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1. INTRODUCTION

In this paper we consider the differential equation
u” + g(u)=s(1 + h(1)), (1.1)

where g: R— R is of class C!, h: R - R is continuous and 2zn-periodic and
s is a parameter.

We are interested in lower bounds for the number of 2z-periodic
solutions of (1.1) under two distinct sets of conditions on g, namely

(i) For some nonnegative integer n

lim g(t)=+w and 0<n’< lim g)<m+1)>% (1.2)

t— + o0

P
(ii) There exist positive integers k and » such that

(k—1)Y<a= lim g'(t)<k*<n’<f= lim g()<(n+1)3 (13)
t— — {— +oo
where o and B satisfy the condition (2, /aB/(\/; + \/E)) is not an integer.
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In the rest of this paper we will refer to (P,) (respectively (P,)) as the
problem of finding a lower bound for the number of 2z-periodic solutions
of (1.1) under condition (i) (respectively (ii)).

We will use the following notation, C[0,2n](C(2x)) will denote the
usual Banach space of continuous (2z-periodic) functions 4: [0, 2z ](R) - R
endowed with the sup norm, |4 ,. C'[0, 2z] will denote the Banach space
of C! functions r: [0, 2] — R endowed with the norm

Irly= sup |r(t)l+ sup [r'(7)l.
re [0,2n] te[0,2n]

Also we define / as

I=int (%) (14)

where int(y) denotes the greatest integer less than or equal to y.
Our main result regarding problem (P,) is

THEOREM 1.1. Assume (i) is satisfied. Then there is an hy, 0 < hy < 1, and
an sq = So(hy), o> 0 such that for all s> s, and for all he C(2n) with

IAllo<ho <1,
problem (P,) possesses at least 2n + 2 2n-periodic solutions.
Analogously, for problem (P,) we have

THEOREM 1.2. Assume (ii) is satisfied. Then there is an hy, 0 <hy <1,
and an sq = so(hg), S0 >0 such that for all he C(2rn) with

Ao <ho<1
we have

(a) For all s=s,, problem (P,) possesses at least 2(n—1)+1
2n-periodic solutions.

(b) For all s negative with |s| =s,, problem (P,) possesses at least
2(I—~k + 1)+ 1 2n-periodic solutions.

The main technique used to prove the above theorems is the Poincaré—
Birkhoff Theorem as stated in [1].

In [7], the problem of a lower bound for the number of 2z-periodic
solutions for the equation

u” + g(u)=s(1+¢eh(1)) (1.5)
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under conditions (i) and (ii) was considerd. In (1.5), A€ C(2n) and both s
and & are parameters. Due mainly to the use of the Implicit Function
Theorem the results obtained in [7] hold for s > 54> 0 (|s] = 5o, s negative)
and |e| <eg(s). Thus the important problem of the existence of a uniform
lower bound for gy4(s), 5> 5, ([5] <50, § negative) arises as an open ques-
tion. In particular, the related problem of the existence of a lower bound
for the number of 2zn-periodic solutions for the equation

'+ g(u)=s+ h(1) (1.6)

when g satisfies either (i) or (ii) and Ae C(2n) does not follow from the
results of [7]. We note that (1.6) together with (i) or (ii) is known in the
literature as a Jumping Nonlinearity problem. Equation (1.6) corresponds
to the periodic case. The corresponding Dirichlet and Neumann cases have
been dealt with in [2, 3, 5, 6, 8].

As an application of our results, in Section 7 of this paper, we generalize
those of [7] in the sense that now s and ¢ are independent parameters.
Furthermore, in that section we provide a lower bound for the number of
2n-periodic solutions for (1.6).

In Section 2 of this paper, we examine some preliminary results for
problem (P,). In Section 3 we show that 2zn-periodic solutions of (P,) are
a-priori bounded and use this fact to formulate problem (P,) in a form
suitable for the use of the Poincaré-Birkhoff Theorem. In Section 4 we
prove the first of our main theorems, ie., Theorem 1.1.

In Section 5 we deal with some preliminary results for problem (P,).
Section 6 is dedicated to proving Theorem 1.2.

2. PRELIMINARY RESULTS FOR (P,)

We begin this section by showing that for positive s and any he C(2rn),
|hllo < hy<1, hy defined below, (P,) has two periodic solutions, one of
them being strictly negative and the other strictly positive.

