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1. INTRODUCTION 

In this paper we consider the differential equation 

u”+ g(u)=s(l +h(t)), (1.1) 

whereg:R-rRisofclassC’,h:R -P R is continuous and 2rr-periodic and 
s is a parameter. 

We are interested in lower bounds for the number of 2rr-periodic 
solutions of ( 1.1) under two distinct sets of conditions on g, namely 

(i) For some nonnegative integer n 

lim g(l)= +co and O<n2< lim g’(t)<(n+l)*. (1.2) 
t--m f4 +m 

(ii) There exist positive integers k and n such that 

(k-l)*<~(= lim g’(t)<k’<n*<B= lim g’(t)<(n+l)*, (1.3) 
I--m I--t +m 

where a and b satisfy the condition (2 ,,/&(A + fi)) is not an integer. 

* This research was sponsored by the FONDECYT, Research Grant 0546-88 and by the 
DTI, Universidad de Chile. 
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In the rest of this paper we will refer to (Pi) (respectively (Pz)) as the 
problem of finding a lower bound for the number of 2rc-periodic solutions 
of (1.1) under condition (i) (respectively (ii)). 

We will use the following notation, C[O, 27c](C(27c)) will denote the 
usual Banach space of continuous (2rr-periodic) functions h : [0,271](R) -+ R 
endowed with the sup norm, jlhll 0. C’ [0,2x] will denote the Banach space 
of C’ functions Y: [0,2x] + IF! endowed with the norm 

lIdI = SUP Ir(t)l + sup Ir’(t)l. 
,E [0,2x] IE [O.Zrr] 

Also we define I as 

l=int (is), (1.4) 

where int(y) denotes the greatest integer less than or equal to y. 
Our main result regarding problem (Pi) is 

THEOREM 1.1. Assume (i) is satisfied. Then there is an ho, 0 <ho < 1, and 
an so = so(ho), so > 0 such that for all s > so and for all h E C(271) with 

problem (P, ) possesses at least 2n + 2 2x-periodic solutions. 

Analogously, for problem (P2) we have 

THEOREM 1.2. Assume (ii) is satisfied. Then there is an ho, 0 <ho < 1, 
and an so = so(ho), so > 0 such that for all h E C(2n) with 

we have 

(a) For all s aso, problem (P2) possesses at least 2(n - 1) + 1 
2n-periodic solutions. 

(b) For all s negative with IsI as,, problem (P2) possesses at least 
2(1- k + 1) + 1 ‘2x-periodic solutions. 

The main technique used to prove the above theorems is the Poincare- 
Birkhoff Theorem as stated in [ 11. 

In [7], the problem of a lower bound for the number of 2rc-periodic 
solutions for the equation 

2.4” + g(u) = s( 1 + &h(t)) (1.5) 
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under conditions (i) and (ii) was considerd. In (1.5), h E C(27r) and both s 
and E are parameters. Due mainly to the use of the Implicit Function 
Theorem the results obtained in [7] hold for s $ s0 > 0 (1.~1 > sO, s negative) 
and I&( <Q(S). Thus the important problem of the existence of a uniform 
lower bound for Ed, s > s,, (1.~1 <s,,, s negative) arises as an open ques- 
tion. In particular, the related problem of the existence of a lower bound 
for the number of 2n-periodic solutions for the equation 

u”+g(u)=s+h(t) (1.6) 

when g satisfies either (i) or (ii) and h E C(27r) does not follow from the 
results of [7]. We note that (1.6) together with (i) or (ii) is known in the 
literature as a Jumping Nonlinearity problem. Equation (1.6) corresponds 
to the periodic case. The corresponding Dirichlet and Neumann cases have 
been dealt with in [2, 3, 5,6, 83. 

As an application of our results, in Section 7 of this paper, we generalize 
those of [7] in the sense that now s and E are independent parameters. 
Furthermore, in that section we provide a lower bound for the number of 
2rc-periodic solutions for ( 1.6). 

In Section 2 of this paper, we examine some preliminary results for 
problem (P,). In Section 3 we show that 2rr-periodic solutions of (Pi) are 
a-priori bounded and use this fact to formulate problem (Pi) in a form 
suitable for the use of the PoincarbBirkhoff Theorem. In Section 4 we 
prove the first of our main theorems, i.e., Theorem 1.1. 

In Section 5 we deal with some preliminary results for problem (Pz). 
Section 6 is dedicated to proving Theorem 1.2. 

