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1. INTRODUCTION

In [12], the equation governing radial nonlinear vibrations of a radially
forced thickwalled hollow sphere made of an elasticc homogeneous,
isotropic, and incompressible material was derived.

The hollow sphere is forced with a time dependent radially symmetric
pressure difference p(¢)= p(t) — p,(1), p,(1), p,(?) being, respectively, the
external pressure at the inner and outer surfaces of the sphere, as functions
of the time .

Let r denote the distance to the origin of a generic point of the sphere
at its unstrained state. If r,, r, are, respectively, the inner and outer radius
of the sphere, then r, <r <r,. Let R(¢, r) denote the radial position, at time
t, of a point r of the sphere. The incompressibility condition tells us that

R(,r)—R(t,r)=r*—rl. (L.1)

Hence the knowledge of R,(¢)= R(1, r,) allows us to determine R(z, r) for
any re[ry,r;]
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Let u(t)= R,(t)/r, and assume that the material is characterized by an
elastic potential W(/,, I,) of the Mooney-Rivlin type, i.e.,

* *

B
wu,,12)=“7u,—3)+7(12—3), (1.2)

where [, I, are strain invariants and o* and B* are constants.
It follows from the results of [12] that under these conditions u(r)
satisfies the ordinary equation

2 v B ) (13)
where
¥(s)= j (l ———%—ﬁ>m 72 dr, (1.4)
0 (n+1*)Y
u=(r’*/r;)’—1, and
sor="""" ATt <a“ + g-) dr. (15)

Clearly, ¥ defined by (1.4) is a diffeomorphism of R*. Hence, if we make
the change of variables x = ¥(u) (1.3) becomes
d’x
— x)=0 1.6
(E) —3 + Fl1, x)=0, (1.6)

where

(g(¥~'(s)) - p(t))[‘l’"(S)]z'

o s)= 2% (5))

(1.7)

In Section 3 we will see that F satisfies the following asymptotic estimates:

(1) F(1,8)=c,s* + o(s) for s near + oo and uniformly in £;
(i1) F(t,8)= —cs5 "+ 0(s ") for s near 0* and uniformly in ¢

where ¢, and ¢, are certain positive constants. Hence F exhibits super-
linear behaviour near s= 400 and a strong singularity at s=0".

Let us assume that p is T-periodic. 7>0. We are interested in the
problem of existence of 7T-periodic solutions of (E). We will actually
study a more general problem which is motivated by (1.6). Thus, let
S:RxR* >R be a continuous function satisfying the conditions

— o0 < lim sup sf(7, 5) <0 (1.8)

s—>0*
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and

tim LD _

§— 4+ N

o0, (1.9)

both limits uniform in r. ote that (i) and (ii) imply that F indeed satisfies
(1.8) and (1.9).

In Section 2 we will prove that under (1.8), (1.9) and some general
additional conditions on f the problem

X"+ f(t,x)=0 (1.10)

has infinitely many positive T-periodic solutions. The proof of this resuit
will make use of a useful version of the Poincaré-Birkhoff Theorem due to
W.-Y. Ding [4] together with an analysis of some oscillatory properties of
the solutions due to initial value problem associated with (1.10).
Jacobowitz [8] has used the Poincaré-Birkhoflf Theorem to prove the
existence of infinitely many 2n-periodic solutions for a superlinear problem -
of the form (1.10), but with f defined through the whole R x R, ie., f free
of singularities and under the hypothesis f(t,0)=0. Using a different
method, Fucik and Lovicar [5] have shown the existence of at least one
T-periodic solution in a superlinear problem without this last assumption.
See also Willem [11] for a result on infinitely many periodic solutions of
a fixed period for a problem like the one considered in [5]. We also refer
to [1,2] for other applications of the Poincaré-Birkhoff Theorem to
second order problems.

Related to the results of this paper are also the works of Lazer and
Solimini [9], Solimini [10], and Gaete and Manasevich [6] where
singularities like (1.8) were considered but for which

ACEI (1.11)

lim sup

s— +oo

Intermediate behaviours between (1.9) and (1.11) have been considered in
a paper of the present authors and A. Montero [3].