LeMMA 2.1. Suppose that ||h|o<1 in (P,). Then there exist an s,>0
such that for all s = s, (1.1) has a strictly negative 2n-periodic solution.

Proof. Let us rewrite (1.1) as
u” + g(u)—s(1+ h(1))=0. (2.1)

Since g(u)—> +oo as |u| —» oo we have that there exist an s,>0 and
constants u, < i, <0 such that

g(i;) — s(1+ h(2)) <0 < gu,) — s(1 + h(t)) (22)
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for all s> s, and for all re R. Hence, i, and u, are respectively upper and
lower solutions of (1.1). It is well known that this implies the existence of
a 2n-periodic solution #, of (P,) such that

u i (t)<u, <0 (2.3)
for all ze R. This shows the lemma. ||
Next, let we C(2n) and R(w) be the unique 2n-periodic solution of
u' + Pu=—w, (24)
where f=1lim,_ ., g'(t). We recall that R: C°(2n) —» C°(2n) is a bounded

linear operator such that § | R} > 1.
Let z denote the unique 2n-periodic solution of

u' + Pu=1+h1), (2.5)

ie., z=R(~(1+h)) and let A, be a real number such that 0 < #, < 1/f | R].
From (2.5) we obtain immediately.

ProprosITION 2.2. If h in (2.5) satisfies ||h|lo < by, then

1 1
z(t)Z—— R]| lthoZE—IIRII ho > 0. (2.6)

B

Note. Since B ||R| =1, h, satisfies h, < 1. In particular any he C(2n)
such that ||A|, < ho meets the conditions of Lemma 2.1.

LeEMMA 22. Suppose that h in (1.1) satisfies |hllo<hy and let
8o=1/B—ho |R||. Then for any 6, 0<8<3d,, there is an So=3So(hy) such
that for any s>s,, (1.1) has a unique strictly positive 2n-periodic solution,
say uy(t), such that

|, — szl < 5. 2.7)

Proof. 1t is clear that finding 2n-periodic solutions of (1.1) is equivalent
to solving the fixed point problem

u=R(f(u)—s(1+h)), (2.8)

where

fu)=g(u)— Bu. (29)
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Setting v=w/s and using the linearity of R and the fact that
R(—(1+ h))=1z, we conclude that (2.8) is equivalent to v= & (v), where

@ (v) :=R<ﬁj—"—)>+z. (2.10)

Next, let  be a fixed real number such that 0 <6 < d,. Thus if ve B(z, 8)
then v(¢) >0 for all re R. Also let z, > 0 be such that for all ¢ >z,

0] <

<—. 2.11
3R] (211)

Let us define s, > 5, by s, =12y/(6o—5). Then from (2.10) and (2.11) it is
easy to see that for all s> s, and all v, we B(z, §) we have that
1P,(0) = D,(W)llo < 3 lo—wllo (2.12)

and hence @, is a contractive mapping. To show that for large s, @, maps
B(z, o) into itself, we note that from (2.10) it follows that

‘J_‘(S_U)
S

16,2l < IR \ (2.13)

[

Now, from

Ssv(2)) = f(sz(1)) + fol J'(s(zo(t) + (1 =) 2(1)) s(v(1) — 2(1)) dr,  (2.14)

(2.11), and a choice of s,=s, such that |f(s(z(¢)))/s| <26/3 | R, for all
§= 5, and te R, we obtain that

S(sv) 20 Jo—zllp _ 9
< + <—. 2.15
f s 1o S3TRI T 3RI SR (215)
From (2.13) and (2.15) we find that
D, (v)—zllo <0 (2.16)

The Banach Fixed-Point Theorem, (2.12) and (2.16) imply the existence of
a unique v, € B(z, 8), s = 54, such that

v, =D (v,). (2.17)
Next, setting
U =sv;, (2.18)

we obtain that u, is a positive 2x-periodic solution of (1.1).
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Finally, on multiplying (2.16) by s and calling on (2.17) and (2.18) we
obtain (2.7) and hence the lemma. |

Remark. We observe in Lemma 2.2 that the only restriction on 4 is
lAllo < ho. Also we note that for fixed J, with 0 <d <4, 5, depends only
on h,.

