4) ^ = 0   onöÄ,

wAere

(3.5) sup||^e(ü)||r.»(a) = o(e).

//ere, lim£_o <?(e)/e = 0.
(2) Given p > 0 i/zere exisr a number M > 0 a«£Í £i e (0, £n) JwcA that for

all 0 < £ < £i, «e/ one «as

(3.6) |fc£(t;)(r) - A(t»(r))| < p      if\r - X(v)\ > Me.

(3) supve^i0<£<£0 II^£(v)IIl~(B) < +00 •

We will proceed assuming the validity of this result postponing its proof to
the end of the section.

In what follows we will assume «¿(An) > 0. The opposite case can be dealt

with in the same way as will become apparent from the proofs.

Let k£ be theoperator in Lemma 3.1. We consider the following eigenvalue
problem in C}{5).

(3.7) 5f£v<bEEe2A<f>-fuikeiv),v)<j) = p<j>   in B,

(3.8) 1^ = 0   on dB.
on

Let pxie, v) > p2(e, v) > •■• denote the sequence of (radial) eigenvalues of

this problem with associated eigenfunction fa, fa, ... . We need the following
result.
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Lemma 3.2. There exist positive constants £n, c, C and a neighborhood JV of

vo such that for all 0 < e < £n, v e JV the following assertions hold.
(a) We have

lim **'(*»*) = cJ'(v*)v'(X(v))   uniformly onveJV.

Here J is given by (H3).
(b) 0 is not an eigenvalue of Js?" . Moreover,

\\i^eV)-^\\L^B)<C\\z\\LriB)

for all z such that JB zfa (£,«) = 0.

Proof. Let us prove part (a). Fix a small bounded neighborhood J7 of vo
in X. Consider sequences £, j 0, v¡ e J7 and denote pj = pxiej, vf),
kj = k(Uj). To establish (1) it suffices to show that, after passing to a suitable
subsequence, we have

(3.9) lim !±L-cJ'iv*)v'jikj)

Note that, since v¡ is bounded in C) ■a, we may assume, after passing to a

subsequence, Vj —► v in the Cl-sense, where v e C) attains the value v* at a

unique k e (0, 1) and v'(X) > 0. Thus (3.9) will follow if we show

u
(3.10) lim E¿ « cJ'(vmytf(l)

j-+oo e¡

with c a certain constant independent of v .

Let fa denote a positive eigenfunction associated to pj normalized so that
||^;||i0o = 1. We also denote Uj = ktj(v¡). Then fa- satisfies

(3.11) ejAfa = ifuiuj, vj) + pj)fa   in B,

(3.12) ^=0   onó\B.
on

While Uj satisfies

2a„. _ f(„.   „.\ ,  ,„.    i„ B(3.13) £2Aw7 = f(uj ,vj) + y/j   in B,

(3.14) ^¿ = 0   on dB

where y/j = ipE'iVj) is as in Lemma 3.1.

For a radial function pir) we will use the notation pjit) to designate the
function pjit) = pikj + ejt). Observe that w,-(r) satisfies the equation

i-, lex H ejiN - l)Üj ...       _.        „ /-A;     1-A.A
(3-15)    m^ + X+te) = m ' ̂ +«! •   f € (17 ' ̂ rJ •

Using the properties of m; , ^ as given by Lemma 3.1 and a standard compact-
ness argument, we find that, passing to a suitable subsequence, we may assume
that üj —y ü in the C2-sense over compacts of the real line, where ü satisfies

(3.16) ü + fiü,v*) = 0
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and w(-oc) = «-(«*), w(+oo) = h+(u*). It is well known that such a solution

satisfies that u(t) > 0 for all t and that both « and u approach their limits
exponentially as t —► ±00.

Next, we claim that

(3.17) lim inf pj > 0.
J-+00

To show this we use the variationaj characterization of pj given by

,3.18,       „ - - inf {*2 U W+ff«; ■ <••* 1« , h: m, . „ 0}.

