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Abstract. We show existence for a nonlinear fourth-order boundary value

problem under a nonresonance condition involving a two-parameter linear eigen-

value problem. We also state extensions of this result to certain higher-order

P.D.E. case?.

1. Introduction

In this paper we are mainly concerned with existence for a fourth-order

boundary value problem of the form

(1.1) y(IV) = f(x,y,y")     0<*<l

(1.2) y(0)=y0,y(l) = yi,      y"(0)=y0,      y"(\)=yx

where /:[0, l]xlxR-»R is continuous. Our aim is to establish additional

conditions on / which ensure the solvability of (1.1)—(1.2) for any y0, yx ,

Jo > y i ■
In [1], Aftabizadeh showed the existence of a solution to ( 1.1)—(1.2) under

the restriction that / is a bounded function. In [ 3, Theorem 1], Yang extended

this existence result, letting / satisfy a growth condition of the form

(1.3) \f(x,y,z)\<a\y\ + b\z\+c

for all x G [0, 1 ]. Here, a, b,  and c are positive constants such that

/i a\ a       b      i
(1.4) + —<1.

n       n

Yang's result also extended a previous work of Usmani [2], who considered

an / of the form f(x,y,y") = g(x)y + h(x) with sup^g n \g(x)\ < n .
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Yang further proved the unique solvability of ( 1.1)—( 1-2) for / of such form,

but with g satisfying the nonresonance condition

(1.5) (kn)4 < g(x) < ((k + l)n)4

for some k e N and for all x e [0, 1].

We note here that the sequence {(kn)4}^=x corresponds to the eigenvalues

of the problem

(1.6) y(IV)=Xy,

(1.7) v(0) = 0 = y(l)=y"(0) = y"(l).

In §2 of this paper we study the two-parameter eigenvalue problem

(1.8) y[IV) = ay - ßy",

(1.9) v(0) = 0 = y(l) = v"(0)=y"(l),

which generalizes (1.6)—(1.7). In §3, using the results of §2 and a more general

condition than that given by (1.3)—(1.4) we considerably extend the abovemen-

tioned results.

Our results can also be generalized to higher-order equations, as well as to

some semilinear elliptic problems. In this direction, in §4 we show one possible

generalization.

2. Preliminary results

We begin this section by solving the eigenvalue problem ( 1.8)—( 1.9). A pair

(a, ß) such that (1.8)—( 1.9) possesses a nontrivial solution will be called an

eigenvalue pair. A corresponding nontrivial solution will be called an eigen-

function.

Proposition 2.1.  (a, ß) is an eigenvalue pair o/(1.8)-(1.9) (if and only if)

(2.1) -2L, + -£, = 1,
(kn)4     (kn)2

for some k e N.

Proof. Let Ly - y" . Then

(2.2) y{IV) + ßy" -ay = (L + rx)(L + r2)y

for some rt, r2 e C. It is easy to see that if ( 1.8)—( 1-9) possesses a nontrivial

solution, then either rx - (kn)2 or r2 = (kn)2 for some k e N. In either case,

sinknx is a nontrivial solution of ( 1.8)—( 1.9). By substituting this solution

into (1.8), (2.1) follows. Reciprocally, if (2.1) holds, then clearly sin knx is a

nontrivial solution of (1.8)—(1.9).    D

Next, for jeN, let us set

(2-3) Lj = \(a,ß)\ -2_ + ^_ = i}.
1    {        (jit)4    C/*)      J
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In view of the above proposition, we call Lj an eigenline of ( 1.8)—( 1.9). We note

that an eigenvalue pair (a, ß) can belong to at most two eigenlines. If (a, ß)

belongs to just one L , then the corresponding eigenspace is that spanned by

sin jnx. If (a, ß) belongs to L¡ n Lk then the corresponding eigenspace is

that spanned by sin jnx and sin knx .

Suppose now that the pair (a, ß) is not an eigenvalue pair of (1.8)—(1.9);

i.e.,

{2A) 7ïh + 7TT^u(kn)       (kn)

for all k e N and that h e L2(0, 1). From, for example, the Fredholm

Alternative, it follows that the boundary value problem

(2.5) y(IV) =ay- ßy" + h(x),

(2.6) y(0) = 0 = y(l) = y"(0)=y"(l)

has a unique solution for each h e L (0, 1). Moreover, this solution admits a

Fourier series expansion of the form

^       hksinknx

£TJ k n  -a- ßk n

where

oo

(2.8) h(x) = y^ hk sin knx.
k=\

Also, we have that

(2.9)
"/  -.        v-^   k n h. sin knx

y   (*) = -£ ,47r4_l_,.2    I'f^k4n4-a-ßk2n2'

From (2.8) and (2.9) we can easily see that the operators A, B: L (0, 1)

L2(0, 1) defined by,

(2.10) A(h)=y,        B(h)=y"

are compact linear operators.  In (2.10), y is the solution of (2.5)-(2.6)

responding to h € L (0, 1).  The norms of ^4 and 5 are respectively g
hv

cor-

given

by

(2.11]

= max
; 2   2k n

max < —r—.-tt—it \ ,\\B\\ = max {     .   .-r—«
fceN \ |/t4^4 - a - ßk2n2\ J     "   "      ¿€N \ |A:4^4 - a - ßk2n2
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(3-1) 7^4 + 77^71^1

3. Existence under a nonresonance condition

In this section we state and prove our main result.

