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I 

LAYERS WITH NONSMOOTH INTERFACE 

IN A SEMILINEAR ELLIPTIC PROBLEM 

Manuel A. del P i n o  

School of Mathematics University of Minnesota 
Minneapolis, Minnesota 55455 U.S.A. 

and 
Departamento de Matematicas, Fac. de Ciencias 

Universidad de Chile, Casilla 653 Santiago 1, Chile. 

1. Introduct ion 

Let R be a smooth bounded domain in Rm, m 2 1. In this paper we consider the 
semilinear Neumann problem 

where f  is of class C1 and f ( . , x )  has precisely three zeros h - ( x )  < h o ( x )  < h + ( x )  for 
each x E a. We also assume that h* are nondegenerate and stable, namely 

f , ( h * ( x ) , x )  > 0 for all x  E a. ( 1 . 2 )  

We are interested in solutions to ( 1 . 1 )  exhibiting a transition layer from h-  to h+ as 
6 approaches zero. More precisely, we look for two open subsets R+ and 52- of R and 
a family of solutions to problem (1 .1 )  such that u, approaches h* on compact 
subsets of Rh.  

In a pioneering work, Fife and Greenlee [8] gave sufficient conditions for this phe- 
nomenon to take place. As pointed out by Caginalp and Fife 151, the following result for 
problem ( 1 . 1 )  follows from the methods in [8], where the Dirichlet case was treated. We 
denote 

J ( r )  = J ~ ~ ( ~ )  f (r, r ) & .  
h - ( z )  

( 1 . 3 )  

Copyr&ht CJ 1992 by Marcel Dekker, Inc. 
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Theorem A. Let m = 2. Assume the existence of a closed smooth curve J? c R 
which divides R into two smooth subdomains R+ and 0- and such that  J = 0 and > 0 
o n  I'. Here v denotes the normal direction t o  I' towards R-. T h e n  there exist e positive 
number EO and a family of solutions { u ~ ) ~ < , < , ,  t o  problem (1.1) such  that 

lim u,(x) = h*(x )  
r-0 

uni formly o n  compacts of R*. 

It is observed in [8] that dimension is not an important restriction in this result. 
In fact, their method works in any dimension m, with r replaced by a finite number of 
closed hypersurfaces. 

What still seems to be an important restriction is that of the smoothness of the 
interface I?. Indeed, the method of [8] is based upon a careful formal approximation of 
the solution near I' using a series expansion in powers of E .  They then apply implicit 
function techniques based on this approximation. This method does not seem t o  apply 
once the smoothness hypothesis on I? is removed. 

It is noticed in [5] that a simpler, but still delicate, super-subsolutions approach 
could be devised along the lines of that paper. This is done in [7] for Dirichlet boundary 
conditions. That proof, however, also depends on the smoothness of the interface. 

Here we present a completely different proof of Theorem A which permits to  over- 
come this difficulty. Moreover, it allows I' to be an arbitrary closed subset of a. In 
particular, I' may intersect 8 R  and have an arbitrary number of components. 

Our proof, based on standard elliptic theory and degree theoretical arguments, is 
rather simple and does not require the construction of f i s t  approximations or super-sub 
solutions based on the formal knowledge of the behavior of the solution near the interface. 
This flexibility may be useful in the study of more complex problems, like systems, in 
which the properties of the interface may not be entirely a priori known. 

The following is the main result of this paper. 

Theorem B. Let m 2 1 and assume the existence of a closed set  I' c f l  and of open 
disjoint subsets of 0, R+ and R -  such that 

Assume also the existence of a n  open neighborhood N of I' such that  

and 
J ( x ) ~ : o  f o r x ~ i V n i i + \ r  

T h e n  there ezist a positive number  EO and a family of s o k t i o n s  { u ~ ) ~ < , < , ,  to  problem 
(1.1) such that 

lim u E ( x )  = h*(x )  
e-0 

uni formly o n  compact ~ u b s e t s  of fli \ I', i n  particular of a R i  \ r. 

Theorem A clearly follows from this result. Observe that the condition > 0 has 
been replaced by a "change of sign" assumption for J on r. 
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LAYERS WITH NONSMOOTH INTERFACE 1697 

If f(. ,x) has more than one zero between h-(x) and h+(x), conditions (1.4) and 
(1.5) should respectively be replaced by 

Ju f(r,x)dr > 0 for u E (h-(x), h+(x)] and x E N n 0- \ (1.4)' 
h - ( 2 )  

and 

( < o for u E [ h + ( ~ ) ,  h+(x)) a d  x E N n 0, \ r. (1.5)~ 

These conditions are equivalent to  (1.4) and (1.5) in case that only one zero between h- 
and h+ exists, and what we will actually use in the proof. 