This paper is organized as follows. In Section 2 we will prove our main
results. We will show in Theorem 2.1 that (1.8), (1.9) and some general
assumptions on f, lead to the existence of two T-periodic solutions of
(1.10), x}, such that x* —1 has exactly 2n zeros in [0, T), for all
sufficiently large n. Also we will see in Theorems 2.2 and 2.3 that more
precise results can be obtained in case that we know a particular 7-periodic
solution of (1.10).

In Section 3 we will apply these results to the elasticity problem (E).

In particular, we will show that (E) possesses infinitely many T-periodic
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solutions if we assume the pressure p(¢) to be of class C'. Furthermore we
will “localize”™ a particular solution in case that the parameter f* in the
definition of g in (1.5) is sufficientlty small, so that Theorems 2.2 and 2.3
will be applicable to this situation.

2. EXISTENCE AND MULTIPLICITY
OF T-PERIODIC SOLUTIONS

In this section we consider the problem of finding T-periodic solutions of
x"+ f(t, x)=0, (2.1)

where /: RxR* — R is assumed to be continuous, locally Lipschitz in x,
T-periodic in f, and such that for s, $€ R and a > 0 the local solution x(t)
of (2.1} satisfying

x(s)=ua, x'(s)y=8 2.2)

is continuable to the whole real line and x(z)>0 for all te R. We will
denote this solution by x(t, a, f; s).
Our main purpose in this section is to prove the following result:

THEOREM 2.1.  Assume that [ is as above and satisfies

— oo < lim sup sf(¢, 5s) <0 (2.3)
s—0*

fim 259 o (2.4)
¥ =+ S

uniformly in t. Then there is a natural number n, such that for every n=n,
there exist two T-periodic solutions x} (1), x, (1) of (2.1) such that xF(1)— 1
has exactly 2n zeros in [0, T). In particular, (2.1) possesses infinitely many
T-periodic solutions.

We also show that more precise results can be obtained in case we know
a particular T-periodic solutions of (2.1).

The proof of Theorem 2.1 will make use of some lemmas concerning
properties of the solution to the L.V.P. (2.1)-(2.2) which we state and prove
next.

In what remains of this section we will use the notations

r(a,b)z<a2+;13+b2) (2.5)

x(1, 2, )= x(¢, «, ;0), (2.6)

and will assume that f satisfies the hypotheses of Theorem 2.1.
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LEmMMa 2.1.
x(t, 0, B), x'(t, &, B)) > +o0 as r(a, f)— +o0 (2.7)

uniformly in te [0, T].

Proof. U (2.7) did not hold, there would exist sequence «,>0,
B.eR, t,e[0, T] such that r(x(1,, a,, 8,), x'(t,, 2, B,)) is bounded, but
r(a,, §,)— +oo.

Observe that the application

(& B, 1, 5) > (x(1, & B, s), X'(1, &, B, 5)) = M(&, B, 1, 5)

is continuous on R* x R* and maps into R* x R.

Let %, = x(¢,, «,, ), B,=x (t,, %, B,,). Then the sequence (4, B, 0, 1,)
lies on a compact subset of R* x R*. The continuity of M implies that the
sequence M(%,, §,,0,1,) = (a,, B,) lies on a compact subset of R* x R and
hence r(x,, B,) is bounded, a contradiction concluding the proof. |

As an immediate consequence of Lemma 2.1 we obtain
Lemma 2.2, If r(a, B) is sufficiently large, <0, BeR, then for all

re[0, T, x(t, 2, BY=1 implies x'(t, 2, B) #0. In other words, the zeros of
x(t, 2, b)— 1 are simple.

For a function ye C'[0, T] having only simple zeros, we define its
rotation number Yy( y) as

lim tan

- T_

Y(y)=kn+ lim tan 12

10,

') A
K0 )’ (28)
where k is the number of zeros of yp(¢} in (0, T). Geometrically, ()
represents the total angle the vector from the origin to the point
(¥(1), y'(1)) in R? describes as ¢ goes from 0 to T, positive angles measured
clockwise.