The existence of u,, as follows from the above lemma will allow us to
modify Eq. (1.1) in such a way that finding 2n-periodic solutions of that
equation will be equivalent to finding nontrivial 27-periodic solutions of an
equivalent equation. Thus let ¢* >0 be such that

n<f—e*<(n+1)> (2.19)
and let us increase s,, if necessary, so that
g ()= Bllo=1f ()l < e*. (2.20)
Let u be any 2n-periodic solution of (1.1) and define
v(2)=u(ty—u,t) (2.21)
for all te R. Then v is a 2n-periodic solution of
x"+ F(t, x)=0, (2.22)
where
F(t, x) = glut) + x) — g(u,(1)). (2.23)

Thus F:RxR >R is of class C' and 2=-periodic in 7. Furthermore, it
satisfies

. K,
hmo-%= gu()=F—e*>n? (2.24)
. 1,
jim 26X _g (2.25)
X + 00 X
and
lim F(f, x)= + oo, (2.26)

x— — 0

all these three limits being uniform in t. We observe that x =0 is a trivial
2n-periodic solution of (2.22). Also we note that (2.25) and (2.26) imply the
existence of an x,>0 and an M > 0 such that

F(t, x)>0 (2.27)
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for all 7e R and xe(—o0, —x4) U (xg, + ) and
F(t,x)>—-M (2.28)

for all (¢, x)eR,. In Sections 3 and 4, s will be a fixed number, s> s,, so
that Lemmas 2.1 and 2.2 hold true.

3. 2n-PERIODIC SOLUTIONS FOR (P;) ARE A-PrIORI BOUNDED
In this section we will prove

LEMMA 3.1. 2m-periodic solutions of (2.22) are a-priori bounded.

Proof. Suppose that v is a 2zn-periodic solution of (2.22) which attains
a minimum at ¢t=¢,,. Then from (2.22), we have

F(t,,, v(t,,)) <0 (3.1)

and from (2.27), v(t,,) € [ —Xo, Xo]. On integrating (2.22), with v in the
place of x, from ¢,, to te[¢,, t, +2n] and calling on (2.28) we obtain

v'(t)= —f

1,

F(r,v(r))dr<M(t—1,). (3.2)
On integrating (3.2) again from ¢,, to te [t,,, t,, + 2n] we find that
M 2 2
u(t)gu(t,,,)+7(t—tm) <xo+27°M. (3.3)

Hence,
—Xo S V(1) S xo+ 21’ M. (34)
Since v was any 2n-periodic solution of (2.22) the lemma follows. |

We use Lemma 3.1 to modify (2.22) into a form suitable for the applica-
tion of the Poincaré—Birkhoff theorem. Thus suppose that x, e R satisfies
X, = Xo+2n°M, and define G:Rx R — R by

F(¢, x) for (,x)eRx(—x,,x,)
G(t, x)=< F(t, —x,) for (t,x)eRx(—o0, —x,] (3.5)
F(1, x,) for (1, x)eRx[x,, + ).

Then G is a continuous function which is 2zn-periodic in ¢ and locally
lipschitzian in x.
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By repeating the argument in this proof of Lemma 3.1 with G in the
place of F, it is clear that (2.22) and

vV"+G(t,v)=0 (3.6)

have the same 2n-periodic solutions. We note now that G is a bounded
continuous function and hence in particular the unique solution to the
initial value problem for (3.6) can be extended to the whole real line. Also,
if v is a nontrivial solution of (3.6) then necessarily v2(¢) + v'*(¢)# 0 for all
teR.

4. AT LEAST 2n+ 2 SOLUTIONS FOR (P,)

From previous Sections we know that searching for additional 2z-peri-
odic solutions of (1.1) different from &, and u, is equivalent to searching for
nontrivial 2n-periodic solutions of (3.6) other than &4, — u,. We note that
i,—u,<0 for all te R. To obtain these nontrivial solutions we will use a
generalization of the Poincaré-Birkhoff theorem due to W.Y.Ding, see
[1, Th.1].