Remark.  A different method for the obtention of layered families of solutions 
is the direct variational approach, which has been used in e.g. [I], [2], [ll] and [13]. 
Alikakos and Simpson [2] have studied several properties of the global minimizer of the 
associated energy for a special case of (1.1) under radial symmetry. In our case, these 
global minimizers constitute a family of layered solutions as in Theorem B when one takes 
R+ = { X I  J(x) < O}, 0- = {XI J(x)  > 0) and the Lebesgue measure of I' = {xlJ(x) = 0) 
is zero. This is not hard to establish, by conveniently adapting the argument in [2], but 
only LP-convergence is clear. Uniform convergence away from the layer as that given by 
Theorem B is not obvious from this characterization. That property is useful in deriving 
other convergence features of the family. See [4]. 

Remark.  Our method does not predict existence of a family of solutions with 
layer in the "opposite direction", that is, approaching h- in R+ and h+ in R-. In the 
one-dimensional case such a family is known to exist and be unstable. See [lo]. 

The literature on layers in elliptic and parabolic semilinear equations with a bi-stable 
nonlinearity is today extense. We refer the reader for example to [I], [3], [4], [5], [lo], 
[Ill ,  [13] and references therein for problems related to  the one treated here. 

2. Prel iminar  Results 

Theorem B will be a consequence of some lemmas which we state and prove next. 

Our first lemma gives the existence of families of unlayered solutions converging 
uniformly to each of the stable zeros of f .  

Lemma 2.1. There exist a number eo and families of solulions { h ~ _ ) o < ~ < ~ ,  and 
{h;}O<,<L, to ~ r o b l e m  (1.1) such that 

lim h i (=)  = h*(x) 
c-0 

uniformly on Q. 

Proof. We will prove the existence of h;. The proof for h t  is the same, 

Consider for t E [0, I] the problem 
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(2.1) 

Fix po > 0 so small that f,(s, x) > 0 whenever 1s - h-(x)l 5 po and x E 0. 
Claim. Given 0 < p < po ,  there exists € 0  > 0 such that for all E < €0 and all 

t E [0, I], every solution of (2.1) in B,, is in B,. Here B, denotes the open ball center 
h- radius p in C(n). 

Proof of the claim. Assume the contrary. Then there exist sequences en -4 0, 
t, 4 f E [O,l] and u,, solution of (2.1) for t = t,, E = en,  such that 

sup lun(x) - h-(x)J = p for all n E N 
260 

Let En E be a point where the supremum (2.2) is attained. Assume also that X, -+ 

i 6 a. We consider two cases. 

Case 1. z E R. In this case, for all sufficiently large n, the ball B(x, ,E, )  is contained 
in R. For y E ~ ( 0 , l )  we define 

Then U, satisfies the equation 

on B(0, l ) .  

From (2.2), we see that Un is uniformly bounded, as well as the right hand side 
of (2.3). Then, LP and Schauder estimates give the existence of a subsequence of U, 
converging in the C21a(B(0, 1))-sense to a solution U of 

on B(0, l ) .  

From the fact that IU - h-(Z)l 5 p and our choice of p, we find that V n U - h - ( s )  
satisfies on B(0,l) an equation of the form 

with c > 0. But, from the definition of s,, either V or -V attains a nonnegative 
maximum at y = 0. This contradicts the maximum principle and shows the impossibility 
of Case 1. 

Case 2. 5 E dR. Here we distinguish two subcases: 

(a) There exists a number 6 > 0 and a subsequence of E,, relabeled again E, such that 
B(Z,,E,S) C 0 for all n. 

lim dist(xn, 8 0 )  = 0. 
n--tm en 
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LAYERS WITH NONSMOOTH INTERFACE 1699 

If (a) holds we will obtain the same situation of Case 1, hence (a) is not possible. If 
(b) holds we argue as follows: consider a local cha9 4 : U + Rm where U is some open 
neighborhood of 2 such that 

and 4(?) = 0. Then &(z) a un(4-'(z)) satisfies 

where L is a strongly elliptic operator of the form 

Moreover, after a convenient choice of the change of coordinates, we may also assume 
aij(0) = b i j .  