2. PRELIMINARY REWLTS FOR (PI) 

We begin this section by showing that for positive s and any h E C(2x), 
llhll,, G/Z,< 1, h, defined below, (Pr) has two periodic solutions, one of 
them being strictly negative and the other strictly positive. 

LEMMA 2.1. Suppose that Ilhll,,< 1 in (PI). Then there exist an s1 >O 
such that for all s > s1 (1.1) has a strictly negative 2z-periodic solution. 

Proof Let us rewrite (1.1) as 

u” + g(u) - s( 1 -I- h(t)) = 0. (2-l) 

Since g(u) --) + cc as IuI --) co we have that there exist an s1 >O and 
constants _u, c U, < 0 such that 

g(4) - 41 + h(t)) < 0 < g(_u,) - 41 + h(t)) (2.2) 
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for all s > s, and for all t E R. Hence, U, and _u, are respectively upper and 
lower solutions of (1.1). It is well known that this implies the existence of 
a 2n-periodic solution ii, of (P,) such that 

g, < ii,(t) < ii, < 0 (2.3) 

for all t E R. This shows the lemma. B 

Next, let w E C(2n) and R(w) be the unique 2rc-periodic solution of 

u”+/Ju= -w, (2.4) 

where p = lim, _ + co g’(t). We recall that R: C’(27r) + C’(27r) is a bounded 
linear operator such that fl IIRIJ $1. 

Let z denote the unique 2rc-periodic solution of 

2.4” + /% = 1 + h(t), (2.5) 

i.e., z = R( - (1 + h)) and let ho be a real number such that 0 < ho < l/p 1) RI\. 
From (2.5) we obtain immediately. 

PROPOSITION 2.2. Ifh in (2.5) satisfies llhllo<ho, then 

z(t& IlRll Ilhll02~- IIRII ho>@ 
F B 

(2.6) 

Note. Since p 11 RI/ > 1, ho satisfies ho < 1. In particular any h E C(27r) 
such that Ilhll, <ho meets the conditions of Lemma 2.1. 

LEMMA 2.2. Suppose that h in (1.1) satisfies llhllo6ho and let 
6, = l/p--ho [IRll. Then for any 6, 0~ 6 <do, there is an so=so(ho) such 
that for any s > so, (1.1) has a unique strictly positive 2n-periodic solution, 
say u,(t), such that 

II~,-s~Ilo~ss. (2.7) 

Proof It is clear that finding 2rc-periodic solutions of ( 1.1) is equivalent 
to solving the fixed point problem 

where 

u=R(f(u)-s(l+h)), (2.8) 

fW=gW-Paa,. (2.9) 
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Setting u = u/s and using the linearity of R and the fact that 
R( - (1 + h)) = z, we conciude that (2.8) is equivalent to u = @,Y(u), where 

Next, let 6 be a fixed real number such that 0 < 6 -C 6,,. Thus if u E B(z, 6) 
then o(t) > 0 for all r E R. Also let z0 > 0 be such that for all t 2 z0 

Let us define s2 > s, by s2 = z,,/(& - 6). Then from (2.10) and (2.11) it is 
easy to see that for all s 2 s2 and all u, w E B(z, 6) we have that 

II@,(u) - @s(w)llo G 4 lb - 40 (2.12) 

and hence @, is a contractive mapping. To show that for large s, CD, maps 
B(z, into itself, we note that from (2.10) it follows that 

(2.13) 

Now, from 

f(su(t)) =f(sz(t)) + j-i f’(s(zu(t) + (1 - ~1 z(f)) s(u(t) - z(t)) & (2.14) 

(2.11), and a choice of s,>s, such that Ijjs(z(t)))/sl <26/3 IIRII, for all 
saso and TV R, we obtain that 

f (su) /I II 
26 - - Il~-zllo<~ 

s o’3 llR[l +-- 3 IIRII IIRII * 
(2.15) 

From (2.13) and (2.15) we find that 

Il@s(~)-4Io~~. (2.16) 

The Banach Fixed-Point Theorem, (2.12) and (2.16) imply the existence of 
a unique u, E B(z, 6), s > so, such that 

us = @Au,). (2.17) 
Next, setting 

24, = su,, (2.18) 

we obtain that U, is a positive 27c-periodic solution of (1.1). 
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Finally, on multiplying (2.16) by s and calling on (2.17) and (2.18) we 
obtain (2.7) and hence the lemma. i 

Remark. We observe in Lemma 2.2 that the only restriction on h is 
j(h(l 0 < h,. Also we note that for fixed 6, with 0 < 6 < 6,, s0 depends only 
on h,. 

