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1. INTRODUCTION 

Let f: [0, 1 ] x R + R be a continuous function and let dp : R + 58 be 
defined by q5Js) = IsJ p-2 s for any fixed p greater than one. 

We will consider the following Dirichlet BVP, 

P) 
(4pw))’ +f(c u) = 0 (1.1) 

u(0) = u(T) = 0, (1.2) 

where ’ = d/dt and T is a positive real number. The notation we will use 
herein is mostly standard, albeit we will abbreviate it. Thus, the Banach 
space C’[O, T], where i is a nonnegative integer, endowed with the norm 
given by I~I,=~~=~sup~~~,,~, lu”‘(t)l will be simply denoted by C’. 
B(0, r) will denote the ball center 0 and radius r in Co, B(0, r) being its 

* This work was sponsored by the Conicyt, by the DIB U. of Chile, for the first and third 
authors and by the DIUC, U. Cat6lica de Chile for the second order. 
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closure. We will also shorten Lp(O, T), Wkp(O, T), and C;(O, T) to Lp, 
Wkp, and Cp, respectively. The norm in Lp is defined in the usual way 
and is denoted by (1 lip. The norm in Wip is denoted by 1) I/ l,p and is 
defined by 11 ZJ II,, p = Iju’lip. C,“(O, T) is the set of functions of class C” with 
compact support in (0, T). 

By a solution of problem (D) we will understand a function ZJ E C i such 
that tip(u’) E C1 and which satisfies (1.1) and (1.2). 

Let h E Co and consider the Dirichlet BVP 

-u”= j (1.3) 

u(0) = u(T) = 0. (1.4) 

It is an elementary fact that for every given h E Co there is a unique solu- 
tion v E C* to the above problem. Using the fact that C2 embeds compactly 
in Co, we can define a compact linear mapping G,: Co + Co by G,(h) = u. 
Let (&)Fxl, where A, = (kn/T)*, denote the sequence of eigenvalues of 
-a” and let JE (A,, A,,+ i) f or some positive integer n. Let I denote the 
identity in Co and let T,: Co + Co be defined by T2 = I- AG,. It is well 
known (see for instance [9, Chap. V, p. 241) that the Leray-Schauder 
degree of T2 with respect to B(0, r) and 0 is given by 

4T2, W, rh 0) = (- 1)” (1.5) 

for any r > 0. 
In Section 2 we reformulate problem (D). We begin by studying the 

equation 

- (4p(u’))’ = h (1.6) 

under homogeneous Dirichlet conditions. We find a mapping G,: Co * Co 
which is completely continuous, i.e., continuous and compact such that 
G,(h) is the unique solution to (1.6). By means of this mapping G, we are 
able to set down an equivalent abstract formulation for problem (D). 

In Section 3 we briefly review the eigenvalue problem corresponding to 
the operator - (4,( u’))’ under homogeneous Dirichlet conditions. 

In Section 4 we establish our main result. We define Tp:Co + Co by 
T,(u) = u - G,(Q,(u)) and prove, via a suitable homotopic deformation, 
that formula (1.5) still holds for any p > 1 if we substitute Tp for T,. 

In Section 5 we provide some sullicient conditions for the existence of 
solutions to problem (D). An application of the main result above, first, 
together with a direct consequence of Theorem 1.1 of [4] enables us to put 
forth sufficient conditions for this problem to have a solution when f is 
under nonuniform nonresonant conditions. The results we obtain are 
conceptually related with those in [7, 81 for the pde case and p = 2. We 
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also prove sufficient conditions for existence of nontrivial solutions when 
f(t, 0) = 0 for all t E [0, T]. Finally, we prove by means of a simple 
example that regarding the existence of solutions for problem (D) the case 
p # 2, p > 1, may be quite different from the case p = 2. 

2. AN EQUIVALENT ABSTRACT EQUATION 

In this section we show that solving problem (D) is equivalent to finding 
fixed points of a certain completely continuous mapping G,: Co + Co. 