Let n be the orthogonal projection onto 8R which is well defined and smooth in 
some neighborhood of an. Set 

for y E B(0,l) n R';. After writing (2.4) in the y-coordinates, elliptic estimates imply 
convergence of a subsequence of Un to some U E C2(B(0, 1) n R+m) satisfying 

AU = ff (U, 2) + (1 - f)(U - h-(5)) (2.5) 

But the Neumann boundary condition permits us to extend U evenly to  the whole B(0, I), 
so that the extension still satisfies (2.5). A similar straightening-reflection argument 
appears in 1121. 

On the other hand, since (b) holds, we find that 

But ~ ( ' ( ~ ( ~ ~ ! ) n - ' $ ( ~ ' ' ) )  = un(sn), and hence IU(0) - h-(5)l = p. At this point we are 
in the same situation of Case 1 and a contradiction comes from the maximum principle. 
This concludes the proof of the claim. 

The conclusion of the lemma follows from the claim and a degree-theoretical argu- 
ment. Let R, denote the inverse of ( E ~ A  - I) under Neumann boundary conditions. 
Then R, applies compactly C ( a )  into itself. Observe that equation (1.1) is equivalent 
to the fixed point problem in C(0): 
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Consider the compact homotopy 

Fix p sufficiently small. From the claim, we know that Q: has no fixed points on 8Bp 
for all t E [0, I], provided that E is sufficiently small. Since QI = TC and Qg = -R,(h-) ,  
the invariance of the degree under compact homotopies implies 

deg (I - T c ,  B,,O) = deg ( I  + R c ( h - ) ,  BP, 0) .  

If -R,(h-)  is included in B,, the latter degree equals one and we would conclude exis- 
tence of a solution of (2.6) and hence of (1.1) in B,. Thus, it only remains to verify that 
the unique solution of 

- ~ ~ A u + u = h -  i n f l  

lies on B, for all sufficiently small &. But (2.8) corresponds to (2.1) for t = 0. Observe 
that for t = 0 the claim holds true without smallness restriction on po. Hence, it suffices 
to show that the solution of (2.8) has an Loo-estimate independent of B .  This is true. 
Indeed, it is easily seen that 

inf h- 5 u 5 SUP h- 
R n 

for a solution u of (2.8) and for all E > 0: just use the H1-functions ( u  - infn h-) -  and 
(u - supn h-)+ as test functions for (2.8). 

We conclude the existence of a solution hC_ to (1.1) in B,. The uniform convergence 
of hf_  to h- is a consequence of the claim for t = 1. W 

Our proof of Theorem B will require the construction of "nice" approximations of 
the sets R- and R+. We will do this using the following lemma. 

Lemma 2.2. Let I< C Rm be a compact set and M a smooth boundaryless hyper- 
surface. Then, given 6 > 0,  there exists an open neighborhood Ns of K such that 

(a )  
6 

{ x  I d i s t (x ,  K )  5 -) C N6 C {x I dis t (x ,  K )  < 6 )  
2 

(b) N6 is a finite union of smooth domains. 
( c )  Either ON6 does not in ter~ect  M or does it orthogonally. 

Proof.  Let & ( x )  be the usual approximation of the identity, i.e., 

where $J E C,OO(JxJ < 1) and jli, = 1. 

Set K6 = { x  I dis t (x ,  K )  5 t )  -and defhe 

where * denotes convolution product and XK, the characteristic function of the set Ks. 
g, is smooth. Observe also that for sufficiently small e, 
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LAYERS WITH NONSMOOTH INTERFACE 1701 

and 
g,(x) = 0 if dist(x, K )  2 6. 

Fix such a  small E > 0. 

Let x denote the orthogonal projection onto M, which is well defined and smooth 
in some neighborhood V of M. Consider a smooth function d(x) which vanishes outside 
V and equals one on some smaller neighborhood of M. Define 

Observe that, reducing E and V if necessary, 8 still satisfies (2.9) and (2.10). Finally, set 

where, using Sard's Theorem, we choose p > 0 small and so that 1 - p is a  regular value 
of 8.  We easily see that N6 satisfies (a)  and (b). Now, if aNa intersects M at some point 
3, we see from the definition of that 

where, Pz denotes the orthogonal projection onto the tangent space to M at  i. It follows 
that aNs and M intersect orthogonally, at i, hence (c) holds. 

Next fix 6 > 0 and let R+, R-, r be as in the hypotheses of Theorem B. Let N6 be 
a neighborhood of I' as given by Lemma 2.2. Define the open sets R$, 0% by 

Observe that $2; is a finite union of bounded domains. Moreover, 80% is smooth, except 
near aR n dN6, which consists of a finite union of orthogonal corners. 

