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LET (A4, g) be a compact Riemannian manifold of dimension N 1 1. We consider the problem 
of finding positive solutions to the following semilinear elliptic equation 

Au + lu - h(_+P = 0 in M, (1) 

where A represents the Laplace-Beltrami operator associated to the metric g. p > 1, I are 
constants and h(x) a given function on M. 

Equation (1) was considered by Kazdan and Warner [l] in the context of the classical 
problem of conformally deforming a given metric on M to another with prescribed scalar cur- 
vature. Among other results, they established that if h is smooth and h > 0 on M, then problem 
(1) possesses a unique positive solution for any 13 > 0. They also conjectured that h 2 0, h f 0 
should indeed suffice for the validity of this result. The situation, however, turns out to be more 
subtle in such a case, as has been recently established by Ouyang in [2]. To state his result, we 
let MO be the interior of the set where h vanishes. Denote by A,(M,) the first eigenvalue of the 
problem 

Au + lu = 0 in MO 

u=o on dM,, 

where we understand A,(M,) = + 00 in the case where M, is empty. Under certain additional 
regularity assumptions that we discuss below, the following result holds. 

THEOREM 1. Assume h E C”(M) is nonnegative and not identically zero. Then problem (1) has 
a unique positive solution uh for all 0 < I < A,(M,). If M, is nonempty, then no positive 
solution exists if I 2 A,(M,). Moreover, 

x I;ImJ&@o = +m. 
A 1 

It should be remarked that some steps in the proof of this result in [2] require regularity 
on the boundary of the set M+ = (x E M 1 h(x) > 0). This is the case of the argument on 
pp. 522-524 of [2], where, also, the additional fact that aM+ and aM, coincide is implicitly 
used. We note that regularity of aM, is also used 
lemma is applied. 

in the argument on p. 521, where Hopf’s 

t This work was supported by NSF grant DMS-9100383. 
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In this paper we will provide a short proof of the above result based on a direct variational 
approach and a tool introduced by Brezis and Oswald in [3]. As well as relaxing the above- 
mentioned regularity conditions, our proof also avoids a delicate a priori estimate contained 
in lemma 4 of [2], whose proof makes use of smoothness of the coefficient h. We point out 
that Kazdan and Warner’s result only needs h E L4(M) for some q > N and h > 0 a.e., see 
[ 1, theorem 2.111. We will only require that h satisfies this integrability condition. On the other 
hand, we will assume the existence of an open set MO with boundary of measure zero such that 
h = 0 a.e. on MO and h > 0 a.e. on MU&,. Note that if h is continuous, this assumption is 
equivalent to the fact that the boundary of the set where h is positive has a measure of zero. 

Before stating our first result, we make precise the definition of Ai(M,) when M, is an open 
subset of M with a boundary of measure of zero. For an open neighborhood Sz of n/r, with 
smooth boundary, we define classically its first Dirichlet eigenvalue A,(Q) as 

Then we let 

L,(Q) = inf 
U 

IVu12 ( u E H,‘(Q), 
i 3 

u2=1. 
cl Q 

il,(M,) = sup(A,(Q) ) Sz is a smooth neighborhood of tiO). 

We also use the convention L,(M,) = +co in the case where MO is empty. We designate by 
H&U,) the space of all functions u E H’(M) such that u = 0 a.e. on MU4,. (This space 
coincides with H&‘$,) if MO has a sufficiently regular boundary.) The definition of I,(&&,) 
yields, after a simple approximation argument involving the fact that a&, has measure zero, 

Iz,(M,) = inf 
(1 

lVu12 I u E K#frJ, 
s 1 

u2=1. (2) 
MO MO 

Moreover, this infimum is attained at some nonnegative function 4i E H:(M,,) fl C”(M,) 
which satisfies 

A& + ~,(~&J,, = 0 in M,. 

We call such a 4, a positive eigenfunction associated with Ai(M,). Note that the Strong Maxi- 
mum Principle implies $i > 0 on any component of M, where it does not vanish identically. 

We assume in the next result that h E Lq(M) for some q > N. By a solution to (1) in such a 
case we understand a function u E W2*q(M) satisfying (1) in the strong sense. Observe that such 
a u is actually of class C’(M). In the case that h is Holder continuous, this concept reduces to 
the classical one. 