We start by studying the following auxiliary problem. For a given h E L4, 
with q > 1, we look for a function u E C ’ satisfying 

(ApI 
- (dpW) = h a.e. on [O, T] (2.1) 

u(0) = u(T) = 0, Q-2) 

with dp(u’) an absolutely continuous function on [0, T]. Clearly, if u is 
such a solution then it satisfies 

(2.3) 

for all u E W$ p. Conversely, if u E W$ p satisfies (2.3) for all v E Wkp and 
we let, henceforth, p’ = p/(p - 1) and take r = min(p’, q} then Qp(u’) and h 
belong to L’ and satisfy (2.3) for all u E Cr. Hence #p(~‘) E W,$‘. From this 
and Theorem VIII.2 of [2] we can see that 4p(~‘) is an absolutely 
continuous function which satisfies (2.1). Since #p(~‘) is absolutely 
continuous, #p, is the inverse function of dp, and u E W3 p, using Remark 6 
of [2] we find that u E C ‘, and satisfies (2.2). 

Next we observe that searching for u E WtP satisfying (2.3) is equivalent 
to finding critical points of the functional tj,,: Wkp + R defined by 

(2.4) 

We find that eh is a continuous strictly convex functional such that 
M4 + +* as Ml ,, p + co. Hence (see for instance [6]) it possesses a 
unique critical point at which it reaches its global minimum. 

From the previous arguments we conclude that (AP) has a unique solu- 
tion w E C’. Thus we can define a mapping G,: Lq + C’ by G,(h) = w. 

Our next step is to prove that G, seen as a mapping from Lq into Co is 
completely continuous. Instead of doing this directly, we will establish and 
prove, anticipatively, two propositions which will actually be needed later 
and, for the present case, make the result immediate. 
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PROPOSITION 2.1. Let p,, be a real number greater than one and let us 
define 4: [po, + 00) x Co + Co by #(p, u)(t) =4&u(t)), for all tE [0, T]. 
Then the mapping 4 is continuous and sends bounded sets of [po, + CO) x Co 
into bounded sets of Co. 

Proof: It follows directly from the definition of 4. 1 

In the next proposition, and henceforth, weak convergence will be 
indicated by the symbol -. 

Let p. be a real number greater than one and let G: 
[po, + co) x Ly + Co be the mapping defined by G(p, h) = G,(h). 

PROPOSITION 2.2. Zf { pn jr=, is a sequence in [po, + co ) such that 
lim n-too~n =P and {h,lZ, is a sequence in Ly such that h, -h E Ly as 
n + co then lim, _ o. G(p,, h,) = G(p, h). 

Proof. Let { p,}F= , and {h, },“= , be sequences in [po, + cc ) and Ly, 
respectively, such that lim, _ m pn = p and h, - h as n + ~0. Suppose that 
G(p,, h,) does not converge to G(p, h) as n + 00. Hence there exists 
an E > 0 and a subsequence of { ( pn, h,)},“= , , which we will call again 
{(P,, h)}Z,, such that 

for all n E N. 

IG(P,, h,)- G(P, h)lo 2~ (2.5) 

Based on the definition of the mappings 4 and G, the fact that for fixed 
p > 1 and u a solution of (AP) d(p, u’) is an absolutely continuous function 
on [0, T], and setting u, = G(p,, h,), we find that 

- (&P,, 4))’ = h, (2.6) 

for each fixed n E N. Equation (2.6) and the boundedness of { h,}p= i tell us 
that the sequence (4(p,,, u,)}~=, meets the requirements of Ascoli-Arzela’s 
theorem in Co. Hence there exists a subsequence of {d(p,,, u,)}:=, which 
is convergent in Co. We label this subsequence again by (d(p,, u,)}F= ,. 
From Proposition 2.1 and since u, = d(p,, &p,,, u,)), n E N, we find that 
{ un};= i is convergent in C ‘. This fact and Ascoli-Arzela’s theorem imply 
indeed that {un}z= i contains a convergent subsequence in C’. We label 
this subsequence again by { u,,>z= i }. Let u = lim,, co u,. We note that 
from (2.5) 

lu,, -Gtp, h)lo a&. (2.7) 