Let us rewrite (3.6) as

vV=z (4.1)
7= —G(1, v). (4.2)

For any (a, b)eR? let (v(t, a,b),z(t, a, b)) denote the solutions of
(4.1)-(4.2) such that (v(0, a, b), z(0, @, b)) = (a, b). Define P: R?> - R?, the
Poincaré map induced by (4.1) and (4.2), by

P(a, b) = (v(2m, a, b, z(2r, a, b)). (4.3)
We recall that P is an area preserving homeomorphism which in our case

satisfies P(0, 0) = (0, 0). By defining v(¢) = R(¢) cos O(¢), z(t) = R(t) sin O(¢)
we obtain the equivalent polar system

R'= —G(t, Rcos @) sin @ + R sin O cos 6. (4.4)
G(t, R (2] .
o = —-(—R°°S—)cos 6 —sin? . (45)

Let H={(r,0) | r>0, 0 R} and let T be the mapping from H into itself
defined by

T(r,0)=(R(1xm, 1, 6), ©@2m, 1, 0)), (4.6)
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where (R(t, r, 8), O(t, r, 8)) denotes the unique solution to (4.4)-(4.5) such
that

R((0, r, ), (0, r, 0))=(r, 0).

We have that the mapping T is an area preserving homeomorphism form
H into itself which satisfies

T(r, 0+ 2m)=T(r, 0) + (0, 27). (4.7)

Next let j be any integer and define T;: H — H by
T,(r,0)=T(r, 9)+ (0, 2mj). (4.8)

Clearly each mapping T}, je Z, is an area preserving homeomorphism from
H onto its image which, because of (4.7), satisfies

T(r,0+2n)=T,(r,0)+ (0, 2m). (4.9)
We have now

PROPOSITION 4.1. There is a uy>0 such that for any u, 0<pu<u, the
solution (R(t, u, 8), O(t, 1, 6)) of (4.4)-(4.5) at 1t =2n satisfies

0—002n, u, 6)>2nn (4.10)

for any 0eR.

Proof. Let (u,0)e H and let (v(t, a, b), z(t, a, b)) be the solutions of
(4.1)-(4.2) such that a=pucos f and b= pusin 6. Recalling that (u(z, 0, 0),
2(¢,0,0))=(0,0) for all e R, then from the continuity with respect to
initial conditions we have that given ¢, >0 there is a pu,>0 such that
0 < p< po implies that max, . o 2.9 [0(2, a, b)| <é¢,. Define @: R —> R by

X )={—G(t, v(t, a, b))/v(t, a, b) if (¢, a b)#0 (4.11)

8'(uy(1)) if (¢, a b)=0.
Then & is is continuous and (¢, a, b) is a solution of the linear equation
v"+d(tw=0 (4.12)

for all te[0,2n]. We note that from (2.24) and having chosen ¢,
sufficiently small, we obtain that

&(t) > n? (4.13)
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for all e [0, 2n]. Since (4.12) is a Sturm majorant for
7" +n*5=0,

(4.10) follows from [4, Proof of Th. 3.1] (i, Sturm’s First Comparison
Theorem). Hence, the proposition. ||

PROPOSITION 4.2. There is a Ay>u, such that for any 4> A4, the
solution of (4.4)-(4.5) at t=2mn, (R(2n, 4, 0), ©(27, 4, 0)) satisfies

0—6(2n, 4,0)<2n (4.14)

for any e R.

Proof. Suppose this 4, does not exist. Then there is a sequence
(4, 0)-, with 4, > +00 as k— 400, such that v,(¢):=wv(s, ay, by)
possesses at least two zeros in [0, 2n]. Here a, = 4, cos @, b, =4, sin @,
keN. Let us define the sequence of functions {6,}2 , by 6.(f)=
v()/lvelly, t€[0,2n]. Then |é.)l,=1, keN. From the fact that for
te[0,2n], v,(1), ke N, satisfies (3.6) we obtain that

04(£) = 6,(0) + 7;(0)t — f' jr G(z, v(7))

00 loelly

dr dt. (4.15)

This, together with the boundedness of G and the Ascoli-Arzela’s theorem
implies that {,}°_, possesses a uniformly convergent subsequence in
C'[0, 2n]. Denoting this subsequence again by {4}, its limit by #, and
letting k —» + oo in (4.15) it follows that

(1) =06(0)+ ¢'(0)s. (4.16)