From Lemma 2.2, the quantity

(o, By=y(x(s, 2, f)—1) (2.9)
is well defined provided that r(«, f) is sufficiently large, a >0, fe R.

LemMa 23.  Fix a positive number ¢ and, according to (2.3)-(2.4), choose
positive numbers 6, ¢, M such that for all te R

f(t,s)<—§ for 0<s<d (2.10)
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and

2
f(t,s}>(%) s for s>M. (2.11)

Then there is an R> 0 such that for r(x, 8)> R and 1, [0, T]:

(1) If x(ty, 2, BY<d and xX'(1y, 2, )< 0 (> 0), then there is a number
t b >t (1 <tg), Such that |t —ty} <¢, x(1,, 0, fy=06, and X'(1,, 2, §)>
(<)O.

() If x(ty, o, BY= M and x'(ty, o, B) >0 (<0), then there is a number
t, >t (1 <o) such that |t —to| <e, x(t,, 0, By=M, and x'(1,, 2, f) <
(>)0.

Proof. Write, for brevity, x(1)=x(t,a, f) and assume that x(f,)<é
and x'(1,)= —4 <0. Since x" = —f(4, x), from (2.10) we have that on any
interval [, a) where x(7) < o there holds:

x(t)?x(t(,)—ft(t—to)+§5—(t—t0)2 for r€[ty,a). (2.12)

It follows that x must take the value J at some later time ¢,. Choose ¢, to
be the first of those instants. Note that x is strictly convex on [¢,, ¢,] and
that x'(¢,, 2, f)<0. Let r* be the unique number in (75, ¢,) such that
x'(t*)=0 and denote by x ' the inverse of the restriction of x to (1*,1,].
Multiplying (2.1) by x’ and integrating between (* and re[r*, 1] we
obtain

x’(1)2 x(r)

o
5 . (x " '(s), 5)ds,

where x = x(1*). From this and (2.10) it follows that

. f**fé dt <J"’ dr
: e (=203 flx ), 5) ds)' T e (20 log(n/x))'?
e dr
:lel (2clog t)'"*

The last integral is less than /2 if X is less than some p >0 sufficiently
smalll. But this necessarily if r(a, f) is large enough, as follows from
Lemma 2.1. Similarly, r* — 1, < ¢/2 and we obtain t, — 1, < ¢ for every large
r(a, f§), as desired.

Now assume x(74) = M, x'(1,) > 0. As above, using now (2.11), we see
that x(t;)=M for some t, <1, with x(¢)> M, te(ty, ;). If t*e€(1y,¢,) 18
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such that x(r*) =0, setting again x= x(¢*) and reasoning as above we
obtain

_2E J-\ ds e

=< —3T
1 0 o (x?_ _ SZ)LZ g

i

as desired. Also, necessarily x'(#,) < 0. The other cases follow by changing
the variable t by T—1t. |

LEMMA 24. Given £¢>0, there is an R >0 such that for every se [0, T]
there exists an s* with 0<|s*—s|<e and x(s* o, B)=1, provided
r(a, B)> R.

Proof. Let 6, M be as in Lemma 2.3, and assume d<1< M. From
Lemma 2.1, we can choose R >0 such that r(a, BY> R, d<x(t, o, B)< M,
te [0, T7, imply

|x'(1, a, B)] >M€;‘D. (2.13)

Assume d<x(s, o, fy<M, xX'(s,2, 8)>0, and r(a, b)> R Inequality
(2.13) implies the existence of a point 1,>s5 with x(7y, 2, f)=M,
x'(tg, @, f)>0, and t,—s<e/3. From Lemma 2.3, there is a t, >, with
t,—to<g/3 and x(t,,a, b)=M, x'(1,, 2, §) <0. Inequality (2.13) yields the
existence of s* > ¢, with s* —r, <¢/3 and x(s% o, f)=1. Then |[s* —s| <&
as required.