The existence of us, as follows from the above lemma will allow us to 
modify Eq. (1.1) in such a way that finding 2rc-periodic solutions of that 
equation will be equivalent to finding nontrivial 2rc-periodic solutions of an 
equivalent equation. Thus let E* > 0 be such that 

n2<fl-&*<(n+1)2 (2.19) 

and let us increase sO, if necessary, so that 

II s’(ux) - Bllo = Ilf’(%)llo G E*. (2.20) 

Let u be any 2rr-periodic solution of ( 1.1) and define 

u(t) = u(r) - u,(t) (2.21) 

for all t E R. Then u is a 2rc-periodic solution of 

x” + F( t, x) = 0, (2.22) 

where 

F(c xl = g(u,(f) t xl - d%(t)). (2.23) 

Thus F: R x R + [w is of class C’ and 2rc-periodic in t. Furthermore, it 
satisfies 

lim F(c xl -= g’(u,(t)) > /!- &* > n2 
x-0 x 

lim F(t> xl -=fl 
x-ttm x 

(2.25) 

and 

lim F(t,x)= +co, (2.26) 
x+-m 

all these three limits being uniform in t. We observe that x=0 is a trivial 
2n-periodic solution of (2.22). Also we note that (2.25) and (2.26) imply the 
existence of an x0 > 0 and an M > 0 such that 

F(t, x)>O (2.27) 
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for all ZER and XE(-co, -x,)u(q,, +a~) and 

F(t, x)> -A4 (2.28) 

for all (t, x) E Rz. In Sections 3 and 4, s will be a fixed number, s > s,,, so 
that Lemmas 2.1 and 2.2 hold true. 

3. 2n-PERIODIC SOLUTIONS FOR (P,) ARE A-PRIORI BOUNDED 

In this section we will prove 

LEMMA 3.1. 2z-periodic solutions of (2.22) are a-priori bounded. 

ProojI Suppose that u is a 2rr-periodic solution of (2.22) which attains 
a minimum at t = t,. Then from (2.22), we have 

F(L, 44n)) G 0 (3.1) 

and from (2.27), u(t,)E [-x0, x0]. On integrating (2.22), with v in the 
place of x, from t, to t E [t m, t, + 27r] and calling on (2.28) we obtain 

u’(t) = -1’ F(r, u(r)) dr < M(t - t,). 
fm 

(3.2) 

On integrating (3.2) again from t, to t E [t,, t, + 2~1 we find that 

u(t)co(t,)+~(t-t,)kxlj+2n”M. (3.3) 

Hence. 

-xfJ < u(t) < xg + 27r2M. (3.4) 

Since u was any 2n-periodic solution of (2.22) the lemma follows. 1 

We use Lemma 3.1 to modify (2.22) into a form suitable for the applica- 
tion of the Poincare-Birkhoff theorem. Thus suppose that x1 E [w satisfies 
x,~x,+2n2M,anddefmeG:lRxR+lRby 

i 

F(t, x) for (t,x)ERx(-x1,x,) 

G(t,x)= F(t, -x1) for (t,x)ERx(-a3, -x,] (3.5) 

F(t, XI) for (t,x)ERx [x,, +co). 

Then G is a continuous function which is Zrc-periodic in t and locally 
lipschitzian in X. 
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By repeating the argument in this proof of Lemma 3.1 with G in the 
place of F, it is clear that (2.22) and 

u” + G( t, v) = 0 (3.6) 

have the same 2n-periodic solutions. We note now that G is a bounded 
continuous function and hence in particular the unique solution to the 
initial value problem for (3.6) can be extended to the whole real line. Also, 
if u is a nontrivial solution of (3.6) then necessarily 02(t) + ur2(t) # 0 for all 
te[W. 

4. AT LEAST 2n + 2 SOLUTIONS FOR (P,) 

From previous Sections we know that searching for additional 2rr-peri- 
odic solutions of (1.1) different from ii, and U, is equivalent to searching for 
nontrivial 2rr-periodic solutions of (3.6) other than fi, - u,. We note that 
ii, - U, < 0 for all t E R. To obtain these nontrivial solutions we will use a 
generalization of the Poincare-Birkhoff theorem due to W. Y. Ding, see 
[l, Th. 11. 

