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Abstract. We consider the initial value problem ut = ∆ log u, u(x, 0) =

u0(x) ≥ 0 in R2, corresponding to the Ricci flow, namely conformal evolution of

the metric u(dx2
1 +dx2

2) by Ricci curvature. It is well known that the maximal

solution u vanishes identically after time T = 1
4π

R
R2 u0. Assuming that u0

is radially symmetric and satisfies some additional constraints, we describe

precisely the Type II collapsing of u at time T : we show the existence of an

inner region with exponentially fast collapsing and profile, up to proper scaling,

a soliton cigar solution, and the existence of an outer region of persistence of a

logarithmic cusp. This is the only Type II singularity which has been shown to

exist, so far, in the Ricci Flow in any dimension. It recovers rigorously formal

asymptotics derived by J.R. King [26].

Solutions maximales de type II pour le flot de Ricci dans R2

Abstract. On considère le problème ut = ∆ log u, avec donnée initiale u(x, 0) =

u0(x) ≥ 0 dans R2, qui correspond au flot de Ricci, c’est-à-dire à l’évolution

conforme de la métrique u(dx2
1 + dx2

2) par la courbure de Ricci. Il est bien

connu que la solution maximale u s’annulle identiquement après un temps

T = 1
4π

R
R2 u0. En supposant que u0 est à symétrie radiale et vérifie certaines

contraintes additionnelles, on décrit précisément le collapse, de Type II, de

u au temps T : on montre l’existence d’une région intérieure avec un collapse

exponentiellement rapide et un profil asymptotique, une solution soliton cigar,

et l’existence d’une région extérieure de persistence d’un cusp logarithmique.

C’est la seule singularité de type II qui ait été établie à ce jour, pour le flot

de Ricci, en dimension quelconque. On retrouve rigoureusement les calculs

asymptotiques formels établis par J.R. King [26].
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1. Introduction

We consider the Cauchy problem

(1.1)





ut = ∆ log u in R2 × (0, T )

u(x, 0) = u0(x) x ∈ R2,

for the logarithmic fast diffusion equation in R2, with initial data u0 non-negative,

integrable and T > 0.

It has been observed by S. Angenent and L. Wu [28, 29] that equation (1.1)

represents the evolution of the conformally equivalent metric gij = u dxi dxj under

the Ricci Flow

(1.2)
∂gij

∂t
= −2 Rij

which evolves gij by its Ricci curvature. The equivalence follows easily from

the observation that the conformal metric gij = u Iij has scalar curvature R =

−(∆ log u)/u and in two dimensions Rij = 1
2 R gij .

Equation (1.1) arises also in physical applications, as a model for long Van-der-

Wals interactions in thin films of a fluid spreading on a solid surface, if certain

nonlinear fourth order effects are neglected, see [9, 4, 5].

We consider solutions with finite total

A =
∫

R2
u dx < ∞.

Since u goes to zero when |x| tends to infinity, the equation is not uniformly para-

bolic. It becomes singular when u is close to zero. This results to many interesting

phenomena, in particular solutions are not unique [11]. It is shown in [11] that

given an initial data u0 ≥ 0 with finite area and a constant γ ≥ 2, there exists a

solution uγ of (1.1) with

(1.3)
∫

R2
uλ(x, t) dx =

∫

R2
u0 dx− 2πγ t.

The solution uγ exists up to the exact time T = Tγ , which is determined in terms of

the initial area and γ by Tγ = 1
2π γ

∫
R u0 dx. In addition, if u0 ∈ L1(R2)∩Lp(R2), for

some p > 1, u0 6≡ 0 and it is radially symmetric, then uγ is unique and characterized

by the flux-condition

(1.4) lim
r→+∞

r ur(r, t)
u(r, t)

= −γ, as r →∞

for all 0 < t < Tγ .
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We restrict our attention to maximal solutions u of (1.1), corresponding to the

value γ = 2 in (1.3), which vanish at time

(1.5) T =
1
4π

∫

R2
u0(x) dx.

Before we proceed with statements of our main results, let us comment on the

extinction behavior of the intermediate solutions uγ of (1.1), corresponding to val-

ues γ > 2. This has been recently studied by S.Y. Hsu [24] (see also [23]). Let uγ

be the unique radially symmetric solution of (1.1) which satisfies (1.3) and (1.4).

It has been shown in [24] that there exist unique constants α > 0, β > −1/2,

α = 2β + 1, depending on γ, such that the rescaled function

v(y, τ) =
u(y/(T − t)β , t)

(T − t)α
, τ = − log(T − t)

will converge uniformly on compact subsets of R2 to φλ,β(y), for some constant

λ > 0, where φλ,β(y) = φλ,β(r), r = |y| is radially symmetric and satisfies the ODE

1
r

(
rφ′

φ

)′
+ α φ + βrφ′ = 0, in (0,∞)

with

φ(0) = 1/λ, φ′(0) = 0.

In the case where γ = 4 the above result simply gives the asymptotics

u(x, t) ≈ 8λ(T − t)
(λ + |x|2)2 , as t → T

corresponding to the geometric result of R. Hamilton [16] and B. Chow [7] that

under the Ricci Flow, a two-dimensional compact surface shrinks to a sphere. The

extinction behavior of non-radial solutions of (1.1) satisfying (1.3) with γ > 2 is still

an open question. Let us also point out that the asymptotic behavior, as t →∞, of

maximal solutions of (1.1) when the initial data u0 ≥ 0, u0 ∈ L1
loc(R2) has infinite

area
∫
R2 u0(x) dx = ∞ and satisfies the specific bounds

α

|x|2 + β1
≤ u0(x) ≤ α

|x|2 + β2
, x ∈ R

for some α > 0, β1, β2 > 0, has been studied by S.Y. Hsu in [21, 22], extending

previous geometric results by L.F. Wu [28, 29].

The methods in [24] no longer apply for the maximal solution, which turns out

to exhibit more delicate asymptotic behavior. This is due to the fact that the

blow up of the curvature R = −∆log u/u at the vanishing time T of the maximal

solution is of Type II ( Rmax(t) (T − t) → ∞, as t → T ) and not of the standard
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Type I (Rmax(t) (T − t) ≤ C < ∞, as t → T ) which is shown to happen in all the

other cases. This Type II blow up behavior of the maximal solution is proven, via

geometric a priori estimates, by the first author and R. Hamilton in [12]. Note that

this is the only case of Type II singularity which has been shown to exist in the

Ricci Flow, in any dimension.

J.R. King [26] has formally analyzed the extinction behavior of maximal solutions

u of (1.1), as t → T , with T = (1/4π)
∫
R2 u0(x) dx. His analysis, for compactly sup-

ported initial data, suggests the existence of two regions of different behavior. In the

outer region (T − t) ln r > T the ”logarithmic cusp” exact solution 2t /|x|2 log2 |x|
of equation ut = ∆ log u persists. However, in the inner region (T − t) ln r ≤ T the

solution vanishes exponentially fast and approaches, after an appropriate change of

variables, one of the soliton solutions U of equation Uτ = ∆ log U on −∞ < τ < ∞
given by U(x, τ) = 1/(λ|x|2 + e4λτ ), with τ = 1/(T − t) and λ a constant which

depends on the initial data u0.

Our goal in this paper is to establish rigorously that behavior, under a set of

geometrically natural constraints on the initial condition u0.

We assume in what follows that u0 = u0(|x|) is non-negative, not identically

zero, radially symmetric and bounded with

(1.6) T ≡ 1
4π

∫

R2
u0 dx < +∞

such that

(1.7) u0(r) is strictly decreasing on r ≥ r0, for some r0 >> 1

and it satisfies the growth condition

(1.8) u0(x) =
2 µ

|x|2 log2 |x| (1 + o(1)) , as |x| → ∞

for some positive constant µ. Since locally bounded weak solutions of (1.1) are

strictly positive and smooth, we may assume without loss of generality that u0 is

strictly positive and smooth. The initial asymptotic behavior (1.8) is in fact natural,

since it holds true for the maximal solution at any positive time prior to vanishing

if the initial datum has compact support or fast decay. Moreover, according to the

results in [11] and [27] (1.8) implies that the maximal solution u which extincts at

time T also satisfies the asymptotic behavior

(1.9) u(x, t) =
2 (t + µ)
|x|2 log2 |x| (1 + o(1)) , as |x| → ∞, 0 ≤ t < T,
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this bound of course deteriorates as t → T . Geometrically this corresponds to the

condition that the conformal metric is complete. The manifold can be visualized as

a surface of revolution with an unbounded cusp with finite area closing around its

axis. Note that also condition (1.7) is not restrictive, because of the flux condition

(1.4) which holds for any maximal solution with γ = 2.