Theorem 3.1. Assume that the pair (a, ß) satisfies

a ß

(kn)4 + (kn)2

for all k e N, and that there are positive constants a, b, and c such that

Í 1 1     L Í k2n2 }      ,
(3.2) a max < —3—3-¡5—*- > + b max < —-7—.-r-r t < 1 •

ken \ |fcV -a- ßk2n2\ J *eN \ |jfcV -a- ßk2n2\ J

and

(3.3) \f(x,y,z)-(ay- ßz)\ < a\y\ + b\z\ + c

for all x e [0, 1], yel, z e E then problem (1.1)—(1.2) possesses at least one

solution.

Before going into the details of the proof, we first note that Theorem 1 of [3]

follows from Theorem 3.1 by just setting (a, ß) = (0, 0). Also, we note that

(3.1)—(3.2) trivially implies that

ui 2  2a bk n

\kAn4 -a- ßk2n2\ + |jfcV -a- ßk2n2\ <

for all k e N. It turns out that (3.4) is equivalent to the fact that the square

[a - a, a + a] x [ß - b, ß + b] does not intersect any of the eigenlines L of

( 1.8)—(1.9). From this point of view (3.1)—(3.2) can be thought of as a two-

parameter nonresonance condition relative to the eigenlines Z. . In particular,

in the case of / of class C1, what Theorem 3.1 says is roughly that if for large

\y\ + \z\ the pair
df   dP
dy ' öz,

lies on a certain closed rectangle in M which does not intersect the eigenlines

Lj, j e N, of (1.8)-(1.9), then problem (1.1)—(1.2) is solvable. Finally, we

conjecture that (3.4) instead of (3.2) suffices for the validity of Theorem 3.1.

Proof of Theorem 3.1. Without loss of generality, we can suppose y0 = 0 = yx —

y0 = y, in (1.2). Let us define T: L2(0, 1) x L2(0, 1) - L2(0, 1) x L2(0, 1)

by

(3.5) T(y, z) = (A(f(-, y, z) - (ay - ßz)), B(f(-, y, z) - (ay - ßz))),

where A and B are the operators defined in (2.10). The growth condition

(3.3) together with the compactness of A and B imply that T is a completely

continuous operator. Also, it is clear that (1.1 )—( 1.2) is equivalent to the fixed

point problem in L2(0, 1) x L (0, 1)

(3.6) (y,z) = T(y,z).
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We will study this fixed-point problem by means of the well known Leray-

Schauder Theorem. To do this, we show that there is a uniform bound inde-

pendent of t e [0, 1] for the solutions of the equation

(3.7) (y, z) = tT(y, z).

Thus let (y, z) be a solution of (3.7). From the definition of T and (3.3), we

obtain the result that

(3.8) ||y||L2<P||{a||y||L2 + è||z||L2 + c}

and

(3.9) IWI£»<l|Ä||{a||y||£a+*||z||£i + c}.

By combining (3.8) and (3.9) and using (3.2) and (2.11), we obtain the existence

of a constant K — K(a, b, c, \\A\, \\B\\) such that

(3.10) \\y\\û + \\z\\l}<K.

From the Leray-Schauder Theorem we conclude the existence of at least one

solution to (3.6), and the theorem follows.    D

Remark. The uniqueness of the solution predicted by Theorem 3.1 can be easily

shown if we replace (3.3) by the stronger Lipschitz-type condition

(3.11) \(f(x,y,z)-(ay-ßz)-f(x,y,z)-(ay-ßz-)<a\y-y\ + b\z-z\.

In the case that f(x, y, z) is of class C1 in (y, z), (3.11) is equivalent to

(3.12)
dff
^(x,y,z)-a <a, %{x,y,z)-ß <b

for every x e [0, 1 ], y and z in E. For example, if

(3.13) f(x,y,z) = g(x)y + h(x),

with g and h continuous in [0, 1 ], we recover the uniqueness assertion of

Theorem 2 of [3] by setting ß = b = 0 in (3.12).

4. An extension of Theorem 3.1

Theorem 3.1 can be generalized to some higher-order elliptic problems. We

establish here one possible extension.

Let Í2 be a bounded domain in Em and /: Q x E" — E" satisfy a Carathéo-

dory condition. Consider the problem

(4.1) (-A)nu = f(x,u,-Au,...,(-A)n-lu),

(4.2) u,-Au,...,(-A)"-lueHv(Ci).

By a solution of (4.1)-(4.2), we understand a weak solution (z0, ... , zn_x) e

(Hl0(Q))n of the system

(4.3) -Azi-i = z,• »     for /'= 1,...,«- 1
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(4.4) -Azn_x=f(x,zx,...,zn_x).

Let {^kik=\ De ̂ e sequence °f eigenvalues of -A under Dirichlet boundary

conditions. We have the following existence result, whose proof can be carried

out using the same arguments employed in proving Theorem 3.1.

Theorem 4.1. Assume that there are real numbers a0, ax, ... , an_x, such that

(4-5) ^ + -^ + ... + ^1^1   forallkGN
Ak     kk *k

and positive constants a0, ax, ... , an_x, c, such that

»-1 f xi \
(4.6) Y a,, max {-k—.- \ < 1

and such that

(4.7)

n-\

f(x,s0,...,sn_x)-J2<x,Si
i=0

n-\

<Y,aMi\ + c>
i=0

for all x e Q,  s0, ... , sn_x e E.   Then (4.1)-(4.2) possesses at least one

solution.

Uniqueness can be obtained replacing (4.7) by a Lipschitz condition similar

to (3.10).
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