THEOREM 2. Assume h E Lq(M) for some q > N and that there exists an open subset IL&, of M 
with boundary of measure zero, such that h = 0 a.e. on h/r, and h > 0 a.e. in MU&,. Then 
problem (1) has a unique positive solution ux for all 0 < ?, < A,(M,). If M, is nonempty, then 
no positive solution exists if L 2 AI and 

The proof of theorem 1 in [2] actually provides an interesting by-product concerning the 
behavior of the solution z+, : it remains uniformly bounded on compact subsets of the set where 
h is positive as 1 + AI( We will provide an alternative proof of this fact. Moreover, our 



Semilinear elliptic equation 1425 

next result additionally establishes that the blow-up of ux as L --) 1,(&I,,) is uniform on compact 
subsets of M,, provided that M0 is connected. 

In the sequel we denote by A4+ the set 

iVZ+ = (XEMjh(X) > 0). (3) 

THEOREM 3. Under the assumptions of theorem 2: 
(i) assume that h is continuous. Then for every compact set K c M c A4+ we have 

;$&(K) < +a, 

where Z is any bounded subinterval of (0, AI(M 
(ii) if M, is connected and nonempty, then for any compact set K c M,, we have 

Before going into the proofs of these results, we remark that Ouyang has continued his study 
of problem (1) in [4], where he considers the case in which h changes sign in A4 and l,h > 0. 

The proof of theorem 2 is based on direct variational arguments applied to the functional .Z 
on H’(M) with values on (-00, CD] defined in the following manner. 

J(u) = ; 
(S 

(vu(2 - Au2 
M 

1 + --& //lulp+l (4) 

if SM hlulP+l < +a and J(u) = +oo otherwise. 
By a critical point of J we understand a u E H’(M) with J(u) < +oo such that 

$ J(u + Wit=,, = 0 for all N’(M) n L”(M). (5) 

Hence, if u 2 0 is a critical point of J, then u solves (1) in the following weak sense 

jMvuvyI + iMhupv = Iz iMup for all 9 EH’(M) nL”(M). (6) 

For t 2 2 and R > 0 we choose v, = (min(u, RI)‘-’ as a test function in (6). Applying the 
Sobolev embedding and letting R -+ co, we arrive at an inequality of the form 

Ilull LL+(zf/(N-z)@) I c 1) u JILQo (7) 

in the case where N 2 3. It follows from (7) that u E L’(M) for all t 2 2. Obviously the same 
conclusion remains if N 5 2 since u E H’(M). Standard elliptic regularity applied to (6) then 
shows that u E W29*(M), so that u solves (1) in the strong sense. Moreover, the Strong 
Maximum Principle for W2*N -solutions (see [5]) implies u > 0 in the case where u is not 
identically zero. Thus, the problem of finding positive solutions to (1) is equivalent to the one 
of finding nonnegative, not identically zero critical points of J. 

Proof of theorem 2. Standard arguments show that the functional J defined by (4) is weakly 
lower semicontinuous. Assume first 0 < il < L,(M,). We will show that J possesses a 
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minimizer. To do this, it suffices to verify that .Z is coercive, that is 

J(U) -+ +a as ll&~~~ + +m. (8) 

We assume the contrary, namely the existence of a sequence lu,) such that ~Iu,,([~~(~) + +m 
and .Z(U,) remains bounded above. Observe that this implies ((u,\(~z~~ -+ +oo. Define 
t, = u,/IJu,I(~z~~. Then we find that 

In particular, lIG,IIH1(lM) is bounded. Thus, we may assume ti, -+ u^ weakly in H’(M) and 
strongly in L2(M). From (9), the fact that IIu,(jLzcm --) co and Fatou’s lemma, we obtain that 

j&zlrilP+’ = 0. Since h > 0 a.e. on MVM,,, this immediately yields a contradiction in the case 
where MO = 0. Assume the contrary. Then li E H&4,,). Again from (9) we obtain 

This contradicts the characterization Ai in (2) since ((fi(IL2(M0) = 1 and, therefore, (8) holds 
true. We conclude that .Z possesses a minimizer u,, E H’(M). u0 is not identically zero since 
evaluating J at the constant function t > 0 we get 

J(t) = -; t2pvzl + h < 0 = J(O), 

in the case where t is chosen sufficiently small. 
Finally, since luOl also minimizes .Z, we conclude the existence of a nonnegative, nonzero 

critical point of .Z in the sense of (6) and, hence, of a positive solution to (1). Existence is thus 
established in the case where 0 < E, < n,(M,). For uniqueness, as well as for the proof of the 
second part of the theorem, we will make use of the following fact. 