But this implies that for sufficiently large &, v,(#) can have at most one
zero in [0, 2n]. This is a contradiction and hence the proposition. [

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. We only need to prove that (3.6) possesses at
least 2n nontrivial 2z-periodic solutions different from #, — u,. To do this
let us consider the area preserving homeomorphism 7}, je Z defined in
(4.8) and set

Ti(r, 0)=(R;(r, 0), O,(r, 9)), (4.17)
J€Z. From (4.6) and (4.8) we obtain that R;(r, 6) = R(r, 0) and that

0,(r,0)=0Q2n,r, 0)+2nj, . (4.18)

505/95/2-4
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je€Z. Then from Propositions 4.1 and 4.2 we have that

O,(n, 0)—0<2n(j—n) (4.19)
and
0,(4,0)—-0>2n(j—-1), (4.20)

any jeZ, any ue (0, o] and any 4 > 4,.
Let us choose a ue (0, uo] and a 4> 4,. Then for j=1, .., n we have
that
0,(p,0)—-0<0 and 0,(4,0)—-6>0. (4.21)

Let us define H,, by H,,= {(r, 0) | ur <4, 8 € R}. Then from [1, Th. 1] it
follows that for each j=1, .., n the mapping T, from H,, onto its image
possesses two different fixed points. Let us denote these fixed points by
ri» 0y, i=1,2. Also let a;=r;cos 0;,b,;=r;sin0;, i=1,2. Then for each
Jj=1,..,n the points (a;, b;), i=1,2, are fixed points of the Poincaré
mapping P. Each one of these points is a pair of initial conditions for a
2n-periodic solution of (3.6), say v(¢, a;, b;;), possessing exactly 2j zeros in
[0,2n), j=1, .., n i=1,2 Thus (3.6) has at least 2» nontrivial 2z-periodic
solutions other han #, =u, and the theorem is proved. ||

5. PRELIMINARY RESULTS FOR (P,)

Let we C(2n) and respectively denote by R,(w) and Rg(w) the unique
2z-periodic solutions of the equations

U tou=—w (5.1)
u' +Pu=—w, (5.2)

where « and f are as in (1.3).

We have that R,, Rs: C(2n) —» C(2n) are bounded linear operators
such that « |R,|=1, BIRsll =1. Let us set z,= <R,(—(1+h)), z5=
Ry(— (14 h)), where he C(2n). The validity of the following proposition is
easily checked.

PROPOSITION 5.1. Let hy, be a real number such that 0<hy<
min{1/B || R4ll, 1/ | R,|l }. Then if h satisfies ||hllo < ho we have that

1 1
2() 2~ Rl 1Allo 2~ — [ Roll o >0 (53)

1 1
zg(t) 2 — IRl I Allo 24

5 5 | Rgll Ao > 0. (54)
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In a similar form as we proved Lemma 2.2 we can now prove

LEMMA 5.2. Suppose h in (1.1) satisfies |h|o<h, and let 0,=
min{1/a— |R,| ko, 1/B— R4l ho}. Then for fixed &, with 0<d <4y,
there is an so=so(hg) >0 such that for all s=s, (1.1) possesses a unique
2n-periodic solution u; which is positive and satisfies

| = sz4]l0 < 56. (5.5)

Also if s< —s, then (1.1) possesses a unique 2n-periodic solution u_ which
is negative and satisfies
lu, —sz,llo< sl 0. (5.6)
As in Section 2, it is clear from the definition of h, that Ay < 1.

In Sections 6 and 7, s will be a fixed number, |s| > s,, so that Lemma 5.2
holds true.

6. MULTIPLE 27-PERIODIC SOLUTIONS FOR THE SECOND CASE

In this section we will prove Theorem 1.2. As we did before, we will
reduce problem (P,) to a search for nontrivial 2rn-periodic solutions of an
equivalent problem.