Using hj(r) = ui!-^±) as a test function in (3.18) we easily see that

/oo (ùit)2 + fuiuit),v*)Ùit)2)dt.
-00

But this last integral equals zero, as follows from the fact that ù satisfies on the
real line the equation

(3.20) z = fu(ù,v*)z,    zi±oo) = 0.

Thus (3.17) holds.
Now, from (3.11), (3.12), (3.17) and using the Maximum Principle we ob-

tain that for sufficiently large j, fa maximizes on some interval of the form

[kj - e¡M, kj + ejM] for some fixed constant M. On the other hand, fait) =
faikj+Bjt) clearly satisfies

(3.21) I + 'Á"l™> = ifuiüj, vj) + pj)fa   on (-|, Izh) .

It is easy to see, again applying the Maximum Principle to (3.11), (3.12), that
Pj must be bounded above. Let p* > 0 be an accumulation point of pj. From

(3.21), we see that, as before, we may assume that fa —► <j> in the C2-sense over

compacts of the real line, where ¿j> is bounded, positive and satisfies on the real
line:

4>=ifuiÜ,V*) + p*)fa

But since u > 0 satisfies equation (3.20) and decays fast, we obtain, after an
integration by parts,

0
00

/oo <¡>Ü =
■00

and hence p* = 0. Moreover, a simple argument involving the wronskian of
these functions shows that they are linearly dependent.

With no loss of generality, we will assume henceforth <j> = it.

Let us set Wj := îij. Then Wj satisfies the equation

(3.22) Wj + «/¿".ffi = m, Vj) + fj.
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Multiplying (3.22) by 0 •, integrating by parts between -5/e¡ and 5/ej using

(3.21), and then dividing the resulting equation by £, we obtain

1 - ~    61
-iWjfa-fjiÜjVjWj)]^
bj 1

rs/£j     Wifa i   rslEi     -~
+ 2(iV-1)/     Tk-TTùdt-T       *¿Jdt

J-ó/ej [Áj+£jt) eJ J-â/ej

(3.23) =— \      Wjfadt- fviüj,Vj)v'fadt.
£j J-S/ej J-S/ej

We will show that each term in the left-hand side of (3.23) approaches zero as
j -* oo. To do this, we need the following fact.

Claim. For a fixed and small 5 > 0 there exist positive constants M, n such
that

\4>j(t)\ + l<M')l < exp(-«|i|)   for M<\t\< i.£j

Proof. Assume that M, 5 are chosen so that

(3.24) Cjir) := fuiüj, r, lj) + pj > k > 0   for Me¡ < \r - X}\ < 25.

Consider the annulus A¡ := {x|A; + Mz¡ < \x\ < kj + 25} . Since fa- satisfies

(3.25) eJAfa = Cji\x\)fa   in A¡
and Cj satisfies (3.12), it follows from Lemma 3.3 in [22], see also [9, p. 230],
that there is a number n > 0 such that

\fai\x\)\ < exp f-f^)    for x e Aj

where dix) = dist(x, dAf) = min{|jc| - kj + Me¡, kj + 25 - \x\}. Hence, if

M < t < j, we have \fait)\ < expi-nt + M). A similar estimate is found

for |0,(i)|, for example using (3.25) and elliptic estimates. The same argument

applies to obtain an estimate on -| < t < —M, and the result of the claim
follows.   D

On the other hand, from (3.22) we see that

(3.26) ^iWjikj + tej)N~x) = ikj + tej)N-x{fiüj, êj) + fa}.

Since the amount between { } is uniformly bounded and so is wy, we conclude

\Wjit)\<Cil + \t\)

for some C > 0. Using this estimate and the exponential decay of fa , <¡>j,
we obtain from (3.23) and the Dominated Convergence Theorem that the two

first terms approach zero as j —» oo. The same happens to the third term since
Il VOlk00 = o{e). Therefore, letting j -* oo in (3.23) and again using Dominated
Convergence we conclude

lim £¿ f    udt = v'ik)¡    fv(ù,v*)ùdt
y-»oo ej y.oo J_00

fvis,v*)ds = J'iv<).