The scalar curvature Rcusp of the logarithmic cusp 2 µ/|x|2 log2 |x|, satisfies the

lower bound Rcusp ≥ −1/µ. We assume the geometric condition that the initial

curvature R0 = −∆log u0/u0 satisfies the lower bound

(1.10) R0(x) ≥ − 1
µ

on R.

Our main results describe the asymptotic behavior of the maximal solution u of

(1.1) near t = T as follows: Theorem 1.1 describes the inner behavior essentially as

u(x, t) ≈ (T − t)2

λ |x|2 + e
2(T+µ)
(T−t)

for some λ > 0, whenever |x| = O( e
T+µ
T−t ), while the outer behavior is given,

according to Theorem 1.2, by

u(x, t) ≈ 2(t + µ)
|x|2 log2 |x|

for |x| >> e
T+µ
T−t .

To make these statements precise, we perform the following change of variables:

(1.11) ū(x, τ) = τ2 u(x, t), τ =
1

T − t

and

(1.12) ũ(y, τ) = α(τ) ū(α(τ)1/2y, τ),

with

(1.13) α(τ) = [ū(0, τ)]−1 = [(T − t)−2u(0, t)]−1

so that ũ(0, τ) = 1.

A direct computation shows that the rescaled solution ũ satisfies the equation

(1.14) ũτ = ∆ log ũ +
α′(τ)
2α(τ)

∇(y · ũ) +
2ũ

τ
.

Then, following result holds:
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Theorem 1.1. (Inner behavior) Assume that the u0 is radially symmetric, positive,

smooth and satisfies (1.6) - (1.8) and (1.10). Then, for each sequence τk → ∞,

there is a subsequence, τkl
→∞ such that α′(τkl

)/2α(τkl
) → 2λ, for some constant

λ ≥ (T + µ)/2 and along which the rescaled solution ũ defined by (1.11) - (1.13)

converges, uniformly on compact subsets of R2, to the solution Uλ(x) = (λ |y|2+1)−1

of the steady state equation

∆log U + 2 λ∇(y · U) = 0.

In addition

(1.15) lim
τ→∞

log α(τ)
τ

= T + µ.

To describe the vanishing behavior of u(r, t) in the outer region we first perform

the cylindrical change of variables

(1.16) v(s, t) = r2 u(r, t), s = log r

which transforms equation ut = ∆ log u to the one-dimensional equation

(1.17) vt = (log v)ss, −∞ < s < ∞.

We then perform a further scaling setting

(1.18) ṽ(ξ, τ) = τ2 v(τξ, t), τ =
1

T − t
.

A direct computation shows that ṽ satisfies the equation

(1.19) τ ṽτ =
1
τ

(log ṽ)ξξ + ξ ṽξ + 2ṽ.

The extinction behavior of u (or equivalently of v) in the outer region ξ ≥ T + µ,

is described in the following result.

Theorem 1.2. (Outer behavior). Assume that the initial data u0 is positive, ra-

dially symmetric, smooth and satisfies (1.6) - (1.8) and (1.10). Then, the rescaled

solution ṽ defined by (1.18) converges, as τ →∞, to the steady state solution V of

equation (1.19) given by

(1.20) V (ξ) =





2(T+µ)
ξ2 , ξ > ξµ

0 ξ < ξµ

with

ξµ = T + µ.
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Moreover, the convergence is uniform on the interval (−∞, ξ−µ ] and on compact

subsets of [ξ+
µ ,+∞), for −∞ < ξ−µ < ξµ < ξ+

µ < +∞.

This work is devoted to the proof of the above Theorems. We conjecture that

the limit λ in Theorem 1.1 is unique, along all subsequences and it is equal to

(T + µ)/2. We also conjecture that the results in this work are true without the

assumption of radial symmetry. Condition (1.8) is necessary as it is evident from

the above Theorems that the extinction behavior of u depends on the constant µ.

The proof of the above results relies on sharp estimates on the geometric width

W and on the maximum curvature Rmax of maximal solutions near their extinction

time T derived in [12] by the first author and R. Hamilton. In particular, it is found

in [12] that the maximum curvature is proportional to 1/(T − t)2, which does not go

along with the natural scaling of the problem which would entail blow-up of order

1/(T − t). One says that the collapsing is of type II. It is interesting to mention

that construction of symmetric solutions to mean curvature flow exhibiting type II

blow-up was achieved by Angenent and Velazquez in [2], where distinct geometric

inner and outer behaviors are found as well. Rather than a general classification

result like ours, their construction relies on carefully chosen, very special initial

data.

Acknowledgments. We are grateful to Richard Hamilton for many enlightening

discussions in the course of this work. This paper was completed while the first

author was a Visiting Fellow in the Department Mathematics, Imperial College,

London, partially supported by ESPRC in the UK. She is grateful to this institution

for its hospitality and support.

2. Preliminaries

In this section we will collect a few preliminary results which will be used

throughout the rest of the paper. For the convenience of the reader, we start

with a brief description of the geometric estimates in [12] on which the proofs of

Theorems 1.1 and 1.2 rely upon.

2.1. Geometric Estimates. In [12] the first author and R. Hamilton estab-

lished upper and lower bounds on the geometric width W (t) of the maximal solution

u of (1.1), given in the rotational symmetric case by W (t) = maxr≥0 2π|x|√u(x, t),

and on the maximum curvature Rmax(t) = maxx∈R2 R(x, t), with R = −(∆ log u)/u.
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As we noted in the Introduction the maximal solution u of (1.1) will exist only

up to T = (1/4π)
∫
R2 u0(x) dx. The estimates in [12] depend on the time to collapse

T − t. However, they do not scale in the usual way.

Theorem 2.1. [12] There exist positive constants c and C for which

(2.1) c (T − t) ≤ W (t) ≤ C (T − t)

and

(2.2)
c

(T − t)2
≤ Rmax(t) ≤ C

(T − t)2

for all 0 < t < T .

In the radially symmetric case (2.1) implies the pointwise bound

(2.3) c (T − t) ≤ max
r≥0

r
√

u(r, t) ≤ C (T − t)

on the maximal solution u of (1.1), or the bound

(2.4) c (T − t) ≤ max
s∈R

√
v(s, t) ≤ C (T − t)

for the solution v = r2 u(r, t), s = log r, of the one-dimensional equation (1.17).

2.2. Eternal Solutions. We will present now a classification result for radially

symmetric solutions U of equation

(2.5)
∂U

∂t
= ∆ log U, (x, t) ∈ R2 × R.

Since the solutions U are defined for −∞ < t < ∞ they are called eternal solutions

to the Ricci Flow. This classification result will be crucial in Section 3, where we

will show that rescaled solutions of equation (1.1) converge to eternal solutions of

equation (2.5).

We assume that the solution U of (2.5) is smooth, strictly positive, radially

symmetric, with uniformly bounded width, i.e.,

(2.6) max
(x,t)∈R2×R

|x|2 u(x, t) < ∞.

In addition, we assume that the scalar curvature R = −∆log U/U is nonnegative

and satisfies

(2.7) max
(x,t)∈R×[−∞,τ ]

R(x, t) < ∞, ∀τ ∈ R.
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Since U is strictly positive at all t < ∞, it follows that U(·, t) must have infinite

area, i.e.,

(2.8)
∫

R2
U(x, t) dx = ∞, ∀t ∈ R.

Otherwise, if
∫
R2 U(x, t) dx < ∞, for some t < ∞, then by the results in [11] the

solution U must vanish at time t + T , with T = 1/4π
∫
R2 U(x, t) dx, or before.

Theorem 2.2. Assume that U is a smooth, strictly positive, radially symmetric

solution of equation (2.5) on R2 × R which satisfies conditions (2.6) and (2.7).

Then, U is a gradient soliton of the Ricci flow of the form

(2.9) U(x, τ) =
2

β (|x|2 + δ e2βt)
.

for some δ > 0 and β > 0.

The above classification result has been recently shown by the first author and N.

Sesum [10], without the assumption of radial symmetry and under certain necessary

geometric assumptions. For the completeness of this work and the convenience of

the reader we present here its simpler proof in the radially symmetric case.

Under the additional assumptions that the scalar curvature R is uniformly

bounded on R2 × R and assumes its maximum at an interior point (x0, t0), with

−∞ < t0 < ∞, i.e., R(x0, t0) = max(x,t)∈R×R2 R(x, t) < ∞, Theorem 2.2 follows

from the result of R. Hamilton in [15], which also holds in the non-radial case.

However, since in general ∂R/∂t ≥ 0, without this rather restrictive assumption,

Hamilton’s result does not apply.

Before we begin with the proof of Theorem 2.2, let us give a few remarks.

Remarks:

(i) The assumption (2.6) is necessary to rule out constant solutions, which appear

as Type I blow up limits. We will show in Section 3 that Type II blow up

limits satisfy condition (2.6).