Letting u = U, and h = h, in (2.3) we find 

(2.8) 
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for all n E N and for all u E CF(O, 7’). Recalling from Proposition (2.1) that 
$ is continuous we can let n go to infinity in (2.8) to obtain 

(2.9) 

for all u E Cz and hence for all u E W, ‘*p. From (2.9) we find that G(p, h) = 
G,(h) = u which is a contradiction in light of (2.7). Thus the proposition is 
proved. 1 

COROLLARY 2.3. (i) The mapping G seen as a mapping from 
[pO, + 00) x Ly --t Co is completely continuous. 

(ii) The mapping G seen as a mapping from [po, + co) x Co + Co is 
completely continuous. 

Proof: (i) It follows directly from Proposition 2.2. 
(ii) It follows from (i) and the fact that the canonical embedding of 

Co into Ly, q > 1, is continuous. 1 

From this corollary and for any fixed p E (1, + cc ) we find that the map- 
ping G(p, .) = G, seen as a mapping from Lq or Co into Co is a completely 
continuous mapping. 

Let us now define F: Co + Co by F(u)(t) = f (t, u(t)) for all t E [0, T]. It 
is well known that F is a continuous operator which sends bounded sets of 
Co into bounded sets of Co. Furthermore if we let Z denote the identity in 
Co then I- G, 0 F: Co + Co is a compact perturbation of the identity. It is 
now easy to see that solving problem (D) is equivalent to solving the 
abstract equation 

u - G,(F(u)) = 0. (2.10) 

3. AN EIGENVALUE PROBLEM 

In this section we will briefly review and refine some results of Dribek 
[S] concerning the eigenvalue problem 

(E) 
- ~&w))’ = Q,(u) (3.1) 

u(O) = u(T) = 0. (3.2) 

A real number d such that (E) possesses a nontrivial solution will be 
called an eigenvalue of (E). The associated nontrivial solution will be 
refered to as an eigenfunction of (E) corresponding to Iz. 
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It is easy to check that if A is an eigenvalue of (E) and u is a correspond- 
ing eigenfunction then 

(3.3) 

and hence all the eigenvalues of (E) must be positive. Correspondingly, we 
take 13 > 0 in (3.1). 

In order to solve problem (E) in a similar form as it is done when p = 2 
we start by studying the IVP 

- (4pW = @p(u) (3.4) 
(1) 

u(0) = 0, u’(0) = c1 E R. (3.5) 

A change of the independent variable t to r = l”pt reduces (I) to 

- (4pW = 4,(4 (3.6) 
(11) 

u(0) = 0, u’(0) = al - l’p, (3.7) 

where now ’ = d/dz. This IVP can be solved by direct integration. In fact, 
we let for any real p > 1 

I 
(p-1p 

71p =2 
ds 

0 (1 -s”/(p- 1))“” (3.8) 

and implicitly define the function w: [0, 7cD/2] + [0, (p - 1 )“P] by 

We now extend w 
for t E [O,lr,/2] and 

i 

w(t) ds 
0 (1 -s”/(p- 1))“” = t. (3.9) 

to [ - rrp, rrp] as follows. First we define G(t) = w(t) 
K(t)= w(np -t) for t E [7rp/2, rrp] and then 9(t)= 

- G( - t) for t E [-rep, 01. Finally we define sin,: R --) R as the 27cp- 
periodic extension of G to all of R. 