J—oo

Jh-(V
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Let c = 1/X^o u dt. Note that this c does not depend on the function v .

We conclude therefore the validity of (3.9) with this number c. This concludes
the proof of part (a).

Next we prove part (b). We need to prove the following: There exist a

neighborhood J7 of Vo in X and a positive number C such that, for all

£ sufficiently small, any given z e C2 with ¡B zfa-ie, v) = 0 and w e C2
satisfying

(3.27) e2Aw-fuikeiv),v)w = z   in B,

dw     „ „ „
— = 0   on 32?,
on

one has

(3.28) |Mk~ < C||z|U«.

Let J7 be some small neighborhood of no . To prove this assertion we argue by
contradiction: we assume the existence of sequences e}r —» 0, v¡ eJV, Zj —> 0

in Cr° with ¡zfa = 0 and Wj e C2 such that ||tU/||oo = 1 and

(3.29) e2Atu, - fiu(uj, Vj)Wj = z¡   in B,

dw
—— = U   on do.
dn

Here, as before, we have denoted u¡ = k£iVj) and fa- = faiej, v¡). Let us also
set pj = pxiej, Vj). We observe that from (3.29) and the definition of p¡ one

gets

(3.30) pj f wjfa = / zfa = 0.
Jb Jb

Assume that ||tt;j||oo = Wjisf) = 1. Note that since Zj -* 0 uniformly, (3.29)
implies that Sj e [kj-Mej, kj+Mej] for some M > 0 and all j large enough.

Using the notation in the proof of part (a), we see that from (3.29) one gets,
after passing to a suitable subsequence,

Wjit) -* cuit)

uniformly on compacts of the real line for some c > 0. Recall that we may
also assume

fait) - c uit)
for some c' > 0. Moreover,

|^(i)| < exp(-if|f|)   far \t\>M,

and some constants M, n > 0. On the other hand, from (3.30) we see that

l-Xj/ej

Wjit)fait)ikj + ejt)N-ldt = 0.
I-Xjlc,

Hence, using Dominated Convergence we find

/,

/
ü =0

which is obviously a contradiction. This concludes the proof of part (b).   G
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Remark 3.1. If in part (a) we had assumed v¿(Ao) < 0 instead of v¿(Ao) > 0,
we would have obtaind

(3.31) lim^^ = c'|t;'(A(t;))|/'(t;*)

«
where now c! = 1/ J^ u   and u is any solution of

t = f(u,v-)

such that w(-oo) = h+(v*), w(oo) = A_(v*).

Note, on the other hand that part (b) implies, in particular, the existence of
a k > 0 such that p2(v, e) < -k for all v e Jr" and £ small. This last fact
implies the validity of the statement in part (b) of the lemma with L2-norms
replacing the L°°-norms, since the operator ¿7EV is selfadjoint.

We can now proceed to the proof of Proposition 3.1.

Proof of Proposition 3.1. Decompose u = u£ + tfa(u, e) + w where u£ = k£iv),
JBw<pxiv, e) = 0, fa > 0 and \\fa-iv, £)||oo = 1. Then we can rewrite equation
(3.1), (3.2) as the following equivalent system.

= 0.

(3.32) w + iS7ev)-xP{Fev(w + tfa)- vie, v)} = 0

Here we have denoted

and

F?iz) = fiu£ + z,v)- fiu£, v) - fuiu£, v)z.

Note that there is a constant C > 0 such that

(3-34) ||F(z)||oo < CWzWl

ana

(3.35) \\Fizx)-Fiz2)\\00<C5\\zx-z2\\00

for all z, z\, z2 e 5(0, r5), the ball center 0, radius 5 in Cr° , and any 5 > 0.