(ii) Any eternal solution of equation (2.5) which satisfies condition (2.6) has R > 0.

This is an immediate consequence of the Aronson-Bénilan inequality, which in

the case of a solution on R2× [τ, t) states as ut ≤ u/(t−τ). Letting, τ → −∞,

we obtain for a solution U of (2.5), the time derivative bound Ut ≤ 0, which is

equivalent to R ≥ 0. Since, R evolves by Rt = ∆gR+R2 the strong maximum

principle guarantees that R > 0 or R ≡ 0 at all times. Solutions with R ≡ 0

(flat) violate condition (2.6). Hence, R > 0 at all (x, t) ∈ R2 × R.
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(iii) The proof of Theorem 2.2 relies heavily on the Harnack inequality satisfied

by the curvature R, shown by R. Hamilton [16, 17]. In the case of eternal

solutions U of (2.5) with bounded curvature it states as

(2.10)
∂ log R

∂t
≥ |Dg log R|2

where DgR denotes the gradient with respect to the metric g = U (dx2
1 +dx2

2).

Equivalently, this gives the inequality

(2.11)
∂R

∂t
≥ |DR|2

R U
.

Assuming that U is radially symmetric solution of equation (2.5), we perform

the cylindrical change of coordinates

(2.12) V (s, t) = r2 U(r, t), s = log r

and notice once more that V satisfies the one-dimensional equation

(2.13)
∂V

∂t
= (log V )ss (s, t) ∈ R× R.

In addition the curvature R is given, in terms of V , by

R = − (log V )ss

V

so that the condition R > 0 implies that the function log V is concave. We will

state in the next Lemma several properties of the function V which will be used in

the proof of Theorem 2.2.

Lemma 2.3. The solution V of (2.13) enjoys the following properties:

(i) max(s,t)∈R2 V (s, t) < ∞.

(ii) The limit lims→+∞(log V (s, t))s = 0, for all t.

(iii) The limit C∞(t) := lims→+∞ V (s, t) > 0, for all t.

(iv) The limit lims→+∞(log V (s, t))ss = 0, for all t.

Proof. The fact that V (·, t) is bounded is a direct consequence of the width bound

(2.6). The rest of the properties are easy consequences of the inequality (log V )ss ≤
0, the L∞ bound on V and the infinite area condition (2.8). Let us prove (ii). Since

(log V )ss ≤ 0 either lims→+∞(log V (s, t))s = a or it is −∞. The number a cannot

be positive, otherwise V wouldn’t be bounded. If a < 0 or a = −∞ then for

s >> 1, log V (s, t) ≤ −µ s, for some µ > 0 which would imply that U(r, t) ≤
1/r2+µ, therefore integrable contradicting (2.8). Hence lims→+∞(log V (s, t))s = 0,

as desired.



TYPE II COLLAPSING OF MAXIMAL SOLUTIONS TO THE RICCI FLOW IN R2 11

Since (log V )s is decreasing in s, (ii) implies that (log V )s > 0 for all s. Hence, the

bound on V implies that the limit C∞(t) = lims→+∞ V (s, t) exist and it is strictly

positive. Note that C∞(t) is the circumference at infinity of R2 with respect to the

metric ds2 = U (dx2
1 + dx2

2).

Since, C∞(t) > 0, the last property lims→+∞(log V (s, t))ss = 0 is equivalent to

limr→∞R(r, t) = 0 and will be shown separately in the following lemma. ¤

Lemma 2.4. Under the assumptions of Theorem 2.2 we have

lim
r→∞

R(r, t) = 0, ∀t.

Proof. We first observe that

(2.14) lim
k→∞

inf{R(r, t) : 2k ≤ r ≤ 2k+1 } = 0, ∀t ∈ R.

Indeed, since R = −(log V )ss/V and V is bounded from below away from zero near

+∞, the latter is equivalent to

lim
k→∞

inf{|(log V )ss| : k ≤ s ≤ k + 1 } = 0

which readily follows from the fact that (log V )ss is negative and integrable.

To show that actually limr→∞R(r, t) = 0, we use the Harnack inequality (2.10).

Let (x1, t1), (x2, t2) be any two points in R2 × R, with t2 > t1. Integrating (2.11)

along the path x(t) = x1 + t−t1
t2−t1

x2, also using the bound (2.6), we find the more

standard in PDE Harnack inequality

(2.15) R(x2, t2) ≥ R(x1, t1) e
−C (

|x2−x1|2
|x1|2 (t2−t1)

)

which in particular implies that

lim
k→∞

sup{R(r, t) : 2k ≤ r ≤ 2k+1 } ≤ C lim
k→∞

inf{R(r, t + 1) : 2k ≤ r ≤ 2k+1 }

therefore, combined with (2.14), showing that limr→∞R(r, t) = 0, as desired. ¤

Combining the above with classical derivative estimates for linear strictly para-

bolic equations, gives the following.

Lemma 2.5. Under the assumptions of Theorem 2.2 we have

lim
r→∞

r Rr(r, t) = 0, ∀t ∈ R.
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Proof. For any ρ > 1 we set R̃(r, t) = R(ρ r, t) and we compute from the evolution

equation Rt = U−1∆R + R2 of R, that

R̃t = (ρ2U)−1∆R̃ + R̃2.

Fix τ ∈ R and consider the cylinder Q = {(r, t) : 1/2 ≤ r ≤ 4, τ − 1 ≤ t ≤ τ }.
Lemma 2.3 implies that 0 < c(τ) ≤ ρ2 u(r, t) ≤ C(τ), on Q, hence R̃ satisfies a

uniformly parabolic equation in Q. Classical derivative estimates then imply that

|(R̃)r(r, t)| ≤ C ‖R̃‖L∞(Q)

for all 1 ≤ r ≤ 2, τ − 1/2 ≤ t ≤ τ , showing in particular that

ρ |Rr(r, τ)| ≤ C ‖R‖L∞(Qρ)

for all ρ ≤ r ≤ 2 ρ, where Qρ = {(r, t) : ρ/2 ≤ r ≤ 4ρ, τ − 1 ≤ t ≤ τ}. The proof

now follows from Lemma 2.4. ¤

Proof of Theorem 2.2. Most of the computations below are known in the case that

U (dx2
1 + dx2

2) defines a metric on a compact surface, see for instance [7]. However,

in the non-compact case we deal with, exact account of the boundary terms at

infinity should be made.

We begin by integrating the Harnack Inequality Rt ≥ |DR|2/RU with respect

to the measure dµ = Udx. Since the measure dµ has infinite area, we will integrate

over a fixed ball Bρ. At the end of the proof we will let ρ → ∞. Using also that

Rt = U−1∆R + R2 we find
∫

Bρ

∆R dx +
∫

Bρ

R2 U dx ≥
∫

Bρ

|DR|2
R

dx

and by Green’s Theorem we conclude

(2.16)
∫

Bρ

|DR|2
R

dx−
∫

Bρ

R2 U dx ≤
∫

∂Bρ

∂R

∂ν
dσ.

Following Chow ([7]), we consider the vector X = ∇R + R∇f , where f = − log U

is the potential function (defined up to a constant) of the scalar curvature, since

it satisfies ∆gf = R, with ∆gf = U−1 ∆f denoting the Laplacian with respect to

the conformal metric g = U (dx2
1 + dx2

2). As it was observed in [7], X ≡ 0 on Ricci

solitons, i.e., Ricci solitons are gradient solitons in the direction of ∇gf . A direct

computation shows
∫

Bρ

|X|2
R

dx =
∫

Bρ

|DR|2
R

dx + 2
∫

Bρ

∇R · ∇f dx +
∫

Bρ

R |Df |2 dx.
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Integration by parts implies
∫

Bρ

∇R · ∇f dx = −
∫

Bρ

R ∆f dx +
∫

∂Bρ

R
∂f

∂n
dσ = −

∫

Bρ

R2 U dx +
∫

∂Bρ

R
∂f

∂n
dσ

since ∆f = R U . Hence
∫

Bρ

|X|2
R

dx =
∫

Bρ

|DR|2
R

dx− 2
∫

Bρ

R2 U dx

+
∫

Bρ

R |Df |2 dx + 2
∫

∂Bρ

R
∂f

∂n
dσ.

(2.17)

Combining (2.16) and (2.17) we find that

(2.18)
∫

Bρ

|X|2
R

dx ≤ −
(∫

Bρ

R2 U dx−
∫

Bρ

R |Df |2 dx

)
+ Iρ = −M + Iρ

where

Iρ =
∫

∂Bρ

∂R

∂n
dσ + 2

∫

∂Bρ

R
∂f

∂n
dσ.

Lemmas 2.3 - 2.5 readily imply that

(2.19) lim
ρ→∞

Iρ = 0.