Let us first consider the case s> s,, with s, as in Section 5. We increase
g, if necessary, so that

g (uS)—zgllo<e*, (6.1)
where &* satisfies

n<B—e*<(n+1)>% (6.2)

Setting #=u; + v we have that u is a solution of (1.1) if and only if » is
a solution of

v+ F(t,v)=0, (6.3)

where F: R+ R —> R is defined by

F(1, x) = g(u] (£} + x) — g(u (1)). (64)
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F is of class C! and satisfies

F(t
lim (;x)=g’(us+(t))>[3—e*>n2 (6.5)
x—0
Fi
im 28X _p o FEX_, (6.6)
x—+c X xX—> - X

with all these limits being uniform in ¢

We note that v =0 is a solution of (6.3). Also we observe that local exist-
ence and uniqueness of solutions to the initial value problem associated
with (6.3) are ensured. The extendibility of these solutions to the whole real
line follows from the sublinearity of F.

Rewriting (6.3) as

v'=z (6.7)
z'=—F(t,0) (6.8)

and defining v(t) = R(t) cos O(t), z(t) = R(¢) sin @(¢) we obtain the equiv-
alent polar system

R' = —F(t, Rcos ®) sin @ + R sin & cos & (6.9)
o = —F(t’RCOfR@)COS@—sinZ 0. (6.10)

We denote by (R(¢, r, @), O(t, r, 8)) the unique solution of (6.9)-(6.10),
such that (R(0, r, 8), (0, r, 8))=(r, 8) € H, with H is as in Section 4.

The next proposition can be proved in the same form as we proved
Proposition 4.1.

PROPOSITION 6.1. There is a po>0 such that for any 0<u<py, the
solution (R(t, u, 0), O(t, u, 0) of (6.9)-(6.10) at t =2n satisfies

0—0(2m, u, ) > 2an (6.11)
for any BeR.

Next, we have

PROPOSITION 6.2. There is a Ay, with Aq>tg>0 such that for any
A= A, the solution of (6.9)-(6.10) at t =2x satisfies

0—002n, 4,0)<2(+1)n (6.12)

Jfor any 0eR.
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The proof of this proposition is based on the following two simple
propositions which we state without proof.

PROPOSITION 6.3. Let {u,,}=_, be a sequence in C°[0, 2n] such that
lim |u,,lo= + 0.

Suppose that u,,/|u,,|, converges to ii in C°[0,2rn] as m — + oo. Then the
sequence
{F( 5 Ul ))}“’
[#mllo St

where F is as in (6.4), possesses a subsequence which is weakly convergent in
L90,2n), g>1, to ™ —oaii ™.

ProOPOSITION 6.4. Let {u,,}%_, be a sequence of solutions of (6.3) such
that |u,,|l; = + 0 as m—> + 0, then |u,,llo— + 0 as m— + .

We are now ready to prove Proposition 6.2.

Proof of Proposition 6.2. Assume that such a 4, does not exist. Then
there is a sequence of solutions {R(t, 4y, 6;), O(t, 4,,0,)} 7., teR, of
(6.9)-(6.10) with 4, - + o0 as k — o0 and such that for any ke N

8, — OQ2m, 4., 0,)= 2+ ). (6.13)

Let us set

(Uk(t)’ Zk(t)) = (R(t’ Ak’ ek) Cos @(t’ Ak’ 01()’ R(t’ Ak’ 01() Sin @(t’ Ak, ek))s
(6.14)

keN. Since 4,— oo we have that |o ], > +o0 as k— +o0. From
Proposition (6.4), |lv.flo— + o0 as k — co. Define the sequences {f,};"_,
and {2,177, by 8.(¢) =vi(t)/[vellos Zi(2) =z, (t)/0kllo, k€ N. From (6.7),
(6.8), (6.13), and (6.14) we obtain that for each keN, there are
ty, t¥ € [0, 2n] such that §,(¢,) =0=5,(¢¥). From this fact, the sublinearity
of F, the Ascoli-Arzela theorem, and (6.3), we find that {§,}_, contains
a subsequence {3, };°_, such that 5, —» 4 in C'[0, 2n], as j— + 0. Setting
wit)=F(1, ukj(t))/||vkj o, j€N, it follows from Proposition (6.3) that the
sequence {w;}” , possesses a subsequence which we denote again by
{w;}2,, converging weakly in L (0, 2n), ¢>1, to 6+ —ad .
Now, it is easy to see that for each je N we have

2w, (1) ﬁkj(y)'f'fzj(t)
04— 0,,(2m, 4., 0, =L j ﬁi_(t)+2k.(tk)

dt. (6.15)
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Letting j — + oo in (6.15) and setting 6* =1im, , arctan(z,,(0)/3,,(0)), we
obtain that