The proof of the remaining cases is similar, using Lemma 2.3 in its full
strength. |}

Lemmas 2.3 and 2.4 imply, in particular, that the number of zeros of
x(t,a, )—1 on [0, T] becomes arbitrarily large as r(«, i) grows. This
implies the validity of the following

Proposition 2.1. n(x, f)— +oc as r(o, f) — +oo.

This fact is the key ingredient needed to apply Ding’s version of the
Poincaré-Birkhoff Theorem. For the convenience of the reader we state
Ding’s result in the following lemma.

LemMa 2.5 [4]. Ler A denote an annular region whose inner boundary
C, and outer boundary C, of A are simple curves. Denote by D, the open
region bounded by C, i=1,2. Let W: 4 - W(A)<=RN\{0} be an
area-preserving homeomorphism. Suppose that

(1) The inner boundary curve C, is star shaped about the origin.
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(2) W has a lifting W to the polar coordinates plane, that is, W
sgtisfies P-W=W-:-P, where P(p,0)=(pcosb, psin@) such that if
W(p, 0)=(R(p, 8), O(p, 0)) then O(p,0)—8>0 (<0) on P YC,) and
O(p, 8)—0<0 (>0) on P (C,). The functions R and © are continuous
and 2n periodic in 8.

(3) W can be extended as an area-preserving homeomorphism
W:D,— R? so that 0 W(D,).

Then W has at least two fixed points such that their images under P are
two different fixed points of W.
We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Consider the operator W:(—1, 0)xR—
(=1, «0) xR defined by

W, )y =(x(T, 1 +a, 8)— 1, x(T, .+ 1, B)). (2.14)

Standard arguments show that W is an area-preserving homeomorphism.
Observe also that x(z, 1+ a, ) is a T-periodic solution of (2.1) if and only
if (2, B) is a fixed point of W.

Fix a positive number r, so large that n(1 +a, §) is well defined for all
(2, B) with x> —1 and r(1 +, B)=r,. From the continuity of », there
exists a positive integer n, such that n(x+1, f)<2nyn whenever
r(1 +a, f) =r,. Fix any integer N with N > n,. Proposition 2.1 implies then
that we can find a real number r, > r, such that

inf{n(a+1, B)r(x+1,B)=r}>2Nn
= 2on>sup{n(x+ 1, f)|r(a+1, B)=rq}. (2.15)

Let us define the curves C, and C, in R? by

Ci={(a, f)e(—1, +oc)xRir(a+1, B)=ro}

(2.16)
Cy={(a,f)e(~1, +0)xRir(a+1,8)=r}

C, and C, are closed simple curves and, in particular, C, is star shaped
around the origin. Thus define 4 to be the annular region between these
two curves. It is standard that the restriction of W to A4 can be lifted to the
polar coordinate plane through the usual covering map P(p,0)=
{p cos 8, psin ) rto a map W satisfying the periodicidity condition

W(p, 0+ 2m)= W(p, 0) + (0, 27). (2.17)

Then, if we write W(p, 8) = (R(p, 0), O(p, 8)), the definitions of W and the

505/103;2-4
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rotation number #, together with the continuity of W, imply the existence
of an integer 7 so that

O(p, 8)— 0 ="2iin—n{a+ 1, B), (2.18)

for all (p, 8)e P~ '(A4), where (a, B} = P(p, 6).
Now, for each integer n such that n,<n< N define

W .(p, 0)= W(p, 0) + (0, 2(n—7)m), (2.19)

and observe that W, is still a lifting of W via the covering map P. From
this definition, (2.15), and (2.18), it is clear that ¥, satisfies condition (2)
of Lemma 2.5. The only thing left is to verify that Oe W(D,). But this is
equivalent to saying that if («, 8) is such that x(7, o, 8)=1, x(T, o, f)=0
then r(a, ) <r,. This obviously holds if we choose r, sufficiently large.