As in [7], we will show next that M ≥ 0 and indeed a complete square which

vanishes exactly on Ricci solitons. To this end, we define the matrix

Mij = Dijf + Dif Djf − 1
2
(|Df |2 + R u) Iij

with Iij denoting the identity matrix. A direct computation shows that Mij =

∇i∇jf − 1
2∆gf gij , with ∇i denoting covariant derivatives. It is well known that

the Ricci solitons are characterized by the condition Mij = 0, (see in [16]).

Claim:

(2.20) M :=
∫

Bρ

R2 U dx−
∫

Bρ

R |Df |2 dx = 2
∫

Bρ

|Mij |2 1
U

dx + Jρ

where

lim
ρ→∞

Jρ = 0.

To prove the claim we first observe that since ∆f = R U
∫

Bρ

R2 U =
∫

Bρ

(∆f)2

U
dx =

∫

Bρ

Diif Djjf
1
U

dx.

Integrating by parts and using again that ∆f = R U , we find
∫

Bρ

Diif Djjf
1
U

dx = −
∫

Bρ

Djiif Djf
1
U

dx

+
∫

Bρ

∆f Djf
DjU

U2
dx +

∫

∂Bρ

R
∂f

∂n
dσ.
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Integrating by parts once more we find
∫

Bρ

Djiif Djf
1
U

dx = −
∫

Bρ

|Dijf |2 1
U

dx

+
∫

Bρ

Dijf Djf
DiU

U2
dx +

1
2

∫

∂Bρ

∂(|Df |2)
∂n

1
U

dσ

since ∫

∂Bρ

Dijf Djf ni
1
U

dσ =
1
2

∫

∂Bρ

∂(|Df |2)
∂n

1
U

dσ.

Combining the above and using that Df = −U−1DU and ∆f = R U we conclude

(2.21)∫

Bρ

R2U dx =
∫

Bρ

|Dijf |2 1
U

dx +
∫

Bρ

Dijf Dif Djf
1
U

dx−
∫

Bρ

R |Df |2 dx + J1
ρ

where

J1
ρ =

∫

∂Bρ

R
∂f

∂n
dσ − 1

2

∫

∂Bρ

∂(|Df |2)
∂n

1
U

dσ.

Hence

(2.22) M =
∫

Bρ

|Dijf |2 1
U

dx +
∫

Bρ

Dijf Dif Djf
1
U

dx− 2
∫

Bρ

R |Df |2 dx + J1
ρ .

We will now integrate |Mij |2. A direct computation and ∆f = R U imply
∫

Bρ

|Mij |2 1
U

dx =
∫

Bρ

|Dijf |2 1
U

dx + 2
∫

Bρ

Dijf Dif Djf
1
U

dx

−
∫

Bρ

R |Df |2 dx +
1
2

∫

Bρ

|Df |4 1
U

dx− 1
2

∫

Bρ

R2 U dx.

(2.23)

Combining (2.22) and (2.23) we then find

M − 2
∫

Bρ

|Mij |2 1
U

dx = −
∫

Bρ

|Dijf |2 1
U

dx− 3
∫

Bρ

Dijf Dif Djf
1
U

dx

−
∫

Bρ

|Df |4 1
U

dx +
∫

Bρ

R2U dx + J1
ρ .

Using (2.21) we then conclude that

M − 2
∫

Bρ

|Mij |2 1
U

dx = −2
∫

Bρ

Dijf Dif Djf
1
U

dx

−
∫

Bρ

|Df |4 1
U

dx−
∫

Bρ

R |Df |2 dx + J2
ρ .

(2.24)

where

J2
ρ =

∫

∂Bρ

R
∂f

∂n
dσ −

∫

∂Bρ

∂(|Df |2)
∂n

1
U

dσ.

We next observe that

2
∫

Bρ

Dijf Dif Djf
1
U

dx =
∫

Bρ

Di(|Df |2) Dif
1
U
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and integrate by parts using once more that ∆f = R U and that Dif = −U−1Dif ,

to find

2
∫

Bρ

Dijf Dif Djf
1
U

dx = −
∫

Bρ

R |Df |2 dx−
∫

Bρ

|Df |4 1
U

dx + J3
ρ

where

J3
ρ = lim

ρ→∞

∫

∂Bρ

|Df |2 ∂f

∂n
dσ.

Combining the above we conclude that

M − 2
∫

Bρ

|Mij |2 1
U

dx = Jρ

with

Jρ =
∫

∂Bρ

R
∂f

∂n
dσ −

∫

∂Bρ

(
∂(|Df |2)

∂n
+ |Df |2 ∂f

∂n

)
1
U

dσ.

We will now show that limρ→∞ Jρ = 0. Clearly the first term tends to zero, because

r |Df(r, t)| = |2 − (log V (s, t))s| is bounded by Lemma 2.3 and R(r, t) → 0, as

r →∞, by Lemma 2.4.

It remains to show that

lim
r→∞

(
∂(|Df |2)

∂r
+ |Df |2 ∂f

∂r

)
r

U
= 0.

To this end, we observe that since f = − log U and V (s, t) = r2 U(r, t), with

s = log r
(

∂(|Df |2)
∂r

+ |Df |2 ∂f

∂r

)
r

U
=

∂

∂r

( |Df |2
r2 U

)
=

∂

∂s

(
[2− (log V )s]2

V

)

and

∂

∂s

(
[2− (log V )s]2

V

)
= −[2− (log V )s]

(log V )ss

V
+ [2− (log V )s]2

(log V )s

V
.

Since both R = −(log V )ss/V and (log V )s tend to zero, as s → ∞, our claim

follows.

We will now conclude the proof of the Theorem. From (2.18) and (2.20) it follows

that ∫

Bρ

|X|2
R

dx + 2
∫

Bρ

|Mij |2 1
U

dx ≤ Iρ + Jρ

where both

lim
ρ→∞

Iρ + Jρ = 0.

This immediately gives that X ≡ 0 and Mij ≡ 0 for all t showing that U is a

gradient soliton. It has been shown by L.F. Wu [29] that there are only two types

of gradient solitons on R2 the standard flat metric (R ≡ 0) which is stationary and

the cigar solitons (2.5). This, in the radial symmetric case can be directly shown by
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integrating the equality Mij = 0. The flat solitons violate condition (2.6). Hence,

U must be of the form (2.9), finishing the proof of the Theorem. ¤

2.3. Monotonicity of Solutions. We will show next that that radially symmetric

solutions of equation (1.1) with initial data satisfying conditions (1.7) and (1.8)

become radially decreasing near their vanishing time, as stated in the next Lemma,

which will be used in the next section.

Lemma 2.6. Assume that u is a radially symmetric maximal solution of equation

(1.1) with initial data u0 positive satisfying conditions (1.7) and (1.8). Then, there

exists a number τ0 < T such that u(·, t) is radially decreasing for τ0 ≤ t < T .

Proof. Because u0 > 0 is strictly decreasing for r ≥ r0, there exists a number δ0

with the property: for all δ ≤ δ0 there is exactly one r such that u0(r) = δ. It

then follows that for any number δ ≤ δ0 the number J(δ, t) of intersections between

u(·, t) and the constant solution S(r, t) = δ satisfies J(δ, t) ≤ 1 (see in [1]). Since

u(·, t) → 0 uniformly as t → T , there exists a time t such that u(·, t) < δ0. Define

τ0 = inf{t ∈ (0, T ) : u(r, t) ≤ δ0, ∀r > 0 }.

Clearly, we can choose δ0 sufficiently small so that τ0 > 0. Then, for t < τ0,

J(δ0, t) = 1. Assume that rδ0(t) satisfies u(rδ0(t), t) = δ0. Since, u(r, t) → 0 as

r →∞, it then follows that u(r, t) > δ0 for r < rδ0(t) and u(r, t) < δ0 for r > rδ0(t),

for all t < τ0. It follows that rδ0(τ0) = 0 and by the strong maximum principle

ur(0, τ0) < 0. We claim that u(·, τ0) is strictly decreasing. If not then, there exists

δ < δ0 such that the constant solution S(r, t) = δ intersects the graph of u(·, τ0) at

least twice, contradicting our choice of δ0. Hence, ur(r, τ0) ≤ 0, for all r > 0, and

actually by the strong maximum principle ur(·, τ0) < 0, for all r. This inequality is

preserved, by the maximum principle for all τ0 ≤ t < T , finishing the proof of the

Lemma.

¤

3. Inner Region Convergence

This section is devoted to the proof of the inner region convergence, Theorem

1.1 stated in the Introduction. We assume, throughout this section, that u is a

smooth, radially symmetric maximal solution of (1.1) with initial data satisfying

(1.6)-(1.8) and (1.10). Because of Lemma 2.6 we may also assume, without loss of

generality, that u is radially decreasing.



