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(Communicated by Kenneth R. Meyer)

Abstract. Via the study of a simple Dirichlet boundary value problem asso-

ciated with the one-dimensional p-Laplacian, p > 1 , we show that in globally

nonresonant problems for this differential operator the number of solutions may

be arbitrarily large when p € (1, co)\{2} . From this point of view p = 2 turns

out to be a very special case.

1. Introduction

Let us consider the boundary value problem

(1.1) (\uf~2u)'-rf(\u\p-2u)=h(x), XG(0,T),

(1.2) u(0) = u(T) = 0,

where / 6 C(R, R)  and « G C[0, T].   In (1.1) and henceforth ' = d/dx

and 1 < p < oo. It follows from the results of [2], (see also [3]), that (1.1)-

(1.2) possesses at least one solution if / satisfies the asymptotic nonresonance

condition

(1.3) Xk < liminf/(5)/5 < lim sup/(s)/^ < Xk x
1*1-* °° \s\->oc

for some fceN. In (1.3), {^„J^! is the sequence of eigenvalues corresponding

to the problem

(1.4) (\u'\p~2u)' +X\uf~2u = 0,        xg(0,T),

(1.5) u(0) = u(T) = 0.

These eigenvalues are given by

(1-6) Xk= U=£      ,        fcGN,
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where

(1.7) n=2(p-\)llp C-^-n-,
K     ' "      y        '    Jo  (l-sp)1/p

(see [5], [6] or [3]).

We note that condition (1.3) is satisfied if, e.g., / is of class C1 and there

exist constants a, ß such that

(1.8) Xk<a<f(s)<ß<Xk+x

for some k G N and all s G R.

It is well known that in the case p = 2, the global nonresonance condition

(1.8) also ensures uniqueness of the solution of (1.1), (1.2). At this point a

natural question arises. Given p G (1, oo), does (1.8) suffice for the unique

solvability of (1.1), (1.2)? Our aim in this paper is to show that the answer is

negative if p ^ 2. To do this, the rest of this paper will consider the boundary

value problem

(1.9) (\u'\p~2u)' + X\u\p~2u= 1,        xg(0,T),

(1.10) (Pa) u(0) = u(T) = 0

which is obtained from (1.1), (1.2) by setting f(s) — Xs, s 6 R, and h = 1 .

We note that in problem (Px) the nonresonance condition (1.8) holds if and

only if Xk < X < Xk+,  for some fceN.

Next let us denote the number of solutions of (Px) by N (X). For p — 2,

that is, for the linear case, elementary calculations show that

(1.11) N2(X)

1     ifA^(Â:7r/T)2forallÂ:€N,

0     if k = ((2k- \)n/T)2 for some fceN,

oo   if X = (2kn/T)2 for some k G N.

Thus, for p = 2 and X between consecutive eigenvalues, N2(X) = 1.

We will show in the next section that for p j£ 2, the number of solutions of

(Px) can be arbitrarily large. Indeed, and as a consequence of our Theorem 2.1

we will obtain

(1.12) limWB(A) = oo.

In particular, for p ^ 2 and X between consecutive eigenvalues, not only

may N (X) be different from one but also X large implies Np(X) large. Thus,

concerning N (X) there is a sharp contrast between problem (Px) under the

nonresonant condition (1.8) for p ^ 2 and the case p = 2.

These findings reveal that the uniqueness problem for ( 1.1 )-( 1.2) under global

nonresonance can be highly nontrivial.

Remark. If we let /(O) = 0, h = 0 in (1.1), (1.2) then (1.8) ensures that u = 0

is the unique solution of (1.1), (1.2). This result is easily shown from Sturm's

theorem for equations of the form

(\u'\p~2u')' + a(x)\u\p~2u = 0,
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p-LAPLACIAN UNDER GLOBAL NONRESONANCE 133

(see for example [4]), and the fact that an eigenfunction associated with X = Xk

in (1.4), (1.5) possesses exactly k - 1 zeros in (0, T).

2. Main result and consequences

In this section we state our main result, Theorem 2.1, and derive some con-

sequences from it. Theorem 2.1 will be proved in the next section.

Together with the sequence {AA.}^=1 of eigenvalues of (1.4), (1.5) we will

consider the sequence {/¿¿.J^l, defined by

(2.1) ßk = (kpnp/T)p,        kGN.

In (2.1) and henceforth, p' = p/(p - 1). We observe that ßk < (=)(>)X2k if

p < (=)(>)2. These numbers ßk, k e N, will play an important role in our

results. Indeed, it is their nonuniform distribution with respect to the Xks for

p ^ 2 which produces the existence of a large number of solutions to (Px) for

large X.

We will say that a function u G C'[0, T] belongs to Ek (E^) (Ek) if u

possesses exactly k - 1 zeros in (0, T) and u'(0) > (=)(<)0.

Theorem 2.1. (a) If X G (0, Xx), then (Px) possesses exactly one solution u, and

u G Ex .
(b) If X = Xx, then (Px) has no solution.