It follows from Lemma 2.5 that W, possesses two fixed points yielding
two distinct fixed points (af, %) of W. Thus x(s, 2 + 1, ) are two
different 7-periodic solutions of (2.1). Observing that n(aX + 1, ) =2nn
we find that x(s,«f + 1, 83)— 1 has exactly 2» zeros in [0, T).

Since this happens for n =g, ..., N and N can be chosen arbitrarily large,
the theorem follows. |

Next assume that we know a particular T-periodic positive solution z(?)
of (2.1). In this case the result of Theorem 2.1 can be strengthened as we
will show next.

First, defining A(¢) = u(t) — z(1), we see that (2.1) is equivalent to

h” + (1, h)=0, (2.20)

where f(t, h)= f(1, z(t)+ h)— (1, 2(1)). Then A=0 is a trivial solution of
(2.20). Observe that, by local uniqueness, the zeros of a nontrivial solution
of (2.20) must be simple. In particular, calling h(s, %, ) the solution of the
I.V.P. associated to (2.20) such that #(0)=a > —z(0), #'(0) =B, from (2.8)
we cen define its rotation

fila, By=w(h(-, a, B)). (2.21)

Now define

F(a,ﬂ)=r<;(%—)+l,ﬁ>~r(l.0).

By slightly modifying the arguments from which Proposition 2.1 was
obtained, it follows

PROPOSITION 2.2. #(a, B) = +oc as #a, f)— + .
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If we apply the Poincaré-Birkhoff Theorem as in the proof of
Theorem 2.1, but now to the operator

V(ix, B)= (W(T, a, B), B'(T, o, B)) (2.22)
defined on the annular region
B={(x,f)e[—2(0), +o0)xR|e<F(a, B)y<r,} (2.23)

for a large r, and a small ¢>0, we obtain the existence of pairs of
T-periodic solutions of (2.23) h¥(r) such that y(ht)=2nn, for every
n = n,, where ng is any integer such that

sup{fi(a, B)|F(a, B)=¢} < 2n,m. (2.24)

Assuming further that fin (2.1) is of class C' and linearizing (2.20) around
the trivial solution, we see that for («, f) near (0, 0), #j(«, §) must be close
to the rotation of a nontrivial solution of

v”+a—f(t, z(2))v=0. (2.25)
ds
Hence, if for instance
2
LUIPRP {2"”0} forall re[0, T], (2.26)
os T

no = 1, and since nontrivial solutions of v” + {2an,/T}? v =0 have rotation
2ny7 on (0, T], we can take this n, in (2.24).
The above arguments can be summarized in the following

THEOREM 2.2. Assume that fin (2.1) is of class C'. If z(t) is a particular
T-periodic solution of (2.1) and nge N, ny = 1, is such that (2.26) holds, then
for all n 2 n, there exists a pair of T-periodic solutions of (2.1), xX(t) such
that xt(1)— z(t) possesses exactly 2n zeros in [0, T).

We note that in case we can take no=0 in (2.26), Theorem 2.2 does not
predict the existence of solutions xi such that x§ — z does not have zeros.
We will see, however. that we can still deal with this case, but now via
degree-theoretical arguments. Moreover, the continuation assumption is
not necessary for the next result.

THEOREM 2.3. Assume the hypotheses of Theorem 2.2 hold except the
continuation assumption, and that (2.26) holds with no=0. Then there exist
two T-periodic solutions of (2.1} x*(t), x~(t) such that x*(t)—z(t) is
strictly positive and x (1) — z(t) is strictly negative.
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Proof. We have to show that (2.20) possesses a negative and a positive
solution.

Denote by C,(R) the Banach space of all the real valued, continuous
T-periodic real functions endowed with the sup norm.

Let ge C,(R) and R(g) be the unique T-periodic solution of the
problem

v"—v+g=0.