By a direct verification we can show that 

u( t ) = cd - ‘lp sin,(t) (3.10) 

is a solution of (Ii) and hence 

u(t) = c&“~ sinp(J”Pt) (3.11) 

is a solution of (I). Moreover, it can be proved that (3.11) is the unique 
solution to problem (I). See [3]. 
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Now it is easy to solve problem (E). In fact, 1 will be an eigenvalue of 
(E) if and only if 

sin,(J”PT) = 0. (3.12) 

From sin,(p) = 0 if and only if p = nap, where n E Z, and since the eigen- 
values of (E) are positive, they finally turn out to be given by 

A,(p)= T p, ( ) (3.13) 

where n E fY, with corresponding eigenfunctions 

u,(t) = cd; ‘lp sinp(Qpt). (3.14) 

4. HOMOTOPICALLY DEFORMING ALONG p > 1 A LERAY-SCHAUDER 
DEGREE RESULT 

For every fixed real number p > 1 let Tp: Co + Co be the mapping 
defined by T,(u) = u - G,(i#,(u)), with ,J E R. From the previous sections it 
is clear that for each fixed p, T,(u) = 0 has a nontrivial solution if and only 
if A=&(p) as given in (3.13) with corresponding U= u, given by (3.14). 

The following theorem is the main result of this section. 

THEOREM 4.1. Let p be any fixed real number greater than one. Let 1 E Iw 
be such that A# A,(p) for each n E N. Then for every r > 0, the 
Leray-Schauder degree d( T,, B(0, r), 0) is well defined and satisfies 

d(Tp,B(0,r),0)=(-1)8, (4.1) 

where j? is the number of eigenvalues A.,(p) of problem (E) less than 1. 

Remark 1. The above theorem is known to be true for p = 2 as was 
established in Section 1. As a matter of fact, our proof of Theorem 4.1 will 
be carried out by constructing a suitable homotopic deformation along p 
from the case p = 2. 

Proof of Theorem 4.1. We will only prove the case A > I,(p) since the 
proof for the case Iz < A.,(p) is similar. We also assume that p # 2. 

Since A>l,(p) and A#l,(p) for all noN, there exist so(O, 1) andnoN 
such that 1= ((n + s)~,/T)~. Hence, all we need to show is that for every 
r>O, d(T,, B(0, r), 0)= (-1)“. 

Let p. denote the min{ p, 2} and let x: [po, + co) + IR be defined by 
x(q) = ((n + s)~,,,T)~. From the definition of R, given in Section 3 it is easy 
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to see that 7cy seen as a function of q E (1, + co ) is continuous and hence so 
is X. 

Let us next define T: [PO, + co) x Co + Co by 

T(q, u) = z.4 - G(q, %q) &q, u)) = z.4 - G’(q, ~1. (4.2) 

From the continuity of 1, Proposition 2.1, and Corollary 2.3 we get that G 
is a completely continuous mapping. Also from the very definition of 1 and 
since T(q, . ) = T, for I = x(q), we find that for u # 0, T(q, U) # 0 for all 
q E [pO, + co). Hence, from the invariance of the Leray-Schauder degree 
under homotopies and (1.5) we obtain 

d(T,, W, r), 0) = 4T2, W, r), 0) = (- 1 I“, (4.3) 

for any r > 0. This concludes the proof of Theorem 4.1. 1 

5. EXISTENCE OF SOLUTIONS TO PROBLEM (D) 

The purpose of the first part of this section is to show two existence 
results for problem (D) under certain conditions on f: Throughout this 
section p will denote a fixed real number greater than one. We recall from 
Section 2 that showing existence for problem (D) is equivalent to solving 
the abstract equation (2.10). 

Our existence results will be based upon Theorem 4.1 of the last section 
and on the following proposition which is a direct consequence of 
Theorem 1.1 of [4]. 

PROPOSITION 5.1. Let c be a measurable real valued function defined on 
[0, T]. Let k be a positive integer and let I,(p), I,+,(p) be defined by 
(3.13). Suppose that 

UP) G c(t) G &+ l(P) a.e. on [0, T], (5.1) 

the strict inequalities holding true in some subsets of positive measure in 
[0, T]. Then the problem 

(dp(u’))’ + 42) Q,W = 0 (5.2) 

u(O) = u(T) = 0 (5.3) 

does not have a nontrivial solution. 
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Our first result is the following. 