Also, for sufficiently small 6 we have 

f J(x)  > 0 for x E 8Ns n & (2.11) 

where J is defined by (1.3). We will assume this henceforth. 

Let h$ be the families of unlayered solutions predicted by Lemma 2.1. Let Q be a 
Cw function such that Q 1 on R; whose support is compact and does not intersect 

$22. Define 
T 

hE = hL* i- h!+(l- +) (2.12) 

Denote by Xt (resp. x;) the characteristic function of R$ (resp. 0;). 

Our proof of Theorem B is based on the study of the following family of problems. 
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We intend to apply degree theory to (2.13), as we did in the proof of Lemma 2.1, in some 
appropriate open subset of C(Q) to conclude the existence of solutions of (1.1) with the 
desired characteristics. First we require a lemma. 

Lemma 2.3, There e x i s h  a n  Lm-bound M > 0, independent of all small  E and all 
t E [O,l], for the solutions o f  (2.13). 

Proof. Set v E u - he. Then (2.13) takes the form 

Assume first t > 0. Fix a number R > 0. Using ( v  - R)+ E H1 (R) as a test function for 
(2.14) we obtain 

, r 

If the set (v > R) were nonempty, (2.15) would imply the existence of xo E Q and a 
number s > R such that 

f (hc(zo) f s, 20) < E ~ A ~ , .  (2.16) 

On the other hand, it is easily seen that any solution to (1.1) is between inf h- and sup h+. 
Hence, redefining f if necessary, we may assume that f(t ,  x) 2 ct for all large t and all 
x E a, some c > 0. But e2Ahe is uniformly bounded. Indeed, e2Ahz = f(h&,x) -+ 0 
as E -4 0, uniformly. Since h i  is bounded, elliptic estimates imply that E2Vhi also is. 
From this and the definition of he in (2.11) the conclusion is immediate. 

We conclude that (2.16) is impossible if R is chosen sufficiently large. Hence, for 
some large R, v < R in f2. A similar procedure gives a lower bound for v, from which a 
uniform bound for u follows in case that t > 0. 

NOW, if t = 0, (2.14) becomes 

It easily follows that v E 0, hence u = hc is uniformly bounded. This completes the 
proof. W 

For p > 0 we consider the open subsets of C(f2) A$ and A; defined by 

The following is a key step in the proof of Theorem B, where the fact (2.11) will play a 
main role. 

Lemma 2.4 Given  any  p > 0 sufficiently small there exists a number EO > 0 such 
that  for all 0 < a < EO and all t E [O,l] there is  n o  solution of (2.14) o n  DA$ U Oh;. 

Proof. Assume the contrary, then there exist sequences en + 0, tn + F E [O,1] and 
a sequence of solutions u, to  (2.14) for t = t,, E = E ,  such that either D
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sup I u ~ ( x )  - h-(x)( = p. for all n E 
~ € 0 ;  

sup Iun(x) - h+(x)1 = p .  for all n E W .  
~€0: 

Assume that (2.19) occurs. The other case is similar. Let r, be a point where the 
supremum (2.19) is attained. Without loss of generality we may assume that xn -+ r in 
n6_. As in the proof or Lemma 2.1, we consider different cases for the position of I. 

Case 1. f E RE. In this case the ball B(xn,en) lies on R6_ for all sufficiently large 
n. Define 

Un(y) = ~ n ( r n  + E ~ Y )  

for y E B(O, 1). Thus Un satisfies in this ball 

Since hk. -+ h- and &:Ah? 0 uniformly, we obtain as in Lemma 2.1 the existence 
of a subsequence of Un convergent in the Cz-sense to some U satisfying in B(0 , l )  the 
equation 

AU = Ff(U, 5 )  + (1 - F)(U - h-(5)) 

and we obtain, as in Case 1 of Lemma 2.1, a contradiction to the Maximum Principle. 

Case 2. Z is in bR \ n.5. As in Case 1, we can reach a contradiction by slightly 
modifying the proof in Case 2 of Lemma 2.1. 

Case 9. 1 E bN6 n R. Here we distinguish two subcases 
(a) For some subsequence of x,, again labeled x,, and some X > 0 we have 

dist(zn, 6RC) 
lim = 0. 

n-m En 

If (a) holds, we may proceed exactly as in Case 1, just changing B(0,l) by B(0, A). 
In case (b) further considerations are needed. Here the fact that J(5)  > 0 will permit us 
to reach a contradiction. 