Let us rewrite (3.6) as 

v’ =z (4.1) 

z’ = -G(t, u). (4.2) 

For any (a, b) E R2, let (~(2, a, b), z(t, a, b)) denote the solutions of 
(4.1 t(4.2) such that (~(0, a, b), ~(0, a, b)) = (a, b). Define P: [w2 + [w2, the 
Poincare map induced by (4.1) and (4.2), by 

P(a, b) = (v(27c, a, b, z(27c, a, b)). (4.3) 

We recall that P is an area preserving homeomorphism which in our case 
satisfies P(0, 0) = (0,O). By defining u(t) = R(t) cos 0(t), z(t) = R(t) sin 0(t) 
we obtain the equivalent polar system 

R’ = - G( t, R cos 0) sin 0 + R sin 0 cos 0. (4.4) 

0’ = _ G(t’ R ‘OS ‘) cos Q _ sin2 0 
R 

*. 

Let H = {(r, 0) I r > 0, 8 E R > and let T be the mapping from H into itself 
defined by 

T(r, 0) = (R(ln, r, 0 Q(271, r, e)), (4.6) 
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where (R(t, r, f?), @(t, r, 6)) denotes the unique solution to (4.4)-(4.5) such 
that 

NW, r, e), W, r, 6)) = (r, 0). 

We have that the mapping T is an area preserving homeomorphism form 
H into itself which satisfies 

T(r, 8 + 27~) = T(r, 0) + (0, 2x). (4.7) 

Next let j be any integer and define Ti: H -+ H by 

Ti(r, 0) = T(r, 0) + (0, 2xj). (4.8) 

Clearly each mapping Tj, Jo H, is an area preserving homeomorphism from 
H onto its image which, because of (4.7), satisfies 

T’(r, 8 + 271) = Tj(r, 0) + (0,27c). (4.9) 

We have now 

PROPOSITION 4.1. There is a p0 > 0 such that for any p, 0 < p < p0 the 
solution (R(t, p, e), @(t, p, e)) of (4.4)-(4.5) at t = 27~ satisfies 

8 - 0(2x, p, e) > 2nn (4.10) 

for any 8 E R. 

Proof: Let (p, 0) E H and let (u( t, a, 6), z( t, a, b)) be the solutions of 
(4.1).-(4.2) such that a = ~1 cos 8 and b = p sin 8. Recalling that (o(t, 0, 0), 
z(t, 0,O)) = (0,O) for all t E [w, then from the continuity with respect to 
initial conditions we have that given .sr >O there is a ,u,,> 0 such that 
0 < p d p,, implies that max,, C,,2n, lu(t, a, b)[ <Ed. Define a: Iw --) Iw by 

E(t) = -WC u(t, a, b))lu(t, a, b) if u(t, a, b) #O 
g’(u,(t)) if u(t, a, b) = 0. 

(4.11) 

Then B is is continuous and u(t, a, b) is a solution of the linear equation 

v” + a( t)u = 0 (4.12) 

for all t E [0,2n]. We note that from (2.24) and having chosen .sl 
suffkiently small, we obtain that 

E(t) > n2 (4.13) 
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for all t E [0, 2711. Since (4.12) is a Sturm majorant for 

27’ + n2v” = 0, 

(4.10) follows from [4, Proof of Th. 3.11 (i.e., Sturm’s First Comparison 
Theorem). Hence, the proposition. 1 

PROPOSITION 4.2. There is a A, > pO such that for any A > A, the 
solution of (4.4t(4.5) at t = 27c, (R(27c, A, 6), 0(27c, A, 0)) satisfies 

0 - Q(271, A, 0) < 27c (4.14) 

for any 8 E OX. 

Proof. Suppose this A, does not exist. Then there is a sequence 
(Ak, (~dkm_~ with A, + +co as k-+ +co, such that uk(t) :=o(t, ak, bk) 
possesses at least two zeros in [0,2n]. Here ak = Ak cos rp,, b, = Ak sin (Pi, 
k E N. Let us define the sequence of functions {I?~}?= 1 by t?,(t) = 
~/c(~)/ll~kll 1 T t E [0, 271). Then (IO,11 I = 1, kE N. From the fact that for 
TV [0, 27~1, ok(t), kE N, satisfies (3.6) we obtain that 

(4.15) 

This, together with the boundedness of G and the Ascoli-Arzela’s theorem 
implies that (fik};= r possesses a uniformly convergent subsequence in 
C’[O, 27~1. Denoting this subsequence again by {zYk}~= r, its limit by B, and 
letting k + + co in (4.15) it follows that 

B(t) = t?(O) + C’(O)t. (4.16) 

But this implies that for sufficiently large k, ok(t) can have at most one 
zero in [0, 2n]. This is a contradiction and hence the proposition. 1 

We are now in a position to prove Theorem 1.1. 