It is well known that R defines a compact linear operator of C, (R)
into itself. Then the problem of finding T-periodic solutions of (2.20) is
equivalent to the fixed point problem:

h=R(J(-, h)+h)=G(h). (2.27)

Let B(0, 3) be the ball center 0 radius & in C,(R). Since (3f/ds)(t, 0) for all
t, we see that for 6 small enough

deg(/— T, B(O, 8),0)=1. (2.28)

Here and henceforth deg denotes the Leray-Schauder degree.
Next, for p>0, £>0, p <min,_, ry z(¢) define

Q,.={heCr(R)| —z(t)+ p<h(ty<eforallte [0, T]}. (2.29)

Then @, , is an open and bounded subset of C,(R). We will see that for
some suitable p, ¢,

deg(/—G, 2,,,0)=0. (2.30)
To do this, we consider the compact homotopy
G,(M=R(f(-,h)+h—AC), ie[0,1], (2.31)

where C is a positive constant, to be chosen later.

Let ¢ be any positive number such that f(r, s)<0 for 0 <s<e¢ and all
te [0, T). Suppose he Cr(R) is such that —z(¢) <h(¢)<e and for some
Ae [0, 1] satisfies the equation

h=G,(h). (2.32)
Then
B+ f(1, h)— AC =0. (2.33)

Let ¢, be a point where A attains its maximum. Then A"(¢, ) <0, and from
(2.33) f(t, , A(r,))=0. This implies A(¢, ) <0, max h<0.
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Let us write x =z + h. Then x satisfies
x"+ f(t, x) — AC=0. (2.34)

Let +_ be a point where x attains its minimum. Thus x"(z. )=0. If
x"(t _)=0, then f(¢_, x(¢t_))=0, and hence x(t _)=m _, where

m_ =inf{s < 0] f(t, s) =0 for some te [0, T]}. (2.35)

Note that, from (2.3), m_ >0.

Assume next x"(t+_)>0. We have x'(+_)=0. Let t*>¢_ be the next
point where x’ vanishes. Then necessarily x(¢*)> x(¢_). Multiplying (2.34)
by x’ and integrating between ¢_ and r*,

0=J"' (f(e,x)—AC)x’ dt:j'»\'“‘)(f(xgl(s)’ S iC)ds.  (236)
- x(r-)
This implies
OSJ-”L f(x_l(s),s)ds+J‘”:”1 |f(x " (s), 8)| ds. (2.37)
X2 m_

since max(x —z)=max 2<0. Now, we have that —f(s, s) = ¢/s — k for all
O<s<m_ and te [0, T] and some ¢, k> 0. Inequality (2.37) implies

¢log (%*—))skm“ YAzl (2.38)

where A =max{|f(s,s)|1te[0, T], se[m_,|z| 1} Hence, x(t_)> p for
some positive constant p depending only of f and z It follows that
—z(t)+p<h(t)<e for all ¢, that is, he, .. We conclude that any
solution of (2.32) in Q,, must be in 2, , for all Ae [0, 1]. It follows that
deg(/—-G,, 2,,,0) is well defined and it is constant for A€ [0, 1]. Note
that G,= G and that a zero of /— G is a T-periodic solution of

h"=C—f(1, h). (2.39)

Choose C > max{lf(t,s)l [0<s<c¢}. Then
T T -
o=j h"=f (C—F(t1, 1)) >0,
0 [(]

a contradiction showing that (2.31) cannot have any solution in 2, and
hence

0=deg(/~ G, 2,,.0)=deg(I~ G, 2,,,0)
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and (2.30) holds. It follows from (2.28), (2.30), and the excision property
of the degree that (2.27) possesses a solution # not identically zero in 2, ,
which must satisfy #<0. Local uniqueness shows that actually # <0 and
the first half of the theorem follows.

The existence of a strictly positive solution of (2.27) follows similarly. In
fact, for 0 <¢ < B, denote

A, g={he Cr(R)—e<h(r)< B}.