We straighten 6Rd near 3, as we did in Case 2 of Lemma 2.1. After a standard 
diagonal procedure to obtain the CZ convergence on compacts of some subsequence of 
the rescaling Un, (recall from Lemma 2.3 that u, is uniformly bounded) we obtain the 
existence of U E C2(Rm) bounded and satisfying in Rm 

Moreover, 
IU(y) - h-(2)l 5 p on R? 

with equality at the origin. We will assume 
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The other case is similar. Denote by g the function defined by 

Let wo(t) be the unique solution of the differential equation 

and consider 0 E C2(Rm) defhed by 

Recall that inf h- 5 u 5 sup h+ for every solution u to (1.1). Hence, we do not lose 
generality in assuming 

lim f (s, x)  = r t w  
s-f m 

uniformly on x E a. Since this holds at  -w and infZGn f u ( h - ( r ) , x )  > 0, we see that if 
p is chosen sufficiently small, then 

whenever 1s - h-(f)J 5 p and r - h-(5) 5 p. 

Let us assume that wo satisfying (2.22) is increasing on (-w,O]. We will prove this 
fact later. We shall next show that this implies that U = U on R". Indeed, observe that 

and that (2.23) holds for s = U and r = U. Since 

(2.24) and the maximum principle imply 0 - U > 0 in Rm unless ( 0  - U) E 0. But 
since (0 - U)(O) = 0, Hopf's Boundary Point Lemma (e.g. (91, p. 34) implie: that the 
former case can only occur if $--(U - U)(O) < 0 which is false by definition of U. Hence, 

necessarily U = 0 on R Y  if w~ is increasing. We will next show that this is indeed the 
case 

Observe first that au 
wb(O) = -(O) 2 0 

dyrn 
since U maximizes on R? at 0. We must actually have wb(0) > 0. Indeed, otherwise 
wo(t) > h( i )  + p for all sufficiently small t < 0, since w:(O) > 0. Hence (fi - U) > 0 
on some ball B C ~ ' l :  such that 0 E dB. From this we immediately find a contradiction 
with Hopf's Lemma. Hence wA(0) > 0. 

Assume that wo is not increasing on (-w,0] and let -w < -P < 0 be the first 
negative point where w&(-f) = 0. Since wo satides an autonomous O.D.E., the reflection D
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LAYERS WITH NONSMOOTH INTERFACE 1705 

of wo through - f  coincides with wo. Hence wo( t )  5 h - ( 5 )  + p on [ -2 f ,  0] with equality 
at the endpoints and wb( -2 f )  = -wb(O) < 0 .  

Again from (2.23) with s = U, r = 0 and (2.24), we conclude that U ( y )  = o(y)  
for all y = ( y ' ,  y,) E i i v u c h  that -2P 5 y, 5 0 .  In particular, U maximizes at  
y  = (ORrn-,, - 2 ~ )  and hence VU = 0 at that point. But 

We have obtained a contradiction which shows that wb > 0 on (-co,O], and hence U = 6 
on Rc. We will next see what happens on R+". First, a property of wo which follows 
from the key fact J ( z )  > 0. 

Claim. wo(t)  -t +w as t --+ +w. indeed, we know that wo is increasing on (-m, 01. 
Since wo is also bounded there (from U = U), it easily follows that w o ( - m )  = h - ( 1 )  
and w b ( - m )  = 0 .  We thus obtain from (2.22) 

Recall that wb(0) > 0 ,  wo(0)  = h- (3 )  + p. If wb vanished at some point B > 0, we would 
have 

But, since wo(3) > h - ( f )  + p and J ( z )  > 0, it follows that the right hand side of (2.26) 
is bounded below by a strictly positive constant, and we get a contradiction which shows 
that wo is strictly increasing. Observe that actually (1.4)' a t  x = f has been used here. 
For the same reason, (2.25) implies that wo is unbounded and the claim follows. 

It follows from the claim that 0 is unbounded. We will reach a contradiction from 
this fact by means of the following argument. 

Denote by w6( t )  the unique solution of the O.D.E. 

and set ~ & / ' , y m )  G wa(ym) .  Then 06 solves (2.20). Also, Do = 6. 
Let R > 0 and define H R  = { ( y l , y m )  I 0 < y, < R}. Denote by ro and rR 

respectively the left and right boundaries of H R .  

Since ws is increasing and unbounded and U is bounded, we find that for all R > 0 
sufficiently large i?6 > U on rR for all 6 2 0. Fix such an R. We claim that there exists 
a number 6* > 0 so large that 

06- > u on HR. 