Proof of Theorem 1.1. We only need to prove that (3.6) possesses at 
least 2n nontrivial 2n-periodic solutions different from ii, - u,. To do this 
let us consider the area preserving homeomorphism Tj, Jo i2 defined in 
(4.8) and set 

T’tr, 0) = (Rj(r, e), Qj(r, e)), (4.17) 

in Z. From (4.6) and (4.8) we obtain that Rj(r, 0) = R(r, 0) and that 

Oj(r, e) = 0(2x, r, e) + 27g, (4.18) 

SOSI95/2-4 
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Jo h. Then from Propositions 4.1 and 4.2 we have that 

0,(/i, 0) - e < 27t(j- n) (4.19) 
and 

O,(dJ?)-8>2x(j-l), (4.20) 

anyjEH,any~E(O,~Jandanyd~d,. 
Let us choose a p t (0, p,,] and a A 2 A,,. Then for j= 1, . . . . n we have 

that 
Qj(/L, e) - 8 < 0 and Qj(A, 0) - 8 > 0. (4.21) 

Let us define H,, by HAp = {(r, (3) 1 pr<A, 8~Iw). Then from [l, Th. l] it 
follows that for each j= 1, . . . . )2 the mapping Tj from Hdp onto its image 
possesses two different fixed points. Let us denote these fixed points by 
rii, Bij, i = 1,2. Also let ag = rii cos 13,, b, = rii sin tIii, i = 1,2. Then for each 
j = 1, . . . . n the points (a,, b,), i = 1, 2, are fixed points of the Poincare 
mapping P. Each one of these points is a pair of initial conditions for a 
2x-periodic solution of (3.6), say v(t, av, b,), possessing exactly 2j zeros in 
[0, 271), j = 1, . . . . n, i = 1, 2. Thus (3.6) has at least 2n nontrivial 2rr-periodic 
solutions other han ii, = u, and the theorem is proved. 1 

5. PRELIMINARY RESULTS FOR (P2) 

Let w E C(27c) and respectively denote by R,(w) and RB(w) the unique 
2x-periodic solutions of the equations 

u”+au= -w (5.1) 

u”+Pu= -w, (5.2) 

where IX and /? are as in (1.3). 
We have that R,, Rg: C(27c) + C(27c) are bounded linear operators 

such that aIIR,II>l, j?IIR,J>l. Let us set zX= <R,(-(1+/z)), zB= 
RB( - (1 + h)), where h E C(27r). The validity of the following proposition is 
easily checked. 

~OPOSITION 5.1. Let ho be a real number such that 0 <h, < 
min{ l//I IIRsll, l/a llR,ll}. Then ifh satisfies llhllo<ho we have that 

z&)2+ II&II Ilhll,& IIRAI ho>0 (5.3) 

z&)>;- llRBll Ilhllor$- IIRBll h,>O. (5.4) 
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In a similar form as we proved Lemma 2.2 we can now prove 

LEMMA 5.2. Suppose h in (1.1) satisfies jlhll,, < ho and let &,= 
min( l/a - IKll ho, l/j?-- llRall h,}. Then for fixed 6, with 0<6 <a,,, 
there is an s0 = s,(h,) > 0 such that for all s 2 s0 (1.1) possesses a unique 
2rc-periodic solution u,’ which is positive and satisfies 

llu3’ -sz&&sss. (5.5) 

Also if s < -sO then (1.1) possesses a unique 2n-periodic solution u; which 
is negative and satisfies 

IIU, - sz,I/o< lsl 6. (5.6) 

As in Section 2, it is clear from the definition of h, that h, < 1. 
In Sections 6 and 7, s will be a fixed number, IsI > sO, so that Lemma 5.2 

holds true. 

6. MULTIPLE 2x-PERIODIC SOLUTIONS FOR THE SECOND CASE 

In this section we will prove Theorem 1.2. As we did before, we will 
reduce problem (P2) to a search for nontrivial 27c-periodic solutions of an 
equivalent problem. 