2 (BF —of ™ )6+ 672

O= lim 6, (2%, 4,0, )=06* — di. (6.16)
o 7>l 0 02+ 0
Thus, from (6.13) it follows that
2 (B —af ™ )b — 672
Q= > : .
o* -6 fo PR di22(1+ 1)n (6.17)
On the other hand, from (6.3) we have that
81, (1) = 61, (0) +f0 w, (1) ds (6.18)
for je N and te [0, 2n]. Letting j —» + oo in (6.18) we obtain
t
5'(z)=ﬁ'(0)+j (Bv* (1) —av~ (1)) de (6.19)
0
and hence 7 is a solution of the equation
x"+Bxt —ax =0. (6.20)

Let us denote by (R,(¢, r, 8), ©.(t, r, §)), t€R, the polar representation of
the solution of (6.20) with initial data (r, 8)e H. In particular the initial
polar data for the solution # is (r*, 8*)e H, where r* =./6%(0)+ ¢'*(0).
Then it is obvious that

0,2, r*, 0*)=06 (6.21)
and hence from (6.17)
0* — 0,(2n, r*, 0%) 2 2(/+ 1)n. (6.22)

Next, let us consider the equation
w'+ewt —dw =0, (6.23)
where ¢ > f and d> « are given by

c=i(j+1)2|:l+ ] (624)

N

d=%(1+1)2[1+ ] (6.25)
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Let (R, (1,1, 0), @ ,(1, r, 0)), te R, be the polar representation of the solu-
tion of (6.23) with initial data (r, )€ H. From the choice of the coefficients
¢ and d it follows that any solution w of (6.23) is 2n-periodic and further-
more satisfies

0* — 0,27, r*, 0%)=2(1+ )m. (6.26)
Now it is not difficult to prove that
O'(1, r**, 0%)> @' (1, r*0*%) (6.27)
for all 1€ [0, 2n]. Integrating (6.27) from 0 to 2n we obtain
0% — 0,27, r*, 0%) < 0* — B (2m, r*, 0*). (6.28)
We conclude the proof of the proposition by noting that (6.22), (6.28) lead

to a contradiction. ||

Using Propositions (6.1) and (6.2) in the same manner as we did
Propositions (4.1), (4.2) in order to prove Theorem 4.3 and proceeding in
an entirely similar form as we did with Theorem 4.3, we can establish the
first half of our main result for this section.

THEOREM 6.5. For s2s,, Eq. (6.3) possesses at least 2(n— 1) nontrivial
2n-periodic solutions, v;(t), i=1,2, j=I1+1,..,n For i=1,2, v,(t) has
exactly 2j zeros in [0,2n), j=1+1, .., n Correspondingly, (P,) has at
least 2(n—1) 2m-periodic solutions of the form u/(t)+v,(1), teR,
i=1,2, j=1+1,.., n These solutions together with u;(t) give us a total of
at least 2(n— 1)+ 1 2n-periodic solutions for (P,).

We continue the search for 2n-periodic solutions of (1.1) by considering
the case |s| =5y, 5 negative. Again, we first reduce the problem to a
problem of finding nontrivial 2z-periodic solutions of an equivalent equa-
tion. Thus by increasing s,, if necessary, we assume that for all s negative
with |s| =5, we have

| g'(uy)—afo<e**, (6.29)
where ¢** is such that

(k—1)2<a+e** <k2 (6.30)

Setting u=u_ + v we have that v is a solution of (1.1) if and only if v is
a solution of

v"+ F(1,0)=0, (6.31)
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where
F(t, x)= g(x+u; (1)) — glu, (1)). (6.32)

It follows that F: Rx R - R is C!, F(1,0)=0 for all e R, and from (1.13),
(6.30), and (6.32) that F satisfies

K,
lim _(x_x)= gu; (1) Sa+e**<k? (6.33)
x—0
im 20X, pm FEX_g (6.34)
X - — 0 X X = + 00 X

with all these limits being uniform in ¢.
Rewriting (6.31) as a system, we obtain

v'=z (6.35)
2= —Fa1,0v). (6.36)

Letting v(z) = R(¢) cos ©(t), z(¢t) sin @(t) we obtain the equivalent polar
system

R'= —F(t, Rcos ®) sin ® + R sin O cos @ (6.37)

F(t, Rcos @)
R

o' = cos & —sin? 6. (6.38)
We denote by (R(, r, 0), &(1, r, ) the unique solution of Egs. (6.37) and
(6.38) such that (R(0, r, 0), 8(0, r, 0))=(r, 8) e H.