First we solve equation (3.32) for w e W£ where

W£ = (w e C?\ j wfa = o].

Call Tie, v, t,w) the second summand in (3.32). Observe that from Lemma

3.2 (b) and (3.34) we get

(3.36) ||r(£,v,t, «OH«, < CiWwWl + t2 + oie)}.

Hence, there is a 5 > 0 such that T, regarded as an operator in it;, applies the
ball 5(0, 5) n W£ into itself provided that \t\ < 5, e is sufficiently small and
v e J17. Similarly, now using (3.35) and reducing 5 if necessary we obtain that
this operator is a contraction. Therefore, (3.32) possesses a unique solution

w = wie, t,v) in 7/(0, 5) n IVe which clearly depends continuously on its
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arguments. Moreover, w is Lipschitz in t, uniformly on «e/ and small £.
Also, (3.36) yields

(3.37) \\w(e, t, v^oo < Ct2 + o(e).

Substituting this w into (3.33), we obtain the equation in t :

(3.38) t + -1±— ¡iF!iwie,t,v) + tfa)-y,ie,v))Jpr-=fj.
P\iv,e)JB 1101 Ik?

Call ait, e, v) the second summand in (3.38). Then we have, using Lemma
3.2 part (a) and (3.34),

(3.39) |a(f, e,v)\< C{t2 + 0(e)}_L-I f \fa\.
1101 Ik? £ JB

Now, letting faie, v)it) = fais, u)(A(u) + et), we see that

i     /• r(i-X(v))/e

7 / 10.1= / 0i(£,t;)«(A(t;)+ £*)"-¿i.
£ ./ß J-X{v)/s

Now, arguing as in the proof of Lemma 3.2 part (a), we see that fa (£, u)(i) -+
¿(r) as £ -> 0, uniformly on compacts, where ü satisfies

ü = fiü,v*)

and w(-oo) = h-(v*), û(oo) = h+(v*). Also, recalling that 0i(£, u)(r) has a

uniform exponential decay, we get from the Dominated Convergence Theorem

(3.40) lim i f faie,v)= f° Ù = Mi>*) -A_(«*)

and this convergence is uniform on !ie/. Similarly, we obtain

1 / f°°      \x/2

(3.41) ^w\\Me,v)\\L2 = \J_jh\2)

uniformly on 77.
From (3.39), (3.40) and (3.41) we see that

(3-42) la{ti£>v)l<c^+ex'28ie)^,

where dis) —> 0 as e -» 0. Let us fix a number 1/2 < 7 < 1 and assume

|r| < &ie)iex/2 . Then, from (3.42) we obtain

\a(t, £, v)\ < C{8ie)2" + 8ie)}el/2 < Mflfe1*2,

if £ is sufficiently small. Therefore, a as a function of t applies the interval
1*1 < 8ie)nexl2 into itself for all small e.

Now, recalling that w is uniformly Lipschitz on t and using (3.35), we
easily obtain that a becomes a contraction on t in this range for all small £.
Hence, we have a unique solution t = tie, v) to the equation (3.38) such that
|*| < 8ie)iexl2.

We conclude that

k£(v) = k£(v) + tie, v)faie, v) + witie, v),e,v)
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solves (3.1), (3.2). Moreover,

\\k£iv)-k£iv)\\00 = oiex'2)

and, from the properties of k£iv), we easily deduce the desired properties of
k£iv). This concludes the proof of the proposition.   D

It only remains to prove Lemma 3.1.   We need the following preliminary
result.

Lemma 3.3. There exist a neighborhood JV ofvo, a number e0 > 0 and families
of radial solutions to (3.1), (3.2), {h+ie, v)}o<£<eo, {h-ie, v)}0<£<£0, veTV,

which define continuous operators jV —► C2 and such that

(3.43) sup p±(£, t») - h±(v)\\Lm = oie),

(3.44) £ sup ||VA±(e, v) - Vh±(v)„L~iB) = o(e),

where o(fi)/£ —» 0 as e -* 0.