(c) If X is strictly between X2k_x and pk, then (Px) possesses at least one

solution u G E2k_x.

(d) If X is strictly between ßk and X2k+X, then (Px) possesses at least one

solution u G E2k+X.

(e) If X = ßk then (Px) possesses a solution ug Ek.

(f) If X is strictly between ßk and X2k, then (Px) possesses a solution u in

E2k and a solution v in E2k .

Remark. In contrast with (a) of Theorem 2.1, it is shown in [3] that for p > 2

and X G (0, Xx) one can always find an A € C[0, /] such that the problem

(\u'\p~2u)' + X\u\p~2u = h(x),        xg(0,T),

u(0) = u(T) = 0

admits at least two solutions. We also remark that Anane and Gossez [1] have

studied the resonance-nonresonance problem for the p-Laplacian in the case

where the nonlinearity "lies" to the left of the first eigenvalue.

By combining (a)-(f) of Theorem 2.1 we can easily obtain the following.

Corollary 2.2. Let p G (1, oo)\{2}. Then (Px) is solvable for all X > 0 ex-

cept X — Xx and, eventually, those numbers X of the form X — X2k_x for k <

1/Lp'-2|.

From this corollary we obtain, in particular, that (Px) is solvable for all large

positive X. Furthermore, as X goes to infinity the number of solutions N (X)

of (P,) goes to infinity, as the following estimate shows.
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134 M. A. DEL PINO AND R. F. MANASEVICH

Proposition 2.3. Let p G (1, oo), p ^ 2.  Then the number of solutions N (X)

of (Px) satisfies

(2.2) ND(X) >
3TXUp

P'     2

for all X > 0. In particular, lim^^ N (X) = oo.

Proof. We will assume p > 2. The case p < 2 can be treated similarly.

Let us fix X > 0 and denote by M- the number of positive integers such that

(f) of Theorem 2.1 holds, i.e.,

(2.3)

Clearly

Mf = card < k g N
p'nk

T
- < A1/p < 2npk

(2.4)        jwy > max IkGN k<
TXUp

P*B

- min UéN
T/li//>

2ä.
<A:> + 1

and hence

(2.5) A/7>
T/li/p

i"t»
1    -

TXUp

2tl,
+ 1

TXUp

K>
Next, let us denote by Mc   (Mf) the number of positive integers such that

(c) ((d)) of Theorem 2.1 holds. Estimates similar to those for M, yield

(2.6)

(2.7)

M>

M;>

TXUp

71

TX

p     -P
Up

1_     1

2

71., p'     2

From (2.5)-(2.7) we obtain

(2.8) Np(X) >Mc + Md + mf>

and hence the proposition.   D

3TXUp

3

2'

1

2

(v

3. Proof of Theorem 2.1

In this section we will prove Theorem 2.1. To this end, we will first study

some properties of the solution to the initial value problem

(3-1)

(3.2)

(\u\p 2u)' + X\u\p 2u=\,

K(0) = 0   w'(0) = a.
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p-LAPLACIAN UNDER GLOBAL NONRESONANCE 135

We will construct a global solution to this problem. Multiplying both sides of

(3.1) by u   and integrating from 0 to t we find that a solution u to (3.1),

(3.2) must satisfy the energy relation

0.3) iïW+,Mor = wi+„(i).
p P        P

Let tx(a) be the first positive zero of u . Thus for / e (0, tx(a))

(3.4) t=f     dw/(ap+p'w-X-^)1,p

if a > 0, and
-«(0r—u(t)

(3.5) t = J        dw/(\a\p-p'w-Xp^x)llP

if a < 0. Thus, considering the function

(3.6) F(s) = JSdw/(\a\p+plsgn(a)w-Xp^x)l/p,

where
f 1       if a > 0,

sgn(a) = ^
l -1    if a < 0

it follows that

(3.7) tx(a)=F(q(a)),

where q(a) is the unique positive root of the equation

(3.8) Xxp/(p-l)-p'sgn(a)x = \a\p.

Also, from (3.4)-(3.6) and for t G (0, tx(a)], we have

f F~l(t)       ifa>0,
(3.9) u(t) = l ,

\ -F \t)    ifa<0.

Conversely, if we have a function u of the form (3.9) it can be directly verified

that u satisfies (3.1), (3.2) and hence is the unique solution of this initial value

problem on the interval (0,tx(a)] with tx(a) defined by (3.7).

Next, let us extend u to obtain a global solution ux(a, t) to (3.1), (3.2).

Thus define ux(a, t) = u(t) for í e (0, tx(a)], ux(a, t) - u(2tx(a) - t) for

t G [tx(a), 2tx(a)],and ux(a, t) = ux(-a, 2(tx(a) + tx(-a))-t) for / G [2tx(a),

2(tx(a) + tx(-a))]. Finally we periodically extend this function to the whole real

line in a 2(tx(a) + iA(-a))-periodic manner. It is easily verified that ux(a, t)

is of class C1 and solves (3.1), (3.2). It can be shown that this is actually the

unique solution of (3.1), (3.2).