TYPE II COLLAPSING OF MAXIMAL SOLUTIONS TO THE RICCI FLOW IN R2 17

We begin by introducing the appropriate scaling.

3.1. Scaling and convergence. We introduce a new scaling on the solution u.

We first set

(3.1) ū(x, τ) = τ2 u(x, t), τ =
1

T − t
, τ ∈ (1/T,∞).

Then ū satisfies the equation

(3.2) ūτ = ∆ log ū +
2ū

τ
, on 1/T ≤ τ < ∞.

Notice that under this transformation, R̄ := −∆log ū/ū satisfies the estimate

(3.3) R̄max(τ) ≤ C

for some constant C < ∞. This is a direct consequence of Theorem 2.1, since

R̄max(τ) = (T − t)2 Rmax(t).

For an increasing sequence τk →∞ we set

(3.4) ūk(y, τ) = αk ū(α1/2
k y, τ + τk), (y, τ) ∈ R2 × (−τk + 1/T,∞)

where

αk = [ū(0, τk)]−1

so that ūk(0, 0) = 1, for all k. Then, ūk satisfies the equation

(3.5) ūτ = ∆ log ū +
2ū

τ + τk
.

Let

R̄k := −∆log ūk

ūk
.

Then, by (3.3), we have

(3.6) max
y∈R2

R̄k(y, τ) ≤ C, −τk + 1/T < τ < +∞.

We will also derive a global bound from bellow on R̄k. The Aronson-Benilán in-

equality ut ≤ u/t, on 0 ≤ t < T gives the bound R(x, t) ≥ −1/t on 0 ≤ t < T .

In particular, R(x, t) ≥ −C on T/2 ≤ t < T , which in the new time variable

τ = 1/(T − t) implies the bound

R̄(x, τ) ≥ − C

τ2
, 2/T < τ < ∞.

Hence

R̄k(y, τ) ≥ − C

(τ + τk)2
, −τk + 2/T < τ < +∞.
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Combining the above inequalities we get

(3.7) − C

(τ + τk)2
≤ R̄k(y, τ) ≤ C, ∀(y, τ) ∈ R2 × (−τk + 2/T, +∞).

Also, the width bound (2.3), implies the bound

(3.8) max
y∈R2

|y|2 ūk(y, τ) ≤ C, ∀(y, τ) ∈ R2 × (−τk + 2/T, +∞).

Based on the above estimates we will now show the following convergence result.

Lemma 3.1. For each sequence τk →∞, there exists a subsequence τkl
of τk, for

which the rescaled solution ūτkl
defined by (3.4) converges, uniformly on compact

subsets of R2 × R, to an eternal solution U of equation Uτ = ∆ log U on R2 × R
with uniformly bounded curvature and uniformly bounded width. Moreover, the

convergence is in C∞(K), for any K ⊂ R2 × R compact.

Proof. Since ūk(0, 0) = 1 with ūk(·, 0) ≤ 1 (because each uk(·, t) is radially decreas-

ing) one may use standard arguments to show that ūk is uniformly bounded from

above and below away from zero on any compact subset of R2 × R. Hence, by the

classical regularity theory the sequence {ūk} is equicontinuous on compact subsets

of R2 × R. It follows, that there exists a subsequence τkl
of τk such that ūkl

→ U

on compact subsets of R2 × R, where U is an eternal solution of equation

(3.9) Uτ = ∆ log U, on R2 × R

with infinite area
∫
R2 U(y, τ) = ∞ (since

∫
R2 ūk(y, τ) dy = 2(τ + τk)). In addition

the classical regularity theory of quasilinear parabolic equations implies that {ukl
}

can be chosen so that ukl
→ U in C∞(K), for any compact set K ⊂ R2× (−∞,∞).

It then follows that R̄kl
→ R̃ := −(∆ log U)/U . Taking the limit kl → ∞ on

both sides of (3.7) we obtain the bounds

(3.10) 0 ≤ R̃ ≤ C, on R2 × (−∞,∞).

Finally, to show that U has uniformly bounded width, we take the limit kl →∞ in

(3.8). ¤

A direct consequence of Lemma 3.1 and Theorem 2.2 is the following convergence

result.

Theorem 3.2. For each sequence τk → ∞, there exists a subsequence τkl
of τk

and a number λ > 0 for which the rescaled solution ūτkl
defined by (3.4) converges,
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uniformly on compact subsets of R2×R to the soliton solution Uλ of the Ricci Flow

given by

(3.11) U(y, τ) =
1

λ |y|2 + e4λτ
.

Moreover, the convergence is in C∞(K), for any K ⊂ R2 × R, compact.

Proof. From Lemma 3.1, ūτkl
→ U , where U is an eternal solution of equation

(2.5), which satisfies the bounds (2.6) and (2.7). Applying Theorem 2.2 shows that

the limiting solution U is a soliton of the form U(y, τ) = 2/β (|x|2 + δ e2βt), with

β > 0, δ > 0, which under the condition U(0, 0) = 1 takes the form (3.11), with

λ > 0. ¤

Remark. The proof of Theorem 3.2 did not utilize the lower bound Rmax(t) ≥
c (T − t)−2 > 0 proven in Theorem 2.1, which in particular shows that the blow up

is of Type II. The Type II blow up is implicitly implied by the upper bound on the

width (2.3).

3.2. Further behavior. We will now use the geometric properties of the rescaled

solutions and their limit, to further analyze their vanishing behavior.

We begin by observing that rescaling back in the original (x, t) variables, Theo-

rem 3.2 gives the following asymptotic behavior of the maximal solution u of (1.1).

Lemma 3.3. Assuming that along a sequence tk → T , the sequence ūk defined

by (3.4) with τk = (T − tk)−1 converges to the soliton solution Uλ, on compact

subsets of R2 × R, then along the sequence tk the solution u(x, t) of (1.1) satisfies

the asymptotics

(3.12) u(x, tk) ≈ (T − tk)2

λ |x|2 + αk
, on |x| ≤ α

1/2
k M

for all M > 0. In addition, the curvature R(0, tk) = −∆ log u(0, tk)/u(0, tk) satis-

fies

(3.13) lim
tk→T

(T − tk)2 R(0, tk) = 4 λ.

Proof. From Lemma 3.1 we have

αk ūk(α1/2
k y, τ + τk) ≈ 1

λ |y|2 + e4λτ

for |y| ≤ M, |τ | ≤ M2, i.e., in terms of the variable x

ū(x, τ + τk) ≈ α−1
k

λ α−1
k |x|2 + e4λ(τ)

≈ 1
λ |x|2 + αk e4λτ
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for |x| ≤ α
1/2
k M , |τ − τk| ≤ M2. In particular, when τ = 0 this gives

ū(x, τk) ≈ 1
λ |x|2 + αk

for |x| ≤ α
1/2
k M , which in terms of the original variables gives

u(x, tk) ≈ (T − tk)2

λ |x|2 + αk

for |x| ≤ α
1/2
k M , as desired. Since R̄k(0, τ) converges to the curvature of the cigar

Uλ at the origin (its maximum curvature) and this is equal to 4λ, the limit (3.13)

follows by simply observing that (T − tk)2 R(0, tk) = R̄k(0, 0). ¤

The following Lemma provides a sharp bound from below on the maximum

curvature 4 λ of the limiting solitons.

Lemma 3.4. Under the assumptions of Theorem 1.1 the constant λ in each limiting

solution (3.11) satisfies

λ ≥ T + µ

2
.

Proof. We are going to use the estimate proven in Section 2 of [12]. There it is

shown that if at time t the solution u of (1.1) satisfies the scalar curvature bound

R(t) ≥ −2 k(t), then the width W (t) of the metric u(t) (dx2
1 + dx2

2) (c.f. in Section

2.1 for the definition) satisfies the bound

W (t) ≤
√

k(t)A(t) = 4π
√

k(t) (T − t).

Here A(t) = 4π(T − t) denotes the area of the plane with respect to the conformal

metric u(t) (dx2
1 +dx2

2). Observing that for radially symmetric u the width W (t) =

maxr≥0 2 πr
√

u(r, t) we conclude the pointwise estimate

(3.14) r
√

u(r, t) ≤ 2
√

k(t) (T − t), r ≥ 0, 0 < t < T

when R(x, t) = −∆log u/u ≥ −2 k(t), for all x.

Observe next that the initial curvature lower bound (1.10) implies the bound

R(x, t) ≥ − 1
t + µ

.

This easily follows by the maximum principle, since −1/(t+µ) is an exact solution

of the scalar equation Rt = ∆gR + R2. Hence, we can take k(t) = 1/2(t + µ) in

(3.14) and conclude the bound

(3.15) r
√

u(r, t) ≤ 2 (T − t)√
2(t + µ)

, r ≥ 0, 0 < t < T.