Proof. We will prove the existence of h-ie, v) as in the statement of the the-
orem. The proof for h+ie,v) is the same. Fix a small neighborhood JV of

vo and set w = u — h-(v). Then, since ff = 0 on dB, (3.1), (3.2) can be
rewritten as

(3.45) e2Aw = fih-iv) + w,v)-e2Ah-iv)   in B,

Ä-0   on*
dn

where Ah-iv) is understood in the distributional sense (recall that v is only
Cl'a). We consider, for t e [0, 1], the auxiliary problem

(3.46)
e2Aw = tifih-iv) + w,v)- e2Ah.(v)) + (1 - f)/«(*-(«), v)«;   in 5,

|£-0   onaiî.
dn

Fix a small number po > 0. We will prove the following fact.
Claim. Let

Ae = {w e Cr' ' | IMk°° < Po and w solves (3.46) for some t e [0, 1], v e ^}.

Then,

SUP l|tfl|k« =0(£)

where o(fi)/fi —»0 to £ -» 0.

Proo/. Assume the contrary, i.e. the existence of sequences vn -* v in Cx ,v„ e
JV, en —» 0, r„ —> 7 e [0, 1] and solution u>„ to (3.46) for v = v„ , e = e„ ,
t = t„ such that, for some c> 0,

w„
<c.

wm||oo

We assume that, for some rn e [0, 1], wn(rn) = ||«;«||oo (the case w„ir„) —

-\\WnWoo is similar). Let us assume r„ —> r e [0, 1]. We further consider two
subcases.
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(a) r„ < pen , for some p > 0.

(b) lim^oo rf m +00 .

Assume first (a) holds. For a function P(r), we set Pis) = Piens). Further,

let us define za(s) = wn/\\w„\\oo ■ Then

Az" = n.„ ii   tnifih-iv) + wn, vn))
\\"Jn\\oo

Ah-ivn) + (1 - tn)f«ih-ivn),vn)zn   in 5(0, 2/z),
IKIloo

in the distributional sense. Note that

-Ah-(vn) = di\8„
\\wn\\oo

where 8„ = ien/Wwn\\oo)Vv„. Observe that 8n is uniformly bounded. It fol-
lows, from the elliptic estimates in Chapter 8 of [13], that we may assume
z„ —> z in the Cx'a sense. Moreover, we may also assume 8n converges in

the C sense to a constant. Hence z is actually of class C2 , and we may also
assume w„ converges in the C1 sense to some w with ||tá||oo < Po- Thus, z
satisfies

(3.47) Az-c(s)z = 0   in 5(0, 2p)

where

eis) = t [ Mh-iviO)) + zwis), v(0)) dr + il- t)fu(h-(V(0)), v(0)).
Jo

Note that c(i) > 0 if po was chosen small enough. But, since we are in case (a),
we see that z has a positive maximum in 5(0, 2p) ; hence (3.47) is impossible
because of the Maximum Principle. This discards case (a).

Now, if (b) holds, similar arguments applied to wnis) = w„ir„ + e„s) lead
us to the following situation: there are functions u)(s), z(j) which satisfy

z - \lf fuih-iW)) + tw , v(r)) dr + il- 7)/M(A_(t7(r)), v{r)) J z = 0

on (-co, 0], where ||i&||oo < Po, ^'(0) = 0 and z maximizes at 0. This is
again impossible and concludes the proof of the claim.   D

From the claim, existence of a family of solutions h-ie, v) satisfying (3.1),
(3.2) and (3.42) follows from a simple degree-theoretical argument applied to
the family of equations (3.46). On the other hand, an indirect argument similar
to the one employed in the proof of the claim, with the aid of (3.45) and elliptic
estimates, shows assertion (3.44). Finally, continuity of the family h- in its
arguments is an immediate consequence of the uniqueness of the solution w
of (3.45) with ||t/;||oo < Po- This last fact follows easily from the Maximum

Principle. This concludes the proof of the lemma.   □

Proof of Lemma 3.1. We will construct the desired approximation k£iv). We
fixt/e/, where J^ is some small neighborhood of vq in X. Let h+ie, v),
h-ie, v) be the families predicted by Lemma 3.3. We use the notation

h£± = h±ie,v),    hl = h±iv).
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Dependence on v should always be understood implicit in the different notation
we will use in the course of this proof.