CLAIM. For any 13 > 0, there is at most one critical point u0 > 0 of .Z and it must be a minimizer. 

We prove this claim by making use of a tool introduced by Brezis and Oswald [3]. We 
consider the functional Z defined on the convex cone of nonnegative functions u such that 
rY2 E H’(M) as 

Z(u) = ; 
.i M 

lvPl2 -&+-L~Mh,,+l~/2 

if {M ZHP+‘)‘~ is finite, and Z(u) = +oo otherwise. 
Then, J(U) = Z(u2) for all u E H’(M). Let u,, > 0 be a critical point of J. The claim clearly 

follows if we prove: 
(a) u0 = 24: minimizes I; 
(b) Z has at most one positive minimizer. 
Let us prove these facts. For U, 1 0 such that u:‘~ E ZZ1(M) (7 L”(M), we consider the 

function 

P(t) = Z(v, + tZ4, 
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where t E [0, l] and k = u1 - u,,. It is easy to see that a, is finite, twice differentiable on [0, 1) 
and 

P’(O) = -j&i + to)l,=, 

where o = 1/2((u,/uJ - u,,). 
Note that o E H’(M) Il L’(M) since u,, > 0 on A4 and u,, E WzV”(M) C C’(M). Hence, by 

definition of a critical point of .Z, p’(O) = 0. 
Next, we compute p”(t). We find, 

p,“(t) = /~~V(---&)12(uo + tk) + q[Mh(, + tk)(p-3)‘2k2 

for t E [0, 1). Note that this number is well defined since v0 + tk 1 (1 - t)v, and u,, is away 
from zero in M. It is easily checked that p”(t) > 0 for all t E [0, l), and, hence, v, is strictly 
convex on [0, I]. Since p’(O) = 0, we obtain that Z(u,) < Z(u,) and (a) follows. The same 
argument shows (b) and the validity of the claim is proved. 

In particular, the claim implies the uniqueness assertion of the first part of the theorem. Let 
us prove the second part. 

Let us assume L 2 Ai( Let r#~i E H&4,) be a positive eigenfunction associated to A,(M,). 
Note that, from the strong maximum principle, the function r#+ does not solve the equation 

Au + lu = 0 in M. 

Therefore, we can find a function u0 E H’(M) such that the number 

is strictly positive. Let us write U, = tqil + uo. Then 

1 
+- 

i P+l M 

Hence, 

where 

J(u,) = ~(l,(M,) - A) + ta + 6, 

1 ’ 
b=--.- 

I P+l M 

hug+’ + ; (Ivu,12 - AU;). 
M 

Since a > 0 and A,(M,,) - A I 0, it follows that .Z(U,) + --43 as t -+ - 00. Hence, J is not 
bounded below. Since any positive solution to (1) must be a minimizer of J, we conclude that 
no such solution exists. 
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Finally, we prove that if M,, is nonempty, then 

Assume, by contradiction, that there is a sequence I,, t n,(M,,) such that I]u&z~~ is bounded. 
Since uX, minimizes J for I = I,, we conclude that )Iux, IIHl(- is also bounded. Passing to a 
subsequence, we may assume that there is a u E H*(M) such that ux, + u weakly in H’(M) 
and strongly in L2(M). It easily follows that this u must be a minimizer of J for I = n,(M,). 
Since no such minimizer exists, the validity of (10) follows concluding the proof of the 
theorem. n 

Proof of theorem 3. To prove part (i) it clearly suffices to show that ux remains bounded on 
compacts of Q where Sz is any open set with smooth boundary contained in M, . Thus, fix such 
a neighborhood Q. As is well known, the function x ++ dist(x, 13n) is smooth on Sz U V, where 

V is a sufficiently small neighborhood of aQ, and we assume it smoothly extended to a positive 
function d(x) defined on a. Next set 

u(x) = Cd(x))“, 

where C and o( are positive constants yet to be determined. 
Note that we have 

Ad-” = a(a! + l)(vd(2d-‘“+2’ - ad-‘“+“Ad 

and, therefore, 

s 
vuva, = C 

s 
(cSca+‘) Ad - 

rl R 

for all v, E H’(M) with compact support contained 

r r 

ol(a! + l)lVd(2d~‘“+2’)~ (11) 

in Q. Also, setting u = ux. we have 

J vu vtp + 
a ! 