Choose ¢ such that (1, s)> 0 if —¢<s<0. Arguing as above we can prove
that if h> —¢ solves (2.27), then >0 and h<m _ +k for some k>0
independent of 4, where

m, =max{s>0|f(t,s)=0for some t}.
Then, if B=m_ +k, we obtain that
deg{/— G, A4, 5,0)=0 (2.40)

and the existence of a nontrivial positive solution of (2.27) follows from
(2.28) and (2.40) fisnishing the proof of the theorem. |]

3. ProBLEM (E)

In this section we apply the results of Section 2 to problem (E). We start
by showing that (E) satisfies the hypotheses of Theorem 2.1.
LEmMMA 3.1.  The function F(¢, s) in (1.7) satisfies
(i) F(t,s)=c;5s " +o(s ") near s =0,
(il) F(t, s)=c,s* +o(s*) near s=
for some positive constants ¢, ¢, and uniformly in te [0, T].

Proof. By direct integration, we find that g in (1.5) satisfies

g(s)={0s+o(s) near s= +oo 31)

—oas* + o(s") near s=0,
where 8= B(1 —1/(u+ 1)'?). Wer see also that ¥ defined by (1.4) has the
following properties:

(i) ¥(s) is strinctly increasing;
(i) ¥'(s)=5>?+0(s¥?) near s=0;
(iii) him,_ . ¥'(s)=(w/3)"
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It follows that

i [(3/m)' P s+ ols) near s= +o0
v (S)—{(5/2)sz’5+o(s“) near s=0. (3:2)
Therefore,
P (s5)? _{(3/u)3"2s2+o(s2) near s= +o 13
E-s)) L(5/2)% s+ o(s'%) near s=0. (3.3)
Also,
VN 0(3/1)"* s+ o(s) near s= +o0
g (s))—{—1(2/5)4s‘8’5+0(s8/5) near s=0. (34)
Hence,
__ ¥ .
2F(Y,S)—W,(W_,(”)(g('l’ (s))— p(1))
_ {8(3/u) s> + o(s?) near s= 4+ (3.5)
_{-a(2/5)7“’2s"7'”5+o(s*7‘”5) near s=0 '

as desired. |}

From this lemma we see that F satisfies (2.3) and (2.4).

Next we will show that the hypothesis of continuation of the solutions
to the initial value problem (2.1)-(2.2) with F in the place of f is satisfied
if we assume the pressure p(r) to be a C' function. This will be a direct
consequence of the following general lemma.

LemMa 3.2, If fin (2.1) is of class C' and satisfies
(i) lim, ., [} f(t, ©)dt = +oc uniformly in te [0, T].
(i) lim, o, {3} f(t, 1) dt = +o0 uniformly in 1€ [0, T].

(ii1} There exists a locally integrable, nonnegative function a(t) such
that

J:g—{(t, t)dr <a(t) U: f(t, t)yde+ 1}

Jfor all s> 0. Then the local solutions of the initial value problem (2.1)-(2.3)
can be continued to the whole real line.
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Proof. Define

X +j""” £, 1) dr, (3.6)
1

o(t)= 5

where x is the local solution of (2.1) with x(0)=a, x'(0)= 4.
Assume that x cannot be continued after a finite time f=1t* Observe
then that ¢(¢) becomes unbounded as 1 approaches r*. Now,

J.xmg(r’t)drsa(t){l+C(,)}ga(r){M+C(t)}, (3.7)

1

where M > —infe, M > 1 (observe that ¢ is bounded below). But (3.7)
implies that

e(1) < (M + ¢(0)) exp <f1a(r)dr)—M (38)

which contradicts the unboundedness of c(¢) near r*, concluding the
proof. |

Note. Lemma 3.2 has been adapted from a similar result proved by
Jacobowitz [8].

Next we check that by setting /= F in Lemma 3.2, then (i), (ii), and (iii)
are satisfied. Indeed, (i) and (ii) are immediate from Lemma 3.1. Now,
from (3.3) and (3.5)

oF ¥ l(s5)?
—(t,5)= —p'(t) ————— < F(1, 3.9
25 (1:5)= =90 Gy S FU9) (39)
for large 5. Also,
oF
E(”S)Z —C=F,s) near s=0, (3.10)

and hence (ii1) follows from (3.9) and (3.10).
We conclude from the above discussion that Theorem 2.1 is applicable
to problem (E).