Using the same techniques we used for the case s > s, and some obvious
modifications, we now obtain the following straightforward analogue of
Propositions 6.1, 6.2, and Theorem 6.5.

PROPOSITION 6.6. There is a po>0 such that for any 0<pu<p, the

solution (R(1, u, 0), O(t, i, 0) of (6.37)—(6.38) at t = 2rx satisfies (639)

0—0Q2n, u, 0)<2nk
for any BeR.

PROPOSITION 6.7. There is a Ay > py such that for any 42 A, the solu-
tion (R(t, 4, 0), 6(1, 4, 8)) of (6.37)-(6.38) at t =2n satisfies

0— (2, 4,0)>2In (6.40)

for any e R.
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Thus we can now establish the second half of our main result.

THEOREM 6.8. For |s|=s,, s negative, Eq. (6.31) possesses at least
2(I—k+ 1) nontrivial 2n-periodic solutions, 7,(t), i=1,2, j=k, .., 1. For
i=1,2, §,(t) has exactly 2j zeros in [0,2n), j=k, .., 1 Correspondingly,
(P,) has at least 2(I — k + 1) 2n-periodic solutions of the form u (1) +7,(t),
teR, i=1,2, j=k, .., . These solutions together with u_ (t) give us a total
of at least 2(1—k + 1) + t 2zm-periodic solution for (P,).

Finally, combining Theorems 6.5 and 6.8 we obtain Theorem 1.2.

7. SOME APPLICATIONS OF OUR MAIN RESULTS

In this Section we apply our main results to the existence of a lower
bound for the number of 2z-periodic solutions for (1.5) and (1.6) when g
in these equations satisfies either (i) or (ii).

We consider first (1.6). We note that this equation can be written as

u”+g(u)=s(l+@>. (7.1)

for s different of zero. Letting s, and 4, to be as in Theorems 1.1 and 1.2,
increasing s, if necessary, so that additionally we have

(I

|5

<he (7.2)

for all s> s, or for all |s| =s,, s negative, and recalling the definition of /
given in (1.4) we obtain

THEOREM 7.1. (a) If (i) of the Introduction holds then there is an s4>0
such that for any sz=s,, Eq.(1.6) possesses at least 2n+2 2n-periodic
solutions.

(b) If (ii) holds then there is an s,>0 such that for any s=s,,
Eq. (1.6) possesses at least 2(n—1)+ 1 2z-periodic solutions. Also for any
Is| =59, s negative, (1.6) has at least 2(I —k + 1)+ 1 2n-periodic solutions.

Thus the number of 2m-periodic solutions of (1.6) for s>s, plus the
number of solutions for |s| = s,, s negative is equal to 2Q + 2, where Q is the
number of squares of integers lying in the interval (a, B).
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Next, let us consider the problem of a lower bound for the number of
2n-periodic solutions of (1.5). Just by taking

ho
FHEY =— 73
el <eéo Al (7.3)

in Theorems 1.1 and 1.2, s, and 4, like in these theorems, we obtain

~ TueoreM 7.2. (a) If (i) of the Introduction is satisfied, then there is an
5o >0 such that for any s> s, and any |e| <&y, Eq.(1.5) possesses at least
2n + 2 2m-periodic solutions.

(b) If (ii) of the Introduction is satisfied, then there is an 5,>0
such that for any s 2 s, and any |e| <&y, Eq.(1.5) has at least 2(n—1)+ 1
2n-periodic solutions. Also for any |s| = s,, s negative, (1.5) has at least
2(l—k + 1)+ 1 2m-periodic solutions.

Thus for || < &y the number of 2n-periodic solutions of (1.5) for s = s, plus
the number of solutions for |s| = sy, s negative, is equal to 2Q + 2, where Q
is defined as above.

We note that in Theorem 7.2, s and ¢ are independent parameters. We
have thus extended the main results of [7].
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