Let us first consider the case s 3 sO, with s,, as in Section 5. We increase 
sO, if necessary, so that 

where E* satisfies 

II g’(u: I- qllo G c*, (6.1) 

n’</?--E*<(n+ 1)‘. (6.2) 

Setting u = u,’ + v we have that u is a solution of (1.1) if and only if v is 
a solution of 

v” + F( t, v) = 0, (6.3) 

where F: R + R + R is defined by 

F(t, x) = g(u,‘(t) + x) - g(u,+(t)). (6.4) 
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F is of class C’ and satisfies 

lim J’(c xl -=g’(us’(t))~j3-&*>n2 
x+0 x (6.5) 

lim F(t> xl 
- = A lim 4t,=t( (6.6) 

x++‘x x x--m x 

with all these limits being uniform in t. 
We note that u = 0 is a solution of (6.3). Also we observe that local exist- 

ence and uniqueness of solutions to the initial value problem associated 
with (6.3) are ensured. The extendibility of these solutions to the whole real 
line follows from the sublinearity of F. 

Rewriting (6.3) as 

v’=z (6.7) 

z’ = - F(t, u) (6.8) 

and defining o(t) = R(t) cos o(t), z(t) = R(t) sin o(t) we obtain the equiv- 
alent polar system 

R’= -F(t, RcosO)sinO+RsinOcosO (6.9) 

Q’= - F(t, R cos 0) cos 0 
R 

sin’ 0. (6.10) 

We denote by (R(t, r, O), Q(t, r, 0)) the unique solution of (6.9)-(6.10) 
such that (R(0, r, 0), O(0, r, 0)) = (r, 13) E H, with H is as in Section 4. 

The next proposition can be proved in the same form as we proved 
Proposition 4.1. 

PROPOSITION 6.1. There is a p. > 0 such that for any 0 <p < p. the 
solution (R(t, p, 0), Q(t, p, t9) of (6.9)-(6.10) at t = 271 satisfies 

8 - o(271, p, e) > 2xn (6.11) 

for any 8 E [w. 

Next, we have 

PROPOSITION 6.2. There is a A,, with Ao>po>O such that for any 
A > A, the solution of (6.9)-(6.10) at t = 2~ satisfies 

e-0(2n, A, 8)<2(1+ 1)~ (6.12) 

for any e E [w. 
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The proof of this proposition is based on the following two simple 
propositions which we state without proof. 

PROPOSITION 6.3. Let {um}~= 1 be a sequence in C’[O, 2711 such that 

lim ]Iu,]Io = + co. 
m-m 

Suppose that u,/IIu,llo conoerges to ti in CO[O, 27~1 as m + + 00. Then the 
sequence 

where F is as in (6.4), possesses a subsequence which is weakly convergent in 
LY(O, 27c), q> 1, to fit;’ -c&. 

PROPOSITION 6.4. Let {urn}:= I b e a sequence of solutions of (6.3) such 
that IIu,II~++Go asm-++co, then IIu,llo++oo asm++co. 

We are now ready to prove Proposition 6.2. 

Proof of Proposition 6.2. Assume that such a A, does not exist. Then 
there is a sequence of solutions {R(r, A,, e,), @(t, A,, e,)}p= 1, TV R, of 
(6.9)-(6.10) with A, -+ + cc as k -+ 00 and such that for any k E N 

Let us set 

Ok - 0(27r, A,, 8,) 2 2(E + 1)~. (6.13) 

(~~(0, ~~0)) = (NC A,, ok) ~0s W, A,, ek), W, Ak, ok) sin W, A,, ek)), 
(6.14) 

kEN. Since Ak+~ we have that l]uklll+ +cc as k+ +co. From 
Proposition (6.4), I]u,Jo + + KI as k + co. Define the sequences (Bk}p==l 
and C&E’zl by fh(t) = ~k(M410~ ik(t) =zk(t)/lluk]lo, ke N. From (6.7), 
(6.81, (6.131, and (6.14) we obtain that for each kE N, there are 
t,, tz E [0,27r] such that fik(tk) = 0 = &(t,*). From this fact, the sublinearity 
of F, the Ascoli-Arzela theorem, and (6.3), we find that { fi,}p= r contains 
a subsequence {I?,,},“= r such that Gk, + 6 in C’[O, 2711, as j + + co. Setting 
wi(t)= F(t, uk,(t))/l/uk,Ilo, Jo fV, it follows from Proposition (6.3) that the 
sequence { wj},z r possesses a subsequence which we denote again by 
{ wj},?= r, converging weakly in L&O, 27c), q > 1, to bO+ - aB-. 