Let us also set a£ = hi., b£ = h% - h£_ , a = A° , b = h% - A°_ and rewrite in
(3.1), (3.2) u = a£ + b£w . Then, (3.1) becomes

(3.48) £2(Aa£ + wAb£) + e2b£w" + (N- l)e2^- + 2e2b'£w' = /(a, + wbe, v).

Also, for a function p(r) we will denote, as usual, p(t) = p(A(v) + et). Then,
(3.48) rewritten in terms of w becomes

(3.49) £2(Aà£ + wAb£) + b£w + ÍN- l)e jnr~ + ̂ H = 7(4 + wb£, v).

We look for a formal approximation to w which, using an idea of Hale and
Sakamoto [14], we take of the form

(3.50) zeit) = zoit) + ezxit).

Then, from (3.49), zo , z\ should respectively satisfy the equations

(3.51) b.z0 = giz0,v<)

and

(3.52) btzx + tb'7zo + iN-l)^ = guizo,v*)zx+gvizo,v*)v'j

and the conditions at infinity

(3.53) z0(+oo) = 1,     zo(-oo) = 0,     i0(±oo) = 0,

(3.54) zi(±oo) = 0,    z,(±oo) = 0.

Here we have denoted

giw, v) = fih-iv) + ih+iv) - h-(v))w, v).

The argument applied in [14, p. 372] then yields the existence of unique zo, z\
satisfying (3.51 )-(3.54). Moreover, z0, zx have exponential decay estimates

(3.55) |z0(0l < exp(-rc|i|)   for t < -M

and

(3.56) |z0(0l < exp(-/c|?|)   for / > M.

Analogous estimates hold for z0 , zx and zx. Next we fix some small number

5 > 0 and set

utir) = Kir) + C_(r) |c+(r)z£ (^) + (1 - C+(0)} iK - ht).

Here Ç- , C+ are C°° cut-off functions such that for all v eJ7

0   ifO<r<A(v)-2<î,f 0   ifO<r<A(t;)-
fc-V J     1 1   if r>k(v)-5,

( 1    ifr<A(t;) + c5,

UU     \0   if r > k(o) + 25.
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Thus,
{hi ifr<k(v)-25,

h% ifr>A(v) + 2r5,

z£i^) if\k-kiv)\<5.

k£iv) = ue is the approximation we are looking for. Let y/£ = e2Au£-fi(v£, v).
We need to show that y/£ satisfies estimate (3.5).

Note that y/E = 0 if \r - A(w)| > 25 . Now, let us assume

(3.57) kiv) - 25 < r < kiv) - 5.

Then

u£ir) = h£_ + t;-ir)z£(y^yh£+-h£_)

and

Vc = /(Al ,v)-f [hi + Ç-z£ (-^J ih£+ - Ai), vj

+ e2A^-ir)z£(^yh£+-ht);

since z£it) and its two first derivatives are exponentially small for t large and
negative, we conclude

\¥¿r)\mO(e-'f)

for some ß > 0, uniformly on r satisfying (3.57) and on v . The same clearly
happens if A(u) + 5 < r < kiv) + 25 . Hence, in particular,

\W*(r)\=0(e)   if|r-A(u)|>r5.

Next we consider the case \r - X(v)\ < 5 . In this range we have u£ — a£ + z£b£.
For a family of functions fe(t, v) we will write fi(t, v) = oie) to designate
the fact that sup„ ||^||oo = oie).