Assume the contrary. Then there exist sequences 6,  -, co and points y, E H R ,  yn = 
(y'", yk) such that 

W Y n )  3 hn (2.27) 
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1706 DEL PIN0 

Define 
U"(z )  = U(yn  + z) .  

Then A U n  = g(Un) .  Since U n  is bounded, elliptic estimates imply that we do not lose 
any generality in assuming that U n  converges in the C1 sense on B(0 ,  R ) .  In particular, 

remains bounded there. 

But from (2.27), the fact that % > wh(0) + 6, in HR, and since U .= 06,,, 
" < % on rO, the mean value theorem implies the existence of a point zn B(0 ,  R )  aurn 

such that E ( z n )  co as n -t w. We have reached a contradiction which proves the 
claim. 

Fix a number 6* > 0  such that ~ 6 .  > U  on HR and set 

E is nonernpty. It is also closed, for let 6, E E such that 6, -t 8 E [O, A*]. Then oz 2 U 
in HR. Since U8 > U  on PR, it follows from the Maximum Principle that og > U  in HR. 
Hence 8 E E and E is closed. 

We will next show that E is also open. Otherwise, there exists 5 E [O, 6'1 such that 

and sequences 6" E [O,6*], yn = (y'nl y;) such that 6, + 8, y; -+ %, E [0, R] as n -+ co. 
and 

66,(yn) = W ~ , ( Y ; )  5 U(yn) .  (2.30) 

As before, define U n ( z )  = U ( y n  + 2). We may assume that Un 4 U m  in the C2-sense 
over compacts, where U w  satisfies 

From (2.29) and the Maximum Principle, we obtain 

It follows from (2.30) that g, = 0, hence Um(0)  = ~ ~ ( 0 ) .  but (2.30) also implies 

This and (2.31) easily yield a contradiction with Hopf's Lemma. hence E is open, so 
that E = [ O ,  6,]. In particular, 

0 > U  in HR. 

But 80 = a U = 0 on I?,,, and we obtain again a contradiction with Hopf's Lemma. ayrn aym' 
We have proved that Case 3 is not possible. 

In the second part of the above proof, we have essentially used a variation of the 
so-called "Sweeping Principle". See [6] for a statement and applications of this method 
to a problem related to ours. 

Case 4.  Z E EaNsnaR. After arguments similar to those given in Case 3, and recalling 
that EN6 and 8 0  meet orthogonally, we reduce Case 4 to the following situation. 
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LAYERS WITH NONSMOOTH INTERFACE 1707 

Denote y E R m  as y = (y" ,  ym-l ,  y,), where y" E Rm-2, and H- = i y  ( ymWl < 0). 
Then there exists U E C 2 ( H - )  such that 

where g is as in (2.21),  

-- a' - 0  o n a H -  
aym-1 

and 

Using (2.32) and (2.33), we can extend U through aH- evenly, so that the extension 
still satisfies (2.32),  now on the whole Rm. At this point we are in the same situation we 
found in Case 3, hence Case 4 is not possible. This concludes the proof of the lemma. H 

3. Proof of t h e  main result 

We are now in a position to prove Theorem B. 

Proof of Theorem B. Let M > 0 be as in Lemma 2.3. Choose a small p > 0 and 
E O  as in Lemma 2.4. Set 

A,J = { u  E C(Q) I Iu - h*J < p on and lul < M on a). 
From the same arguments used in Lemma 2.1, we obtain from Lemma 2.4 

deg (I - TC, Ap,6,0) = deg (I - he, A,J, 0 )  

for all sufficiently small E > 0. Here Tc is the operator defined in (2.6) and hc the 
function given by (2.12). But he is in for small E ,  hence the latter degree equals one. 
As in Lemma 2.1, we conclude the existence of a solution to (1 .1 )  in Ap,6 for all small E .  

Next set p = 6, and let u,6 be the predicted solution in As,6. Define 

b = inf(6 > 0 I 3eo > 0 Vc 5 10 luf - h*l < 6 on a;) 
A simple indirect argument yields that 8 = 0. It follows the existence of a decreasing 
sequence 6, -+ 0 such that 

3~~ > 0 VE 5 en lu? - ha1 < 6, on 02. 
Without loss of generality we may assume that E ,  is decreasing. Finally, defme 

uc ufn if E E [ E , , + ~ , E ~ ) .  

Clearly { u ~ ) ~ < , < , ,  defined in this manner satisfies the requirements of Theorem B. This 
concludes the proof. 
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