Now, it is easy to see that for each Jo fV we have 
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Letting j + + co in (6.15) and setting 8* = lim,, m arctan(i,,(O)/b,,(O)), we 
obtain that 

~~jfi~~Q~,(2n,A~j,84)=8’-f~n(BU’+-a’-)8+t:’2dr. (6.16) 
0^2 + 8’2 

Thus, from (6.13) it follows that 

e*-e=j 27x (pG+ -av*-)ti-ti’2dt>2(1+ l)K 
, 

0 fi2 + Of2 

On the other hand, from (6.3) we have that 

iTij(t) = z?ij(0) + 1; wj(z) ds 

for Jo N and t E [0, 2711. Letting j+ + co in (6.18) we obtain 

(6.17) 

(6.18) 

(6.19) 

and hence fi is a solution of the equation 

x”+px+ -ax- =o. (6.20) 

Let us denote by (R,(t, Y, 0), O,(t, r, 0)), t E R, the polar representation of 
the solution of (6.20) with initial data (r, 0) E H. In particular the initial 
polar data for the solution v^ is (r *,tl*)~H, where r*=,/m. 
Then it is obvious that 

0,(27t, r*, e*) = 0 (6.21) 

and hence from (6.17) 

e* - 8,(27~, r *, e*) 2 2(1+ 1)~. (6.22) 

Next, let us consider the equation 

w”+cw+ -dw- =O, (6.23) 

where c > /I and d > a are given by 

(6.24) c+.+l)2 l+ i 
[ J1 

d=$(r+l)2 1+ E . 
[ J1 B 

(6.25) 
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Let (&,(t, r, e), a’,(t, r, 6)), t E IX, be the polar representation of the solu- 
tion of (6.23) with initial data (r, 13) E H. From the choice of the coefficients 
c and d it follows that any solution w of (6.23) is 2x-periodic and further- 
more satisfies 

8* - 0,(27c, r*, 0*) = 2(Z+ 1)~ (6.26) 

Now it is not difficult to prove that 

Qk(t, r**, e*) > &(t, r*B*) (6.27) 

for all t E [0,27c]. Integrating (6.27) from 0 to 2n we obtain 

tl* - 08(27c, r*, tJ*) < tI* -&‘,(2n, r*, 0*). (6.28) 

We conclude the proof of the proposition by noting that (6.22), (6.28) lead 
to a contradiction. 1 

Using Propositions (6.1) and (6.2) in the same manner as we did 
Propositions (4.1), (4.2) in order to prove Theorem 4.3 and proceeding in 
an entirely similar form as we did with Theorem 4.3, we can establish the 
first half of our main result for this section. 

THEOREM 6.5. For s > sO, Eq. (6.3) possesses at least 2(n - 1) nontrivial 
2n-periodic solutions, v,(t), i= 1, 2, j=1+ 1, . . . . n. For i= 1, 2, vii(t) has 
exactly 2j zeros in [0,27c), j= I + 1, . . . . n. Correspondingly, (Pz) has at 
least 2(n - 1) 2rt-periodic solutions of the form u,‘(t) + v,(t), t E R, 
i= 1, 2, j= I+ 1, . . . . n. These solutions together with u,‘(t) give us a total of 
at least 2(n - 1) + 1 2x-periodic solutions for (P2). 

We continue the search for 2rc-periodic solutions of (1.1) by considering 
the case 1.~1 as,, s negative. Again, we first reduce the problem to a 
problem of finding nontrivial 2rc-periodic solutions of an equivalent equa- 
tion. Thus by increasing sO, if necessary, we assume that for all s negative 
with (.s >s,, we have 

IId(?-)-4,~~**, (6.29) 

where c** is such that 

(k-l)*<a+&**<k2. (6.30) 

Setting u = u, + v we have that v is a solution of (1.1) if and only if u is 
a solution of 

u”+F(t, u)=O, (6.31) 
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where 

&, x) = dx + u; (0) - g(u, (0). (6.32) 

It follows that P: IF4 x [w + [w is C’, F(t, 0) =0 for all t E [w, and from (1.13), 
(6.30), and (6.32) that P satisfies 

Iirn R’(t> xl -=g’(u,(t))<a+~**<k*, 
x+0 x 

lim Rt9 xl -=a lim &‘(t, xl 
-=A x+-cc x x--rtm x 

(6.34) 

with all these limits being uniform in t. 
Rewriting (6.31) as a system, we obtain 

v’ = z (6.35) 

z’ = -F(t, v). (6.36) 

Letting v(t) = R(t) cos o(t), z(t) sin Q(t) we obtain the equivalent polar 
system 

R’= -F(t, RcosQ)sinO+RsinOcosO (6.37) 

Q’ = -F’t’ R ‘OS ‘) ~0s Q _ sin* Q 
R 

(6.38) 

We denote by (i?(t, r, 0), &I(,, r, 0)) the unique solution of Eqs. (6.37) and 
(6.38) such that (R(0, r, 0), &O, r, 0)) = (r, 0) E Z-l. 