From Lemma 3.3 we know that

h£±-h°± = oie),    eiVh£± - Vh%) = o(e),    £2AA± = o(e).

From this and the growth properties of zq and Z\ we easily obtain that

£2Àw£ = o(e) + ¿¿o + ÍN- l)p^- + 2eb'z0 + ebzx

2- _ 1

Note that the last two terms are o(fi). From this and the definitions of zo and

z\, we obtain

£2Àw£ = o(e) +(b- e-^-\ zo + iN- l)ebz0
io [k+Tt - k)K

V - yK 1 ¿o + e-£-{guizo, V*)Zx + gviz0, v*)v'j}.

Now, using the exponential decay of z0, z0 and ¿x and the above equality we

get

e2Au£ = oie) + b7¿o + e{guiz0, v*)zx +^(z0, v*)v'j}.
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Hence, y/£ = e2Au£ - f(u£, v) satisfies in this range fa = oie) - gt, where

gt = f(ä£ + izo + ezx)b£,v)-gizo,v*)-gwizo, v*)ezx + &,(z0, v*)v',et.

Observe that since a£ — a = o(£) and b£ - b = o(fi), we have

/(¿£ + (z0 + ezx)b£, v) = fid + ¿(z0 + £z,), v) + oie).

But /(à + ¿(zo + ezx), v) — gizo + ezx, v), by definition of g. Note that

giz0 + ezx, v) = giz0, ù) + gwiz0, v)ezx + oie),

since zx is bounded. Thus

g£ = igizo,v)~gizo, v*)-gwiz0, v*)ezx + gviz0,v*)v'tet)

+ igwizo, v)~ gwizo, v*))ezx +0(£) = I + II + 0(£).

But gis, v) = 0 if s —»0,1. Since zo approaches exponentially these numbers
as i-» -oo and i-»oo respectively, it follows that I = o(e) . We have that

II = o(e) too. Indeed, note that

\gw(zQ,v)-gwiz0, v*)|£|zi| <\v-v*\ < C£1+asup|rz,(OI = o(£).

Note that the constant C above depends on JV but not on v . Hence \p£ = oie)

if \r - A(v)| < 5, as desired. The other properties of the approximation k£iv)
stated in the lemma follow immediately from the construction. This concludes
the proof.   D

Remark 3.2. A by-product of the above construction is the stability or instability
of the family k£iv). Indeed, formula (3.31) still holds for these solutions
and hence the family will be stable for small £ if J'(v*) < 0 and unstable
if J'iv*) > 0. In the former case, a simpler proof of Proposition 3.1 can
be given with the aid of the direct method of the calculus of variations. In
fact, in this case the desired family can be captured as global minimizers of
the associated energy functional. We do not give details of this construction
here but only remark that it can be carried out following the ideas in [1] and
[2] where related scalar problems under radial symmetry were treated. See also
[7] for a degree-theoretical construction of these "stable layers" when no radial
symmetry is assumed.

However, J'iv*) < 0 is not generally expected in applications to systems.
In particular, it does not hold in our application to the Gierer and Meinhardt
model.

4. Main result

We can now state and prove our main result.

Theorem 4.1. Fix a <Oo (or, equivalently, D > l/oo) with oq as in Proposition
2.2. Let vo be the decreasing solution to (2.1) predicted by Proposition 2.1
for 8 = v*. Then there exists an eo > 0 and a family of radial solutions
{iu£, v£)}0<£<£(> to problem (P) suchthat

(1) v£ -> vo as e -» 0 in the CXa-sense.

(2) u£ -* hivo) as £ —► 0 uniformly of compacts of 5\{|x| = ko}. More
precisely, given p > 0 there exist numbers M > 0 and ex € (0, £o) such that,
for all 0 < £ < £i, one has

\u£ir)-h(o£ir))\<p   if\r-k£\>Me.
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Here, h = hv' where he is given by (1.7).   A£ is the unique radius such that
vAk£) = v*.