TYPE II COLLAPSING OF MAXIMAL SOLUTIONS TO THE RICCI FLOW IN R2 21

Assume now that {tk} is a sequence tk → T . Using (3.12) in (3.15) we find

r (T − tk)√
λr2 + αk

≤ 2 (T − tk)√
2(tk + µ)

, r ≤ M α
1/2
k

where M is any positive constant. Hence, when r = M α
1/2
k we obtain the estimate

M α
1/2
k√

λM2 αk + αk

≤ 2√
2 (tk + µ)

or
1√

λ + 1/M2
≤ 2√

2(tk + µ)
.

Letting tk → T and taking squares on both sides, we obtain

1
λ + 1/M2

≤ 2
T + µ

.

Since M > 0 is an arbitrary number, we finally conclude λ ≥ (T +µ)/2, as desired.

¤

We will next provide a bound on the behavior of α(τ) = τ2 ū(0, τ), as τ → ∞.

In particular, we will prove (1.15). Notice that since

‖u(·, t)‖L∞(R2) = (T − t)2 α(τ)−1, τ = 1/(T − t)

this bound shows the vanishing behavior of ‖u(·, t)‖L∞(R2), as t → T . We begin by

a simple consequence of Lemma 3.4.

Lemma 3.5. Under the assumptions of Theorem 3.2 we have

(3.16) lim inf
τ→∞

α′(τ)
α(τ)

≥ 4 λµ

with λµ = (T + µ)/2.

Proof. We argue by contradiction. If (3.16) does not hold, then there exists a

sequence τk →∞ for which

(3.17) lim
k→∞

α′(τk)
α(τk)

< 4 λµ.

Next notice that by the definition of α(τ) we have

(3.18) [log α(τ)]τ = −[log ū(0, τ)]τ = −∆log ū

ū
− 2

τ
= R̄(0, τ)− 2

τ
.

Now, because of Theorem 3.2, may assume without loss of generality that, as τk →
∞, we have ūk(y, τ) → 1/(λ |y|2 + e4λτ ), with ūk given by (3.4) and for some

constant λ which according to Lemma 3.4 satisfies the inequality λ ≥ λµ. But then

lim
k→∞

R̄(0, τk) = 4 λ ≥ 4 λµ
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which in combination with (3.18) contradicts (3.17), finishing the proof of the

Lemma. ¤

Corollary 3.6. Under the hypotheses of Theorem 3.2, we have

(3.19) α(τ) ≥ e4λµτ+o(τ), as τ →∞

with λµ = (T + µ)/2.

Proof. By the previous Lemma we have

[log α(τ)]τ ≥ 4 λµ + o(1), as τ →∞

which implies that

log α(τ) ≥ 4 λµ τ + o(τ), as τ →∞

showing the Corollary. ¤

We will now show (1.15) as stated in the next Proposition. This bound will be

crucial in establishing the outer region behavior of u.

Proposition 3.7. Under the hypotheses of Theorem 1.1, we have

(3.20) lim
τ→∞

log α(τ)
τ

= 4 λµ

with λµ = (T + µ)/2.

Proof. We argue by contradiction. If (3.20) does not hold, then by Corollary 3.6

there exists a sequence τk →∞ for which

lim
k→∞

log α(τk)
τk

= 4 λ̄ > 4 λµ.

Because of Theorem 3.2, we may assume that for the same sequence τk, we have

αk ū(α1/2
k y, τk) → 1

λ|y|2 + 1
, |y| ≤ 1, |τ | ≤ 1

for some number λ > λµ, with

αk = α(τk) = e4 λ̄ τk+o(τk).

This implies the asymptotics

(3.21) ū(x, τk) ≈ 1
λ |x|2 + e4 λ̄ τk

, |x| ≤ e2 λ̄ τk−o(τk).

We next perform the change of variables (1.16)-(1.18), namely v(s, t) = r2 u(r, t),

s = log r, and ṽ(ξ, τ) = τ2 v(τξ, t), τ = 1/(T − t). As we noted in the Introduction,



TYPE II COLLAPSING OF MAXIMAL SOLUTIONS TO THE RICCI FLOW IN R2 23

the rescaled solution ṽ satisfies the equation (1.19). An important for our purposes

observation, is that the new scaling makes the area of ṽ to be constant in time,

since

(3.22)
∫ ∞

−∞
ṽ(ξ, τ) dξ =

∫ ∞

−∞
τ2v(τξ, t) dξ = τ

∫ ∞

−∞
v(x, t) dx = 2.

Here we have used
∫ ∞

−∞
v(s, t) ds =

1
2π

∫

R2
u(x, t) dx = 2 (T − t).

Claim: ṽ(ξ, τk) → 0, uniformly on (−∞, ξ̄], for any ξ̄ < 2 λ̄. Indeed, expressing

(3.21) in terms of ṽ gives

ṽ(ξ, τk) ≈ e2τkξ

λ e2τkξ + e4 λ̄ τk
, ξ < 2 λ̄

which immediately implies the Claim.

To finish the proof of the Proposition, assuming that λ̄ > λµ, we choose ξ̄ such

that 2 λµ < ξ̄ < 2λ̄ so that ṽ(ξ, τk) → 0, uniformly on (−∞, ξ̄]. We will show that

this violates the area condition
∫ ∞

−∞
ṽ(ξ, τ) dτ = 2.

We first observe that there exists constants s0 and s̄, independent of t, such that

v(s, t) ≤ 2(t + µ)
(s + s̄)2

, s ≥ s0.

This readily follows from initial condition (1.8) and the maximum principle, since

2(t + µ)/(s + s̄)2 is an exact solution of equation (1.17). This, in terms of ṽ, gives

the bound

ṽ(ξ, τ) ≤ 2(T + µ− 1
τ )

(ξ + τ−1 s̄)2
.

Also

2 =
∫ ∞

−∞
ṽ(ξ, τ) dξ =

∫ ξ̄

−∞
ṽ(ξ, τ) dξ +

∫ ∞

ξ̄

ṽ(ξ, τ) dξ.

Since ∫ ξ̄

−∞
ṽ(ξ, τk) dξ → 0

we conclude that

2 ≤ lim
k→∞

∫ ∞

ξ̄

2(T + µ− 1
τk

)

(ξ2 + τ−1
k s̄)

=
2(T + µ)

ξ̄
.

This implies the bound

ξ̄ ≤ (T + µ) = 2 λµ
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violating our choice of ξ̄ to be larger than 2 λµ, therefore finishing the proof of the

Proposition. ¤

We have actually shown the following result, which will be used in the next

section.

Corollary 3.8. Under the assumptions of Lemma 3.1 the rescaled solution ṽ defined

by (1.18) satisfies

lim
τ→∞

ṽ(ξ, τ) = 0, uniformly on (−∞, ξ−µ ]

for all ξ−µ < ξµ, with

ξµ = 2λµ = T + µ

3.3. Proof of Theorem 1.1. We finish this section with the proof of Theorem 1.1

which will easily follow from the results in Sections 3.1 and 3.2. Fixing a sequence

τk →∞, we first observe that because of the curvature bound (2.2), α′(τk)/2α(τk)

is bounded from above and hence, passing to a subsequence, still denoted by τk, we

have

(3.23)
α′(τk)
α(τk)

→ 4 λ

for some constant λ < ∞, which according to Lemma 3.5, it satisfies λ ≥ λµ =

(T + µ)/2.

For the same sequence τk, we have ũ(y, τk) = ūk(y, 0), with ūk defined as in

(3.4). Since, by Theorem 3.2, ūk → Uλ̄, for some λ̄ ≥ λµ, we conclude that

ũ(y, τk) → Uλ̄(y, 0) = 1/(λ̄ |y|2 +1). To finish the proof of the Theorem, we observe

that λ̄ = λ, by (3.23), since

lim
k→∞

α′(τk)
α(τk)

= − lim
k→∞

∆log ūk(0, 0)
ūk(0, 0)

= −∆log Uλ̄(0, 0)
Uλ̄(0, 0)

= 4 λ̄.

¤

4. Outer Region Asymptotic Behavior

We assume, throughout this section, that u is a positive, smooth, radially sym-

metric solution of (1.1) and we consider as in Introduction the solution v(s, t) =

r2 u(r, t), s = log r, of the one-dimensional equation (1.17). We next set

(4.1) v̄(s, τ) = τ2 v(s, t), τ =
1

T − t
.
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and

(4.2) ṽ(ξ, τ) = v̄(τξ, τ).

The function ṽ satisfies the equation

(4.3) τ ṽτ =
1
τ

(log ṽ)ξξ + ξ ṽξ + 2ṽ.