THEOREM 5.2. Suppose that k is a positive integer and that f in problem 
(D) satisfies 

-b(t) G A,+ I(P), (5.4) 

uniformly on [0, T], the first and last inequalities being strict in some 
subsets of positive measure in [0, T]. Then problem (D) has a solution. 

Proof: Let v 6 (A,, A,, 1) and consider the completely continuous 
homotopy 2% [0, l] x Co + Co defined by 

H(T, u) = G,(Tv~~,(u) + (1 - T) F(u)). (5.5) 

We claim that for a big enough r > 0, u - H(r, u) # 0 holds for all 
u E dB(O, r) and for all z E [O, 11. Suppose the claim is not true. Then there 
exists a sequence {u,,}F= 1 in Co and a sequence (rn}~=, in [0, 11 such that 
Iu,,jo + 00 and z, + z. E [0, l] as n + cc and such that 

0, =Gp(~nv4p(~n)+ (1 -~V’(u,)/lu,IPo-‘)v 

where v, = u,/ju, I{- ‘. 

(5.6) 

Let us define the sequence {h,} ,“=, by h, = F(u,)/lu, I$- I. From (5.4) it 
clearly follows that {h,}:‘, is a bounded sequence in Co. This, (5.6), and 
the fact that G,: Co + Co is completely continuous imply that {v,}~=, 
possesses a convergent subsequence in Co. Let us denote this subsequence 
again by { v,,}p= I and let v E lim, _ o. v,. Then (VI o = 1. Calling again on 
the fact that (h,}F= , is bounded on Co and hence on Lq, q > 1, and 
reasoning as in the proof of lemma 4.2 of [l] (see also [3]), we find that 
{h,},“= , possesses a weakly convergent subsequence {h&Z 1 in Lq such 
that h, - 134,(v) as j + co. Here 0 is a real valued measurable function 
defined on [0, T] such that 

a(t) < O(t) <b(t) a.e. on [O, T]. (5.7) 

From (5.6) 

V n, = G,(~,vh(vn,) + (1 - Tn,h,) (5.8) 

for Jo N. From Proposition (2.2) we can let j go to co in (5.8) to obtain 

v = G,(cd,(u)), (5.9) 
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where 

c(t) = T()V + (1 - 50) t?(t). 

Equation (5.9) implies that u satisfies 

(5.10) 

(#Ju’))’ + c(t) 4Ju) = 0 (5.11) 

u(0) = u(T) = 0. (5.12) 

From (5.11), (5.12), and since c(t) as defined in (5.10) satisfies (5.1) of 
Proposition 5.1, it follows from the latter that u(t) = 0 for all TV [0, 7’1. 
This contradicts (uIO = 1, and the claim follows. 

Next, from the invariance of Leray-Schauder degree under homotopies 
(see [9]), we find that for a big enough r > 0 

d(Z-H(0, .), B(0, r), O)=d(Z-H(1, .), B(0, r), 0). (5.13) 

Since u - ff(l, u) = ~4 - G,(v$,(u)) = TJu), VE (&(P), &+ l(~)), and 
H(0, .) = G, 0 Fit follows from Theorem 4.1 and (5.13) that 

d(Z- G, 0 F, B(0, r), 0) = ( - 1)“ # 0. (5.14) 

In accordance with the Leray-Schauder degree existence result (see [9]), 
we conclude from (5.14) that there exists a u E B(0, r) such that 

u - GP( F(u)) = 0. 

Hence the theorem follows. 1 

(5.15) 

Remark 2. Condition (5.4) of Theorem 5.2 generalizes (E,) of 
Theorem 2.1 of [ 11. Furthermore, (E,) of that theorem can be generalized 
to 

(5.16) 

uniformly on [0, YZ], and the strict inequality holding true in a subset of 
positive measure in [0, T], and still problem (D) will have a solution. 