(3) SUP   \\U£\\Lo°{B) < +00.
0<£<£o

A similar statement holds true replacing vo with Vx given by Corollary 2.1.

Proof. For notational simplicity we will assume a = 1 during the proof. Let
JV be an X-neighborhood of Vo as given in Proposition 3.1. Then for v e JY
we can solve for u (1.1) into the form u = k£(v). Substituting this u into
(1.2) we obtain the single equation

(4.1) Av = gik£iv),v)   in 5,

|^ = 0   onô5.
dn

Since the operator k£ is continuous on JV regarded as an operator from X
into Li, we obtain that the operator G£: X -* Lqr given by

G£iv)ir):=gik£iv)ir),vir))

....
is also continuous. Moreover, it is easily seen to be compact.

We will show that (4.1) has a solution for all sufficiently small e by proving

(4.2) degiI-Te,y7,v0)^0

for a small X-neighborhood A" of vo where

Teiv):=iA-I)-xiG£iv)-v).

To prove (4.2) we will use Proposition 2.2 together with the invariance of the
Leray-Schauder degree under compact homotopies. Consider for t e [0, 1] the
homotopy

Q,iv) := (A- /)-'(c7£(t;) -v) + f(A - I)~xiG£iv) - Giv))

where G is as in Proposition 2.2. Then, Qo = T, Q\ = Te where T is given

by (2.12). For v e JV we have

II« - Q,iv)\\x > \\v - Tiv)\\x - ||(A - I)-l\W(vr,x)Wiv) - Giv)\\L,

>  inf ||t; - Tiv)\\x - c||(A - /)"» |L*(i?.^(i;) - h(v)\\L.
v€dJr •

where in the last inequality we have used that G may be assumed to be
Lipschitz. But from Proposition 3.1 part (3), we may reduce £ > 0 so that

sup P:£(t;)-A(t;)|k?<  inf" ||i; - T(v)\\x/c\\(A- ITx\W{L,,Xy

Hence, for small £, ||v - öf(t;)||^ > 0 for all v e dJV and all t e [0, 1]. We
conclude that Qt is an admissible homotopy between T and T£. Thus

deg(/ - T£, jr, v0) = deg(/ -T,J^,v0).

Since the latter degree is nonzero, thanks to Proposition 2.2, (4.2) follows, thus
proving the existence of a solution ve to (4.1) in JV. Hence, letting w£ :=
k£(o£), we find that (u£, v£) solves problem (P).
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We shall next prove (1). Since vc and C7£(v£) are uniformly bounded, v£ =

iA-I)~xiG£iv£)-v£) and (A-/)-1 maps compactly L°° into C1'0, we see

that {ve} is precompact in Crl'a. We will show that ve -» vo in Cr' Q .

Let í be any accumulation point of v£ in Cr' Q and select a sequence £, -» 0

such that v£j —► v in Cr' '" . Then ¿6/. If JV was chosen sufficiently small,

we see that v(r) takes the value v* at just one r. In particular, it follows that

(4.3) hiv£j)-*hiv)   in I«

for any q > 1. On the other hand

\\G£>iv£i)-G{v)\\L,

< Ui&faj. *>«,) - *(*(««,-). v*,)\\i4

<e{sup||^(t;)-A(t;)|k, + ||A(t;£y)-A(i;)||z.?}.

From Proposition 3.1 part (3) and (4.3), we see that the right-hand side of
(4.4) tends to zero as j —► oo. Now, from (4.4) and the fact that v£j —

(A — 7)-,(G(v«,) — vtl) we obtain vt, ->ö in I and

(4.5) v = iA-I)-x(Giv)-v).

Since vo is an isolated solution of (4.1), it follows from (4.5) that v = vo.
Hence v£ —> t* in Cla as £ —► 0. The above proof also gives this conver-

gence in X, as desired. The other parts of the theorem follow easily from the

properties of k£ given in Proposition 3.1. This concludes the proof.   D
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