As we computed in (3.22), under the above scaling the area of ṽ remains constant,

in particular

(4.4)
∫ ∞

−∞
ṽ(ξ, τ) dξ = 2, ∀τ.

We shall show that, ṽ(·, τ) converges, as τ → ∞, to a steady state of equation

(4.3), namely to a solution of the linear first order equation

(4.5) ξ Vξ + 2V = 0.

The area condition (4.4) shall imply that

(4.6)
∫ ∞

−∞
V (ξ) dξ = 2.

Positive solutions of equation (4.5) are of the form

(4.7) V (ξ) =
η

ξ2

where η > 0 is any constant. These solutions become singular at ξ = 0 and in

particular are non-integrable at ξ = 0, so that they do not satisfy the area condition

(4.6). However, it follows from Corollary 3.8 that V must vanish in the interior

region ξ < ξµ, with ξµ = T +µ. We will show that although ṽ(ξ, τ) → 0, as τ →∞
on (−∞, ξµ), ṽ(ξ, τ) ≥ c > 0, for ξ > ξµ and that actually ṽ(ξ, τ) → 2(T + µ)/ξ2,

on (ξµ,∞), as stated in Theorem 1.2.

The rest of the section is devoted to the proof of Theorem 1.2. We begin by

showing the following properties of the rescaled solution ṽ.

Lemma 4.1. The rescaled solution ṽ given by (4.1) - (4.2) has the following prop-

erties:

i. ṽ(ξ, τ) ≤ C, ∀ξ ∈ R, for a constant C independent of τ .

ii. Let ξµ = T + µ. Then, for any ξ−µ < ξµ, ṽ(·, τ) → 0, as τ → ∞, uniformly on

(−∞, ξ−µ ].
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iii. Let ξ(τ) = (log α(τ))/2τ , with α(τ) as in (1.12), i.e., α(τ) = [τ2 u(0, t)]−1.

Then, there is a constant η > 0, independent of τ , such that

ṽ(ξ, τ) ≥ η

ξ2
, on ξ ≥ ξ(τ), τ ≥ 1/T.

In addition

(4.8) ξ(τ) = ξµ + o(1), as τ →∞.

iv. ṽ(ξ, τ) also satisfies the upper bound

ṽ(ξ, τ) ≤ C

ξ2
, on ξ > 0, τ ≥ 1/T

for some constant C > 0.

Proof. (i) The estimate of ṽ ≤ C is a direct consequence of the width estimate

(2.4).

(ii) This is shown in Corollary 3.8.

(iii) Claim: There is a constant η > 0 for which ṽ(ξ(τ), τ) ≥ η, for all 1/T ≤ τ < ∞.

To show the Claim, we argue by contradiction. If it is not correct, then there exists

a sequence τk →∞ for which ṽ(ξ(τk), τk) → 0. Because of the interior convergence

Theorem 3.2, we may assume, without loss of generality, that for the same sequence

τk the rescaled solution ū(x, τ) = τ2 u(x, t), τ = 1/(T − t), defined by (3.1) satisfies

the asymptotics ū(x, τk) ≈ 1/(λ |x|2 + αk(τk)), when |x| ≤
√

αk(τk). In particular

for |x| =
√

α(τk) we then have

ū(
√

α(τk), τk) ≈ α(τk)−1

λ + 1

and hence using that ξ(τk) = (log α(τk))/2τk and the transformations (4.1) - (4.2),

we conclude that

ṽ(ξ(τk), τk) = e2ξ(τk)τk ū(eξ(τk) τk , τk) ≈ 1
1 + λ

contradicting our assumption that ṽ(ξ(τk), τk) → 0, therefore proving the claim.

Let us observe next that (4.8) readily follows from Proposition 3.7. Hence, it

remains to show ṽ ≥ η/ξ2, on [ξ(τ),∞), 1/T ≤ τ < ∞. To this end, we will

compare ṽ with the subsolution Vη(ξ) = η/ξ2 of equation (4.3). According to our

claim above, there exists a constant η > 0, so that

Vη(ξ(τ)) =
η

ξ(τ)2
≤ ṽ(ξ(τ), τ).
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Moreover, since the initial data u0 is strictly positive, radially decreasing and sat-

isfies the growth condition (1.8), we can make

ṽ0(ξ, 1/T ) >
η

ξ2
, on ξ ≥ ξ(1/T )

by choosing η sufficiently small. Hence we can apply the comparison principle on

the set { (ξ, τ) : ξ ≥ ξ(τ), 1/T < τ < ∞}, to conclude that ṽ(ξ, τ) ≥ η/ξ2, for

ξ ≥ ξ(τ). Since the set { (ξ, τ) : ξ ≥ ξ(τ), 1/T < τ < ∞} is not a cylinder, to

justify the application of the maximum principle, we set w = ṽ − Vη, so that w

satisfies the differential inequality

wτ ≥ 1
τ2

(A(ξ, τ)w)ξξ +
1
τ

(ξ wξ + 2 w), on ξ ≥ ξ(τ)

with

A(ξ, τ) =





log ṽ−log Vη

ṽ−Vη
, ṽ 6= Vη

1
Vη

ṽ = Vη.

We next set w̄(ξ, τ) = w(ξ + ξ(τ), τ) and we compute that w̄ satisfies

w̄τ ≥ 1
τ2

(A(ξ + ξ(τ), τ) w̄)ξξ +
1
τ

((ξ + ξ(τ)) w̄ξ + 2 w̄) + ξ′(τ) w̄ξ

on ξ ≥ 0. We may choose η sufficiently small so that w̄ > 0 on ξ = 0, τ ≥ 1/T , and

on ξ ≥ 0, τ = 1/T and also as ξ → ∞. It follows then by the maximum principle

that w̄ ≥ 0 on {(ξ, τ) : ξ ≥ 0, 1/T ≤ τ < ∞}, implying that ṽ ≥ Vη on the same

set, as desired.

(iv) Since u0 satisfies (1.8), there exists a constant A such that u0(r) ≤ 2 A/r2 log2 r,

on r > 1. Then, for all time 0 < t < T , we will have u(r, t) ≤ 2(t + A)/r2 log2 r, on

r > 1, which readily implies the desired bound on ṽ, with C = 2(A + T ).

¤

We will next show a first order derivative bound for the rescaled solution ṽ.

We begin by observing that the Aronson-Bènilan inequality ut ≤ u/t implies the

bounds
(log ṽ(ξ, τ))ξξ

ṽ(ξ, τ)
≤ C, on ξ ∈ R, τ ≥ 2/T.

Since, also ṽ ≤ C by our width estimate, we conclude that ω = log ṽ satisfies the

bound

ωξξ(ξ, τ) ≤ C, on ξ ∈ R, τ ≥ 2/T.

This bound combined with the previous Lemma gives the following.
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Lemma 4.2. For any K ⊂ (ξµ,∞) compact, there exists a constant C for which

|ωξ(ξ, τ)| ≤ C, ∀ξ ∈ K, τ ≥ 2/T.

Proof. It is enough to prove the Lemma for K = [a, b] a compact interval, with

a > ξµ. Fix a τ ≥ 2/T and observe first that from the previous Lemma, the bound

|ω| ≤ M , holds on [a, b + 1].

Let ξ0 ∈ K. The bound |ω| ≤ M on [ξ0, ξ0 + 1] implies that there exists a

ξ̃ ∈ (ξ0, ξ0 +1) for which ωξ(ξ̃, τ) ≥ −2M . Hence the upper bound ωξξ ≤ C readily

implies the lower bound ωξ(ξ0, τ) ≥ −2M−C. For the upper bound, let ξ′0 = ξ0−α

with α = (a− ξµ)/2, so that still |ω(ξ′0, τ)| ≤ M , for a possibly larger constant M .

Then, there exists a ξ̃ ∈ (ξ′0, ξ0) for which ωξ(ξ̃, τ) ≤ 2M/α. Hence the upper bound

ωξξ ≤ C readily implies the upper bound ωξ(ξ0, τ) ≤ 2M/α + C. ¤

We will next use Bernstein type estimates for singularly perturbed first-order

equations to show a second derivative bound for ṽ. Before we do so, we introduce

a new time variable

s = log τ = − log(T − t), s ≥ − log T.

To simplify the notation we still call ṽ(ξ, s) the solution ṽ in the new time scale.

Then, it is easy to compute that ṽ(ξ, s) satisfies the equation

(4.9) ṽs = e−s (log ṽ)ξξ + ξ ṽξ + 2 ṽ.

Lemma 4.3. For any compact sub-interval K ⊂ (ξµ,∞), there exists a constant

C = C(K) < ∞, for which

(4.10) |ṽξξ(ξ, s)| ≤ C(K) e
s
2 , ∀ξ ∈ K, s ≥ − log T/2.