Remark 3. Conditions (5.4) and (5.16) can be thought of as non- 
uniform nonresonant conditions at the eigenvalues for solutions of problem 
(D). In addition, (5.16) can be replaced by the weaker condition 

(5.17) 
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uniformly on [0, r], the strict inequality holding true in a subset of 
positive measure in [0, T], without affecting the existence of at least one 
solution to problem (D). Conditions (5.4) and (5.17) generalize for such 
problems some of the main ideas used in [7, 81 for the pde case and p = 2. 

Theorem 5.2 does not guarantee the existence of nontrivial solutions 
when f(t, 0) = 0, for all t E [0, T]. It is the purpose of our next theorem to 
provide, in the spirit of our work, additional conditions to the ones in 
Theorem 5.2 for problem (D) to have nontrivial solutions. 

THEOREM 5.3. Suppose that besides the conditions of Theorem 5.2 for the 
function f, there exists a positive integer j such that (j - k) is an odd integer 
and 

(5.18) 

uniformly on [0, T], the first and the last inequalities being strict in some 
subsets of positive measure in [0, T]. Then problem (D) possesses a non- 
trivial solution. 

ProoJ We have to prove that (2.10) possesses a nontrivial solution. 
Since the proof of this fact is very much like that of the last theorem we 
will only sketch it. 

Reasoning as in the proof of Theorem 5.2, we find that for a small 
enough E > 0 

d(Z- G, 0 F, B(0, E), 0) = (- 1)‘. (5.19) 

Since for a big enough r > 0 (5.14) holds, then from the additivity and 
excision properties of the Leray-Schauder degree (see [9]), we obtain 

d(Z- G, o F, B(0, r)\B(O, E), 0) = (- 1)“ - (- l)‘# 0. (5.20) 

Hence, (2.10) has a solution belonging to B(0, r)\B(O, E), and the theorem 
follows. 1 

We conclude this section showing by means of an example that, concern- 
ing the existence of solutions to problem (D), the case p # 2, p > 1, may be 
quite different from the case p = 2. In fact, let us consider the problem 

- (4p(u’))’ = 4&(u) + h 

u(0) = u(T) = 0, 

where p > 1 and h E Co. For p = 2, (5.21) reduces to 

(5.21) 

(5.22) 

-u”=Au+h. (5.23) 
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It is well known that (5.23) subjected to (5.22) has a unique solution u for 
each h E Co when A is less than the first eigenvalue A,(2) = (n/T)*. Further- 
more, at this solution the strictly convex functional 

(5.24) 

reaches its minimum over IV;*. 
Similarly, for each II < A,(p) and each h E Co, (5.21) subjected to (5.22) 

possesses a solution at which the functional 

(5.25) 

reaches its minimum over W kp Nevertheless, ifO<A<A,(p)andp>2we . 
can always find an h E Co such that (5.21) subjected to (5.22) possesses at 
least two solutions. To prove this, let u. E C* be a function which is equal 
to a constant different from zero on [E, T-E], for some small E >O and 
such that u(O) = u(T) = 0. 

Define h E Co by 

h = - (d,MA) - J4p(uo). (5.26) 

Then u. is a solution to (5.21), (5.22) for this h. We claim that at uo, Qp 
does not reach its minimum in Wkp and therefore there are two solutions 
of (5.21), (5.22). To prove the claim we note that for p > 2, Gp is twice 
Frechet differentiable. If we denote the second derivative of Gp at u. by 
@;(uo) then 

(@;(uo)u,u)=(p-1) joT~u~i”u”-~ joT~uo~p-2u2) (5.27) 
( 

for all u E W$ p, and where ( , ) denotes the duality pairing between Wkp 
and its dual. 

Next let z E Cg be such that supp z c (E, T - E). We find from (5.27) and 
the definition of no that 

(@;(uo)z,z>= -(p-l);joTl*o,p-2z*<o, (5.28) 

which shows that at u. Gp does not reach its minimum. 
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