We note that the zeros of ux(a, t) are the numbers 2ktx(a) + 2(k-e)tx(-a),

k G N, e = 0 or 1 . Clearly, whenever one of these numbers equals T wc

obtain a solution of (Px).

Next, let us show some properties of the function tx(a) which will be needed

in the proof of Theorem 2.1.
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Lemma 3.1. The function tx(a) satisfies

(a) tx is strictly decreasing and continuous on the intervals (-00, 0) and

[0,oo).

(b) tx presents a jump discontinuity at a = 0 ; more precisely,

(3.10) 0- lim L(a)<tx(0)=p'nJ2Xl,p.
a—0"

(C)

(3.11) lim  t,(a) = 7tJ2Xl/p =   lim  t.(a).
a-»-oo   A P' a->+oo   A

Proof. From (3.6) and (3.7) follows

(3.12) tx(a) = j9ia dw/Uaf+p'sgn^w-X^)^.

Substituting w — sq(a) in (3.12) and calling on (3.8) with x = q(a) we obtain

(3.13) tx(a) = JÍ1 dsK-^p' sgn(a)(l - s) + ^(1 - /))1/p .

To examine the behavior of q(a) with respect to a we note that the Implicit

Function Theorem and (3.8) imply that q(a) is of class C1 on R\{0} and

(3.14) %L{a)- PWP~2a
da p'(Xq(a)p~x -sgn(a))'

From the definition of q(a), we easily see that the denominator on the right-

hand side of (3.14) is positive and hence that q(a) is strictly increasing and

continuous for a G [0, 00) and strictly decreasing and continuous for a G

(-00, 0). Thus (a) follows immediately from (3.13).

To show (b) we first observe that q(0~) = 0 and hence from (3.12) we

conclude that lining- tx(a) - 0. Next, setting a = 0 in (3.13) and using the

fact that q(0) = (p/X)l/ip~l) from (3.8), we obtain

The substitution 5 = 1^   in (3.15) yields

x \   *■   )     Jo   (l-xp)i/p     2Xl,p

This shows (b). Finally, to show (c), we note that q(a) -» +00 as |a| —► 00.

Letting a go to ±00 in (3.15), it follows from the Dominated Convergence

Theorem that

(3.17) hm   tk(a)=(P-^-\'P f        * „   =-V.
«-±°° * V   A   J     J0  (l-sp)l/p     2X1/P

This concludes the proof of (c) and hence the lemma.   D
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With these preliminaries we are now ready to prove Theorem 2.1. For no-

tational simplicity, throughout the proof we will assume T = np. In this case

Xk = kp and ßk = (p'k)p , k G N.

Proof of Theorem 2.1. (a) Assume that 0 < A < 1 . Then from Lemma 2.1

we find 2tx(a) > n for a > 0. Hence there is no solution of (Px) with

nonnegative derivative at t = 0. Again from Lemma 3.1, but for a < 0, we

see that there is a unique a* < 0 such that 2tx(a) = np. It follows that

ux(a , t) is the unique solution of (Px) and it belongs to Ex .

(b) Suppose that A = 1. The absence of solutions to (Px) in this case follows

directly from the facts that 2tx(a) > np for a > 0, and 2tx(a) < n   for q < 0.

(c) We assume A strictly between X2k_x and /^, i.e., Xl'p is between 2k-I

and p'k. Let us consider the function

(3.18) f(a) = 2(k - \)(tx(a) + tx(-a)) + 2tx(a).

From Lemma 3.1 we see that / is continuous on (0, oo), f(0+) = p'knp/Xl/p,

and limQ_>+oo f(a) = (2k-l)np/Xi/p . Now, the fact that XllP is strictly between

2k - 1 and p'k implies the existence of a > 0 such that f(a) = n , and hence

u(t) = ux(cx, t) is a solution to (Px) with exactly 2k - 2 inner zeros. Clearly

u G E\k_x .
(d) The proof is analogous to that of (c) except that this time we consider

the function

(3.19) f(a) = 2k(tx(a) + tx(-a)) + 2f»

on the interval (-oo, 0).

(e) If X = pk, then A 'p = kp'. This implies that 2^(0) — n and,

therefore, u(t) = ux(0, t) is a solution of (Px) with exactly k - 1 inner zeros.

Clearly u G Ek. We note that in this case all the zeros of u are double.

(f) Suppose finally that A is strictly in between kp' and 2k. For this case

we define

(3.20) f(a) = 2k(tx(a) + tx(-a)).

Clearly / is continuous on each of the intervals (-oo, 0) and (0, oo). Also

/(0+) = p'kn JXxlp and limQ^±oo f(a) = 2kn JXxlp . Reasoning as before we

obtain the existence of solutions u, v of (Px) with u G E2k and v g E2k.

This concludes the proof of the theorem.   D
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