Next we will see that if the parameter 8 in the definition of g in (1.5)
is sufficiently small and the pressure p(t) lies on a certain range, we can
identify a particular 7-periodic solution of (E), so that we can apply
Theorem 2.2 to problem (E).

In what follows we will write g(s) defined in (1.5) as g(s, ).



T-PERIODIC SOLUTIONS 275

LEMMA 33. (i) g(5,0)>0if5>1,g{5,0)<0if s<].
(it} Lim, ., g(s,0)= —oc, lim,, ., g(5,0)=0.

(iii) g(s,0) has a unique critical point §>0 and g5 0)=
max{g(s, 0)]s>0}.

Proof. (i) and (ii) follow immediately from the definition of g(s, 0). By
direct differentiation, we see that (dg/ds)(s, 0} =0 is equivalent to

(I+((u+ D u+s) s 1
(1 +S'"3) (#+s3)4@‘3_(’u+1)l,"3.

3.11)

Call A(s) the left-hand side of (3.11) and observe that

L 7 6 }
(IOgh(S))—s“{SJ(,u+s3) (s 4+ D)1 4+ 2u +5?) (3.12)

and that this last quantity is strictly positive for all s> 0. This implies that
(3.11) possesses at most one solution §, which is necessarily equal to the
point where g{s, 0) attains its maximum value. J

Let M = g(3, 0) and assume that 0 < p(r) < M for all ¢. Observe that for
B >0 sufficiently small, we can find points s~ () <s*(f) corresponding
respectively to a local maximum and a local minimum of g(-, 8), satisfying

lim g(s™(B), f)=M, lim g(s*(f), f)=0, (3.13)
g0 )

and (3g/és)(s, BY<0 for se(s (B), s*(B)). Thus, for B>0 sufficiently
small we have,

gls*(B), By< p(r)<gls (B B) (3.14)
for all re [0, T]. It follows that
F(t,s*(B)) <O < F(t,s (B)) (3.15)

for all re [0, T], and hence s*(f), s~ (f) represent respectively a super-
solution and a subsolution of the T-periodic problem (E). From [7], we
obtaion the existence of a T-periodic solution z(r) of (E) such that
s (B)<z(r)<s*(B) and we can apply Theorem 2.2 to this particular
solution.

Finally, observe that if we assume small amplitude in the oscillation of
p(t), namely | p(r) — p| uniformly small for some constant j, then we can
replace s*(f) in (3.15) by numbers §* () still satisfying (3.15) and such
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that (éF/ds)(t, s)<0 for se(§7(B),§*(B)) so that (3F/ds)(t, z(1))<0
making Theorem 2.3 applicable to this case.

We summarize the results of this section in the following existence
theorwem for problem (E).

THEOREM 3.1.  Assume that p(t) is of Class C'. Then

(1) There exists a natural number ny such that for every integer n = ng
there exist two T-periodic solutions x*(t) of (E) such thar x*(t)—1 have
exactly 2n zeros in [0, T).

(i) If 0 < p(r)y<max{g(s,0)|s>0}, then for every >0 sufficiently
small and numbers s (B) <s~ (f) satisfying

F(t,s7(B)) <0< F(1,s ()

Jor all te [0, T], there is a T-periodic solution z(t) with s (f)<z(t)<
s*(B) and solutions x*(t) of (E) such that xX(t)—z(t) have exactly 2n
zeros in [0, T) for everv n=ngy, where ny, is any integer such that
(0f18s)(t, s)< {2nng/T )2 for te [0, T, se(s (), s*(B)).

(iii) There is an £>0 such that if 0 < p<max{g(s,0)|s>0} is such
that | p(t)— p|l <e for all te (0, T, then for all B >0 sufficiently small we
can take ny, =0 in (1), so that we can find solutions x*(1) of (E) such that
xE(8) — z(t) are respectively positive and negative on [0, T).
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