Using the same techniques we used for the case s 2 so and some obvious 
modifications, we now obtain the following straightforward analogue of 
Propositions 6.1, 6.2, and Theorem 6.5. 

PROPOSITION 6.6. There is a p. > 0 such that for any 0 <p< p. the 
solution (i?(t, p, 0), &t, p, t3) of (6.37)-(6.38) at t = 271 satisfies 

(6.39) 

for any 0 E Iw. 
0 - 9(2x, p, 0) < 2nk 

PROPOSITION 6.7. There is a A0 > p. such that for any A 2 A, the solu- 
tion (&t, A, t3), &(t, A, 0)) of (6.37k(6.38) at t=2~ satisfies 

8 - P(272, A, e) > 2172 (6.40) 

for any 8 E Iw. 
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Thus we can now establish the second half of our main result. 

THEOREM 6.8. For (sJ 3s0, s negative, Eq. (6.31) possesses at least 
2(1- k + 1) nontrivial 2n-periodic solutions, fiii( t), i = 1, 2, j = k, . . . . 1. For 
i= 1, 2, iYU(t) has exactly 2j zeros in [0, 27c), j= k, . . . . 1. Correspondingly, 
(P2) has at least 2(1-k + 1) 2x-periodic solutions of the form u,(t) + fig(t), 
t E R, i = 1, 2, j = k, . . . . 1. These solutions together with u;(t) give us a total 
of at least 2( 1 - k + 1) + 1 2n-periodic solution for (PZ). 

Finally, combining Theorems 6.5 and 6.8 we obtain Theorem 1.2. 

7. SOME APPLICATIONS OF OUR MAIN RESULTS 

In this Section we apply our main results to the existence of a lower 
bound for the number of 2n-periodic solutions for (1.5) and (1.6) when g 
in these equations satisfies either (i) or (ii). 

We consider first (1.6). We note that this equation can be written as 

h(t) u”+g(u)=s l+- . ( 1 S 
(7.1) 

for s different of zero. Letting sO and h, to be as in Theorems 1.1 and 1.2, 
increasing sO if necessary, so that additionally we have 

llhllo < h 
Is(’ O (7.2) 

for all s Z so or for all IsI 2 so, s negative, and recalling the definition of 1 
given in (1.4) we obtain 

THEOREM 7.1. (a) Zf (i) of the Introduction holds then there is an so > 0 
such that for any s~so, Eq. (1.6) possesses at least 2n + 2 2n-periodic 
solutions. 

(b) Zf (ii) holds then there is an so >O such that for any s>so, 
Eq. (1.6) possesses at least 2(n - 1) + 1 2n-periodic solutions. Also for any 
IsI > so, s negative, (1.6) has at least 2(1-k + 1) + 1 2x-periodic solutions. 

Thus the number of 2n-periodic solutions of (1.6) for s aso plus the 
number of solutions for IsI 3 so, s negative is equal to 2Q + 2, where Q is the 
number of squares of integers lying in the interval (c(, fl). 
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Next, let us consider the problem of a lower bound for the number of 
2rr-periodic solutions of (1.5). Just by taking 

(7.3) 

in Theorems 1.1 and 1.2, s,, and h, like in these theorems, we obtain 

THEOREM 7.2. (a) If (i) of the Introduction is satisfied, then there is an 
so> 0 such that for any s>s, and any J&l <zO, Eq. (1.5) possesses at least 
2n + 2 2x-periodic solutions. 

(b) Zf (ii) of the Introduction is satisfied, then there is an s,, >O 
such that for any s 2 s0 and any I&( < .zO, Eq. (1.5) has at least 2(n - I) + 1 
2n-periodic solutions. Also for any 1st >sO, s negative, (1.5) has at least 
2(1- k + 1) + 1 2x-periodic solutions. 

Thus for J&l <Ed the number of 2x-periodic solutions of (1.5) for s 2 so plus 
the number of solutions for Is/ > sO, s negative, is equal to 2Q + 2, where Q 
is defined as above. 

We note that in Theorem 7.2, s and E are independent parameters. We 
have thus extended the main results of [7]. 
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