Proof. We will show that in spite of the singularity of equation (4.9) as s → ∞,

the classical Bernstein technique for establishing derivative estimates for solutions

of quasiliner parabolic equations can be applied in this case. This has already

been observed in other similar instances, cf. in [14] and the references therein. We

will only give an outline of the estimate, referring to [14], Section 5.11, for further

details.

Before we proceed with the proof, let us observe that since K ⊂ (ξµ,∞), Lemmas

4.1 and 4.2 imply the bounds

(4.11) 0 < c ≤ ṽ−1(ξ, s) ≤ C < ∞ and |ṽξ(ξ, s)| ≤ C

for all ξ ∈ K, s ≥ − log T , for some constants c, C depending on K.
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We will use the maximum principle to bound ṽξξ, as in the classical Bernstein

estimates for the porous medium equation. We first differentiate equation (4.9)

with respect to ξ to find that w = ṽξ satisfies the equation

ws = e−s

{
1
ṽ

wξξ − 3
ṽ2

w wξ +
2
ṽ3

w3

}
+ ξ wξ + 3 w.

We next set w = φ(θ), for a function φ > 0 to be determined in the sequel, and use

the equation for w to find that θ satisfies the equation

θs = e−s

{
1
ṽ

θξξ +
φ′′

ṽ φ′
θ2

ξ −
3φ

ṽ2
θξ +

2φ3

ṽ3 φ′

}
+ ξ θξ +

3φ

φ′
.

Differentiating once more with respect to ξ we find the following evolution equation

for z = θξ

zs = e−s

{
1
ṽ

zξξ +
[
2φ′′ z
ṽ φ′

− 3φ

ṽ2
− φ

ṽ2

]
zξ +

1
ṽ

(
φ′′

φ′

)′
z3 +

[
− φφ′′

ṽ2φ′
− 3φ′

ṽ2

]
z2

+
2
ṽ3

(
φ3

φ′

)′
z − 6φ4

ṽ4φ′

}
+ ξ zξ +

[(
3φ

φ′

)′
+ 1

]
z.

Finally, we set Z = z2 and find that Z satisfies the equation

Zs = e−s

{
1
ṽ

Zξξ − 1
2ṽ

Z2
ξ

Z
+

[
2φ′′ z
ṽ φ′

− 3φ

ṽ2
− φ

ṽ2

]
Zξ +

2
ṽ

(
φ′′

φ′

)′
Z2+

[
−2φφ′′

ṽ2φ′
− 6φ′

ṽ2

]
Z

3
2 +

4
ṽ3

(
φ3

φ′

)′
Z − 12φ4

ṽ4φ′
Z

1
2

}

+ ξ Zξ +

[(
6φ

φ′

)′
+ 2

]
Z.

(4.12)

Notice that we can bound the coefficients of the above equation from the constants

c and C in (4.11) and the function φ. Let us now choose φ in the form

φ(θ) = θ (θ + 1)

so that (
φ′′

φ′

)′
= − 4

(2θ + 1)2
≤ −c1

and (
6φ

φ′

)′
≤ C1

for fixed constants c1 and C1 depending only on the bounds of |ṽξ| in (4.11). We

can then assume that at the maximum point of Z, where also Zξξ ≤ 0 and Zξ = 0,

the highest order powers of Z dominate in (4.12) so that we have

Zs ≤ −c2 e−s Z2 + C2 Z.
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We conclude that Z is bounded by constants, depending only on the bounds in

(4.11), unless

−c2 e−s Z2 + C2 Z ≥ 0

i.e., unless

Z ≤
√

C2 c2
−1 es/2

which readily implies the desired bound on ṽξξ. To make the above proof completely

rigorous one needs to localize the above argument by setting Z = χ2(ξ) z2, where

χ is an appropriate cut off function. However, this introduces only harmless terms

and does not change the argument. We refer the reader to the proof Section 5.11,

Step 3 of [14] for the details. ¤

Combining the previous two Lemmas gives the following.

Corollary 4.4. For any compact K ⊂ (ξµ,∞), there exists a constant C = C(K)

such that

(4.13) |ṽξ(ξ, s)| ≤ C, |ṽs(ξ, s)| ≤ C ∀ξ ∈ K, s ≥ − log T/2.

For an increasing sequence of times sk →∞, we let

ṽk(ξ, s) = ṽ(ξ, s + sk), −sk − log T < s < ∞.

Then each ṽk satisfies the equation

(4.14) (ṽk)s = e−(s+sk)(log ṽk)ξξ + ξ (ṽk)ξ + 2ṽk

and the area condition

(4.15)
∫ ∞

−∞
ṽk(ξ, s) dξ = 2.

Lemma 4.5. Passing to a subsequence, ṽk(ξ, s) converges uniformly on compact

subsets of (ξµ,∞)× (−∞,∞) to a solution V of the equation

(4.16) Vs = ξ Vξ + 2 V, (ξ, s) ∈ (ξµ,∞)× (−∞,+∞)

with

(4.17)
∫ ∞

ξµ

V (ξ, s) dξ = 2.
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Proof. Let K ⊂ (ξµ,∞) × (−∞,∞) compact. Then according to the previous

Lemma, the sequence ṽk is equicontinuous on K, hence passing to a subsequence

it converges to a function V , which satisfies the bounds

(4.18) |Vξ(ξ, s)| ≤ C, |Vs(ξ, s)| ≤ C, ∀ξ ∈ K, s ≥ − log T/2.

In addition, the estimate (4.10) readily implies that V is a solution of the first order

equation (4.16).

On the other hand, Lemma 4.1 implies that ṽk(·, s) → 0, uniformly on (−∞, ξ−µ ],

for any ξ−µ < ξµ, s ∈ R. In addition ṽk ≤ C uniformly in space and time, by our

width estimate (2.4). Hence, we can pass to the limit in (4.15) to conclude that V

satisfies the area condition (4.17).

¤

Lemma 4.6. Assume that V is a positive, locally Lipschitz, solution of the equation

(4.19) Vs = ξ Vξ + 2 V, on (ξµ,∞)× (−∞,∞)

with

(4.20)
∫ ∞

ξµ

V (ξ, s) dξ = 2, ∀s ∈ (−∞,∞).

Then,

V (ξ, s) =
2 ξµ

ξ2
, ξ ≥ ξµ

with ξµ = T + µ.

Proof. The basic idea is that the fixed area condition (4.20) completely determines

V . This is better understood by setting

W (ζ, s) =
∫ ∞

ζ

V (ξ, s) dξ, ζ ≥ ξµ

and observing that W satisfies the equation

Ws = (ζ W )ζ , on [ξµ,∞)× (−∞,∞)

with

W (ξµ, s) = 2, −∞ < s < ∞

and

W (ζ, s) → 0, as ζ →∞, −∞ < s < ∞.
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We will show that W is completely determined by its boundary values at ζ = ξµ.

Indeed, integrating along characteristics we easily find that W satisfies

d

ds
[e−s W (e−s ζ, s)] = 0.

Hence, for any ζ ≥ ξµ and s, s̄ we have

e−s W (e−s ζ, s) = e−s̄ W (e−s̄ ζ, s̄)

or equivalently

es̄−s W (es̄−s ζ, s) = W (ζ, s̄).

Fixing a point P̄ = (ζ̄, s̄), there exists a unique characteristic line passing through

P̄ , which intersects the boundary ζ = ξµ at the point (ξµ, s0) with s0 = s̄+log(ζ̄/ξµ).

Hence

W (ζ, s) = 2 es−s0 =
2 ξµ

ζ
, ∀ζ ≥ ξµ, ∀s ∈ R.

Differentiating with respect to ζ we then obtain that V = 2ξµ/ξ2, as desired. ¤

As an immediate consequence of the previous two lemmas we obtain the follow-

ing.

Corollary 4.7. The sequence {ṽk(ξ, s)} converges uniformly on compact subsets

of (ξµ,∞)× (−∞,∞) to the function Vµ(ξ) = 2(T + µ)/ξ2.

The proof of Theorem 1.2, stated in the Introduction, is an immediate conse-

quence of Lemma 4.1, Part ii, and Corollary 4.7.

Proof of Theorem 1.2. Let ξ−µ < ξµ = T + µ. By Lemma 4.1, Part ii, ṽ(·, τ)

converges to zero, as τ → ∞, uniformly on (−∞, ξ−µ ]. On the other hand, for

ξ+
µ > ξµ, Corollary 4.7 implies that ṽ(ξ, s) converges to Vµ(ξ) = 2ξµ/ξ2, as s →∞

uniformly on compact sets of [ξ+
µ ,∞). Changing back to the τ = es variable we

readily conclude that ṽ(ξ, τ) → 2ξµ/ξ2, as τ → ∞, uniformly on compact sets of

[ξ+
µ ,∞), finishing the proof of the Theorem. ¤
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