(hu” - k&p = 0 (12) 
R 

for all these (ps. In particular, choosing cp = (U - u), we obtain, after subtraction of (12) 
and (11) 

= 
s 

(C(a(a + l)jVd12d-‘“+2’ - ad-(“+‘) Ad] - CPhd-p’“)cp, (13) 
Q 

where 4 is any positive constant. We choose b = 4 infn h which is positive, by continuity of h. 
Let us assume I E I, with Z a bounded interval. Suppose that U(X) L Cd(x)-“. Then, if we 

choose C large enough, independently of x we can arrange that for any I E Z 

h(x)up(x) - Au(x) L &8’(x) 

and also that 

C{~((Y - l)lvd12d-(01+2) - ad-(“+‘) Ad) - CPhd-” I 0 on Sz, 
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provided that a is such that (Y > 2/Q - 1). Choosing such numbers C and a in the definition 
of V, we obtain from (13) 

s i&P - op)(u - v), 5 0. 
n 

Hence, (U - v), = 0, which means U(X) 5 C~(X)-~ for every x E a. This implies u is locally 
uniformly bounded on M\o as desired and the result of (i) follows. 

Let us next prove part (ii). Choose any sequence I, t Ir(M0) and denote U, = ux,. u, clearly 

satisfies 

[y2 + pYil = A, s/2. (14) 

Let us set li, = u,/](~,((~z~~. Then we obtain that for a subsequence of iI,, which we relabel in 
the same way, li, - li in N’(M), 6, + t? in L2(M) where ti satisfies 

But ti E 0 a.e. on M\M,, since clearly we get from (14) jM hz?-’ = 0. Hence, li E H:(M,J and 
from (15) we get li = 4, on M, where I& E C”(M,) tl H&4,) is a positive eigenfunction 

associated to ,lr(M,) such that j/#r jjLz~MOj = 1 and (6, > 0 on MO (here is where connectedness is 

used). Moreover, since 5, satisfies 

Ati, + A,,$,, = 0 in M,, 

interior elliptic estimates imply that the convergence of fi,, to c$~ is uniform over compacts of 
AI,. Since 4, is strictly positive on such sets and ([u,(jLzcM) -+ co, the result of part (ii) follows. 

This finishes the proof. n 

We conclude with some remarks concerning the above proofs. 

Remark 1. The method in the proof of part (i) of theorem 3 can also be used to obtain estimates 
for the growth rate of u, near &%4+. For example, if ah4+ is a smooth (N - I)-dimensional 

submanifold of M and we assume 

h(x) 2 A dist(x, L3M+)7 on M, 

for some constants A, q > 0, then for a given bounded interval Z we have that for each E > 0 
there is a C, > 0 such that 

r+,(x) I C, dist(x, dM+)-(2+9’E)‘@- ‘) for all x E M+ , Iz E I. 

On the other hand, if we do not assume regularity on dM+ but h is smooth, we obtain 

Ux(X) 5 CEh(X)-(2+C)‘@-‘) for all x E M+ 

The problem of finding optimal growth rates of ux near aM+, as well as an estimate for 

ll&-~M~ as A + n,(Z&) arises as an open question. 
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Remark 2. If in part (ii) of theorem 3 M, is not connected but has a component M, such that 

for any other component M’ of M,, then the result of (ii) of theorem 3 holds true for M, in 
place of M,. Indeed, it is not hard to check from the variational characterization (2) that in 
such a Lose we have Ai(M,) = I,(M,) and any positive eigenfunction 4, associated to ~,(A4,) 
will have the form 4,(x) = i,(x) if x E M, and 4i(x) = 0 otherwise, where 6, is a positive 
eigenfunction associated with A,(M,). 

Remark 3. Let Q be a bounded, smooth domain in RN. The proofs of theorems 2 and 3 work 
equally well for the case of the problem 

Au + Au - h(x)zP = 0 in a 

u>o in Sz 

under homogeneous Neumann or Dirichlet boundary conditions on a0. In the latter case, the 
condition A > 0 in the first part of theorem 2 should be replaced by a > I,(Q). 
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